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Not marble nor the gilded monuments
Of princes shall outlive this powerful rhyme,
But you shall shine more bright in these contents
Than unswept stone besmeared with sluttish time.
When wasteful war shall statues overturn,
And broils root out the work of masonry,
Nor Mars his sword nor wars quick fire shall burn
The living record of your memory.
Gainst death and all-oblivious enmity
Shall you pace forth; your praise shall still find room
Even in the eyes of all posterity
That wear this world out to the ending doom.
So, till the Judgement that yourself arise,
You live in this, and dwell in lovers eyes.
William Shakespeare
Sonnet 55
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Abstract

We describe a method of bounding the Mordell–Weil rank of an elliptic curve E
over a number field k. The result of this method may improve upon an upper bound
from the p-Selmer group for some odd prime number p and involves an expression
for the Cassels–Tate pairing on X(E/k) in terms of certain local pairings, one for
each place v of k, which we call Tate local pairings. For each odd prime number
p we give explicit formulas for the Tate local pairings both in the case where all
p-torsion of E is locally defined over the base field and for the more general case.
We prove that in the case where all p-torsion is rational the formula for the general
case also suffices. This means that the elements in the two formulas differ by the
norm of some element. We conjecture which element this should be and prove our
conjecture for small primes.
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1 | Introduction

The results of this thesis require a larger background in the subjects of principal
homogeneous spaces and central simple algebras than I assume the reader to have,
mostly since I had to learn these topics myself during the preparation of this thesis.
Instead of giving this background at the start, I have chosen to put the necessary
results in two appendices at the end. The advantage is that the interesting results
of this thesis occur earlier, the disadvantage of course is that in doing this, it is
necessary to refer forwards into the document and often state facts about objects
that are not defined yet when reading the thesis from front to back. Any other choice
in structure however also carries both advantages and disadvantages and I believe
that the chosen structure finds the right balance between the presented order of the
statements and not breaking the narrative.

1.1 Bounding the rank of E(k)

Let k be a number field and (E,O) an elliptic curve over k. We recall the definitions
of the Selmer and Tate–Shafarevich groups. Let Mk denote the set of places of k.

Definition 1.1. The n-Selmer group is

S(n)(E/k) = ker
(
H1(k,E[n])→

∏
v∈Mk

H1(kv, E)[n]
)

and the Tate–Shafarevich group is

X(E/k) = ker
(
H1(k,E)→

∏
v∈Mk

H1(kv, E)
)
.

The Mordell–Weil theorem states that E(k) is a finitely generated abelian group.
For each n ≥ 2 there is an exact sequence

0 −→ E(k)/nE(k) −→ S(n)(E/k) −→X(E/k)[n] −→ 0. (1.1)

From the inclusion E(k)/nE(k) ⊂ S(n)(E/k) one finds an upper bound for the
Mordell–Weil rank rk(E(k)) depending on n.

Lemma 1.2. We have #(E[n](k)) · nrk(E(k)) = # (E(k)/nE(k)).
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CHAPTER 1. INTRODUCTION

Proof. Since E(k) is a finitely generated abelian group, we have

E(k) ∼= E(k)tors × Zrk(E/k),

where the index ‘tors’ indicates the torsion part. We have

# (E(k)/nE(k)) = # (E(k)tors/nE(k)tors) · nrk(E/k).

For every abelian group A the sequence

0 −→ A[n] −→ A
×n−→ A −→ A/nA −→ 0

is exact. Since # is multiplicative, we find #A[n] · #A = #A · # (A/nA). Since
E(k)tors is finite, we conclude that # (E(k)tors/nE(k)tors) = #E(k)[n] = #E[n](k)
holds. This proves the proposition.

Proposition 1.3. For each integer n ≥ 2, one has

#(E[n](k)) · nrk(E(k)) ≤ #
(
S(n)(E/k)

)
.

Proof. From the exact sequence (1.1) we find the inequality

# (E(k)/nE(k)) ≤ #
(
S(n)(E/k)

)
.

We conclude the proof by application of Lemma 1.2.

By calculating Selmer groups for higher n, we may hope to find better bounds for
rk(E(k)). We may however also hope to achieve a better upper bound by using the
inclusions

E(k)/nE(k) ⊂ im(ϕn) ⊂ S(n)(E/k)

where ϕn : S(n2)(E/k) → S(n)(E/k) is induced by multiplication by n as in the
commutative diagram below.

E(k)
×n2

−−−−→ E(k) −−−−→ S(n2)(E/k) −−−−→ X(E/k)[n2] −−−−→ 0

×n
y ∥∥∥ ϕn

y ×n
y

E(k)
×n−−−−→ E(k) −−−−→ S(n)(E/k) −−−−→ X(E/k)[n] −−−−→ 0

Proposition 1.4. For each integer n ≥ 2, one has

#(E[n](k)) · nrk(E(k)) ≤ # im(ϕn).

Proof. By Lemma 1.2 and the inclusion E(k)/nE(k) ⊂ im(ϕn).
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CHAPTER 1. INTRODUCTION

1.2 The Cassels–Tate pairing

To find im(ϕn) it is useful to consider the Cassels–Tate pairing

〈 , 〉CT : S(n)(E/k)× S(n)(E/k)→ Q/Z (1.2)

as Cassels showed that im(ϕn) is its kernel [Cas59]. This method of finding a bound
on rk(E(k)) is useful if im(ϕn) ( S(n)(E/k) or equivalently if the pairing (1.2) is
non-trivial. Incidentally, this is exactly the case where X(E/k)[n] is non-trivial.

Remark 1.5. We restrict the discussion in this thesis to the case where n is an odd
prime number. A lot of the computational statements that will occur in this thesis
can actually be stated for composite n. We chose to sacrifice the highest generality
possible to achieve a clear overall presentation. We will use the letter p throughout
the thesis for the odd prime number that we use in the place of n above and which
we fix at this point. Most of our definitions and results depend on the fact that p is
odd. We will however often not refer to p in our notation.

Cassels showed how to calculate the Cassels–Tate pairing on the 2-Selmer group,
by writing the pairing as a certain sum of local invariants, one for each place v of
k [Cas98]. Work by Tom Fisher and Rachel Newton [FN13] has shown a method for
p = 3. Their method for the local part of the calculation suggests a generalization
for each odd prime.

To implement our method of possibly enhancing the bound on rk(E(k)) it is still
necessary to find the p-Selmer group via some method. It is natural to ask why
not find the p2-Selmer group via possibly the same method and not bother with
the calculations outlined in this thesis. One good reason might be that it is com-
putationally infeasible to calculate large Selmer groups, whereas our method might
be quicker. In this thesis however, we do not discuss these issues since it is not yet
clear how to compute all the necessary ingredients for the ‘global’ part of the method
studied in this thesis. In particular we are not in a position to say anything on the
effectiveness of such computations. We hope to be able to work on this in later
research. In any case, even if our method would not be usable to bound ranks of
elliptic curves in practice, it is still of theoretical interest as it allows us to calculate
the local pairings of the form (1.3) below.

The aim of the remainder of this chapter is to give the reader a general view on
what will be discussed in this thesis.

Following [FN13], we define a local pairing for each place v ∈Mk in terms of which
the Cassels–Tate pairing will be written.

Definition 1.6. Let v be a place of k. We define a local pairing

( , )v : H1(kv, E[p])×H1(kv, E[p])
∪→ H2(kv, E[p]⊗ E[p])

ep→ H2(kv, µp)
invkv→ 1

pZ/Z
(1.3)

composed of the cup product ∪ (which lies outside the scope of this thesis, see [GS06]
section 3.4), the Weil pairing ep (see Definition 2.3) and the Hasse invariant invkv
(see Definition B.38).
For a finite extension kv ⊂ K we define ( , )K by replacing all instances of kv by K.
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CHAPTER 1. INTRODUCTION

For a finite extension kv ⊂ K, consider the inflation-restriction exact sequence

0→H1
(
Gal(K/kv), E[p]GK

) Inf→ H1(Gkv , E[p])
res→
(
H1(GK , E[p])

)Gal(K/kv) →

→ H2
(
Gal(K/kv), E[p]GK

) Inf→ H2(Gkv , E[p])

where we have written the groups in full for clarity.

For i = 1, 2, the group H i
(
Gal(K/kv), E[p]GK

)
is annihilated by [K : kv] since

[K : kv] is the order of Gal(K/kv), and by p since E[p]GK is. If [K : kv] is not
divisible by p, then H i

(
Gal(K/kv), E[p]GK

)
is annihilated by 1 and therefore trivial.

Then the restriction map gives an isomorphism

H1(kv, E[p]) ∼=
(
H1(GK , E[p])

)Gal(K/kv) ⊂ H1(GK , E[p]).

Proposition 1.7. The pairings from Definition 1.6 fit into the following commuta-
tive diagram if [K : kv] is not divisible by p.

H1(kv, E[p])×H1(kv, E[p])
∪−−−−→ H2(kv, E[p]⊗ E[p])

ep−−−−→ H2(kv, µp)
invkv−−−−→ 1

pZ/Z

res

y res

y res

y ×[K:kv]

y
H1(K,E[p])×H1(K,E[p])

∪−−−−→ H2(K,E[p]⊗ E[p])
ep−−−−→ H2(K,µp)

invK−−−−→ 1
pZ/Z
(1.4)

Proof. See [GS06] Proposition 3.4.10 for the first square and Lemma B.40 of this
thesis for the third square. The middle square is trivial.

For every field K the cohomology group H2(K,µp) injects into H2(K,K
×

) and the
latter is isomorphic to the Brauer group Br(K) of K. The Brauer group (discussed
in Appendix B) consists of equivalence classes of central simple algebras with a
certain group operation. For K a finite extension of some kv, the Hasse invariant
invK is an isomorphism between Br(K) and Q/Z. Since H2(K,µp) corresponds to

Br(K)[p] under the isomorphism H2(K,K
×

) ∼= Br(K), the Hasse invariant induces
an isomorphism H2(K,µp) ∼= 1

pZ/Z.

Theorem 3.6 shows that for odd primes p, the Cassels–Tate pairing can be written
as a certain sum of Tate local pairings. The Tate local pairings come from the local
pairings as given in Definition 1.6 and are themselves defined below in Definition
1.13. In this thesis we give explicit formulas for the Tate local pairings in terms of
the Hasse invariant of certain central simple algebras over non-Archimedean local
fields of characteristic zero or in fact their associated Hilbert norm residue symbol.
We call the determination of the central simple algebras the global problem and
calculating the local pairings involved the local problem. We only study the local
problem where we assume that the central simple algebra is given.

Lemma 1.8. For each place v ∈Mk and finite extension kv ⊂ K the pairing ( , )K
is symmetric. (This uses that p is odd.)

Proof. By Proposition 1.38 from [Mil13] a cup-product

∪ : H i(G,A)×Hj(G,B)→ H i+j(G,A⊗B)

4



CHAPTER 1. INTRODUCTION

satisfies a ∪ b = (−1)ijb ∪ a so the cup-product here is antisymmetric. The Weil
pairing is also antisymmetric since it is alternating and the order of its codomain is
odd. Therefore ( , )K is symmetric.

Definition 1.9. Let K be a field. For maps (of sets) f : E[p](K) → K, where
K is a field, we define a Galois action as follows. For σ ∈ GK = Gal(K/K) and
P ∈ E[p](K) define (σf)(P ) = σ(f(σ−1P )). We call

R = MapK(E[p](K),K)

the étale algebra of E[p](K) over K. Here the subscript K is used to denote GK-
invariant maps.

Remark 1.10. Since for every integer n that is not divisible by char(K) we know
that E[n](K) has n2 elements, E[n](K) consists of a finite number of Galois orbits.
Let {P1, . . . , Pm} ⊂ E[n](K) be a minimal set of points such that the orbits of these
points cover E[n](K) and denote by K(Pi) the smallest field extension of K such that
Pi ∈ E[n](K(Pi)) holds. Then there is an isomorphism R ∼= K(P1) × · · · ×K(Pm)
given by f 7→ (f(P1), f(P2), . . . , f(Pm)). This expains the name étale algebra over
K.

We let R be the étale algebra of E[p](k) over k and for a finite place v ∈Mk and a
finite field extension kv ⊂ K we write RK for the étale algebra of E[p](K) over K.
The underlying additive groups of these RK ’s will be given the structure of a central
simple algebra and it is this structure that will be instrumental in solving the local
problem.

In Chapter 2 we will define an injective map

w1,k : H1(k,E[p])→ R×/(R×)p

and for each finite place v ∈Mk and finite extension K of kv we will define injective
maps

w1,K : H1(K,E[p])→ R×K/(R
×
K)p

that will fit into commutative diagrams

H1(k,E[p])
w1,k−−−−→ R×/(R×)p

res

y y
H1(kv, E[p])

w1,kv−−−−→ R×kv/(R
×
kv

)p

res

y y
H1(K,E[p])

w1,K−−−−→ R×K/(R
×
K)p.

(1.5)

Definition 1.11. The pairing ( , )K induces a pairing [ , ]K on the image of w1,K .
We call this latter pairing the Tate local pairing for K.

Remark 1.12. By the diagram 1.5, it also makes sense to speak of [a, b]K where a
and/or b lies in w1,k(H

1(k,E[p])) instead of w1,K(H1(K,E[p])).

5



CHAPTER 1. INTRODUCTION

As for every symmetric bilinear form of which the codomain is not of characteristic 2,
we may associate a quadratic form to the Tate local pairing. Calculating the Tate
local pairing is then equivalent to calculating its associated quadratic form. Where
such a quadratic form is usually defined with a factor 1

2 in front, we take this factor
into the definition.

Definition 1.13. Let [ , ]K be the Tate local pairing for a non-Archimedean local
field of characteristc zero K. Then we write qK for the quadratic form that satisfies
[a, b]K = qK(ab)− qK(a)− qK(b) for all a, b ∈ im(w1,K), i.e. qK(a) = 1

2 [a, a]K for all
a ∈ im(w1,K).

The quadratic forms qK for non-Archimedean local fields of characteristic zero be-
have well under field extensions.

Proposition 1.14. Let K be a non-Archimedean local field of characteristic zero
and L/K a finite extension. Then we have

qL = [L : K]qK .

Proof. This is the analogue of Proposition B.40 on a similar equation for the Hasse
invariants invK and invL.

Remark 1.15. Since qK maps to 1
pZ/Z, Proposition 1.14 allows us to extend K by

a field L of degree [L : K] coprime to p and do our calculations over L. Such field
extensions will enable us to assume certain properties of our local base field that
allow us to give nice expressions for qK .

In Theorems 4.7 and 4.22 we will see that we can calculate these quadratic forms
qK by switching to the calculation of a Hilbert norm residue symbol on K. It is in
these final forms that our explicit expression is stated.

Remark 1.16. From now on, whenever we mean ‘non-Archimedean local field of
characteristic zero’ we will just say ‘local field’ for brevity, i.e. we don’t consider R
and C and all our local fields are completions of a number field with respect to a
discrete valuation. The quadratic forms qR and qC are trivial on the image of w1,R
and w1,C respectively. (cf. Proposition B.13)
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2 | Important definitions

Let R be the étale algebra of E[p](K) over some field K. In this chapter we will
see definitions of some functions that will play a vital role in giving the underlying
K-vector space of R the structure of a central simple algebra in the case where
K is a finite extension of kv for some finite place v ∈ Mk and therefore in calcu-
lating the Cassels–Tate pairing. The constructions given in this chapter are taken
from [CFO+08]. We however give more details along the way.

2.1 The Weil pairing

Remark 2.1. Since we will deal with divisors on elliptic curves as well as on principal
homogeneous spaces (cf. Appendix A), and some confusion between formal addition
of divisors and addition of points may arise, we will use the notation (P ) for the
primitive divisor defined by a point P on either an elliptic curve or a principal
homogeneous space.

Lemma 2.2. Let E be an elliptic curve over a field K and let D =
∑

P∈E nP (P ) be
a divisor on E. Then D is a principal divisor if and only if both deg(D) = 0 and∑

P∈E [nP ]P = O hold.

Proof. This proof comes from Silverman [Sil09] Corollary III.3.5. It is well known
that a principal divisor on a smooth curve has degree 0. Let D′ ∈ Div0(E) be given.
The Riemann-Roch space L(D′+(O)) is 1-dimensional over K by the Riemann-Roch
theoreom, so there exists a point Q ∈ E(K) such that D′ is linearly equivalent to
(Q)−(O). Again by Riemann-Roch we find that two primitive divisors (i.e. divisors
consisting of a single point) are linearly equivalent if and only if they are equal.
Thus this point Q is uniquely determined by D′. We now define an injective map

φ : Div0(E) −→ E(K)

that sends a divisor D′ to its associated point Q such that D′ ∼ (Q) − (O) holds.
Since the group law on an elliptic curve may be defined in terms of divisors of the
form (Q) − (O) and therefore φ is a homomorphism, we arrive at the following
equivalence for D ∈ Div0(E):

D ∼ 0⇔ φ(D) = O ⇔
∑
P∈E

[nP ]φ ((P )− (O)) = O ⇔
∑
P∈E

[nP ]P = O

which finishes our proof.

7



CHAPTER 2. IMPORTANT DEFINITIONS

For every positive integer n ≥ 2 not divisible by char(K), we will need the Weil
pairing en : E(K)×E(K)→ µn(K), leaving out the reference n where no confusion
is likely to arise. The Weil pairing can be defined as follows:

Definition 2.3. Let T ∈ E[n](K) be a point. Then by Lemma 2.2 there is a
function f ∈ K(E) with divisor div(f) = n(T ) − n(O). Let T ′ ∈ E(K) be a point
with [n]T ′ = T . Such T ′ exists since its coordinates are solutions for polynomial
equations. Further let g ∈ K(E) be a function with divisor

div(g) =
∑

R∈E[n](K)

(T ′ +R)− (R).

Then f ◦ [n] and gn have the same divisor, so by scaling f by a suitable constant,
we have f ◦ [n] = gn.
Let S ∈ E[n](K). Then we define a map

φg,S : E(K)→ P1(K),

X 7→ g(X + S)/g(X).

The image of φg,S is contained in µn ⊂ K ⊂ P1(K). In particular, φg,S is not
surjective and therefore constant. For any choice of X where both g(X + S) and
g(X) are defined and non-zero we now define

en(S, T ) =
g(X + S)

g(X)
.

Proposition 2.4. The Weil pairings satisfy the following:

1. bilinearity

en(S1 + S2, T ) = en(S1, T )en(S2, T )

en(S, T1 + T2) = en(S, T1)en(S, T2)

2. alternating
en(T, T ) = 1

3. nondegeneracy

If en(S, T ) = 1 for all S ∈ E[n](K), then T = O.

4. Galois equivariance

σ(en(S, T )) = en(σ(S), σ(T )) for all σ ∈ GK

5. compatibility

enn′(S, T ) = en([n′]S, T ) for all S ∈ E[nn′](K) and T ∈ E[n](K)

Proof. All of these properties are found by easy computations. Since they do take
up a lot of space, we simply refer to [Sil09] Proposition III.8.1.

8



CHAPTER 2. IMPORTANT DEFINITIONS

Lemma 2.5. The Weil pairing en satisfies the following rule:

en(aS + bT, cS + dT ) = en(S, T )ad−bc,

where a, b, c, d are integers.

Proof. Immediate from the bilinear and alternating properties in Proposition 2.4.

2.2 Compatible representatives

We will consider the algebra R = R ⊗K K = Map(E[p](K),K), i.e. dropping the

Galois invariance. The Weil pairing ep induces an injection w : E[p](K) → R
×

by
setting w(S)(T ) = ep(S, T ).

Proposition 2.6. Let ∂ : R
× → (R⊗KR)× be defined by (∂α)(T1, T2) = α(T1)α(T2)

α(T1+T2)
.

The sequence

0→ E[p](K)
w−→ R

× ∂−→ (R⊗K R)×, (2.1)

is exact.

Proof. By non-degeneracy of ep, we find that w(S) = 1 ∈ R
×

implies S = O.
Thus the sequence is exact at E[p](K). By bilinearity of ep, we find that for

each S ∈ E[p](K) we have w(S) ∈ Hom(E[p](K), µp) ⊂ R
×

. Since both E[p](K)
and Hom(E[p](K), µp) have p2 elements, and we have just shown w to be injec-
tive, we have w(E[p](K)) = Hom(E[p](K), µp). A quick calculation shows that
Hom(E[p](K), µp) ⊂ ker ∂ holds. Conversely, let f ∈ ker ∂. Then f is a group

homomorphism to K
×

. In particular for all T ∈ E[p](K) we also have

f(T )p = f(pT ) = f(O) = 1,

so we may conclude f ∈ Hom(E[p](K), µp). Therefore the sequence is also exact at

R
×

.

Lemma 2.7 (generalised Hilbert 90). We have H1(K,R
×

) = 0.

Proof. Let L be the smallest field inside K such that E[p](L) = E[p](K) holds. Set
G = GK and for x ∈ L: Hx = GK(x). By Remark 1.10 we have

R
× ∼=

⊕
GK−orbits

 ⊕
E[p](L)−points in orbit

K
×

 ,

which implies

R
× ∼=

⊕
GK−orbits of K(x)

x∈L

HomZ[Hx]

(
Z[G],K

×
)
.

Now Shapiro’s lemma (see for example [Mil13] Proposition II.1.11) shows

H1(GK , R
×

) = H1(GL,K
×

)

which is trivial by the usual statement of Hilbert 90.

9



CHAPTER 2. IMPORTANT DEFINITIONS

We use this to define group homomorphisms

w1,K : H1(K,E[p])→ R×/(R×)p

and
w2,K : H1(K,E[p])→ (R⊗K R)×/∂R×.

Definition 2.8. Take any [ξ] ∈ H1(K,E[p]). By Lemma 2.7 there exists a γ ∈ R×

such that
w(ξ(σ)) = σ(γ)/γ

holds for all σ ∈ GK . From this γ, define α = γp and ρ = ∂γ. Then the maps w1,K

and w2,K are given by
w1,K(ξ) = α(R×)p

and
w2,K(ξ) = ρ∂R×.

Remark 2.9. When we write w1,F or w2,F for a field F other than K, this is to be
understood as the map given by Definition 2.8 above where we replace R by the étale
algebra of E[p](F ) over F . We will also drop the index of the field when confusion
is unlikely to arise.

Proposition 2.10. The functions w1 and w2 above are well-defined.

Proof. The proof consists of two parts: first that any choices made in the definition
do not change the outcome and second that these α and ρ lie in R× and (R⊗K R)×

respectively.

We may change ξ by a coboundary, say σ(T ) − T for some T ∈ E[p](K). Then by
the Galois equivariance of the Weil pairing, γ is multiplied by w(T ). Since w(T )
maps into the pth roots of unity, we get w(T )p = 1 and by the bilinearity of the Weil
pairing we get ∂(w(T )) = 1. Thus this alteration of ξ leaves α and ρ unchanged.
Now there is only one other freedom in the choice for γ, and this is multiplication
by an element of R×. However, this multiplies α and ρ by elements of (R×)p and
∂R× respectively.

For the Galois invariance of α and ρ, we do two simple calculations where we let
σ ∈ GK . We have

σ(α)(T ) = σ(α(σ−1(T )))

= σ(γp(σ−1T ))

= (σ(γ))p (T )

= (w(ξ(σ)) · γ)p (T )

= γp(T ) = α(T )

10
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since w(·)p = 1 holds, and

σ(ρ)(T1, T2) = σ(∂γ)(σ−1T1, σ
−1T2)

= σ

(
γ(σ−1T1)γ(σ−1T2)

γ(σ−1(T1 + T2))

)
=

σ(γ(σ−1(T1)))σ(γ(σ−1T2))

σ(γ(σ−1(T1 + T2)))

= ∂(σ(γ))(T1, T2)

= ∂(w(ξ(σ)) · γ)(T1, T2)

= (∂γ)(T1, T2) = ρ(T1, T2)

by the exactness of the sequence 2.1.

Remark 2.11. The freedom we have in choosing γ will be used extensively. A choice
we already make from the start (possible by multiplying by elements of K×), is

γ(O) = 1.

In the case where all p-torsion is defined over the base field, we will exploit this
freedom even further in Lemma 4.25.

Lemma 2.12. For any field K, both w1,K and w2,K are injective.

Proof. See [CFO+08] Lemmas 3.1 and 3.2.

Remark 2.13. The injectivity of w1,K depends on the fact that we take p prime.

Remark 2.14. From the definition we may easily see that the maps w1,k, w1,kv and
w1,K indeed fit into the commutative diagram

H1(k,E[p])
w1,k−−−−→ R×/(R×)p

res

y y
H1(kv, E[p])

w1,kv−−−−→ R×kv/(R
×
kv

)p

res

y y
H1(K,E[p])

w1,K−−−−→ R×K/(R
×
K)p

that was given before as equation (1.5). The right vertical arrows are given by
inclusions.

Since we will want to refer to functions defined by the setting above in a convenient
way, we introduce some language following [FN13].

Definition 2.15. Let [ξ] ∈ H1(K,E[p]) be given. We call functions α ∈ R× and

ρ ∈ (R⊗K R)× compatible representatives for [ξ] if there exists a γ ∈ R× such that
the following hold:

1. for all σ ∈ GK and all T ∈ E[p](K) we have ep(ξ(σ), T ) = (σγ/γ)(T ),

2. γ(O) = 1,

11
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3. γp = α, and

4. ∂γ = ρ.

2.3 The central simple algebra Rρ

Definition 2.16. For T ∈ E[p](K), the indicator function δT ∈ R is defined as

δT (S) =

{
1 if S = T,

0 otherwise.

Proposition 2.17. The set {δT : T ∈ E[p](K)} of indicator functions forms a basis
of R as a K-vector space.

Proof. This is nothing more than a basic fact from linear algebra. These indicator
functions are clearly linearly independent and they span R.

Corollary 2.18. The underlying vector space of R has dimension p2 over K if
char(K) does not divide p.

Proof. By counting the number of points of E[p](K) ∼= Z/pZ× Z/pZ.

Remark 2.19. If all p-torsion is defined over K, the set {δT : T ∈ E[p](K)} forms
a basis of R as a K-vector space.

Definition 2.20. For convenience in future calculations we introduce an altered
Weil pairing εn : E(K)× E(K)→ µn(K) for odd n by

εn(T1, T2) = en(T1, T2)
1/2

where we take the square root in the group of nth roots of unity. Where no confusion
is likely to arise, we will again omit the subscript.

Using εp and ρ ∈ (R⊗KR)×, we define a peculiar multiplication on R, this procedure
is taken from [CFO+08]. It will turn out that under this multiplication, R has the
structure of a central simple algebra.

Remark 2.21. The slightly altered Weil pairing ε also satisfies the property of
Lemma 2.5, namely ε(aQ + bP, cQ + dP ) = ε(Q,P )ad−bc for all P,Q ∈ E(K). The
proof is the same.

Definition 2.22. Take f, g ∈ R and define

(f ∗ρ g)(T ) =
∑

T1+T2=T
T1, T2∈E[p](K)

ε(T1, T2)ρ(T1, T2)f(T1)g(T2).

We write Rρ for (R,+, ∗ρ). The multiplication depends on ρ, but we will write ∗ for
∗ρ where no confusion is likely to arise.

12
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Remark 2.23. This indeed makes Rρ into a ring. The multiplicative unit is δO,
the multiplication is associative and distributes over addition. It is not in general
commutative. We identify K with K · δO ⊂ Z(Rρ), where Z(Rρ) denotes the centre
of Rρ, which makes Rρ into a K-algebra.

Lemma 2.24. For two indicator functions we have

δT ∗ δS = ε(T, S)ρ(T, S)δT+S .

Proof. We calculate δT ∗ δS directly:

(δT ∗ δS)(A) =
∑

A1+A2=A

ε(A1, A2)ρ(A1, A2)δT (A1)δS(A2)

=

{
ε(A1, A2)ρ(A1, A2) if A1 = T and A2 = S,

0 else

= ε(T, S)ρ(T, S)δT+S(A).

Corollary 2.25. We have

δT ∗ δS = ε(T, S)2δS ∗ δT = e(T, S)δS ∗ δT .

Proof. This is immediate from Lemma 2.24.

Corollary 2.26. We have δ∗pT = α(T )δO and δT is invertible with inverse

δ−1T =
1

γ(T )γ(−T )
δ−T .

Proof. Using that δnT ∗ δT = ε(nT, T )ρ(nT, T )δ(n+1)T = γ(nT )γ(T )
γ((n+1)T )δ(n+1)T holds for

every positive integer n, we find by repeatedly multiplying by δT from the right the
equality

δ∗pT =

p−1∏
n=1

(
γ(nT )γ(T )

γ((n+ 1)T )

)
δpT

= γ(T )γ(T )p−1δO = α(T )δO.

Since δ∗pT is invertible in K ⊂ Rρ, δT is invertible in Rρ.

The last equality follows from Lemma 2.24, using ρ(T,−T ) = γ(T )γ(−T ).

Proposition 2.27. The K-algebra Rρ is a central simple algebra.

Proof. This is part of Proposition 2.7 from [FN13] which combines several results
from [CFO+08]. Their proof is of an abstract nature and reaches further than the
contents of this thesis. Therefore we give a more direct approach.

By Lemma B.9 it is sufficient to prove that Rρ ⊗K K = Rρ is central and simple
over K. We first prove that it is central.

13
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Suppose there exists an c ∈ Rρ such that c /∈ K holds, but such that c lies in the
centre of Rρ. Select such c and let S ∈ E[p](K) be a point such that c(S) 6= 0 holds.
Let T ∈ E[p](K) be any point. We compute

(c ∗ δT )(S + T ) =
∑

P1+P2=S+T

ε(P1, P2)ρ(P1, P2)c(P1)δT (P2)

=ε(S, T )ρ(S, T )c(S)

and similarly
(δT ∗ c)(S + T ) = ε(T, S)ρ(T, S)c(S).

By assumption these two expressions are equal and c(S) 6= 0 holds. Since ρ is
symmetric, we conclude that ε(S, T ) = ε(T, S) holds and therefore e(S, T ) = 1.
Since this last equation holds for all T ∈ E[p](K), by the non-degeneracy of the
Weil pairing we conclude S = O and therefore c = c(O)δO ∈ K which contradicts
our assumption. Thus Rρ is central over K.

Let I ⊂ Rρ be a non-zero ideal. Let a ∈ Rρ be any element. We can write a uniquely
as a =

∑
T∈E[p](K) a(T )δT . We define the length of a as the number of T ∈ E[p](K)

such that a(T ) 6= 0 holds and we write `(a) for this. Now let m ∈ I be an element
of minimal length among non-zero elements of I. Then

`(m) = `(m ∗ δT ) = `(δT ∗m)

holds for all T ∈ E[p](K) and in particular we have (m ∗ δT )(P ) = 0 if and only if
(δT ∗m)(P ) = 0. Let S ∈ E[p](K) be a point such that m(S) 6= 0 holds.

We have (m ∗ δT )(S+T ) = ε(S, T )ρ(S, T )m(S) = e(S, T )(δT ∗m)(T +S). We write
rT = m ∗ δT − e(S, T )δT ∗m. Since I is a two-sided ideal, we have rT ∈ I for all
T ∈ E[p](K). However we also have `(r) < `(m) by rT (S + T ) = 0 and therefore
rT = 0 for all T ∈ E[p](K).

From rS = 0 we conclude that m commutes with δS and therefore m(T ) 6= 0 holds
only if T is a multiple of S. Then for T not a multiple of S (i.e. S and T generate
E[p](K)), rT = 0 implies m = m(S)δS . Therefore we have δS ∈ I and then conclude
δT ∈ I for all T ∈ E[p](K) and thus I = Rρ. Therefore the only two-sided ideals
are 0 and Rρ.

The next Proposition relates the central simple algebra Rρ to the Tate local pairing
[ , ]K that plays a central role in the calculation of the Cassels–Tate pairing. The
quadratic form qK was first given in Definition 1.13.

Proposition 2.28. Let K be a finite extension of kv and let R be the étale algebra
of E[p](K) over K. Let α ∈ R× and ρ ∈ (R ⊗K R)× be compatible representatives
for some [ξ] ∈ H1(K,E[p]). Then we have

qK(α) = invK(Rρ).

Proof. This is Proposition 2.7 from [FN13] which combines results from [CFO+08].
The Hasse invariant invK is defined in Definition B.38.

14



3 | Towards a local problem

Let R be the étale algebra of E[p](k) over k.

Fact 3.1. The Cassels–Tate pairing 〈 , 〉CT : S(p)(E/k) × S(p)(E/k) → Q/Z is
actually induced by a pairing

〈 , 〉 : X(E/k)×X(E/k)→ Q/Z

that can be defined in several ways as in [PS99] section 3 or [Mil06] Proposition I.6.9.
This pairing also will be referred to as the Cassels–Tate pairing. For our purposes it
will suffice to only use the expression for the Cassels–Tate pairing found in Theorem
3.6 below. The proof of this theorem that can be found in [FN13] uses the definition
that [PS99] and [Mil06] have in common.

Definition 3.2. Let C/k be a principal homogeneous space under E. Then we
write R(C) = Mapk(E[p](k), k(C)).

Remark 3.3. Appendix A will deal with principal homogeneous spaces under E.
One of the facts that will be explained there is that points Pv as in Theorem 3.6
below are guaranteed to exist. See Proposition A.9 for this, combined with the
alternative definition of the Tate–Shafarevich group given there.

Fact 3.4. For each T ∈ E[p](K), there is a degree 0 divisor aT on C and rational
functions fT ∈ k(C) with sum(aT ) = T and div(fT ) = paT . Furthermore, these fT ’s
may be scaled in such a way that the map (T 7→ fT ) is Galois equivariant. Please
see Theorem A.15 for a proof of this fact. In particular we can take aO = 0 and
fO = 1.

Lemma 3.5. Let f ∈ R(C) be given by T 7→ fT , where the fT are as in Fact 3.4.
Then after multiplying f by an element of R×, we may assume that for every place
v ∈Mk, the value of f at any point of C(kv) lies in the image of w1,kv .

Proof. See [FN13] Lemmas 1.1 and 1.2.

Theorem 3.6. Let x, y ∈X(E/k) with py = 0. Let C/k be a principal homogeneous
space under E representing x, and let η ∈ S(p)(E/k) be an element that maps to y.
Let f ∈ R(C) be scaled as in Lemma 3.5, and for each place v of k choose a point
Pv ∈ C(kv), avoiding the zeroes and poles of the rational functions fT . Then the
Cassels–Tate pairing is given by

〈x, y〉 =
∑
v∈Mk

[f(Pv), w1(η)]v,
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which is independent of choices of Pv.

Proof. See [FN13] Theorem 1.3. Their proof uses Mapk(E[p](k) \ {O}, k), whenever
we use R. Since fO is constant, it has no zeroes or poles. Therefore their proof also
works in our case.
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4 | Calculations

Throughout this chapter, let K be a finite extension of kv for some finite place v of
k and let R be the étale algebra of E[p](K) over K. Let α ∈ R× and ρ ∈ (R⊗K R)×

be compatible representatives for some [ξ] ∈ H1(K,E[p]). The goal of this chapter is
to give formulas for qK(α) which may be used to calculate the Cassels–Tate pairing
through Theorem 3.6.

Proposition 4.1. There exists an extension F of K that has degree coprime to p
such that we have exactly one of two cases:

1. E[p](K) = E[p](F ), or

2. there exist points P and Q that generate E[p](K) such that P is defined over
F and Q is defined over a cyclic field extension F ⊂ L of degree p and such
that the Galois group Gal(L/F ) = 〈σ〉 acts on E[p](K) by σ(P ) = P and
σ(Q) = Q+ P .

Proof. By the action of GK on E[p](K) we get a homomorphism

GK → Aut(E[p](K)) ∼= GL2(Fp)

where we consider automorphisms of groups. The isomorphism is by choosing a
basis. Let L be the fixed field of the kernel of this map. Then E[p](L) = E[p](K)
holds and we have maps

GK −→ Gal(L/K) ↪→ GL2(Fp).

Let C ⊂ Gal(L/K) be a Sylow-p-subgroup and let F = LC be the field fixed by
C. Then we have K ⊆ F ⊆ L and since # GL2(Fp) = p(p − 1)(p2 − 1) is divisible
by only a single factor of p and C is (isomorphic to) a subgroup of GL2(Fp), we
have two cases: either C is trivial or C is cyclic of order p. In either case we have
p - [F : K], so F is a candidate field for this proposition.

In the first case we have F = L. This yields case 1 above.

In the second case we have Gal(L/F ) ∼= Z/pZ. Since all Sylow-p-subgroups of a
finite group are conjugates and we know that the subgroup

H =

〈(
1 1
0 1

)〉
⊂ GL2(Fp)

is a Sylow-p-subgroup, by application of an automorphism of F2
p and using the

inclusiong Gal(L/K) ↪→ GL2(Fp), we can identify C with H.

17
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Let P ∈ E[p](L) correspond to the vector (1, 0)t and Q ∈ E[p](L) to the vector
(0, 1)t. Then the element σ ∈ Gal(L/F ) that corresponds to the given generator of
H yields σ(P ) = P and σ(Q) = Q+ P .

Since [F : K] is coprime to p, by Proposition 1.14, we may replace K by F and do
our calculations over the new base field which gives a nice structure for E[p](F ).

We will call case 1 from Proposition 4.1 ‘the rational case’ and case 2 ‘the non-
rational case’.

Proposition 4.2. Suppose α(T ) ∈ (K×)p holds for some non-zero T ∈ E[p](K),
then the Hasse invariant invK(Rρ) = 0 holds and qK(α) = 0.

Proof. In the polynomial ring K[X,Y ] we have Xp − Y p = (X − Y )P(X,Y ) for
some polynomial P ∈ K[X,Y ], so writing α(T ) = βp for some β ∈ K, we have

(δT − β)P(δT , β) = δ∗pT − β
p Prop.2.26

= α(T )− α(T ) = 0

since β ∈ K commutes with δT . Since T 6= O holds, we have δT /∈ K (and in
particular δT 6= β) and therefore δT − β is a zero-divisor in Rρ.

The Artin–Wedderburn theorem implies that Rρ is either a division algebra or iso-
morphic to a matrix ring with coefficients in a division algebra over K. In particular
in the second case we have Rρ ∼= Matp(K) since both Rρ and Matp(K) are of di-
mension p2 over K. By having found a non-zero zero-divisor, the division ring case
is excluded. So we have the matrix ring case and therefore have invK(Rρ) = 0. The
result qK(α) = 0 follows from Proposition 2.28.

For the remainder of this chapter fix a point P ∈ E[p](K). If α(P ) ∈ (K×)p, then
by Proposition 4.2 we have qK(α) = 0 and we are done for the goal of this chapter.

4.1 The rational case

We first study case 1 from Proposition 4.1 and assume that all p-torsion points are
defined over the base field which we again call K. This gives the existence of a group
isomorphism E[p](K) ∼= Z/pZ× Z/pZ.

Proposition 4.3. In the rational case the group of pth roots of unity lies in K.

Proof. Let Q ∈ E[p](K) be such that P and Q generate E[p](K), then ep(Q,P ) is a
primitive pth root of unity by non-degeneracy of the Weil pairing. By equivariance
of the Weil pairing we get for all τ ∈ GK :

τ(ep(Q,P )) = ep(τ(Q), τ(P )) = ep(Q,P )

and thus ep(Q,P ) ∈ K.

Lemma 4.4. For every Q ∈ E[p](K) we have equalities

δQ ∗ δP ∗ δ−Q = e(Q,P )γ(Q)γ(−Q)δP
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and
δQ ∗ δP ∗ δ−1Q = e(Q,P )δP .

Proof.

δQ ∗ δP ∗ δ−Q = δQ ∗ (ε(P,−Q)ρ(P,−Q)δP−Q)

= ε(P,−Q)ρ(P,−Q)ε(Q,P −Q)ρ(Q,P −Q)δP

= ε(P,−Q)ε(Q,P )ε(Q,−Q)
γ(P )γ(−Q)

γ(P −Q)

γ(Q)γ(P −Q)

γ(P )
δP

= ε(P,−2Q)γ(Q)γ(−Q)δP

= e(Q,P )γ(Q)γ(−Q)δP .

The second equality is found by using Lemma 2.26.

Definition 4.5. If α(P ) /∈ (K×)p holds, then there is a degree p field extension
K ⊂ K(δP ) inside Rρ. Let σ be a generator for Gal(K(δP )/K). Such σ multiplies
δP by a primitive pth root of unity ζ and induces a K-algebra automorphism of Rρ.
By the Skolem–Noether Theorem B.21, there exists an element r ∈ Rρ such that
σδP = r ∗ δP ∗ r−1 holds. We will call such an element r a Skolem–Noether element
for ζ, not giving reference to the point P that this depends upon.

Remark 4.6. If the points P and Q generate E[p](K) then e(Q,P ) is a primitive
root of unity and Lemma 4.4 shows that δQ is a Skolem–Noether element for e(Q,P ).

Theorem 4.7. Let P,Q ∈ E[p](K) be points that together generate E[p](K) as
an abelian group. Let ιP,Q : µp → 1

pZ/Z be the group isomorphism defined by

e(Q,P ) 7→ 1
p . Then we have

qK(α) = ιP,Q{α(P ), α(Q)}K .

Proof. We will use Proposition 2.28 and the constructions from Appendix B.

If δ∗pP = α(P ) ∈ (K×)p holds, then by Proposition B.45 we have {α(P ), α(Q)}K = 1
and therefore ιP,Q{α(P ), α(Q)}K = 0 which is in accordance with Proposition 4.2.
For the rest of the proof we assume α(P ) /∈ (K×)p which gives us a cyclic extension
K(δP )/K.

We take a = δ∗pP in Definition B.41. Then the character χa is given by

χa : GK −→ Gal(K(δP )/K) −→ 1
pZ/Z

(δP 7→ e(Q,P )δP ) 7→ 1

p
.

We take b = δ∗pQ = α(Q). Since δQ is a Skolem–Noether element for e(Q,P ), the
construction from Proposition B.28 shows that the symbol (χa, b) defines (the class
in Br(K) of) Rρ. For the Hilbert symbol {a, b}K we have

{a, b}K = e(Q,P )p·invK(χa,b) = e(Q,P )p·qK(α)

by Proposition 2.28 and therefore

ιP,Q ({a, b}K) = qK(α).
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Remark 4.8. In the proof of Theorem 4.7 we have only made use of the fact that
δQ is a Skolem–Noether element for e(Q,P ). In the non-rational case to be studied
in the next section, we therefore only need to look for a Skolem–Noether element for
some root of unity as we will still have the degree p field extension K(δP )/K inside
Rρ under the assumption α(P ) /∈ (K×)p.

4.2 The non-rational case

We have already studied the case where all p-torsion points are defined over the base
field. This section will deal with what happens if not all p-torsion is rational, that
is, when we are in the second case of Proposition 4.1. Let the new field of definition
again be called K. For clarity we recall the setting we are given from Proposition
4.1. Let P ∈ E[p](K) be a point such that α(P ) /∈ (K×)p holds, let L/K be a cyclic
field extension with Gal(L/K) = 〈σ〉 and Q ∈ E[p](L) such that σ(Q) = Q + P
holds.

Proposition 4.9. In the non-rational case the group of pth roots of unity also lies
in K. (cf. Proposition 4.3)

Proof. The proof is analogous to the proof of Proposition 4.3, where we now also need
to use that the Weil pairing is alternating. We start by remarking that Proposition
4.3 immediately implies µp ⊂ L.

We calculate for ζ = e(P,Q) and σ as above:

σ(ζ) = e(σ(P ), σ(Q)) = e(P,Q+ P ) = e(P,Q)e(P, P ) = e(P,Q) = ζ.

As σ generates Gal(L/K), we find ζ ∈ K.

Definition 4.10. We introduce the notation

∆P,Q = δQ + δQ+P + δQ+2P + . . .+ δQ+(p−1)P

omitting the reference to the odd prime number p which is fixed throughout.

Remark 4.11. In the non-rational case we also have δP ∈ R, but the element δQ ∈ R
does not lie in R as it is not Galois invariant. The element ∆P,Q does lie in R as its
terms are permuted by the Galois action.

Lemma 4.12. We have ∆P,Q ∗ δP = e(Q,P )δP ∗∆P,Q.

Proof. This follows immediately from Corollary 2.25 and Lemma 2.5.

Remark 4.13. Lemma 4.12 shows that if ∆P,Q is invertible, then it is a Skolem–
Noether element for e(Q,P ).

Definition 4.14. Let Q ∈ E[p](K) be such that P and Q generate E[p](K). Then
ιP,Q : µp → 1

pZ/Z denotes the group homomorphism given by e(Q,P ) 7→ 1
p .

Remark 4.15. We have already used the map denoted by ιP,Q in Theorem 4.7 for
a specific Q ∈ E[p](K). Lemma 4.12 motivates us to introduce this notation for any
suitable Q ∈ E[p](K).

20



CHAPTER 4. CALCULATIONS

4.2.1 Motivating examples for p = 3

We devote some time to the special case p = 3 in order to give a ‘feel’ for the general
odd prime case. The results of this section can also be found in [FN13].

Proposition 4.16. We have the following identity in Rρ:

∆∗3P,Q =
(
α(Q) + α(Q+ P ) + α(Q+ 2P )− 3γ(Q)γ(Q+ P )γ(Q+ 2P )

)
δO

and ∆∗3P,Q lies in K ⊂ Rρ.

Proof. The first part is proven by a direct (and slightly lengthy) calculation. By
applying σ to this expression, we see that this lies in K ⊂ Rρ.

The following Proposition is the non-rational equivalent to Theorem 4.7 in the case
p = 3.

Proposition 4.17. We have

qK(α) =

{
ιP,Q{α(P ),∆∗3P,Q}K if ∆∗3P,Q 6= 0,

0 else.

Proof. If ∆∗3P,Q is non-zero then it is a unit in K and therefore a unit in Rρ. Then also
∆P,Q itself is a unit in Rρ. Then Lemma 4.12 shows that ∆P,Q is a Skolem–Noether
element for e(Q,P ) and we may proceed as in the proof of Theorem 4.7.

If ∆∗3P,Q is zero, then the proof of Proposition 4.2 shows that qK(α) = 0 holds.

4.3 The case for general p

Lemma 4.18. For ∆P,Q = δQ + δQ+P + . . .+ δQ+(p−1)P one has for all m ∈ Z≥1:

∆∗mP,Q =

p−1∑
i1,i2,...,im=0

ε(Q,P )
∑m
`=1(2`−m−1)i`

∏m
`=1 γ(Q+ i`P )

γ(mQ+ (
∑m

`=1 i`)P )
δmQ+(

∑m
`=1 i`)P

and in particular:

∆∗pP,Q =

p−1∑
i1,i2,...,ip=0

ε(Q,P )
∑p
`=1(2`−1)i`

∏p
`=1 γ(Q+ i`P )

γ((
∑p

`=1 i`)P )
δ(

∑p
`=1 i`)P

. (4.1)

Proof. There exists a γ ∈ R× such that γ(O) = 1 and ρ = ∂γ hold as in Definition
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2.15. We start by calculating the square of ∆P,Q by using Lemma 2.24.

∆∗2P,Q =

p−1∑
i1,i2=0

δQ+i1P ∗ δQ+i2P

=

p−1∑
i1,i2=0

ε(Q+ i1P,Q+ i2P )ρ(Q+ i1P,Q+ i2P )δ2Q+(i1+i2)P

=

p−1∑
i1,i2=0

ε(Q,P )i2−i1
γ(Q+ i1P )γ(Q+ i2P )

γ(2Q+ (i1 + i2)P )
δQ+(i1+i2)P .

We proceed by induction, continually multiplying by ∆P,Q from the right. We first
focus on the power of ε(Q,P ). Starting from the expression for ∆∗mP,Q we get the

power of ε(Q,P ) in the expression for ∆
∗(m+1)
P,Q :

m∑
`=1

(2`−m− 1)i` +mim+1 − (i1 + i2 + . . .+ im) =
m∑
`=1

(2`−m− 2)i` +mim+1

=

m+1∑
`=1

(2`− (m+ 1)− 1)i`

The part with ρ and γ is straightforward: writing ρ(mQ + (i1 + . . . + im)P,Q +
im+1P ) in terms of γ (using ρ = ∂γ), one sees that the first factor cancels with the
denominator in the expression for ∆∗mP,Q.

The expression for ∆∗pP,Q follows by recalling ε(Q,P )p = 1 and pQ = O.

If, for
∑p

`=1 i` = j not divisible by p we prove that the δjP -terms cancel, then we
have proven ∆∗pP,Q ∈ K. If ∆∗pP,Q is non-zero, then it is a Skolem–Noether element
for e(Q,P ) by Lemma 4.12.

Lemma 4.19. In the expression for ∆∗pP,Q given in equation (4.1), all δ∑ i`P -terms

for
∑p

`=1 i` not divisible by p cancel.

Proof. Let {i1, i2, . . . , ip} be a set of coefficients such that they do not sum to a
multiple of p. Then in particular, they are not all equal and setting i′` = i`+1 we
get a new set of coefficients since p is prime. The powers of ε(Q,P ) in the terms
associated to the first and second set of coefficients differ by an amount

p∑
`=1

(2`− 1)i` −
p∑
`=1

(2(`+ 1)− 1)i` =

p∑
`=1

(−2)i` = −2

p∑
`=1

i`,

which by assumption is not divisible by p. Thus by shifting a set of coefficients that
do not sum to a multiple of p a p number of times, we get all pth roots of unity from
the ε(Q,P )-part in our expression. As the γ-part is unchanged, and the sum of all
pth roots of unity sum to zero, these terms cancel.
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Theorem 4.20. We have

∆∗pP,Q =

p−1∑
i1,i2,...,ip=0
p|

∑
` i`

e(Q,P )
∑p
`=1 `·i`

p∏
`=1

γ(Q+ i`P )δO.

Proof. This follows immediately from Lemmas 4.18 and 4.19, by application of
ε(Q,P )2 = e(Q,P ) and ε(Q,P )p = 1.

Remark 4.21. If one would not want to use γ but only α and ρ (which is a reasonable
thing because given α and ρ there is still a choice involved for γ), then one would
prefer an expression for ∆∗pP,Q in terms of ρ instead of γ. Such an expression is easily
found by going through the proof of Lemma 4.18. It is however not a very nice
expression. We have

∆∗pP,Q =

p−1∑
i1,i2,...,ip=0
p|

∑
` i`

e(Q,P )
∑p
`=1 `·i`

p−1∏
j=1

ρ

(
jQ+

j∑
`=1

i`P,Q+ ij+1P

) δO.

Theorem 4.22. Let P ∈ E[p](K), let L/K be a cyclic extension with Galois group
Gal(L/K) = 〈σ〉 and Q ∈ E[p](L) be such that σ(Q) = Q + P holds and such that
P and Q generate E[p](K) as an abelian group. Then we have

qK(α) =

{
ιP,Q{α(P ),∆∗pP,Q}K if ∆∗pP,Q 6= 0,

0 else.

Proof. We have already seen in Lemma 4.12 that ∆P,Q is a Skolem–Noether element
for e(Q,P ) if it is invertible. We may copy the proof of Theorem 4.7 and replace all
instances of δQ by ∆P,Q. If however ∆∗pP,Q is zero, then the proof of Proposition 4.2
shows that qK(α) = 0 holds.

4.4 Combining the statements

Since in our study we have switched viewpoints several times, it is useful to collect
the important results into a single statement.

Fact 4.23. Let K be a local field and let R be the étale algebra of E[p](K) over K.
Let α1, α2 be in the image of w1,K . Let ρ1, ρ2 ∈ (R ⊗K R)× be such that αi and ρi
are compatible representatives for some classes in H1(K,E[p]) for i = 1, 2. (Remark
that this makes α1α2 and ρ1ρ2 into compatible representatives for some class too.)
Let K ⊂ F ⊂ L be field extensions such that [F : K] is coprime to p, such that
Gal(L/F ) = 〈σ〉 is cyclic and such that there exist P ∈ E[p](F ) and Q ∈ E[p](L)
such that σ(Q) = Q + P holds and such that P and Q generate E[p](K) as an
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abelian group. Fix such P and Q. Then we have

[α1, α2]K =qK(α1α2)− qK(α1)− qK(α2)

=
1

[L : F ]

(
qF (α1α2)− qF (α1)− qF (α2)

)
=

1

[F : K]

{
ιP,Q{α1α2(P ),∆

∗ρ1ρ2p
P,Q }K if ∆

∗ρ1ρ2p
P,Q 6= 0,

0 else

}
− 1

[F : K]

{
ιP,Q{α1(P ),∆

∗ρ1p
P,Q }K if ∆

∗ρ1p
P,Q 6= 0,

0 else

}
− 1

[F : K]

{
ιP,Q{α2(P ),∆

∗ρ2p
P,Q }K if ∆

∗ρ2p
P,Q 6= 0,

0 else

}
.

4.5 Connection between rational and non-rational cases

Let P ∈ E[p](K) be a point such that α(P ) /∈ (K×)p holds. By γ(P )p = α(P ) ∈ K×,
there is a degree p field extension M = K(γ(P )) of K. The norm of the element
1 + γ(P ) + · · ·+ γp−1(P ) will be useful.

Lemma 4.24. We have the identity NM/K(1+γ(P )+· · ·+γp−1(P )) = (1−α(P ))p−1.

Proof. We have
(

1 + γ(P ) + · · ·+ γp−1(P )
)

(1− γ(P )) = 1− γp(P ) = 1−α(P ) and

since the norm is multiplicative:

NM/K

(
1 + γ(P ) + · · ·+ γp−1(P )

)
=
NM/K(1− α(P ))

NM/K(1− γ(P ))
.

As 1−α(P ) is an element of K, its norm is just (1−α(P ))p. The norm of 1− γ(P )
is found by using the equality

(X − γ(P ))(X − ζγ(P )) · · · (X − ζp−1γ(P )) = Xp − γp(P ) = Xp − α(P )

where ζ is a primitive pth root of unity and by substituting X = 1.

As announced, when we are in the rational case, we may choose γ in Definition 2.8
such that it has the following nice property.

Lemma 4.25. For all Q ∈ E[p](K) such that P and Q generate E[p](K), there
exists a γ as in Definition 2.8 such that we have γ(aQ + bP ) = γ(Q)aγ(P )b for
0 ≤ a, b ≤ p− 1.

Proof. Let P and Q be two p-torsion points that generate E[p](K). The only con-
straint in choosing γ in Definition 2.8 is that for all T ∈ E[p](K) and all σ ∈ GK
the equality

e(ξσ, T ) =
σ(γ)(T )

γ(T )
=
σ(γ(σ−1T ))

γ(T )

must hold, where we write ξσ for ξ(σ). We know that there exists a γ such that
this relation holds for P and Q. We take such a γ and we will below use this one to
define a new one on the other points of the form aQ+ bP for 0 ≤ a, b,≤ p− 1.
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We must satisfy the relation

σ(γ(aP + bQ))

γ(aP + bQ)
= e(ξσ, aP + bQ).

For the right-hand side we have

e(ξσ, aP + bQ) = e(ξσ, P )ae(ξσ, Q)b

=
σ(γ(P ))a

γ(P )a
σ(γ(Q))b

γ(Q)b

=
σ
(
γ(P )aγ(Q)b

)
γ(P )aγ(Q)b

for 0 ≤ a, b ≤ p− 1. Thus by setting γ(aP + bQ) = γ(P )aγ(Q)b, our new γ satisfies
all restrictions.

Remark 4.26. In the non-rational case we are free to define γ(aP ) = γ(P )a for the
rational point P and for 0 ≤ a ≤ p− 1 but we also have the relation

e(ξσ, Q+ P ) =
γ(σ−1(Q+ P ))

γ(Q+ P )
=

σ(γ(Q))

γ(Q+ P )

with σ(Q) = Q+ P , so we cannot in general define γ as in Lemma 4.25.

Remark 4.27. In the rational case for p = 3, if we choose our γ as in Lemma 4.25,
then we can rewrite the expression that we found for ∆∗3P,Q in Proposition 4.16:

α(Q) + α(Q+ P ) + α(Q+ 2P )− 3γ(Q)γ(Q+ P )γ(Q+ 2P )

= α(Q)(1− 2α(P ) + α(P )2)

= α(Q)(1− α(P ))2

= α(Q)NM/K(1 + γ(P ) + · · ·+ γ(P )2).

The following theorem shows that whereas we have distinguished the rational case
and the non-rational case, for practical applications we need not do so. We may
always use the formula supplied by Theorem 4.22.

Theorem 4.28. Let P,Q ∈ E[p](K) such that P and Q generate E[p](K). If ∆P,Q

is invertible in Rρ then we have

{α(P ), α(Q)}K = {α(P ),∆∗pP,Q}K .

Proof. If ∆P,Q is invertible in Rρ, then it is a Skolem–Noether element for e(Q,P ).
This means that choosing a = α(P ) and b = ∆∗pP,Q in the proof of 4.7, the symbol
(χa, b) represents Rρ. The result follows by Theorem 4.7 and by injectivity of ιP,Q.

Inspired by the case for p = 3, one may guess that the Hilbert symbols from Theorem
4.28 are equal precisely because their second arguments differ by the norm from
Lemma 4.24. This is the statement of the following conjecture.
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Conjecture 4.29. Let K be a non-Archimedean local field of characteristic zero
and R the étale algebra of E[p](K) over K. Let α ∈ R× and ρ ∈ (R ⊗K R)× be
compatible representatives for some [ξ] ∈ H1(K,E[p]) and choose γ as in Lemma
4.25. Let P,Q ∈ E[p](K) be such that P and Q generate E[p](K).

Then we have
∆∗pP,Q = α(Q)(1− α(P ))p−1. (4.2)

In fact, we can state a more general conjecture that does not involve E or any specific
points of E[p](K), but which is a conjecture purely on a possible equality in a certain
two-dimensional Q(ζp)-algebra. To remind us what inspired the conjecture, we use
the notation P and Q for indeterminates that arise from δP and δQ.

Conjecture 4.30. Let p be an odd prime number and A = (A,+, ∗) be the Q(ζp)-
algebra given by A = Q(ζp)[P,Q]/(Q ∗ P − ζ2p ∗ P ∗Q). Then we have(

p−1∑
i=0

Q ∗ P ∗ ζ−ip

)p
= Qp ∗ (1− P p)p−1. (4.3)

Lemma 4.31. Conjecture 4.30 implies Conjecture 4.29.

Proof. The Q(ζp)-algebra A from Conjecture 4.30 is contained in Rρ from Conjecture
4.29 if we identify P and Q ∈ A with δP and δQ ∈ Rρ respectively. Under such
identification, equations (4.2) and (4.3) are equal.

4.6 Numerical evidence

We now present a small bit of Magma code to check equality (4.3) for any odd
prime p up to a chosen bound. We generate an algebra over Q(ζp) containing δQ
and δP (and consequently also δQ+P , δQ+2P , . . . , δQ+(p−1)P and ∆P,Q) and we impose
multiplication rules for these elements. We denote z = ε(Q,P ) and use the fact that
in the rational case, with choice of γ as in Lemma 4.25 we have

δQ+iP ∗ δP = ε(Q,P )ρ(Q+ iP, P )δQ+(i+1)P

= ε(Q,P )
γ(Q+ iP )γ(P )

γ(Q+ (i+ 1)P )
δQ+(i+1)P

= ε(Q,P )

{
1 if i < p− 1
α(P ) if i = p− 1

}
δQ+(i+1)P .

Replacing B with a chosen bound in the following code checks equality of (4.2) for
all odd primes up to and including the chosen bound.

Bound := B;

for p in [3..Bound] do

if IsPrime(p) then

K<z> := CyclotomicField(p);

FF<Q,P> := FreeAlgebra(K,2);

J := ideal<FF|[Q*P - z^2*P*Q]>;
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AA<Q,P> := quo<FF|J>;

a := AA!0;

for i in [0..(p-1)] do

a := a + Q*P^i*z^(p-i);

end for;

if a^p eq Q^p*(1-P^p)^(p-1) then

"True for p =", p;

else

"False for p =", p;

end if;

end if;

end for;

Using the online Magma calculator with only 120 seconds of computing time, we
were able to check that (4.2) is true for all odd primes up to and including 29.
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A | Principal homogeneous spaces

This chapter is on principal homogeneous spaces under an elliptic curve. This topic
is needed to understand the results of Chapter 3. We follow the introduction by
Silverman [Sil09] Chapter X.3. Principal homogeneous spaces turn out to give a
nice description of the Tate–Shafarevich group.

Definition A.1. Let E be an elliptic curve over a perfect field K. A principal
homogeneous space under E over K is a smooth curve C over K together with a
K-morphism + : C × E → C that satisfies the following properties:

1. p+O = p for all p ∈ C(K),

2. (p+ P ) +Q = p+ (P +Q) for all p ∈ C(K) and all P,Q ∈ E(K),

3. for all p, q ∈ C(K) there is a unique P ∈ E(K) satisfying p+ P = q.

Example A.2. An elliptic curve E itself together with the addition on E is a prin-
cipal homogeneous space under itself over its field of definition.

For those familiar with the notion of a G-torsor for a group G, we remark that if we
disregard their scheme structure, then principal homogeneous spaces under E are
indeed E(K)-torsors. Over a smaller field however, principal homogeneous spaces
may have no points, let alone a marked point. They are therefore not, in general,
elliptic curves themselves.

Since the notation + for the group action turns out to be intuitive, but slightly
confusing, we will always denote points of E with upper case letters and points of a
principal homogeneous space with lower case letters. Remark that in this chapter,
and in this chapter only, we drop the convention that p denotes the odd prime
number that is fixed throughout our actual calculations.

Remark A.3. Since the action of E on a principal homogeneous space C is regular,
for any two points p, q ∈ C(K) we can define q− p ∈ E(K) as the point P such that
p+ P = q holds.

Lemma A.4. Let C/K be a principal homogeneous space under E/K. Then for all
p, q ∈ C(K) and all P,Q ∈ E(K) we have the properties:

1. p− p = O,

2. p+ (q − p) = q,

3. (p+ P )− p = P ,
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4. (q −Q)− (p+ P ) = (q − p) +Q− P .

Proof. These are all just simple manipulations. We do need to be careful in placing
the parentheses since without them some expressions would not make sense.

To give a description of the Tate–Shafarevich group that will be useful for us, it is
necessary to define an equivalence relation on the collection of principal homogeneous
spaces under E over K. We will further state some technical propositions that allow
us to study K-rational points on principal homogeneous spaces and in particular
kv-rational points that are needed in Theorem 3.6.

Definition A.5. We call two principal homogeneous spaces C and C ′ under E (all
over a field K) equivalent if there is a K-isomorphism ϕ : C → C ′ such that the
following diagram commutes:

C(K)× E(K)
(ϕ,id)−−−−→ C ′(K)× E(K)

+

y +′
y

C(K)
ϕ−−−−→ C ′(K)

We further call the class of E the trivial class and the collection of all equivalence
classes the Weil-Châtelet group denoted by WC(E/K).

Remark A.6. The ‘group’ part of the name Weil-Châtelet group is justified by the
group structure induced by the map from Theorem A.10 below.

Lemma A.7. Let C/K be a principal homogeneous space under E over K. Fix a
point p0 ∈ C(K) and define a map θ0 : E(K)→ C(K) by θ0(P ) = p0+P . Let K(p0)
denote the smallest field such that p0 ∈ C(K(p0)) holds. Then θ0 is an isomorphism
defined over K(p0) that is equivariant under the action of E.

Proof. See [Sil09] Proposition X.3.2.

Corollary A.8. The subtraction map − : C × C → E given in Remark A.3 is a
K-morphism.

Proof. That it is a morphism follows from Lemma A.7 and the fact that subtraction
on E is a morphism. That it is defined over K follows from checking the equality
σ(q − p) = σ(q) − σ(p) for σ ∈ GK and using the fact that addition on E(K) and
the action of E(K) on C(K) are defined over K.

Proposition A.9. Let C/K be a principal homogeneous space under E over K.
Then C/K is trivial in WC(E/K) if and only if C(K) 6= ∅ holds.

Proof. If C/K is in the trivial class, then by definition there exists a K-isomorphism
θ : E → C and θ(O) ∈ C(K) holds. Conversely, let p0 ∈ C(K) be a point. Then
the map θ0 : E → C given in Lemma A.7 suffices.

We now give the theorem that shows the connection between the Weil-Châtelet
group and the Tate–Shafarevich group.
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Theorem A.10. Let E/K be an elliptic curve. For any principal homogeneous space
C/K under E/K choose a point p0 ∈ C(K). Then the map

φ0 : WC(E/K)→ H1(GK , E)

[C/K] 7→ [σ 7→ σ(p0)− p0]

is a bijection.

Proof. See [Sil09] Theorem X.3.6.

Remark A.11. One of the possible ways to make WC(E/K) into a group is to
use this bijection. Phrased in the language of Weil-Châtelet groups, we find an
alternative definition for the Tate–Shafarevich group.

Definition A.12. Let E/K be an elliptic curve. Then its Tate–Shafarevich group
X(E/K) is the subgroup of WC(E/K) given by

X(E/K) = ker

WC(E/K) −→
∏

v∈MK

WC(E/Kv)

 .

If x ∈ X(E/K) is an element that corresponds to a principal homogeneous space
C/K ∈WC(E/K), we say that C/K represents x.

When we combine this definition of X(E/K) with Proposition A.9 we see that ele-
ments of X(E/K) represented as principal homogeneous spaces always have points
everywhere locally. This allows us to choose such points Pv in Theorem 3.6.

Definition A.13. Let C/K be a principal homogeneous space under E/K and let
p0 ∈ C(K) be a point. Then there is a map

sum : Div0(C) −→ E,∑
p∈C(K)

np(p) 7→
∑

p∈C(K)

[np](p− p0).

We call this map the summation map on C(K).

Lemma A.14. The summation map is independent of the choice of p0.

Proof. Let sum′ be a summation map defined by the point p′0 and consider

sum(D)− sum′(D) =
∑

p∈C(K)

[np]
{

(p− p0)− (p− p′0)
}

=
∑

p∈C(K)

[np](p
′
0 − p0) = O

by deg(D) = 0.

Theorem A.15. There is an exact sequence

1 −→ K
× −→ K(C)×

div−→ Div0(C)
sum−→ E(K) −→ 0.
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Proof. The only non-trivial statements are that the sequence is exact at E(K) and
at Div0(C), i.e. sum is a surjective homomorphism and div(K(C)×) = ker(sum).
The fact that sum is a homomorphism follows immediately from its definition and
the fact that addition on an elliptic curve is commutative. Let P ∈ E(K) be
a point. Then an easy computation shows that for all p0 ∈ C(K) the equality
sum ((p0 + P )− (p0)) = P holds and thus sum is surjective.

Exactness at Div0(C) follows from application of Lemma 2.2 after having fixed an
isomorphism φ : C → E defined by p 7→ p− p0 for some p0 ∈ C(K).

Remark A.16. In Fact 3.4 we claimed for each T ∈ E[p](K) the existence of degree
zero divisors aT on C that satisfy sum(aT ) = T and functions fT ∈ k(C) that satisfy
div(fT ) = paT . The existence of such divisors and rational functions follows from
Theorem A.15.
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This chapter deals with basic results on central simple algebras and is aimed at the
reader unfamiliar with this topic. It discusses the Hasse invariant and the Hilbert
norm residue symbol in terms of which the Cassels–Tate pairing can be written by
Theorem 3.6 and Proposition 2.28.

Definition B.1. Let K be a field. A K-algebra is a finite-dimensional K-vector
space A together with a multiplication that is associative, distributes over addition
and has a unit element 1A and together with a ring homomorphism K → K ·1A such
that K · 1A ⊂ Z(A) holds where Z(A) denotes the centre of A. The multiplication
on A need not in general be commutative.

B.1 The Brauer group

A lot of what is discussed here can be found in textbooks on the subject that may
differ greatly in their chosen presentations. See for example [GS06], [Ser80] parts
III and IV or the lecture notes of a Class Field Theory course taught by Tom
Fisher [Fis05].

Definition B.2. Let K be a field and A a K-algebra. A is called

• central if the centre of A is K, and

• simple if the only two-sided ideals of A are 0 and A itself and A 6= 0 holds.

Example B.3. Let D be a division algebra over a field K. Then D is simple and
its centre Z(D) is a field extension of K. To see the latter we only need that Z(D)
is multiplicatively closed. Thus D is a central simple algebra over Z(D).

Example B.4. Let D be a division algebra (over its centre), then for every positive
integer n, the algebra Matn(D) is a central simple algebra over Z(D).

Theorem B.5 (Artin–Wedderburn). Let A be a central simple algebra over K. Then
there are a division algebra D and a positive integer n such that there is an isomor-
phism A ∼= Matn(D). These D and n are uniquely determined up to isomorphism
of D.

Proof. This is Theorem 2.1.3 from [GS06].

Definition B.6. For a K-algebra (A,+, ·) we define Aopp = (A,+, ∗) with a ∗ b =
b · a.
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Lemma B.7. If A is a central simple K-algebra, then Aopp is also a central simple
K-algebra.

Proof. Immediate from the definition.

Proposition B.8. Let A 6= 0 be a K-algebra and let EndK(A) be the K-algebra of
endomorphisms of (A,+) as a vector space. Then A is a central simple algebra if
and only if

φ : A⊗K Aopp −→ EndK(A),

a⊗ b 7→ (x 7→ axb).

is an isomorphism of K-algebras.

Proof. This is Proposition 5.3 from [Fis05].

Corollary B.9. Let L/K be a field extension. Then an algebra A over K is a
central simple algebra over K if and only if A⊗K L is a central simple algebra over
L. In particular, A is a central simple algebra over K if and only if for some integer
n we have A⊗K K ∼= Matn(K).

Proof. If A is a central simple algebra over K, then we apply Proposition B.8 to
find

(A⊗K L)⊗L (Aopp⊗K L) ∼= (A⊗K Aopp)⊗K L ∼= EndK(A)⊗K L ∼= EndL(A⊗K L).

Applying Proposition B.8 in the other direction shows that A⊗K L is central simple
over L.

Conversely, if A contains a non-trivial two-sided ideal I, then A ⊗K L contains a
non-trivial two-sided ideal I ⊗K L. If the center of A contains an element a, then
a⊗ 1 lies in the center of A⊗K L. Thus if A⊗K L is central simple over L, then A
is central simple over K.

The second assertion follows since the only division algebra over an algebraically
closed field K is K itself.

A further observation that can be made from the latter part of this corollary is that
for A a central simple algebra over K the dimension [A : K] = [A ⊗K K : K] is
always a square.

Corollary B.10. If A and B are two central simple algebras over a field K, then
so is A⊗K B.

Proof. By Corollary B.9, we may write A⊗K K ∼= Mn(K) and B ⊗K K ∼= Mm(K)
for some positive integers n and m. We have (A ⊗K B) ⊗K K ∼= Mn·m(K) and
conclude that A⊗K B is central simple by applying Corollary B.9 again.

Definition B.11. Let A ∼= Matn(D) and A′ ∼= Matn′(D′) be two central simple
algebras over a field K where D and D′ are division algebras. Then A and A′ are
called similar if D ∼= D′ holds.
The Brauer group Br(K) ofK is the set of similarity classes of central simple algebras
over K with multiplication ⊗K .
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Remark B.12. The identity in the Brauer group Br(K) is the class of matrix alge-
bras with coefficients in K. The inverse of a class [A] is the class [Aopp].

The following Proposition shows why we need not consider the fields R and C for
our purposes.

Proposition B.13. The Brauer group of R is of order 2 and the Brauer group of
C is trivial. Therefore the local pairing with respect to an infinite place is trivial.
(This uses that p is odd.)

Proof. For a proof of the first assertion involving the cohomological definition of the
Brauer group, see [Ser80].

For a local field K (where for now we again include K = R and K = C), we have
H2(K,µp) ∼= Br(K)[p]. For an infinite place v ∈ Mk we have either kv ∼= R or
kv ∼= C, so in particular Br(kv)[p] is trivial since p is odd. Therefore qkv is trivial for
infinite places v ∈Mk.

Remark B.14. Let K be any algebraically closed field and let D be a division alge-
bra over K of finite dimension. Take a ∈ D \K. Then we have K ( K(a) ( D but
K(a) is a commutative division algebra and therefore a field. Thus all central simple
algebras over K are isomorphic to Matn(K) for positive integer n and therefore the
Brauer group of K is trivial.

B.2 Cyclic algebras

Definition B.15. Let A be a central simple algebra over K and let L/K be a finite
extension. We say that A is split over L or that L splits A if there exists n ∈ Z≥1
such that we have A⊗K L ∼= Matn(L).

Definition B.16. If L/K is a finite extension, then Br(L/K) is the subgroup of
Br(K) that is represented by algebras that are split over L.

Remark B.17. Alternatively phrased, for an extension K ⊂ L we have a homomor-
phism Br(K) → Br(L) given by [A] 7→ [A ⊗K L] and Br(L/K) is its kernel. This
immediately shows that Br(L/K) is a subgroup.

Proposition B.18. Every central simple algebra A over K is split over some finite
field extension L/K and we have

Br(K) =
⋃
L

Br(L/K)

where the union ranges over all finite extensions of K.

Proof. See [Mil13] Proposition IV.2.17.

Lemma B.19. Let A be a central simple algebra over a field K and let L/K be a
field extension contained in A. Then the following are equivalent:

1. L is a maximal commutative subalgebra of A, and
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2. [A : K] = [L : K]2.

Proof. See [Mil13] Corollary IV.3.4.

Theorem B.20 (Splitting Theorem). Let K be a field and A a central simple algebra
over K. Let L be a finite extension of K. Then L splits A if and only if there
exists a central simple algebra B over K that contains L as a maximal commutative
subalgebra such that [A] = [B] ∈ Br(K) holds.

Proof. See [Mil13] Corollary IV.3.6.

Theorem B.21 (Skolem–Noether). Let K be a field, let A be a simple K-algebra
and B a central K-algebra. Let f, g : A → B be two K-algebra homomorphisms.
Then there is an element b ∈ B× such that for all a ∈ A we have f(a) = bg(a)b−1.

Proof. See [Mil13] Theorem IV.2.10.

When we use the name Skolem–Noether theorem in the context of central simple
algebras, we will mean the following Corollary.

Corollary B.22. Let K be a field and A be a central simple algebra over K. Let
f : A → A be a K-algebra automorphism. Then there is an invertible a ∈ A such
that for all x ∈ A one has f(x) = axa−1.

Proof. Take B = A in Theorem B.21.

Definition B.23. Let L/K be a cyclic field extension of degree m and σ be a
generator for Gal(L/K). Let b ∈ K× be an element. Let the group

L[v]<m =

{
m−1∑
i=0

xiv
i : xi ∈ L

}

be given the multiplication rules

• vix = σi(x)vi for x ∈ L, and

• vm = b.

We write A for L[v]<m with these multiplication rules and remark without proof
that A is a K-algebra. We call an algebra that can be put in this form a cyclic
algebra.

Proposition B.24. Let A be a cyclic algebra over a field K. Then A is also a
central simple algebra over K.

Proof. See [Has32] (1.2) and (1.3).

Definition B.25. Let K be a field and L/K a cyclic extension. Let σ be a gen-
erator for Gal(L/K). We define a continuous character χ : GK → Q/Z by taking
compositions as follows:

χ : GK −→ Gal(L/K)
∼−→ 1

mZ/Z ⊂ Q/Z
σ 7−→ 1

m
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with m = [L : K].

Remark B.26. In the case of Definition B.25, L is the fixed field of kerχ and σ
is the inverse image of 1

m in Gal(L/K). So from only χ and b we can retrieve the
central simple algebra A as given in Definition B.23.

Definition B.27. For χ as in Definition B.25 and b ∈ K×, we write (χ, b) for the
similarity class of the central simple algebra A as given in Definition B.23.

Proposition B.28. Let K be a field, L a cyclic extension of K, σ a generator for
Gal(L/K) and χ : GK → Q/Z the continuous character as in Definition B.25. Then
the map

K× → Br(L/K)

b 7→ (χ, b)

is surjective. Moreover we have (χ, b1) = (χ, b2) if and only if b1b
−1
2 is a norm from

L.

Proof. This proof is taken from [Fis05]. Let [A] ∈ Br(L/K) be any class. By the
Splitting Theorem B.20, we may assume that A contains L as a maximal commu-
tative subalgebra. The Skolem–Noether theorem in this context B.22 assures that
there is an invertible v ∈ A such that σ(x) = vxv−1 holds for all x ∈ A. Equivalently
we have vix = σi(x)vi for all x ∈ A and all i ∈ Z≥1.

Let m = [L : K] = [A : L]. It can be shown that 1, v, v2, . . . , vm−1 forms a basis for
A as an L-vector space. Since vm commutes with every element of L and therefore
lies in the centre of A, we have vm ∈ K since A is central. We have [A] = (χ, vm).

Since L is maximal commutative, the choice of v is unique up to multiplication by
units of L. Let x ∈ L×. We have

(xv)m =

(
n−1∏
i=0

vxv−1

)
vm =

(
n−1∏
i=0

σi(x)

)
vm = NL/K(x)vm,

so indeed b is unique up to multiplication by elements of NL/K(L×).

Remark B.29. Proposition B.28 allows us to represent any class of Br(K) by a
cyclic algebra. In the case where K is a local field, we will use the symbol (χ, b) to
define the Hilbert norm residue symbol. For the central simple algebra Rρ and a
suitable choice of χ and b, we will write Rρ as a cyclic algebra (χ, b) and we will use
its associated Hilbert symbol to calculate the Tate local pairing [ , ]K .

B.3 Hasse invariant

To define the Hilbert norm residue symbol in a convenient way, we will need the
Hasse invariant. This invariant was encountered in the definition of the local pairings
( , )v and further in Proposition 2.28.

For this section, let K be a local field (remember that by this we mean a finite
extension of Q` for some prime number `).
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Proposition B.30. Every central simple algebra A over K is split by some finite
unramified extension of K. In particular we can write

Br(K) =
⋃
L

Br(L/K)

where the union only ranges over the finite unramified extensions of K.

Proof. See [Ser67], page 137-138.

Fact B.31. Every unramified extension of a local field is Galois. See [Ser80] Theo-
rem III.5.3.

Definition B.32. Let L/K be an unramified extension of local fields. LetOL be the
ring of integers of L with maximal ideal mL and let q be the order of the residue field
of K. Then there exists (see [Ser80] page 23) a unique element FrobL/K ∈ Gal(L/K)
that acts on a ∈ OL by

FrobL/K(a) ≡ aq mod mL.

We call FrobL/K the Frobenius in Gal(L/K). The Frobenius in Gal(L/K) is a
generator for Gal(L/K).

Remark B.33. FrobL/K is a lift of the automorphism of the residue field extension
OK/mK ⊂ OL/mL that is given by raising to the power q.

Definition B.34. Let L/K be an unramified extension of degree n. Let ordK be
the normalized valuation on K. Then we define a pre-Hasse invariant invL/K as
follows:

invL/K : Br(L/K) −→ 1
nZ/Z,

(χ, b) 7→ ordK(b) · χ(FrobL/K).

Remark B.35. Defined in such a way, invL/K is a homomorphism of groups and is
independent of choices of χ and b. See [Fis05] pages 62-64.

Remark B.36. If A is a central simple algebra such that [A] ∈ Br(K/L) holds, then
A⊗L L ∼= Mn(L) holds. If L ⊂M is a field extension, then we have

A⊗K M ∼= (A⊗K L)⊗LM ∼= Mn(L)⊗LM ∼= Mn(M)

and therefore [A] ∈ Br(M/K).

Lemma B.37. If K ⊂ L ⊂M is a tower of unramified extensions, then the following
diagram is commutative

Br(L/K)
invL/K−−−−→ Q/Zy ∥∥∥

Br(M/K)
invM/K−−−−−→ Q/Z

where the left vertical arrow is the natural inclusion.

Proof. Proposition I.8.23b from [Ser80] shows that χ(FrobM/K) = χ(FrobL/K) holds
which proves the lemma.

37



APPENDIX B. CENTRAL SIMPLE ALGEBRAS

This lemma allows us to define the Hasse invariant.

Definition B.38. The Hasse invariant invK : Br(K)→ Q/Z is defined through the
union Br(K) =

⋃
L Br(L/K) over the unramified extensions of K by the pre-Hasse

invariants.

We conclude this section with a statement that allows us to take field extensions of
degree coprime to p. This is analogous to Proposition 1.14.

Lemma B.39. Let E/K be a finite extension. Then we have

invE(χ|GE , b) = invK(χ,NE/K(b)).

Proof. See [Fis05] Lemma 5.9.

Proposition B.40. Let F/K be a finite extension. Let φ : Br(K)→ Br(F ) be given
by [A] 7→ [A⊗K F ]. Then the following diagram is commutative:

Br(K)
invK−−−−→ Q/Z

φ

y y×[F :K]

Br(F )
invE−−−−→ Q/Z.

Proof. See [Fis05] Lemma 5.10 or [Ser80] Proposition XIII.3.7 for a cohomological
proof.

B.4 Hilbert symbol

Finally, we arrive at the Hilbert norm residue symbol that we use in our formulas
for the Tate local pairing. Once again recall that by ‘local field’ we mean non-
Archimedean local field of characteristic zero.

Definition B.41. Let n be a positive integer and let K be a local field containing
µn. Let ζ be a generator for µn. Let a ∈ K× and x ∈ Ksep be such that xn = a.
Then we define a character

χa : GK −→ Gal(K(x)/K) −→ 1
nZ/Z,

(x 7→ ζx) 7−→ 1

n
mod Z.

Remark B.42. The character χa is independent of choice of x but not independent
of choice of ζ.

Definition B.43. Let n be a positive integer and let K be a local field containing
µn. Let ζ be the generator of µn used to define χa. The Hilbert norm residue
symbol, or Hilbert symbol for short, is the function { , }K,n : K××K× → µn given
by

{a, b}K,n = ζn invK(χa,b).

We will leave out the reference to the index n as in all of its applications we will
always use n = p. Where no confusion is likely to arise, we will also leave out the
reference to the field K.
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Remark B.44. The Hilbert symbol is well-defined. A different choice of generator
for µn yields the same symbol. This can easily be seen using that if two nth roots
of unity ζ and ζ ′ are both primitive, then there is an integer m coprime to n such
that ζ ′ = ζm holds. And then also χa = mχ′a holds (where χ′ is defined using ζ ′)
and we use invK(mχ, b) = m · invK(χ, b).

Proposition B.45. Let K be a local field containing µn. Its nth Hilbert symbol

1. is multiplicative in the first and second argument:

{a1, b}{a2, b} = {a1a2, b} and {a, b1}{a, b2} = {a, b1b2},

2. induces a non-degenerate pairing on K×/(K×)n:

{a, b} = 1 for all b ∈ K× if and only if a ∈
(
K×
)n
,

3. has the property that if b is a norm from K( n
√
a), then:

{a, b} = 1.

Proof. See [Ser80] Proposition XIV.4.
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