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Abstract

Using analytic stability we construct quotients associated to linear ac-
tions and we give a necessary and sufficient condition for their compact-
ness. These results are applied for quiver factorisation problems, deducing
that the compactness of the corresponding quotients is related to a com-
binatorial property. As an example, we discuss the case of linear systems,
constructing compactifications of the spaces of accessible and of minimal
linear systems.

0 Introduction

In the present note we will be concerned with linear problems, i.e. we will be
interested in the study of the action of a connected reductive complex Lie group
G on a finite dimensional complex vector space W through a representation ρ
and in the construction of associated spaces of orbits.

In the first of the two sections of the paper we describe general results con-
cerning such linear problems. After a preliminary part we recall the correspond-
ing definitions for analytic, symplectic and GIT-stability. Our main tool in the
study of linear problems will be analytic stability, as introduced and studied in
[6] and [10]. In the general set-up the analytic stability depends on a symplec-
tisation of the G-action and we point out that, for linear problems, it depends
only on a parameter τ varying in a finite dimensional real vector space. We also
give the explicit description of the (semi)stable loci in a concrete example, which
arises in control theory. The stability concepts make possible the construction
of orbit spaces since the restriction of the action to the semistable locus yields
a geometric quotient. Moreover, such a quotient admits an alternative descrip-
tion using tools from symplectic geometry. An important result of this section
is stated in Proposition 1.9 and relates the compactness of these quotients to
the study of the properness of a certain map, related to the symplectic approach
(namely the canonical moment map µcan).

In the second section we focus our attention to a special class of linear prob-
lems. We explain how, starting with a pair (Q,S) consisting of a quiver Q
(i.e. a diagram containing points and arrows) and of a subset S of the set Q0

of points of Q, one obtains in a natural way a linear problem, which is called
quiver factorisation problem (QFP for shorthand) associated to the combina-
torial data (Q,S). The corresponding quotients are called QFP-quotients and
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their geometry depends on (Q,S), on a dimension vector α ∈ NQ0 and on a
parameter τ ∈ RS . However, we show in Theorem 2.3 that the compactness of
a QFP-quotient is related only to a combinatorial property of the pair (Q,S).
In the last part of the paper we return to the example concerning linear systems,
which can be represented as a quiver factorisation problem. The corresponding
QFP-quotients are not compact and in Theorem 2.7 we prove that they admit
natural compactifications which are themselves QFP-quotients. It remains an
open question whether it is possible to construct analogous natural compactifi-
cations for arbitrary non-compact QFP-quotients.

1 General results

Let G be a connected reductive complex Lie group with Lie algebra g (through-
out this paper the Lie algebra of a Lie group will be denoted by the correspond-
ing ‘german’ character). We denote by Z the center of G and by ZR its unique
maximal compact subgroup. We also set:

TG :=
{
τ ∈ g∨ | τ|[g,g] = 0, τ(zR) ⊂ R

}
,

which is a real vector space, naturally isomorphic to (zR)∨ (the dual of the Lie
algebra of ZR). Further let ρ : G→ GL(W ) be a representation of G on a finite
dimensional complex vector space W ; its kernel will be denoted by H.

1.1 Preliminaries

1.1.1 Elements of Hermitian type and weight spaces

An element s of g is called of Hermitian type if there exists a compact subgroup
K of G such that s ∈ ik; the set of elements of Hermitian types will be denoted
by H(G) . Other equivalent characterizations of the elements of H(G) can be
found in [10, Definition 2.1]. In particular, if s ∈ H(G), the endomorphism
ρ∗(s) has only real eigenvalues and is diagonalizable. For an eigenvalue λ, we
denote by W (λ) the corresponding subspace of eigenvectors and we set

W≤0(s) :=
⊕
λ≤0

W (λ), W<0(s) :=
⊕
λ<0

W (λ).

Every vector w ∈ W can be written uniquely as w = w− + w0 + w+, where
w− ∈

⊕
λ<0W (λ), w0 ∈W (0) and w+ ∈

⊕
λ>0W (λ).

Remark 1.1 If W =
⊕p

i=1Wi is the direct sum of the representations Wi of
the group G, then for any s ∈ H(G) it holds

W≤0(s) =
p⊕
i=1

W≤0
i (s), W<0(s) =

p⊕
i=1

W<0
i (s).
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1.1.2 The case of the general linear group

In this subsection we pay attention to the special case of the group GL(V ) of
general linear transformations of a finite dimensional complex vector space V
and to some GL(V )-actions. Let s ∈ H(GL(V )) be an element of Hermitian
type. We denote by λ1 < . . . < λq the (real) eigenvalues of s and by V (λi) the
corresponding eigenspaces. For any i = 1, . . . , q we define

Vi :=
⊕
λj≤λi

V (λj)

and we put V0 := {0}, obtaining in this way a filtration on V , denoted by Fs,

{0} = V0 ⊂ V1 ⊂ . . . ⊂ Vq = V.

We also define

F≤0
s :=

⊕
λj≤0

V (λj), F<0
s :=

⊕
λj<0

V (λj).

In particular, there exist j1, j2 such that F≤0
s = Vj1 , F<0

s = Vj2 .

Example 1.2 Let V, V1 and V2 be finite dimensional complex vector spaces and
let s ∈ H(GL(V )) be a fixed element of Hermitian type.

(i) Take the GL(V )-action by conjugation on W := EndC(V ). Then ϕ ∈
W≤0(s) if and only if the filtration Fs is ϕ-invariant.

(ii) Take the GL(V )-action on W1 := HomC(V1, V ) given by (g, ϕ1) 7→ g◦ϕ1.
Then ϕ1 ∈W≤0

1 (s) if and only if im(ϕ1) ⊂ F≤0
s .

(iii) Take the GL(V )-action on W2 := HomC(V, V2) given by (g, ϕ2) 7→ ϕ2 ◦
g−1. Then ϕ2 ∈W≤0

2 (s) if and only if F<0
s ⊂ ker(ϕ2).

Proof. We prove the assertion (i), the other ones follow using similar argu-
ments. In the case of the action ρ given by conjugation, the eigenvalues of ρ∗(s)
are {λa − λb}a,b and, according to our notations, let (W (λa − λb))a,b be the
corresponding eigenspaces. As noticed above, for an endomorphism ϕ ∈ W we
have the decomposition

ϕ = ϕ− + ϕ0 + ϕ+,

where ϕ− ∈
⊕

ν<0W (ν), ϕ0 ∈W (0) and ϕ+ ∈
⊕

ν>0W (ν).
We first remark that, if v ∈ V (λ) is a vector of the eigenspace V (λ) corre-

sponding to the eigenvalue λ and ψ ∈W (λa− λb), then ψ(v) ∈ V (λa− λb + λ),
since one has

s(ψ(v)) = [s, ψ](v) + ψ(s(v)) = (λa − λb + λ)ψ(v).

We deduce that for v ∈ V (λ) it holds

ϕ−(v) ∈
⊕
µ<λ

V (µ), ϕ0(v) ∈ V (λ), ϕ+(v) ∈
⊕
µ>λ

V (µ).
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Suppose first that ϕ ∈ W≤0(s), that is ϕ+ = 0. In particular, for a vector
v ∈ V (λ) one has ϕ(v) ∈

⊕
µ≤λ V (µ). We conclude that for any i = 1, . . . , q the

following inclusion hold:

ϕ(Vi) = ϕ
( ⊕
λ≤λi

V (λ)
)
⊂
⊕
λ≤λi

V (λ) = Vi,

that is the filtration Fs is ϕ-invariant.
Conversely, we suppose that Fs is ϕ-invariant and we claim that ϕ+ = 0.

In fact, it is enough to show that for any eigenvalue λ it holds ϕ+|V (λ) = 0.
We first notice that, for i suitable chosen one has Vi =

⊕
µ≤λ V (µ) ⊃ V (λ).

Let now v ∈ V (λ) be a vector of the space V (λ). On one hand, ϕ(v) ∈ Vi (by
assumption) and ϕ−(v) ∈ Vi (by the arguments above), hence ϕ+(v) ∈ Vi. On
the other hand, ϕ+(v) ∈

⊕
µ>λ V (µ) and we conclude that ϕ+(v) = 0.

1.1.3 Symplectisations

We return now to the general set-up of a linear action of a connected complex
reductive group G on a finite dimensional complex vector space W . Let K be
a maximal compact subgroup of G. Then its Lie algebra k can be decomposed
as k = zR ⊕ [k, k] (recall that zR is the Lie algebra of the torus ZR, which is the
unique maximal compact subgroup of the center Z of G). In particular, since
K is connected, the following relations hold

{τ ∈ k∨|〈τ, adg(ξ)〉 = 〈τ, ξ〉, ∀g ∈ K, ξ ∈ k} = {τ ∈ k∨|τ|[k,k] = 0} ' TG. (1)

In the sequel we will tacitly use this identification.
Let further hW be a Hermitian inner product on W such that ρ(K) ⊂

U(W,hW ). In this way K acts in a symplectic fashion with respect to the
symplectic structure induced by hW . Moreover, there exists a standard moment
map for the K-action on W , namely

µcan : W → k∨, µcan(w) := −ρ∨∗
(
i

2
(w ⊗ w̄)

)
.

This map depends on the representation, but we skipped the index ρ in order to
simplify the notation. Here we denoted by (w⊗w̄) the Hermitian endomorphism
given by w ⊗ w̄ = hW (·, w)w, whereas ρ∨∗ is the dual of ρ∗ : k → u(W ). We
used the identification between u(W ) and u(W )∨ given by the inner product
(A,B) 7→ −Tr(AB). Moreover, from the equality (1) it follows that for any
τ ∈ TG the map given by

µτ : W → k∨, µτ (w) := µcan(w)− τ

is also a moment map for the K-action on W .
The triple (K,hW , µτ ) yields a symplectisation στ of the G-action on W

given by ρ. According to the definition given in [6], στ is the equivalence class
of (K,hW , µτ ) with respect to the following equivalence relation: let (Ki, hi, µi)
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(i = 1, 2) be two triples consisting of a maximal compact subgroup Ki of G, a
Ki-invariant Hermitian metric hi on W and a moment map µi : W → k∨i for
the Ki-operation on W with respect to the symplectic structure induced by hi.
They are considered to be equivalent if there exists g ∈ G such that

K2 = Adg(K1), h2 = (g−1)∗h1, µ2 = adtg−1 ◦ µ1 ◦ g−1.

1.2 Analytic, symplectic and GIT-stability

In this section we briefly recall the corresponding definitions and we describe the
relationship between analytic, symplectic and GIT-stability. For further details
we refer the reader to the papers [5], [6] and [10].

I. Our main tool in the study of linear problems will be the analytic stability,
as introduced and studied in [6] and [10]. For a symplectisation σ of the G-action
on W , one constructs a well-defined map

λσ : H(G)×W → R ∪ {∞}, (s, w) 7→ λsσ(w).

A point w ∈ W is called analytically σ-semistable if and only if λsσ(w) ≥ 0, for
any s ∈ H(G). It is analytically σ-stable if and only if it is σ-semistable and
λsσ(w) > 0 for any s ∈ H(G) \ h.

In the sequel we will take a closer look at analytic stability in the case of
linear problems. We begin by recalling the construction of the map λ. Take an
element of Hermitian type s ∈ H(G) and choose a representant (K,hW , µτ ) of
σ such that s ∈ ik. Then, for any w ∈W and t ∈ R one defines

λs,tσ : W → R, λs,tσ (w) := 〈µτ (ets · w),−is〉.

The map λσ, which is independent on the choice of the representant of the
symplectisation, is given by

λsσ : W → R ∪ {∞}, λsσ(w) := lim
t→∞

λs,tσ (w).

The following Lemma gives an explicit description of this map in the case of
linear actions:

Lemma 1.3 Let σ be a symplectisation of the G-action on W , s ∈ H(G) an
element of Hermitian type and (K,hW , µτ ) a representant of σ such that s ∈ ik.
Then for any w ∈W it holds

λsσ(w) =
{
〈τ, is〉, if w ∈W≤0(s)
∞, otherwise.

Proof. A straightforward computation shows that for any t ∈ R one has
λs,tσ (w) = λs,t(w) + 〈τ, is〉, where

λs,t(w) :=
1
2
hW (ets · w, ρ∗(s)(ets · w)).
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We choose a hW -orthonormal basis b1, . . . , bm of W consisting of eigenvectors of
ρ∗(s), such that any bi corresponds to an eigenvalue λi. Writing w =

∑
i wibi,

we have

ets · w =
m∑
i=1

(etλiwi)bi, ρ∗(s)(ets · w) =
m∑
i=1

(λietλiwi)bi,

and hence

λs,t(w) =
m∑
i=1

λi|etλi |2|wi|2bi.

Taking the limit we obtain

lim
t→∞

λs,t(w) =
{

0, if w ∈W≤0(s)
∞, otherwise

and our assertion follows.
In particular, Lemma 1.3 shows that the map λsσ and hence the stability

concept do not depend on K and hW , but only on τ . More precisely, if we con-
sider symplectisations σ = [(K,hW , µτ )] and σ̃ = [(K̃, h̃W , µτ )], corresponding
to the pairs (K,hW ), respectively (K̃, h̃W ) and to the same τ , then a point w is
σ-(semi)stable if and only if it is σ̃-(semi)stable. In this case we will say that w
is τ -(semi)stable. In fact, we obtained the following explicit description of the
τ -(semi)stable locus:

Proposition 1.4 a) The following assertions are equivalent:
(i) w is τ -semistable,
(ii) for any s ∈ H(G) such that w ∈W≤0(s), it holds 〈τ, is〉 ≥ 0.

b) The following assertions are equivalent:
(i) w is τ -stable,
(ii) w is τ -semistable and for any s ∈ H(G) \ h such that w ∈ W≤0(s) it

holds 〈τ, is〉 > 0.

Remark 1.5 Let a > 0 be a positive constant. Then a point w is τ -(semi)stable
if and only if it is aτ -(semi)stable.

II. The second concept of stability is that one of symplectic stability.
Let σ = [(K,hW , µτ )] be a symplectisation of the G-action on W . According

to [6] a point w ∈W is called symplectically σ-semistable if G · w ∩ µ−1
τ (0) 6= ∅.

It is called symplectically σ-stable if G · w ∩ µ−1
τ (0) 6= ∅ and dimGw = dimH,

where Gw denotes the stabilizer of w.
III. Last but no least, we briefly recall some definitions related to GIT-

stability. As noticed in [5], a character χ : G→ C
∗ of G yields a linearisation of

the trivial complex line bundle L over W . On the total space of L−1 = W ×C,
the group G acts by g · (w, λ) := (ρ(g)w,χ−1(g)λ). In this context, Mumford’s
definitions for (semi)stability with respect to this linearisation can be phrased
as follows [5]. A point w ∈ W is called χ-semistable if there exist n ≥ 1 and a

6



χn-equivariant polynomial f ∈ C[W ]G,χ
n

such that f(w) 6= 0. If moreover, the
G-operation on {w|f(w) 6= 0} is closed and the dimension of the stabilizer Gw
of w is equal to the dimension of H, then w will be called χ-stable.

These three stability concepts are, essentially, equivalent:

Proposition 1.6 Let σ = [(K,hW , µτ )] be a symplectisation of the G-action
on W .

i) [6], [10] A point w in W is analytically τ -(semi)stable if and only if it is
symplectically σ-(semi)stable.

ii) [5] Suppose that τ is provided by the derivative of a character χ of G. Then
a point is symplectically σ-(semi)stable if and only if it is GIT χ-(semi)stable.

Notation For a fixed τ we will denote by W s,τ and W ss,τ the τ -stable, respec-
tively τ -semistable locus.

1.2.1 An example from control theory: linear systems

In this subsection we will give an explicite description of the (semi)stable locus
in a particular case. More precisely, we consider three complex vector spaces
V, V1, V2 of dimensions r > 0, r1, respectively r2 such that (r1, r2) 6= (0, 0) and
we set

W := EndC(V )⊕HomC(V1, V )⊕HomC(V, V2).

The group G := GL(V ) acts in a natural fashion on W by

g · (ϕ,ϕ1, ϕ2) := (g ◦ ϕ ◦ g−1, g ◦ ϕ1, ϕ2 ◦ g−1).

A triple (ϕ,ϕ1, ϕ2) will be called a linear system. We notice that, after fixing
basis in the spaces V, V1, V2, one can represent a linear system by a triple of
matrices. Such triples of matrices arise in control theory and one can find more
results concerning these systems, for instance, in the monography [9].

We notice that the kernel of the representation described above is trivial,
by the assumption that (r1, r2) 6= (0, 0). Since Z(GL(V )) ' C∗, the real vector
space TGL(V ) is one-dimensional and, hence, according to Remark 1.5, there
are three different stability concepts, corresponding to the following elements of
TGL(V ):

τ0 := 0, τ1 := iTr, τ−1 := −iTr.

In order to describe explicitely the corresponding (semi)stable loci, we first fix
some notations: for a triple (ϕ,ϕ1, ϕ2) ∈W we put

Vϕ,ϕ1 := im(ϕ1) + im(ϕ ◦ ϕ1) + . . .+ im(ϕr−1 ◦ ϕ1) ⊂ V,

V ϕ,ϕ2 := ker(ϕ2) ∩ ker(ϕ2 ◦ ϕ) ∩ . . . ∩ ker(ϕ2 ◦ ϕr−1) ⊂ V.

Proposition 1.7 It holds:

(i) W s,τ0 = {(ϕ,ϕ1, ϕ2) | Vϕ,ϕ1 = V, V ϕ,ϕ2 = 0}, W ss,τ0 = W ;

(ii) W s,τ1 = W ss,τ1 = {(ϕ,ϕ1, ϕ2) | Vϕ,ϕ1 = V };
(iii) W s,τ−1 = W ss,τ−1 = {(ϕ,ϕ1, ϕ2) | V ϕ,ϕ2 = 0}.
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Proof. Let s ∈ H(G) be of Hermitian type. According to Remark 1.1 and
to Example 1.2, a triple (ϕ,ϕ1, ϕ2) is an element of W≤0(s) if and only if the
filtration Fs is ϕ-invariant, im(ϕ1) ⊂ F≤0

s and ker(ϕ2) ⊃ F<0
s .

(i) The fact that W ss,τ0 = W follows at once from Proposition 1.4 a). Let
now (ϕ,ϕ1, ϕ2) be τ0-stable and suppose that Vϕ,ϕ1 6= V . We consider the
ϕ-invariant filtration

{0} ⊂ Vϕ,ϕ1 ⊆/ V.

One can find s ∈ H(G) \ {0} such that for the associated filtration Fs it holds
F≤0
s = Vϕ,ϕ1 and F<0

s = {0}. In particular, this means that the triple (ϕ,ϕ1, ϕ2)
is an element of W≤0(s). Since 〈τ0, is〉 = 0, it follows that (ϕ,ϕ1, ϕ2) cannot be
τ0-stable. If V ϕ,ϕ2 6= 0, one obtains an analogous contradiction by considering
the filtration

{0} ⊆/ V ϕ,ϕ2 ⊂ V.

Conversely, let’s suppose that it holds Vϕ,ϕ1 = V and V ϕ,ϕ2 = 0. We claim
that there exists no element s ∈ H(G) \ {0} such that (ϕ,ϕ1, ϕ2) ∈ W≤0(s).
Indeed, let s 6= 0 be an element of Hermitian type such that Fs is ϕ-invariant,
im(ϕ1) ⊂ F≤0

s and ker(ϕ2) ⊃ F<0
s . Since s 6= 0, then either F≤0

s 6= V or
F<0
s 6= 0. In the first case, it follows that Vϕ,ϕ1 6= V , whereas in the second

situation it holds V ϕ,ϕ2 6= 0 and this yields a contradiction.
(ii) For simplicity, we denote by M the set of triples (ϕ,ϕ1, ϕ2) such that

Vϕ,ϕ1 = V .
Let (ϕ,ϕ1, ϕ2) be an element of M . If s is an element of Hermitian type such

that (ϕ,ϕ1, ϕ2) ∈ W≤0(s), it follows that Vϕ,ϕ1 = F≤0
s = V . In particular all

the eigenvalues of s are non-positive and hence 〈τ1, is〉 = −Tr(s) ≥ 0. Moreover,
if s 6= 0, then 〈τ1, is〉 > 0. This proves that M ⊂W s,τ1 .

Let now (ϕ,ϕ1, ϕ2) be a triple such that Vϕ,ϕ1 6= V . Consider s with eigen-
values 0 and 1 and such that the associated filtration is

{0} ⊂ Vϕ,ϕ1 ⊆/ V.

Then one has (ϕ,ϕ1, ϕ2) ∈W≤0(s) and it holds

〈τ1, is〉 = −Tr(s) = −dim(V/Vϕ,ϕ1) < 0,

which shows that the given triple is not τ1-semistable. Hence we proved that
the semistable locus is included in M . Since the stable locus is included in the
semistable one, the required equalities follow.

(iii) This assertion is the ‘dual’ of (ii) and can be proved using similar argu-
ments.

Remark A triple (ϕ,ϕ1, ϕ2) such that Vϕ,ϕ1 = V is called in the control theory
accessible linear system, whereas a triple for which Vϕ,ϕ1 = V and V ϕ,ϕ2 = 0
is called minimal system. Hence, the first statement of Proposition 1.7 shows
that the set of minimal systems can be described as the set of analytically sta-
ble points with respect to a suitable stability concept. The second statement
of Proposition 1.7 together with Proposition 1.6 yield an alternative proof to a
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known result of Byrnes and Hurt [1, Theorem 4.1] which states that the set of ac-
cessible linear systems coincides with the GIT-(semi)stable locus corresponding
to a suitable linearization.

1.3 Geometry of quotients

We return to the general set-up of an action of a connected reductive complex
Lie group G on a complex vector space W . The following result follows from
[10, Theorem 1.4] (compare also [2]) and from Proposition 1.6:

Proposition 1.8 Let τ ∈ TG be fixed. The sets W ss,τ ,W s,τ are open in W and
there exists a good quotient

qτ : W ss,τ →W//(G, τ)

with the property that two G-orbits have the same image in W//(G, τ) if and
only if their closures in W ss,τ are not disjoint. Moreover, the natural map

µ−1
τ (0)/K −→W//(G, τ)

is a homeomorphism.

This result shows not only that the restriction to the semistable locus yields a
good quotient, but also that this quotient admits, in the category of topological
spaces, an alternative description obtained by using symplectic tools (i.e the
moment map). Some topological properties of the quotient W//(G, τ) can be
easier understood if one combines the two approaches. For instance, we will
take in the sequel a closer look at the compactness of this quotient and we
will show that it can be related to the properness of the moment map µcan

obtained by choosing a maximal compact subgroup K of G and a Hermitian
inner product on W such that K acts on W by hW -unitary transformations.
Since the topology of W//(G, τ) depends only on the representation and on τ ,
the result is independent on the choice of the pair (K,hW ).

Proposition 1.9 (i) Suppose that µcan is proper. Then for any τ the quotient
W//(G, τ) is compact.

(ii) Suppose that µcan is not proper. Then for any τ such that W//(G, τ) 6= ∅,
this quotient is not compact.

Proof. (i) If µcan is proper, then for any τ the topological space

W//(G, τ) ' µ−1
τ (0)/K = µ−1

can(τ)/K

is obviously compact.
(ii) Suppose now that µcan is not proper. By Lemmas 1.10 and 1.11 (stated

below) one first deduces that the quotient

W//(G, τ0) ' µ−1
τ0 (0)/K = µ−1

can(0)/K
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is not compact. Moreover, since W ss,τ0 = W , it is a non-empty connected
topological space. For τ arbitrary one obtains, using the properties of the good
quotients qτ and qτ0 , a surjective continuous map from W//(G, τ) to qτ0(W ss,τ ),
which is an open subset of W//(G, τ0) and our statement follows.

Lemma 1.10 [8, Lemma 1.1] The following assertions are equivalent:
(i) The map µcan is proper,
(ii) µ−1

can(0) = {0},
(iii) µ−1

can(0) is bounded.

Lemma 1.11 Let (W,hW ) be a finite dimensional Hermitian vector space and
let K be a compact group which acts on W by unitary transformations. If X ⊂
W is K-invariant and unbounded, the quotient space X/K cannot be compact.

Proof. We will denote by π : X → X/K the canonical projection, x 7→
K · x. Since X is not bounded, we can find a sequence (xn)n ⊂ X for which
it holds ‖xn‖hW → ∞. Let’s suppose now that the topological space X/K is
compact. Then, by passing at a subsequence, we can find an orbit π(y) ∈ X/K
of an element y ∈ X such that π(xn) → π(y). We claim that we can find a
sequence (kn)n ⊂ K and a subsequence (xmn)n such that kn · xmn → y, hence,
in particular, ‖kn · xmn‖hW → ‖y‖hW . On the other hand, since K acts by
unitary transformations, we have

‖kn · xmn‖hW = ‖xmn‖hW →∞,

which yields a contradiction. It remains to construct the sequence kn indicated
above. Let (Bi)i∈N be a basis of neighborhouds of y such that Bi+1 ⊂ Bi.
Then (π(Bi))i∈N is a fundamental system of neighborhouds of π(y). We fix
n ∈ N. There exists in such that, for any i ≥ in one has π(xi) ∈ π(Bn). Set
mn := max{n, in}; in particular π(xmn) ∈ π(Bn), i.e. we can find kn such that
kn · xmn ∈ Bn and we conclude that kn · xnm → y.

2 Quiver factorisation problems

2.1 Generalities. Compactness of QFP-quotients

The aim of this section is to discuss a special class of linear problems, called
quiver factorisation problems. We begin by giving some definitions concerning
quivers and their representations. A quiver is a diagram consisting of points
and arrows. Formally, a quiver Q is a quartet (Q0, Q1, h, t) consisting of the
set of vertices Q0, the set of arrows Q1 and the maps h, t : Q1 → Q0, which
associate to every arrow a the head, respectively the tail of a. In the sequel we
will consider only finite quivers, i.e. the sets Q0 and Q1 will be assumed to be
finite. If a1, . . . , an are arrows such that h(ai) = t(ai+1) for any i = 1, . . . , n−1,
they give rise to the oriented path an ·. . .·a1. If, moreover, one has h(an) = t(a1),
this oriented path will be called a loop. A vertex v is called a sink (respectively

10



a source) if all the arrows meeting v are directed to v (respectively to the other
vertex). If Q contains no loops, then it has at least one source and one sink.

A representation (U,ψ) of a quiver Q (over the field of complex numbers)
is given by a family of finite dimensional complex vector spaces (Uv)v∈Q0 and
a family of linear maps (ψa)a∈Q1 , with ψa : Ut(a) → Uh(a). The dimension
vector α ∈ NQ0 of the representation (U,ψ) is defined by αv := dimC(Uv) for
any vertex v. A morphism of representations (U,ψ), (U ′, ψ′), is given by linear
maps (fa)a∈Q1 such that for every a it holds fh(a) ◦ ψa = ψ′a ◦ ft(a).

For a fixed representation r = (U,ψ) of a quiver Q = (Q0, Q1, h, t) we
consider the vector space

Wr :=
⊕
a∈Q1

Hom(Ut(a), Uh(a)).

The group
∏
v∈Q0

GL(Uv) acts on Wr in a natural fashion

(gv)v · (ψa)a := (gh(a) ◦ ψa ◦ g−1
t(a))a.

Since in some situations the action of a smaller symmetry group is needed, for
a subset of vertices S ⊂ Q0 we define

GS :=
∏
v∈S

GL(Uv) ⊂
∏
v∈Q0

GL(Uv).

According to the terminology of [7], this is a quiver factorisation problem associ-
ated to the combinatorial data (Q,S). In the particular case when S = Q0, it is
called a standard quiver factorisation problem. We notice that the orbits in the
space Wr of the symmetry group GS are in bijective correspondence with the
isomorphism classes of representations (Ũ , ψ̃) of Q having the same dimension
vector as r = (U,ψ) and such that for any v ∈ Q0 \ S it holds Ũv = Uv.

Let now τ be an element of TGS ' RS . The categorical quotient Wr//(GS , τ)
will be called a QFP-quotient. According to the results described in the first sec-
tion, such a quotient admits an alternative symplectic description. If (hUv )v∈Q0

are Hermitian inner products on the vector spaces (Uv)v∈Q0 , then we get in
a natural fashion an induced Hermitian inner product hWr on the space Wr.
Moreover, the group

KS :=
∏
v∈S

U(Uv, hUv )

acts on Wr by hWr
-unitary transformations. The corresponding canonical mo-

ment map µcan : Wr →
⊕

v∈S u(Uv, hUv ) is given by

µcan((ψa)a) =
⊕
v∈S

− i
2

∑
v=h(a)

ψa ◦ ψ∗a +
i

2

∑
v=t(a)

ψ∗a ◦ ψa


and one has a homeomorphism between the symplectic quotient µ−1

τ (0)/KS and
the QFP-quotient Wr//(GS , τ).

11



We notice that if (U,ψ) and (Ũ , ψ̃) are representations of Q having the same
dimension vector and if we consider the same subset of vertices S and parameters
τ, τ̃ for which the associated semistable loci coincide, then the corresponding
QFP-quotients will be isomorphic. We conclude that, up to isomorphism, a
QFP-quotient depends on:

-the combinatorial data (Q,S),
-the dimension vector α ∈ NQ0 ,
-the parameter τ ∈ TGS .

It is therefore a natural problem to understand how the geometry of the QFP-
quotients depends on these data. In the sequel we will give some results con-
cerning the relationship between the compactness of these quotients and the
following combinatorial property of a pair (Q,S):

Property (∗)
(i) Q has no loops,
(ii) any oriented path in Q contains at most one vertex lying in Q0 \ S.

Lemma 2.1 Let (Ui, hUi)i=0,...,n be a family of Hermitian vector spaces of pos-
itive finite dimension such that (U0, hU0) = (Un, hUn). Then one can find non-
zero linear maps ψi : Ui → Ui+1 (i = 0, . . . , n− 1), such that, putting ψn := ψ0,
one has for any i = 1, . . . , n

ψi−1 ◦ ψ∗i−1 = ψ∗i ◦ ψi.

Proof. For any i = 0, . . . , n − 1 we denote by li the dimension of the vector
space Ui and we fix a hUi-orthonormal basis bi = (bi1, . . . , b

i
li

) in Ui; we also put
bn := b0. The linear maps ψi (i = 0, . . . , n− 1) acting on the given basis by

ψi(bi1) = bi+1
1 , ψi(bij) = 0 ∀ j = 2, . . . , li

satisfy the required property.

Proposition 2.2 Let Q = (Q0, Q1, h, t) be a quiver and S ⊂ Q0 a fixed subset
of vertices. Let r = (U,ψ) be a representation of Q with Hermitian vector spaces
(Uv, hUv )v∈Q0 .

(i) If the pair (Q,S) satisfies the Property (∗), then the canonical moment
map associated to the corresponding quiver factorisation problem is proper.

(ii) If we assume that any vector space Uv has positive dimension, then the
converse of (i) is also true.

Proof. (i) We take ψ ∈ Wr such that µcan(ψ) vanishes and we show that
ψ is zero. We first notice that, since the pair (Q,S) verifies the Property
(∗), the quiver Q has at least one sink or one source belonging to S. If Q
has a source v ∈ S, then the projection of the canonical moment map on
u(Uv, hUv ) is

(
i
2

∑
v=t(a) ψ

∗
a ◦ ψa

)
, whereas if Q has a sink v ∈ S, this pro-

jection is
(
− i

2

∑
v=h(a) ψa ◦ ψ∗a

)
. In both cases the projection on u(Uv, hUv )

vanishes if and only if ψa = 0 for any a which meets v. We consider now the

12



quiver Q′ obtained from Q by eliminating v and those arrows which meet v.
Then the pair (Q′, S \ {v}) also verifies the Property (∗). Applying the same
reasoning, after a finite number of steps we eliminate all the vertices lying in
S. Since any arrow meets at least one vertex in S, we conclude that ψa = 0 for
any a ∈ Q1, that is ψ = 0.

(ii) Suppose first that Q contains a loop with vertices v1, . . . , vn = v0 and
with arrows a0, a1, . . . , an−1, an = a0 such that for any i = 0, . . . , n− 1 one has
t(ai) = vi, h(ai) = vi+1. We construct non-zero linear maps ψai : Uvi → Uvi+1

as in Lemma 2.1. For any a ∈ Q1 \ {a0, . . . , an−1} we set ψa := 0, obtaining
in this way a non-zero element ψ ∈ Wr. We claim that it holds µcan(ψ) = 0.
Indeed, if v = vi (i = 1, . . . , n) one has∑

v=h(a)

ψa ◦ ψ∗a −
∑
v=t(a)

ψ∗a ◦ ψa = ψai−1 ◦ ψ∗ai−1
− ψ∗ai ◦ ψai = 0

and for all other v this sum vanishes, since the corresponding linear maps are
zero. Hence, by Lemma 1.10, it follows that µcan is not a proper map.

Let’s now assume that Q contains an oriented path with vertices v1, . . . , vn
such that v1 and vn are in Q0 \ S and with arrows a1, . . . , an−1 such that
t(ai) = vi, h(ai) = vi+1 (i = 1, . . . , n − 1). Applying again Lemma 2.1, we
construct non-zero linear maps ψai : Uvi → Uvi+1 for i = 1, . . . , n − 1. Setting
ψa := 0 for any a ∈ Q1 \ {a0, . . . , an−1}, we get a non-zero element ψ ∈ Wr.
Then:

∑
v=h(a)

ψa ◦ ψ∗a −
∑
v=t(a)

ψ∗a ◦ ψa =


−ψ∗a1

◦ ψa1 , if v = v1,
ψan−1 ◦ ψ∗an−1

, if v = vn,

0, otherwise.

But v1 and vn are not elements of S and hence µcan(ψ) = 0. Again by Lemma
1.10, it follows that µcan cannot be a proper map.

Using Propositions 2.2 and 1.9 we deduce at once:

Theorem 2.3 (i) Any QFP -quotient associated to a pair (Q,S) satisfying the
Property (∗) is compact.

(ii) If a non-empty QFP-quotient associated to a pair (Q,S) and correspond-
ing to a dimension vector α ∈ NQ0

+ is compact, then the pair (Q,S) must fulfil
the Property (∗).

2.2 Compactification of QFP-quotients

In the remaining of the paper we will focus our attention to the particular
case concerning linear systems. As in section 1.2.1, we consider complex vector
spaces of positive finite dimension V, V1, V2 and the natural action of the group
G := GL(V ) on the space

W := EndC(V )⊕HomC(V1, V )⊕HomC(V, V2).
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This linear problem is, in fact, a quiver factorisation problem associated to the
quiver Q

◦ // • //dd ◦
and to the set S containing just one vertex, namely •. The pair (Q,S) does
not verify the Property (∗) and hence, by Theorem 2.3, the corresponding quo-
tients are not compact. This yields an alternative proof to the fact that the
moduli space of accessible linear systems is not compact, as shown for instance
in [9]. Our main aim is to construct natural compactifications for these spaces
which are themselves QFP-quotients associated to a suitable pair (Q̃, S̃) and
will be achieved in Theorem 2.7. Our construction is motivated by Helmke’s
compactification of the space of accessible linear systems by using generalized
linear systems, which is described in [3] and [4]. Hence, in the paper [3] one
considers the group

G̃ := GL(V )×GL(V ),

which acts on the space

W̃ := HomC(V, V )⊕2 ⊕HomC(V1, V )⊕HomC(V, V2)

in a natural fashion

(g, h) · (ψ,ϕ, ϕ1, ϕ2) := (g ◦ ψ ◦ h−1, g ◦ ϕ ◦ h−1, g ◦ ϕ1, ϕ2 ◦ h−1).

The study of the G̃-action on W̃ can also be represented as a quiver factorisation
problem associated to the quiver Q̃

•

�� �� ��@@@@@@@

◦ // • ◦

and for which the set S̃ contains two vertices, both drawn with •. Since the pair
(Q̃, S̃) verifies the Property (∗), it follows by Theorem 2.3 that the associated
QFP-quotients are compact. In remains to get a natural relationship between a
QFP-quotient corresponding to (Q,S) and a suitable QFP-quotient associated
to (Q̃, S̃). We first notice that one has a natural map

i : W → W̃ , i(ϕ,ϕ1, ϕ2) := (id, ϕ, ϕ1, ϕ2).

On the the other hand, the geometry of QFP-quotients also depends on a pa-
rameter τ , i.e. on a stability concept. In section 1.2.1, we explained that there
are three stability concepts associated to this first quiver factorisation problem,
which were denoted by τε ∈ TG (ε ∈ {0,±1}). Our aim is to show that the
images of the corresponding semistable loci under the map i are also included
in some sets of semistable points, with respect to suitable elements in T

G̃
. More

precisely, we consider τ̃0, τ̃1, τ̃−1 ∈ TG̃ given by

〈τ̃ε, (s′, s′′)〉 :=


i(Tr(s′)− Tr(s′′)), if ε = 0
i((r + 1)Tr(s′)− rTr(s′′)), if ε = 1
i(−rTr(s′) + (r + 1)Tr(s′′)), if ε = −1
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and we claim that the following result holds

Proposition 2.4 Take any ε ∈ {0,±1}. A triple (ϕ,ϕ1, ϕ2) ∈ W is τε-
(semi)stable if and only if i(ϕ,ϕ1, ϕ2) ∈ W̃ is τ̃ε-(semi)stable.

In order to prove the proposition, we need some preparations. Let (s′, s′′) be
an element of H(G̃) (this space can be identified with H(GL(V ))×H(GL(V ))).
Let λ′1 < λ′2 < . . . < λ′a, respectively λ′′1 < λ′′2 < . . . < λ′′b be the eigenvalues of
s′, respectively s′′ and let

{0} = V ′0 ⊂ V ′1 ⊂ . . . ⊂ V ′a, {0} = V ′′0 ⊂ V ′′1 ⊂ . . . ⊂ V ′′b

be the corresponding filtrations. We denote by d′i := dimC(V ′i ) (i = 1, . . . , a),
respectively d′′i := dimC(V ′′i ) (i = 1, . . . , b) the dimensions of the vector spaces
arising in the filtrations Fs′ , respectively Fs′′ . For any k = 1, . . . , b we put

j(k) :=
{

max{l |λ′l ≤ λ′′k}, if {l |λ′l ≤ λ′′k} 6= ∅
0, otherwise

.

We will need the following

Lemma 2.5 (i) Let ψ ∈ (HomC(V, V ))≤0(s′, s′′). Then for any real number m
one has

ψ
( ⊕
λ′′
k
≤m

V (λ′′k)
)
⊂
⊕
λ′
j
≤m

V (λ′j).

(ii) Suppose that id ∈ (HomC(V, V ))≤0(s′, s′′). Then for any k = 1, . . . , b it
holds d′′k ≤ d′j(k). Moreover, if s′ and s′′ have the same eigenvalues with the same
multiplicities, then s′ and s′′ have the same associated filtrations, i.e. Fs′ = Fs′′ .

Proof. (i) Since the eigenvalues of (s′, s′′) are {λ′p− λ′′q |p, q = 1, . . . , r}, we can
decompose any ψ ∈ HomC(V, V ) as

ψ =
∑
p,q

ψλ′p−λ′′q ,

where for any p, q it holds

s′ ◦ ψλ′p−λ′′q − ψλ′p−λ′′q ◦ s
′′ = (λ′p − λ′′q )ψλ′p−λ′′q .

Let now v ∈ V be an eigenvector of s′′ corresponding to an eigenvalue λ′′.
Then for any component of ψ, the vector ψλ′p−λ′′q (v) is an eigenvector of s′,
corresponding to the eigenvalue (λ′′ + λ′p − λ′′q ). The assumption that ψ is an
element of (HomC(V, V ))≤0(s′, s′′) means that in the decomposition of ψ occur
only components corresponding to nonpositive eigenvalues. In particular, we
deduce that for an eigenvector v ∈ V (λ′′), we have ψ(v) ∈ ⊕λ′

j
≤λ′′V (λ′j) and

this yields our assertion.
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(ii) Using (i), we deduce that for any k it holds

V ′′k = id
( ⊕
λ′′
j
≤λ′′

k

V (λ′′j )
)
⊂
⊕
λ′
j
≤λ′′

k

V (λ′j) =
⊕

λ′
j
≤λ′

j(k)

V (λ′j) = V ′j(k)

and hence d′′k ≤ d′j(k). We notice that the assertion remains true if we replace
id with ψ ∈ HomC(V, V ) such that detψ 6= 0.

Let’s now suppose that a = b, that for any k = 1, . . . , a we have λ′k = λ′′k and
that the corresponding multiplicities are equal. In particular we deduce that for
any k one has j(k) = k and dim(V ′k) = dim(V ′′k ). Since V ′′k ⊂ V ′j(k) = V ′k, we
conclude that the two filtrations coincide.

Remark 2.6 For any l ∈ {1, . . . , r} we put

λ′(l) := λ′min{m | d′m≥l}, λ′′(l) := λ′′min{m | d′′m≥l}.

The sequence of real numbers (λ′(1), . . . , λ′(r)) is nothing else but the sequence
of eigenvalues of s′ in which each eigenvalue occurs as many times as its mul-
tiplicity is; an analogous statement holds for the sequence (λ′′(1), . . . , λ′′(r)).
Then the condition that for any k one has d′′k ≤ d′j(k) (stated in Lemma 2.5 ii))
is equivalent to the condition that for any l = 1, . . . , r it holds λ′(l) ≤ λ′′(l).
Moreover, it holds d′′k = d′j(k) if and only if λ′′(d′′k) < λ′(d′′k + 1).

Proof of Proposition 2.4.
We first notice that for any ε ∈ {0,±1} it holds: if (ϕ,ϕ1, ϕ2) ∈W≤0(s) and

〈τε, is〉 < (≤)0, then (id, ϕ, ϕ1, ϕ2) ∈ W̃≤0(s, s) and 〈τ̃ε, i(s, s)〉 < (≤)0. This
means that if (ϕ,ϕ1, ϕ2) is not τε-(semi)stable, then (id, ϕ, ϕ1, ϕ2) cannot be
τ̃ε-(semi)stable.

We now prove the converse assertion: if (ϕ,ϕ1, ϕ2) is τε-(semi)stable, then
(id, ϕ, ϕ1, ϕ2) is τ̃ε-(semi)stable.
• The case ε = 0. Our first claim is that every element (id, ϕ, ϕ1, ϕ2) is

τ̃0-semistable. Indeed, if (s′, s′′) is a pair such that (id, ϕ, ϕ1, ϕ2) ∈ W̃≤0(s′, s′′),
then, by Remark 2.6, we deduce that for any i = 1, . . . , r it holds λ′(i) ≤ λ′′(i)
and hence

〈τ̃0, i(s′, s′′)〉 = −(Tr(s′)− Tr(s′′)) =
r∑
i=1

(−λ′(i) + λ′′(i)) ≥ 0.

Suppose now that (id, ϕ, ϕ1, ϕ2) is not τ̃0-stable. This means that we have
(s′, s′′) such that (id, ϕ, ϕ1, ϕ2) ∈ W̃≤0(s′, s′′) and that it holds

r∑
i=1

(−λ′(i) + λ′′(i)) = 〈τ̃0, i(s′, s′′)〉 ≤ 0.

On the other hand, again by Remark 2.6, we have λ′(i) ≤ λ′′(i) for any i =
1, . . . , r. We conclude that λ′(i) = λ′′(i) for any i, that is that s′ and s′′ have
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the same eigenvalues with the same multiplicities. By Lemma 2.5 ii), we deduce
that the filtrations Fs′ and Fs′′ coincide. In particular, it follows that Fs′ is
ϕ-invariant, im(ϕ1) ⊂ F≤0

s′ and that ker(ϕ2) ⊃ F<0
s′′ = F<0

s′ , that is one has
(ϕ,ϕ1, ϕ2) ∈ W≤0(s′). Since 〈τ0, is′〉 = 0, we conclude that (ϕ,ϕ1, ϕ2) is not
τ0-stable.
• The case ε = 1. We will prove that if (id, ϕ, ϕ1, ϕ2) is not τ̃1-stable,

then (ϕ,ϕ1, ϕ2) is not τ1-semistable. Let (s′, s′′) 6∈ g̃0 be a pair such that
(id, ϕ, ϕ1, ϕ2) ∈ W̃≤0(s′, s′′) and such that 〈τ̃1, i(s′, s′′)〉 ≤ 0. This inequality
can be written as

r∑
i=1

λ′(i) + r(
r∑
i=1

(λ′(i)− λ′′(i))) ≥ 0. (2)

We claim that:
(a) s′ has at least one positive eigenvalue.
(b) let q be such that F≤0

s′ = V ′q ; in particular, if q 6= 0, λ′q is the greatest
nonpositive eigenvalue of s′. There exists t such that q ≤ j(t) < r and such that
d′′t = d′j(t).

Let’s suppose that we proved the assertions (a) and (b). We showed in
the proof of Lemma 2.5 that V ′′t ⊂ V ′j(t) and since their dimensions are equal
(d′′t = d′j(t)), it follows that these subspaces of V coincide. Moreover, by Lemma
2.5 i) we have

ϕ(V ′j(t)) = ϕ(V ′′t ) = ϕ
( ⊕
λ′′
i
≤λ′′t

V (λ′′i )
)
⊂
⊕
λ′
i
≤λ′′t

V (λ′i) =
⊕

λ′
i
≤λ′

j(t)

V (λ′i) = V ′j(t)

and it holds
im(ϕ1) ⊂ F≤0

s′ = V ′q ⊂ V ′j(t).

We now consider s with eigenvalues 0 and 1 and with associated filtration Fs

{0} ⊂ V ′j(t) ⊆/ V.

We already proved that Fs is ϕ-invariant and that im(ϕ1) ⊂ F≤0
s ; we obviously

have ker(ϕ2) ⊃ F<0
s = {0} and we conclude that (ϕ,ϕ1, ϕ2) ∈W≤0(s). On the

other hand, one has

〈τ1, is〉 = −Tr(s) = −dim(V/V ′j(t)) < 0

and we conclude that (ϕ,ϕ1, ϕ2) is not τ1-stable.
We now prove the assertions (a) and (b). If all the eigenvalues of s′ were

nonpositive, then we would have λ′(i) ≤ 0 for any i. On the other hand, by
Remark 2.6, for any i we have λ′(i) − λ′′(i) ≤ 0. Using the inequality (2), we
deduce that all the numbers λ′(i), λ′′(i) must be zero, which contradicts our
assumption that (s′, s′′) 6∈ g̃0.

By Remark 2.6, it is enough to show that there exists d′q ≤ l < r such that
λ′′(l) < λ′(l + 1) (if d′q = 0, we set λ′(0) = λ′′(0) := 0). Let’s suppose that this
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property is not fulfiled, that is for any d′q ≤ l ≤ r− 1 we have λ′′(l) ≥ λ′(l+ 1).
By multiplicating each inequality with a suitable nonnegative number (more
precisely me multiply the inequality between λ′′(l) and λ′(l+ 1) with r− l+ 1)
and by using the fact that λ′(d′q) ≤ 0 < λ′(r) ≤ λ′′(r), we obtain the following
inequality

r∑
l=d′q+1

λ′(l) +
r∑

l=d′q

(r − l + 1)(λ′(l)− λ′′(l)) < 0.

Since λ′(1), . . . , λ′(d′q), λ
′(1)−λ′′(1), . . . , λ′(r)−λ′′(r) are nonpositive, this would

imply
r∑
i=1

λ′(i) + r
r∑
i=1

(λ′(i)− λ′′(i)) < 0,

and this contradicts the relation (2).
• The case ε = −1. The proof of this case is analogous to the proof of the

second one. Using similar arguments it can be shown that s′′ has at least one
negative eigenvalue. Let q such that F<0

s′′ = V ′′q . One proves that there exists
0 < t ≤ q such that d′′t = d′j(t). Then, considering s with eigenvalues −1 and 0
and with associated filtration

0 ⊆/ V ′′t ⊂ V,

one gets the desired conclusion.

We are now able to prove the main result of this part:

Theorem 2.7 For any τ ∈ TG, there exists an element τ̃ ∈ T
G̃

, such that the

QFP-quotient W̃//(G̃, τ̃) is a compactification of the QFP-quotient W//(G, τ).

Proof. We fix an arbitrary ε ∈ {0,±1}. Then, according to Proposition 2.4, the
image of the τε-(semi)stable locus i(W (s)s,τε) is included in the τ̃ε-(semi)stable
locus W̃ (s)s,τ̃ε . In particular, this yields an induced map between the corre-
sponding categorical quotients, denoted by ιε and one gets a commutative dia-
gram

W ss,τε

��

i //
W̃ ss,τ̃ε

��
W//(G, τε)

ιε // W̃//(G̃, τ̃ε)

It is easy to check that ιε is an injective map and, by Proposition 2.4, its image
is

im(ιε) = {[ψ,ϕ, ϕ1, ϕ2] ∈ W̃//(G̃, τ̃ε) |detψ 6= 0},

which is an open subset of W̃//(G̃, τ̃ε). We claim that this set is dense in
W̃//(G̃, τ̃ε). Indeed, if one considers an arbitrary τ̃ε-semistable element in W̃ ,
say x = (ψ,ϕ, ϕ1, ϕ2), then one can find a sequence (xn)n of τ̃ε-semistable
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elements converging to x and such that, writing xn = (ψn, ϕn, ϕ1,n, ϕ2,n), one
has det(ψn) 6= 0. Then the sequence ([xn])n is included in im(ιε) and converges
to [x]. We conclude that W̃//(G̃, τ̃ε) is a compactification of W//(G, τε), getting
the desired result.

The following question, which would yield a generalization to Theorem 2.7,
remains open: given a pair (Q,S) which does not fulfil the Property (∗), is it
possible to find (Q̃, S̃) verifying (∗) such that any QFP-quotient correspond-
ing to (Q,S) admits a compactification which is a QFP-quotient associated to
(Q̃, S̃)?
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