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Abstract. In this paper we extend the eliminant construction of Burchnall
and Chaundy for commuting differential operators in the Heisenberg algebra to
the q-deformed Heisenberg algebra and show that it again provides annihilating
curves for commuting elements, provided q satisfies a natural condition. As a
side result we obtain estimates on the dimensions of the eigenspaces of elements
of this algebra in its faithful module of Laurent series.

1. Introduction

In the literature on algebraic dependence of commuting elements in the Heisen-
berg algebra – a result which is relevant for the algebro-geometric method of solv-
ing certain non-linear partial differential equations – one can find several different
proofs of this fact, each with its own advantages. The first proof utilizes analyt-
ical methods and was found by Burchnall and Chaundy [3] in the 1920’s. It is
basically their approach which was rediscovered later and applied in the context of
non-linear differential and difference equations (see for example [9, 12, 14], and for
further references the book [7]). Another and more algebraic method of proof for
differential operators was suggested by Amitsur [1] in the 1950’s, and in the late
1990’s a more algorithmic combinatorial method of proof was found [6, 7]. One
of the motivating problems for these developments was to describe, as detailed as
possible, commuting differential operators and their properties [3, 4, 5]. Clearly
the result of Burchnall and Chaundy [3], stating that two commuting differential
operators in the Weyl algebra satisfy equations for algebraic curves which can be
explicitly calculated by the so-called eliminant method, is then an important tool.

In 1994 Silvestrov, based on the existing literature and a series of trial computa-
tions, conjectured, loosely speaking, that it should be true in a considerably greater
generality than the context of the Weyl algebra that two commuting elements in an
algebra lie on a curve, and, moreover, that the eliminant construction of Burchnall
and Chaundy should then produce such curves in this wider context. We refer
to [13] for more precise information on this conjecture. The conjecture includes
the q-deformed Heisenberg algebra HK(q) of this paper, which is the associative
algebra generated over a field K by two elements A and B subject to the relation
AB − qBA = 1. The case q = 1 and K = R,C yields the classical Weyl algebra for
which the result was known from the work by Burchnall and Chaundy.

There have been previous results supporting the conjecture for HK(q). In [7] it
was established under Assumption 2.1 below (which essentially amounts to q not
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being a root if unity) that two commuting elements in HK(q) do in fact lie on a
curve, using methods which have since then been extended to more general algebras
and rings generalizing q-deformed Heisenberg algebras (generalized Weyl structures
and graded rings) in [8]. The proof in [7] is rather different from the approach as
followed by Burchnall and Chaundy. It is constructive in the sense that it can be
used effectively to compute algebraic curves for any two given commuting elements,
but it does not give additional a priori information on, e.g., the coefficients of the
curves or their degree. The eliminant construction on the other hand does provide
such a priori information (cf. Theorem 2.4), so that establishing the validity or
invalidity of this construction is a relevant issue. In [10], a step in that direction
was made by offering a number of examples all supporting the conjecture that the
eliminant construction should work for general HK(q).

In this paper Silvestrov’s conjecture forHK(q) is confirmed as Theorem 2.4 under
Assumption 2.1. For non-zero q not satisfying Assumption 2.1 it is known [6, 7] that
there are commuting elements in HK(q) which are algebraically independent. Thus,
as long as q 6= 0, the eliminant construction gives a method to produce such curves
precisely when the existence of such a method is not excluded a priori, confirming
the part of the conjecture concerning the validity of the eliminant construction.
The case q = 0 seems to be still open.

In closing, let us remark that there are also results known about algebraic
(in)dependence of commuting elements of the quantum plane (i.e., of the complex
algebra generated by elements A and B subject to the condition AB − qBA = 0)
if q is not a root of unity. It was proved by Artamonov and Cohn [2] that the
commutant of an arbitrary non-constant element of the quantum plane is a com-
mutative algebra of transcendence degree one, and later this result was sharpened
by Makar-Limanov [11], who gave a direct proof that this commutant is actually
isomorphic to a subalgebra of C[X]. We refer to [11] for a more detailed discussion
of the commutant in the quantum plane case and the relevant literature.

2. Basic notions and statement of the result

In this section we introduce the basic notions and state our main result, The-
orem 2.4. We also explain the structure of the proof in the subsequent sections,
which uses a faithful module described in the current section. The section con-
cludes with a remark on the difference with the original situation as considered by
Burchnall and Chaundy and a description of the contents of the remaining sections.

Let K be a field. If q ∈ K then HK(q), the q-deformed Heisenberg algebra over
K, is the unital associative K-algebra which is generated by two elements A and
B, subject to the q-commutation relation AB − qBA = I. This algebra is some-
times also called the q-deformed Weyl algebra, or the q-deformed Heisenberg-Weyl
algebra, but we will follow the terminology in [7]. We will prove that - under a con-
dition on q - for any commuting P,Q ∈ HK(q) of order at least one (where “order”
will be defined below), there exist finitely many explicitly calculable polynomials
pi ∈ K[X,Y ] such that pi(P,Q) = 0 for all i, and at least one of the pi is non-zero.
Thus P and Q lie on at least one algebraic curve. The number of polynomials pi
depends not only on the order of P and Q, but also on their coefficients. The poly-
nomials are obtained by the analogue of the eliminant construction of Burchnall
and Chaundy [3, 4, 5] for the case q = 1 as mentioned in the introduction, and
which we will now explain.
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Define the q-integer {n}q, for n ∈ Z, by

{n}q =
{

qn−1
q−1 q 6= 1;
n q = 1.

In order for our method to work, and also for the eliminant construction to
be well-defined to start with, we impose the following condition on q. It almost
amounts to requiring that q is not a root of unity, but one has to take the charac-
teristic of k into account.

Assumption 2.1. Throughout this paper we assume that q 6= 0 and {n}q 6= 0 if
n ∈ Z is non-zero.

Remark 2.2. The following are equivalent for q 6= 0:
(1) for n ∈ Z, {n}q = 0 if and only if n = 0;
(2) for n1, n2 ∈ Z, {n1}q = {n2}q if and only if n1 = n2;

(3)
{
q is not a root of unity other than 1, if char k = 0;
q is not a root of unity, if char k 6= 0.

Hence under our assumptions K is infinite. Part (2) of this remark will prove to
be essential later on when we consider the dimension of eigenspaces.

Let L be the K-vector space of all formal Laurent series in a single variable t
with coefficients in K. Define

M

( ∞∑
n=−∞

ant
n

)
=

∞∑
n=−∞

ant
n+1 =

∞∑
n=−∞

an−1t
n,

Dq

( ∞∑
n=−∞

ant
n

)
=

∞∑
n=−∞

an{n}qtn−1 =
∞∑

n=−∞
an+1{n+ 1}qtn.

Alternatively, one could introduce L as the vector space of all functions from Z to
K and let M act as the right shift and Dq as a weighted left shift, but the Laurent
series model is more appealing.

The algebra HK(q) has {I, A,A2, . . .} as a free basis in its natural structure as
a left K[X]-module where X acts as left multiplication with B. If an arbitrary
non-zero element P of HK(q) is then written as

P =
m∑
j=0

pj(B)Aj , pm 6= 0,

for uniquely determined pj ∈ K[X] and m ≥ 0, then the integer m is called the
order of P (or the degree of P with respect to A) [7].

By sending A to Dq and B to M , L becomes a faithful HK(q)-module, as is
easily seen [7]. We will identify HK(q) with its image in EndK(L) under this
representation. Thus {1, Dq, D

2
q , . . .} is a free basis of the image of HK(q) in its

natural structure as a left K[X]-module, where X acts as left multiplication with
the endomorphism M , and if P 6= 0 is written uniquely as

(1) P =
m∑
j=0

pj(M)Dj
q, pm 6= 0,

for uniquely determined pj ∈ K[X] and m ≥ 0, then m is the order of P .
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We will now explain the eliminant construction. We will do so in terms of the
faithful representation of HK(q) as endomorphisms of L in order to stay as close
as possible to the proofs in the remainder of this paper, but the reader will have
no trouble formulating everything in terms of the original generators.

Let P,Q ∈ HK(q) be of order m ≥ 1 and n ≥ 1, respectively, with P as in (1)
and

(2) Q =
n∑
j=0

qj(M)Dj
q (n ≥ 1, qn 6= 0).

Write, for k = 0, . . . , n− 1,

Dk
qP =

m+k∑
j=0

pk,j(M)Dj
q, with pk,j ∈ K[X],

and, for l = 0, . . . ,m− 1, write

Dl
qQ =

n+l∑
j=0

ql,j(M)Dj
q, with ql,j ∈ K[X].

Using these expressions we may build up an (m + n) × (m + n)-matrix with en-
tries in the polynomial ring K[X,λ, µ] in three variables over K, as follows. For
k = 1, . . . , n, the k-th row is given, from left to right, by the coefficients of the in-
creasing powers of Dq in the expression Dk−1

q P−λDk−1
q =

∑m+k−1
j=0 pk−1,j(M)Dj

q−
λDk−1

q . For k = n + 1, . . . , n + m, the k-th row is given, from left to right,
by the coefficients of the increasing powers of Dq in the expression Dk−n−1

q Q −
µDk−n−1

q =
∑k−1
j=0 pk−n−1,j(M)Dj

q − µDk−n−1
q . The determinant of this matrix is

an element of K[X,λ, µ] which is called the eliminant of P and Q. We denote it
by ∆(P,Q)(X,λ, µ). For clarity, we include the following example.

Example 2.3. Let P and Q be as above, with m = 3 and n = 2. We then have

∆P,Q(X,λ, µ) =∣∣∣∣∣∣∣∣∣∣
p0,0(X)− λ p0,1(X) p0,2(X) p0,3(X) 0
p1,0(X) p1,1(X)− λ p1,2(X) p1,3(X) p1,4(X)

q0,0(X)− µ q0,1(X) q0,2(X) 0 0
q1,0(X) q1,1(X)− µ q1,2(X) q1,3(X) 0
q2,0(X) q2,1(X) q2,2(X)− µ q2,3(X) q2,4(X)

∣∣∣∣∣∣∣∣∣∣
.

We need a few more preparatory definitions in order to be able to state Theo-
rem 2.4 in its most precise form, which not only tells us that the eliminant construc-
tion yields explicit curves for commuting elements P and Q of HK(q), but which
also gives a priori information on the maximal number of curves thus obtained, on
their maximal degree and on their coefficients.

If P and Q are as in (1) and (2), respectively, then let

(3) s = nmax
j

deg(pj) +mmax
j

deg(qj).

A moment’s thought shows that s is an upper bound for the degree of X which
occurs in ∆P,Q(X,λ, µ), so that we can define the polynomials δi ∈ K[λ, µ] (i =
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0, . . . , s) by

(4) ∆P,Q(X,λ, µ) =
s∑
i=0

δi(λ, µ)Xi.

Note that the δi define curves over K of degree at most max(m,n). Finally, let

(5) t =
1
2
n(n− 1) max

j
deg(pj) +

1
2
m(m− 1) max

j
deg(qj).

Theorem 2.4. Let K be a field and 0 6= q ∈ K be such that {n}q = 0 if and only
if n = 0. Suppose P as in (1) and Q as in (2) are commuting elements of HK(q)
of order m ≥ 1 and n ≥ 1, respectively. Let ∆P,Q(X,λ, µ) ∈ K[X,λ, µ] be the
eliminant constructed as above, define s as in (3), δi ∈ K[λ, µ] (i = 1, . . . , s) as in
(4), and t as in (5).

Then ∆P,Q 6= 0. In fact, ∆P,Q has degree n as an element of K[X,µ][λ] and its
non-zero coefficient of λn is (−1)n

∏m−1
k=0 qn(qkX). Likewise, ∆P,Q has degree m as

an element of K[X,λ][µ] and its non-zero coefficient of µm is (−1)m
∏n−1
k=0 pm(qkX).

As an element of K[λ, µ][X], ∆P,Q has degree at most s. Furthermore,
(1) if R is the subring of K which is generated by the coefficients of all pi,j

and qi,j occurring in the matrix defining the eliminant, then the δi are
actually elements of R[q][λ, µ]. In fact, when viewed as polynomials in
λ and µ, each coefficient of the δi can be written as

∑t
l=0 rlq

l for some
rl ∈ R (l = 0, . . . , t);

(2) at least one of the δi is non-zero;
(3) δi(P,Q) = 0 for all i = 0, . . . , s.

Remark 2.5. Note that parts (2) and (3) state that the eliminant construction
gives at least one non-trivial curve for commuting P and Q, and at most s. Each
of these curves is defined over R[q], where R is the ring in part (1) and where the
power of q – when viewed as a formal variable – occurring in the coefficients of
these curves does never exceed t. Furthermore, as we had already noted, each of
these curves is of degree at most max(m,n).

The reader will easily convince himself of all statements in the theorem other
than (3). We will now embark on the proof of (3), which occupies the remainder
of this paper. The idea is as follows. Suppose λ0, µ0 ∈ K and 0 6= vλ0,µ0 ∈ L is a
common eigenvector of P and Q:

Pvλ0,µ0 = λ0vλ0,µ0 ,

Qvλ0,µ0 = µ0vλ0,µ0 .

Then the specialization X = M,λ = λ0, µ = µ0 of the matrix defining the
eliminant yields a matrix of commuting endomorphisms of L having the vector
(vλ0,µ0 , . . . , D

m+n−1
q vλ0,µ0)T in its kernel. Since the coefficients of the matrix are

from a commutative ring, multiplication from the left with the matrix of cofactors
shows that (vλ0,µ0 , . . . , D

m+n−1
q vλ0,µ0)T is annihilated by a diagonal matrix with

∆P,Q(M,λ0, µ0) on the diagonal. In particular, ∆P,Q(M,λ0, µ0) vλ0,µ0 = 0. Now it
does not follow automatically from this that ∆P,Q(M,λ0, µ0) = 0 in HK(q) since a
polynomial in M might have non-trivial kernel, as the example (M − 1)

∑
n t

n = 0
shows. However, embedding K in an algebraically closed field if necessary, we will
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be able to show that there exist infinitely many such pairs (λ0, µ0) where we can con-
clude that ∆P,Q(M,λ0, µ0) = 0 in HK(q). For all these pairs one has δi(λ0, µ0) = 0
for all i, and the operators δi(P,Q) therefore have an infinite dimensional kernel.
From this Theorem 3.2 allows us to conclude that δi(P,Q) = 0 in HK(q) for all i.

The first step, which consists of showing that there are infinitely many (λ0, µ0) ∈
K ×K such that ∆(M,λ0, µ0) = 0, is the most involved. The idea is to exploit the
fact that vλ0,µ0 is both in the kernel of P − λ0 of order m ≥ 1 and in the kernel
of the polynomial element ∆P,Q(M,λ0, µ0) which, if it is not zero, is not constant.
This is a rare occasion. To be precise: for each d we can describe the kernel of a
non-constant polynomial element p(M) of HK(q) of degree at most d and the action
of P − λ0 on it explicitly enough to show that any vλ0,µ0 as above is in a subspace
of finite dimension which depends only on the leading coefficient of P and on d,
but not on λ0, µ0 or p(M). This follows from Theorem 6.1 below. Hence for the
infinity of different pairs (λ0, µ0) that can be shown to exist in the simultaneous
point spectrum1, it can, by linear independence of the corresponding eigenvectors,
only for finitely many pairs be the case that ∆P,Q(M,λ0, µ0) is not constant. For
the remaining infinite number of pairs we must have that ∆P,Q(M,λ0, µ0) is zero.
Remark 2.6. In the original work of Burchnall and Chaundy [3], where they con-
sider differential operators with polynomial coefficients acting on real or complex
valued functions, the situation is considerably simpler. This is not so much caused
by the fact that they can (and do) use existence and uniqueness results for ordi-
nary differential equations, but by the fact that the ordinary differentiation D1 is
translation invariant, whereas Dq (q 6= 1) is not. We will now explain why this is
such a serious complication for the strategy of the proof. The reader who is mostly
interested in the established results per se can safely skip this Remark, which is
primarily intended for readers who consider applying similar techniques in other
cases.

It will become apparent below that, for an approach in the vein of Burchnall
and Chaundy to succeed, one needs a faithful representation of HK(q) in which an
arbitrary non-constant P ∈ HK(q) has an infinite point spectrum. Without this the
whole construction falls apart. How can one obtain such a representation? In the
work of Burchnall and Chaundy the smooth functions provide such a module and
the basic results about differential equations provide the infinite point spectrum.
In our general case we do not have such results available, but there is an obvious
attempt to obtain a substitute, namely by working with formal power series. Al-
ready for Burchnall and Chaundy themselves it would have been possible to do
this and obtain the infinite point spectrum directly, without an appeal to general
theorems about differential equations. Of course there are matters of convergence
to be taken care of, because in their proof it is necessary to evaluate solutions and
their derivatives in a point, but there is hope that a similar approach with formal
power series might somehow work in our case. However, there is an important point
here, which we have been deliberately sloppy about in the previous sentences: a
differential operator with polynomial coefficients has to be sufficiently regular for
these power series to exist as eigenfunctions, even already as formal series. As an
example, the only value of λ ∈ C for which the operator t2d/dt − λ has a non-
trivial kernel in the formal power series, is λ = 0. Hence in this module the point
spectrum of this operator is finite. In the case of Burchnall and Chaundy, this is

1Here and elsewhere the point spectrum is defined as the set of eigenvalues.
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not a serious obstruction because one can simply use any point where the leading
coefficient of P does not vanish as a base point for the formal power series. In
that suitably chosen module the point spectrum is infinite again and corresponds
to honest functions, as desired. The crux is that the translation invariance of d/dt
is used here and that in our case this does not work any longer. Surely the leading
coefficient of P can be written as a linear combination of terms of the form (t− a)i

where a is chosen such that the leading coefficient does not vanish at a – and such
a exist because K is infinite – but for q 6= 1 the operator Dq is not particulary well
behaved as far as its action on the (t − a)i is concerned. The operator M2Dq has
only zero as point spectrum in the formal power series with coefficients in K and
for q 6= 1 there seems no way to remedy this by choosing another base point to
work with. Hence one has to pass to a larger module, such as the formal Laurent
series as we have introduced above, where the point spectrum can be shown to be
infinite again. However, in that case a new complication appears as compared to
the original context of Burchnall and Chaundy, namely that a non-zero polynomial
may have a non-trivial kernel when acting on the Laurent series, cf. Proposition 4.1.
In the sketch of our proof preceding this remark this prohibits us from concluding
that ∆P,Q(M,λ0, µ0) = 0 once we know that ∆P,Q(M,λ0, µ0)vλ0,µ0 = 0. If vλ0,µ0

were a formal power series, then this could be concluded and the proof would be
relatively short and close to the original work of Burchnall and Chaundy, but as
explained above, as a consequence of the fact that Dq is not translation invariant
for q 6= 1 we were forced to leave this context of formal power series in order to
ensure that the point spectrum of a non-constant element of HK(q) is infinite.

It is in this way that it becomes necessary, in the end, to analyse the situ-
ation in more detail and exploit the fact that vλ0,µ0 is not only annihilated by
∆P,Q(M,λ0, µ0), but is also in the kernel of an element of HK(q) of order at least
one. This leads to Theorem 6.1 and establishing this theorem complicates the proof
considerably as compared to the original argument by Burchnall and Chaundy.

To conclude this remark, we mention that for q = 1, where D1 is translation
invariant, it turns out that it is possible to work with formal power series with a
suitable base point. Theorem 6.1 is then not needed, but since this result is informa-
tive in the case q = 1 as well, and since the presentation would only be lengthened
by covering this case separately, we have chosen to give a uniform treatment with
Laurent series including the easier case q = 1.

The structure of the remainder of the paper is as follows. In Section 3 we
show that non-constant elements in HK(q) have finite dimensional eigenspaces and
infinite spectrum when acting on L. The finite dimensionality will be seen to follow
from the assumption that the {n}q are all different. Section 4 contains an analysis
of the kernel of non-constant polynomial elements p(M) in HK(q). These kernels
are spanned by certain elements Ψα,s in L where α ∈ K∗ and s = 1, 2, 3, . . .. In
Section 5 we introduce a partial ordering on the indices (α, s) and we analyze the
action of an arbitrary P ∈ HK(q) on the Ψα,s in terms of this partial order. These
results are then used in Section 6 in order to arrive at the finite dimensional space
mentioned above. Section 7 contains the details of the conclusion of the proof as it
has been sketched in the current section.
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3. Dimension of eigenspaces and infinity of the point spectrum

For P ∈ HK(q), let σ(P ) denote the point spectrum of P in L, i.e., the set of
eigenvalues. Under our standing assumption that q 6= 0 and {n}q 6= 0 if n 6= 0,
we will show that for non-constant P all eigenspaces have finite dimension (Theo-
rem 3.2) and that the point spectrum is infinite (Theorem 3.4). Although it is not
needed for the proof of Theorem 2.4, as a side result we will also establish in (6) a
uniform upper bound for the dimension of all eigenspaces of a fixed non-constant
P .

Let P =
∑m
j=0 pj(M)Dj

q (m ≥ 0), where pj(M) =
∑
i pj,iM

i and pm 6= 0. Then
clearly, for all k ∈ Z,

Ptk =
∑
d

 ∑
i−j=d

pj,i{k}q{k − 1}q . . . {k − j + 1}q

 td+k.

Here the product {k}q{k − 1}q . . . {k − j + 1}q should be interpreted as 1 if j = 0.
Let βd(k) =

∑
i−j=d pj,i{k}q{k − 1}q . . . {k − j + 1}q (k, d ∈ Z). The function

βd : Z → K describes the action of the homogeneous part of P of degree d on tk.
Say that a homogeneous degree d occurs in P if there exist i, j with i− j = d such
that pj,i 6= 0. Say that a homogeneous degree d occurs in P with a differentiation
if there exist i, j with i − j = d, pj,i 6= 0 and j ≥ 1. Obviously, only finitely
many homogeneous degrees occur in P . Now iteration of the recursion {n− 1}q =
{n}q−1

q shows that there exist polynomials rj of precise degree j, with coefficients in
Z[q, q−1], such that {k}q{k−1}q . . . {k−j+1}q = rj({k}q) for all k. Hence βd(k) =∑
i−j=d pj,irj({k}q) is a polynomial in {k}q of maximal degree m. Suppose that

the homogeneous degree d occurs in P . If it does not occur with a differentiation,
then βd(k) = p0,d is a non-zero constant function of k. If it does occur with a
differentiation then, since the degree of rj is precisely j, βd(k) is a non-constant
polynomial in {k}q of maximal degree m. Since the {n}q are all different, βd(k)
therefore assumes each value in K at most m times. In particular, it has a finite
number of zeroes in Z. This establishes the following result.

Lemma 3.1. Suppose P 6= 0. Then the following are equivalent for d ∈ Z:
(1) the homogeneous degree d occurs in P ;
(2) βd 6= 0;
(3) βd has only finitely many zeroes in Z.

If the homogeneous degree d occurs in P , then there are two possibilities:
(1) βd is a non-zero constant. This happens precisely when d occurs in P , but

not with a differentiation.
(2) βd is not constant. This happens precisely when d occurs with a differenti-

ation. In this case, βd has at most m zeroes in Z and its range is countably
infinite.

We will now analyze the kernel of P . The coefficient of tj in P
∑
n ant

n is clearly
equal to

∑
n anβj−n(n), so the series

∑
n ant

n is in the kernel of P if and only if∑
n βj−n(n)an = 0 for all j. The structure of this system becomes more transparent

if we write γk,l = βk−l(l) (k, l ∈ Z); it then reads as
∑
l γk,lal = 0 for all k ∈ Z.

Let Γ be the matrix (γk,l), where we think of Γ as being realized on Z2, placing the
entry γk,l in the lattice point (l, k):
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k

l-

6

The equation
∑
l γk,lal = 0 then corresponds to the rows in Γ at horizontal level

k acting on an infinite vector (. . . , a−2, a−1, a0, a1, a2, . . .) in the usual way. We now
look at the matrix Γ along a diagonal k = l + d with d fixed. For such pairs (k, l),
one has γk,l = βd(l). Since only finitely many d occur in P , Γ is a band matrix
and, moreover, according to Lemma 3.1 each diagonal is either identically zero or
else contains at most m zeroes.

Suppose P 6= 0 and define dmax = max{d : βd 6= 0} and dmin = min{d : βd 6= 0};
these integers correspond to the upper and lower boundary diagonal of the band
in Γ, respectively. If dmax = dmin, so that there is only one diagonal to consider,
then dim kerP = #{k : βd(k) = 0} ≤ m. If dmax > dmin, then, since each of the
boundary diagonals contain only finitely many zeroes, it is possible to determine a
(not uniquely determined) finite submatrix Γ̃ as indicated:

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�

Γ̃ k = l + dmin

k = l + dmax

6

No zeroes here

?

No zeroes here

0

0

The relevant features here are that the only non-zero elements occur on the
boundary diagonals and in the band between them, and that there are no zeroes
on the indicated lower part of the upper diagonal and on the indicated upper part
of the lower diagonal. A moment’s thought shows that the kernel of P and the
kernel of Γ̃ are isomorphic: an isomorphism is given by selecting the coordinates
corresponding to all columns of Γ̃ from the infinite vector representing an element
of the kernel of P and thus obtain an element of the kernel of Γ̃. The injectivity
and the surjectivity of this map are both consequences of the non-zero elements on
the boundary diagonals as indicated. Namely, on the lower diagonal they enable
the necessary unique downward extension of an element in the kernel of Γ̃ to an
infinite column vector in the kernel of Γ, and on the upper diagonal they enable
the necessary unique upward extension.
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We conclude that, if dmax > dmin, then P has a finite dimensional and non-trivial
kernel. Since we had already concluded that the kernel is finite dimensional in the
case dmax = dmin, we have arrived at the following result.

Theorem 3.2. If P ∈ HK(q), then dim ker(P ) =∞ if and only if P = 0.

In fact, although we will not need this, we can be more precise. Let Nmax =
#{l : βmax(l) = 0}, Nmin = #{l : βmin(l) = 0}. By Lemma 3.1, Nmax, Nmin ≤ m.
We may assume that all the zeroes on the boundary diagonals lie in Γ̃, and since
the number of non-zero elements in each of the parts of the boundary diagonals
that are contained in Γ̃ gives a lower bound for the rank of Γ̃, one easily derives
that

dim kerP ≤ dmax − dmin + min(Nmax, Nmin).

Note that this is also true if dmax = dmin (with equality). It is even more elementary
to see that dmax − dmin ≤ dim kerP , and we thus obtain the following result under
our standard assumption on the {n}q.

Proposition 3.3. If 0 6= P ∈ HK(q), then

dmax − dmin ≤ dim kerP ≤ dmax − dmin + min(Nmax, Nmin) ≤ dmax − dmin +m.

It is now also easy to see that, for non-constant P , there is a uniform bound
for dim ker(P − λ). Since this corresponds to adding −λ to the diagonal of Γ, the
relevant numbers dmax(λ) and dmin(λ) can attain only a finite number of values, the
number of which depends on the position of the boundary diagonals in Γ and, also,
if the main diagonal k = l is one of the boundary diagonals of the band in Γ, on Γ
being constant along this main diagonal or not. Distinguishing various possibilities
one obtains that, for P ∈ HK(q) not constant,

(6) dim ker(P − λ) ≤ |dmax|+ |dmin|+m

for all λ ∈ K.
Returning to the main line, we will now establish an important result.

Theorem 3.4. If P ∈ HK(q) is not constant, then σ(P ) is infinite.

Proof. If a homogeneous degree d 6= 0 occurs in P , then the matrix Γ has a non-
vanishing diagonal which is not the main diagonal. Therefore, the matrix for P −λ
has two non-vanishing diagonals for all λ ∈ K except at most one value. Since
dmax−dmin > 0 for all matrices corresponding to such non-exceptional λ, and we had
already observed in Remark 2.2 that K must be infinite, the theorem is established
in this case. If P is homogeneous of degree zero then σ(P ) = {β0(k) : k ∈ Z} which
is (countably) infinite according to Lemma 3.1, since P is not constant. �

4. The kernel of polynomial elements of HK(q)

Throughout this section we assume that K is algebraically closed, in addition
to our standard assumption that q 6= 0 and {n}q 6= 0 if n 6= 0. For arbitrary
non-zero p ∈ K[X], we will describe the kernel of the corresponding endomorphism
p(M) of L in terms of infinite Jordan blocks corresponding to the eigenvalues of
the endomorphism M of L.

If p(M) = cM i for some i ≥ 0 and c 6= 0, then p(M) is an automorphism of L.
Thus, if p(X) = cXe0

∏
i 6=0(X − αi)ei is the factorization of p with multiplicities,
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where αi ∈ K∗, then Ker(p(M)) = Ker(
∏
i 6=0(M−αi)ei). Now it is an easy exercise

to show that for α ∈ K∗ the map (M−α) : L → L is surjective and that the element

(7) Ψα,1 =
∑
n

(
t

α

)n
is a basis for Ker(M − α). We conclude that dim Ker(p(M)) =

∑
i 6=0 ei.

We choose inductively Ψα,s(s = 2, 3, . . .) in L such that (M − α)Ψα,s = Ψα,s−1.
The elements Ψα,s corresponding to this infinite Jordan block are by no means
unique, but this is not serious and we fix such a choice once and for all, for all s ≥ 2
and α ∈ K∗. The only normalization which we impose is (7).

Note that

(8)
{

(M − α)sΨα,s = 0, (s = 1, 2, . . . ;α ∈ K∗),
(M − α)s−1Ψα,s = Ψα,1,

and that M iΨα,s = αiΨα,s +
∑
r<s cr,sΨα,r. We will repeatedly encounter similar

formulas containing a summation where the only role of the summation is to indicate
the subspace containing the sum. As a shorthand notation we will allow ourselves
to suppress the dependence of the scalars on the indices and write this as∑

r<s

cΨα,r,

and similarly in other situations. With this convention we have

(9) p(M)Ψα,s = p(α)Ψα,s +
∑
r<s

cΨα,r (α ∈ K∗, s = 1, 2, . . . , p ∈ K[X]).

Proposition 4.1. If 0 6= p ∈ K[X] factors with multiplicities as

p(X) = cXe0
∏
i 6=0

(X − αi)ei ,

then:
(1) p(M) : L → L is surjective;
(2) dim Ker(p(M)) =

∑
i 6=0 ei;

(3)
⋃
i 6=0{Ψαi,1, . . . ,Ψαi,ei} is a basis for Ker(p(M)).

Proof. The first statement is clear, and the formula for dim Ker(p(M)) was already
noted above. From the first part of (2) we see that the Ψαi,k are in the kernel of
p(M) for 1 ≤ k ≤ ei. The linear independence follows by the standard argument: if∑
i,k λi,kΨαi,k = 0, suppose that not all coefficients are zero. Then choose indices

i0 and k0 such that λi0,k0 6= 0, but λi0,k = 0 for all k < k0. Applying

[
∏
i 6=0
i 6=i0

(M − αi)ei ](M − αi0)k0−1

one sees, when looking at the second part of (8) and (9), that

λi0,k0
∏
i 6=0
i 6=i0

(αi0 − αi)eiΨαi0 ,1
= 0.

Hence λi0,k0 = 0 after all and we have a contradiction. �

The argument in the above proof shows in fact the following.
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Proposition 4.2. If α1, . . . , αs are s different elements in K∗, and e1, . . . , es ≥ 1,
then the elements Ψα1,1, . . . ,Ψα1,es , . . . ,Ψαs,1, . . . ,Ψαs,es are linearly independent
over K.

5. Partial order

Throughout this section, which is a preparation for Section 6, we assume that
K is algebraically closed. We will analyze the action of an arbitrary P ∈ HK(q) on
the Ψα,s from the previous section and see that the results are related to a partial
order on the indices (α, s) which we now introduce. Let us take N = {1, 2, . . .} as
convention.

Definition 5.1. On K∗ × N, define
(1) if q = 1: (α, r) ≤ (β, s) if and only if α = β and r ≤ s.
(2) if q 6= 1: (α, r) ≤ (β, s) if and only if β = α

qj for some j > 0, or if α = β

and r ≤ s.

It is easily checked that this is a partial ordering under our assumption on the
{n}q. Note that being comparable for this partial order is an equivalence relation
on K∗ × N. There is a natural Z-action on K∗ by multiplication with powers of q
(which is a trivial action if q = 1), and two elements (α, r) and (β, s) are comparable
precisely when α and β are in the same Z-orbit. An equivalence class of mutually
comparable pairs is of the form ⋃

j∈Z
s∈N

(qjα, s)

for some α ∈ K∗, which is uniquely determined only if q = 1. The verification of
the following lemma is routine.

Lemma 5.2. For the partial ordering on K∗ ×N defined above the following hold.
(1) Suppose q = 1. Then for all m ≥ 0 and all (α, r), (β, s) ∈ K∗ ×N, one has

(α, r +m) ≤ (β, s+m) if and only if (α, r) ≤ (β, s).
(2) Suppose q 6= 1. Then for all m ∈ Z and all (α, r), (β, s) ∈ K∗ ×N, one has

( α
qm , r) ≤ ( β

qm , s) if and only if (α, r) ≤ (β, s).

Note that (9) can be written as

(10) p(M)Ψα,s = p(α)Ψα,s +
∑

(β,r)∈[(α,1),(α,s))

cΨβ,r,

where [(α, 1), (α, s)) is a left-closed and right-open order interval. The common
thread in this section is to establish that various elements of L can similarly be
regarded as a sum of a leading term corresponding to a certain index (α, s), and
a remainder which is a sum of terms corresponds to various indices lying strictly
below (α, s) in the partial order on the index set. This observation will be crucial in
the proof of Theorem 6.1. For reasons of notational simplicity we will not formulate
the results as in (10), and it would in fact have been possible to introduce the partial
order only in Section 6 on the occasion of the proof of Theorem 6.1, but the reader
may find it helpful to view the results in the present section in the light of this
partial ordering already.
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We turn to the action of Dq on the Ψα,s. We start with the case q 6= 1, which is
the most complicated. A routine computation gives

(11) DqΨα,1 =
q

α(q − 1)
Ψα

q ,1
− 1
α(q − 1)

Ψα,1.

Proposition 5.3. If q 6= 1, then

DqΨα,s =
q2−s

α(q − 1)
Ψα

q ,s
+
∑
r<s

cΨα
q ,r

+
∑
r≤s

cΨα,r.

Proof. By induction. The case s = 1 follows from (11) and for the induction step
we argue as follows, using the relation qMDq = DqM − I in the first equality and
assuming that s ≥ 2:

(M − α)s(M − α

q
)sDqΨα,s =

1
q

(M − α)s(M − α

q
)s−1(DqM − I − αDq)Ψα,s

s≥2=
1
q

(M − α)s(M − α

q
)s−1(Dq(αΨα,s + Ψα,s−1)−Ψα,s − αDqΨα,s)

=
1
q

(M − α)s(M − α

q
)s−1(DqΨα,s−1 −Ψα,s)

(8)
=

1
q

(M − α)s(M − α

q
)s−1DqΨα,s−1

ind.=
1
q

(M − α)s(M − α

q
)s−1

 q3−s

α(q − 1)
Ψα

q ,s−1 +
∑
r<s−1

cΨα
q ,r

+
∑
r≤s−1

cΨα,r


(8)
= 0.

From Proposition 4.1 we conclude that

DqΨα,s = c0Ψα
q ,s

+
∑
r<s

cΨα
q ,r

+
∑
r≤s

cΨα,r.

If we apply (M − α
q )s−1 to this equation, then using (8) and (9) we see that the

right hand side gives

c0Ψα
q ,1

+
∑
r≤s

cΨα,r.

The left hand side gives

(M − α

q
)s−1DqΨα,s =

1
q

(M − α

q
)s−2(DqΨα,s−1 −Ψα,s)

(9)
=

1
q

(M − α

q
)s−2DqΨα,s−1 +

∑
r≤s

cΨα,r

ind.=
1
q

(M − α

q
)s−2

 q3−s

α(q − 1)
Ψα

q ,s−1 +
∑
r<s−1

cΨα
q ,r

+
∑
r≤s−1

cΨα,r

+
∑
r≤s

cΨα,r

=
q2−s

α(q − 1)
Ψα

q ,1
+
∑
r≤s

cΨα,r.

By Proposition 4.2, comparing completes the induction step. �
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Iterating this result, we conclude that, for α ∈ K∗, j ≥ 0, and s ≥ 1,

Dj
qΨα,s =

q
j(j−2s+3)

2

αj(q − 1)j
Ψ α

qj
,s +

∑
r<s

cΨ α

qj
,r +

∑
i<j
r≤s

cΨ α

qi
,r,

and then

pj(M)Dj
qΨα,s =

q
j(j−2s+3)

2

αj(q − 1)j
pj(

α

qj
)Ψ α

qj
,s +

∑
r<s

cΨ α

qj
,r +

∑
i<j
r≤s

cΨ α

qi
,r,

(α ∈ K∗, j ≥ 0, s ≥ 1, pj ∈ K[X]).

The following result, which is the basic ingredient in the proof of Theorem 6.1 if
q 6= 1, is now clear.

Proposition 5.4. If q 6= 1, and P =
∑m
j=0 pj(M)Dj

q (m ≥ 0) with pm 6= 0, then
for all α ∈ K∗ and s ≥ 1, we have

PΨα,s =
q
m(m−2s+3)

2

αm(q − 1)m
pm(

α

qm
)Ψ α

qm ,s +
∑
r<s

cΨ α
qm ,r +

∑
i<m
r≤s

cΨ α

qi
,r.

We now take care of the case q = 1, where it is easier to derive the analogue of
Proposition 5.4.

Proposition 5.5. For α ∈ K∗ and s = 1, 2, . . . we have

D1Ψα,s = −sΨα,s+1 +
∑
r<s+1

cΨα,r.

Proof. For s = 1 we use MD1 = D1M − I to see that

(M − α)2D1Ψα,1 = (M − α)(D1M − I − αD1)Ψα,1

= (M − α)(αD1Ψα,1 −Ψα,1 − αD1Ψα,1)
= 0.

Hence, by Proposition 4.1, D1Ψα,1 = c0Ψα,2 + cΨα,1 and applying M − α shows
that −Ψα,1 = c0Ψα,1, establishing the case s = 1. The induction step is similar to
the one in the proof of Proposition 5.3. �

Thus we have the following analogue of Proposition 5.4, which is the basic in-
gredient in the proof of Theorem 6.1 if q = 1.

Proposition 5.6. If q = 1, and P =
∑m
j=0 pj(M)Dj

q (m ≥ 0) with pm 6= 0, then
for all α ∈ K∗ and s ≥ 1 we have

PΨα,s = pm(α)(−1)ms(s+ 1) . . . (s+m− 1)Ψα,s+m +
∑

r<s+m

cΨα,r.

6. Simultaneous eigenspaces

After the preparations in the sections 4 and 5 we can now establish the following
result, which is vital for the proof of Theorem 2.4. We assume K is algebraically
closed.
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Theorem 6.1. Let P =
∑m
j=0 pj(M)Dj

q with m ≥ 1 and pm 6= 0. Suppose d ≥ 1.
Then there exists a finite dimensional subspace LP,d of L, which depends on pm
and d only, such that v ∈ LP,d whenever (P − λ)v = 0 and (p(M) − µ)v = 0 for
some λ, µ ∈ K and some non-constant p ∈ K[X] of degree at most d.

Proof. From Propositions 4.2, 5.4 and 5.6 we know that the sum⊕
α∈K∗

s≥1

KΨα,s

is indeed direct and that it is an HK(q)-submodule of L. By Proposition 4.1 it
contains the kernels of all non-zero polynomial elements in HK(q). Hence, if v ∈ L
is as in the theorem,

v =
∑
α∈K∗

s≥1

ξα,sΨα,s

for some scalars ξα,s. We will establish that the only possible pairs (α, s) with
ξα,s 6= 0 lie in some finite set which depends on d and pm only, and this clearly
implies the theorem.

To facilitate terminology, say that (α, s) occurs in v if ξα,s 6= 0, and that α (resp.
s) occurs in v if there exists s (resp. α) such that (α, s) occurs in v. Let

Ov = {(α, s) : (α, s) occurs in v}.

We know that Ov is a finite set and may assume that it is not empty. Clearly, if
s occurs in v, then s ≤ d by Propositions 4.1 and 4.2, so it remains to restrict the
possibly occurring values of α.

First we consider the case q = 1. Choose an element (α0, s0) ∈ Ov which is a
maximal element of Ov in the partial order. From Proposition 5.6 we have, using
that m ≥ 1,

(P − λ)(ξα0,s0Ψα0,s0) = c0ξα0,s0pm(α0)Ψα0,s0+m +
∑

r<s0+m

cΨα0,r

for some non-zero c0 (recall that charK = 0 if q = 1). We claim that none of the
other elements (α, s) of Ov contributes to the coefficient of Ψα0,s0+m in (P − λ)v.
Indeed, since the indices of the terms of (P − λ)Ψα,s in Proposition 5.6 all lie in
the order interval

[(α, 1), (α, s+m)]

we would then have that (α0, s0 + m) ≤ (α, s + m), hence (α0, s0) ≤ (α, s) by
Lemma 5.2. But then (α, s) = (α0, s0) by maximality. We conclude that pm(α0) =
0 for all such maximal elements of Ov. Since each element (α, s) of Ov is dominated
by a maximal element (α, s + j) of Ov for some j ≥ 0, we conclude that the only
α that can occur in v are roots of pm. This establishes the theorem for q = 1.
Although we will not use this in the sequel, the argument actually shows that for
q = 1 one can take

LP,d =
⊕

α∈K∗:pm(α)=0
s=1,...,d

KΨα,s.

The case q 6= 1 is more involved. We start by establishing a fact which we will
use a number of times. Suppose that (α0, s0) ∈ Ov but that none of the other
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indices in the order interval [(α0, s0), ( α0
qm+1 , 1)) is in Ov (we will refer to this as

property NOI). Then we must have pm( α0
qm ) = 0.

In order to see this, note that from Proposition 5.4 we have, since m ≥ 1,

(P − λ)(ξα0,s0Ψα0,s0) = c0ξα0,s0pm(
α0

qm
)Ψ α0

qm ,s0 +
∑
r<s0

cΨ α0
qm ,r +

∑
i<m
r≤s0

cΨα0
qi
,r

for some non-zero c0. We claim that none of the other pairs (α, s) ∈ Ov contributes
to the coefficient of Ψ α0

qm ,s0 in (P − λ)v. Indeed, if some (α, s) ∈ Ov contributes,
then, since all indices of the terms of (P −λ)Ψα,s in Proposition 5.4 lie in the order
interval [(α, 1), ( α

qm , s)], we would have (α, 1) ≤ ( α0
qm , s0) and ( α0

qm , s0) ≤ ( α
qm , s).

By Lemma 5.2 the second inequality implies that (α0, s0) ≤ (α, s). From the first
inequality we know that α = α0

qm q
j for some j ≥ 0, hence α = α0

qm+1 q
j+1 with

j + 1 > 0, so that (α, s) < ( α0
qm+1 , 1). Hence (α, s) ∈ [(α0, s0), ( α0

qm+1 , 1)) and
(α, s) = (α0, s0) by assumption. Since there are no other contributions we must
have pm( α0

qm ) = 0 as asserted.
Before we proceed, let us introduce some notation as a preparation. If β and

β̃ are non-zero roots of pm, let us say that β ≤ β̃ if β = qj β̃ for some j ≥ 0.
This introduces a partial ordering on the set of all non-zero roots of pm, and we let
β1, . . . , βh denote the maximal elements (where h ≤ deg pm) in this set. Hence each
non-zero root β of pm can be written as qj(β)βi(β) for some uniquely determined
j(β) ≥ 0 and i(β) ∈ {1, . . . , h}. We let J = max{j(β) : β 6= 0 and pm(β) = 0}
denote the maximal degree which is needed.

Continuing with the proof we note that, if (α0, s0) is a maximal element of Ov,
then certainly (α0, s0) has property NOI, hence α0

qm is of the form qjβi for some
1 ≤ j ≤ J and i ∈ {1, . . . , h}. Since each element (α, s) in Ov is dominated by
a maximal element of the form ( α

qk
, r) for some k ≥ 0 and r ≥ 1, we conclude

that each α that occurs in v must be of the form α = qlβi for some l ≥ 0 and
i ∈ {1, . . . , h}. Thus the list of possibly occurring values of α is already shown to
be independent of p ∈ K[X] and λ, µ ∈ K, as it depends on pm only, but is still
countably infinite at this stage. We show that it is finite by establishing that, in
the unique factorization α = qjβi of an occurring α, the exponent j is bounded in
terms of d and pm only.

To this end, fix i and consider the set of all j ≥ 0 (if any) such that qjβi occurs
in v, and arrange them in increasing order, say 0 ≤ j1 < . . . < jt. We will set out
to establish a bound on jt. To start with, note that t ≤ d as v ∈ Ker(p(M) − µ)
and dim Ker(p(M)− µ) ≤ d. The next step is to obtain a bound on j1. Among all
s such that (qj1βi, s) ∈ Ov, let s0 be the largest one. Then (qj1βi, s0) has property
NOI. Indeed, if another index in the order interval

[(qj1βi, s0), (
qj1

qm+1
βi, 1))

is in Ov then, by the choice of s0, such an index must be of the form ( q
j1

qa βi, r)
for some a > 0. But then qj1−aβi occurs in v, contradicting the minimal choice
of j1. As established above, we must have pm( q

j1βi
qm )=0. Hence qj1βi

qm = qaβi for a
uniquely determined 0 ≤ a ≤ J and we conclude that 0 ≤ j1 ≤ J +m.

The subsequent step is to consider the jumps jk−jk−1 for k ≥ 2. We claim that,
if k ≥ 2 and jk − jk−1 > m, then jk ≤ J +m. To see this, suppose jk − jk−1 > m
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and among all s such that (qjkβi, s) ∈ Ov, let s0 be the largest one. Then (qjkβi, s0)
has property NOI. Namely, if another index in the order interval

[(qjkβi, s0), (
qjk

qm+1
βi, 1))

is in Ov, then by the choice of s0, such an index must be of the form ( q
jk

qa βi, r) for
some 0 < a ≤ m. But then qjk−aβi occurs in v, and jk−1 < jk −m ≤ jk − a < jk.
Thus jk − a is then properly between jk−1 and jk, contradicting the definition of
the jl. We conclude that, if k ≥ 2 and jk − jk−1 > m, we must have pm( q

jkβi
qm ) = 0

and hence 0 ≤ jk ≤ J +m as above.
Thus, starting at j1 ≤ J + m, the jumps jk − jk−1 are at most m as soon as

jk ≥ J +m+ 1 (if ever). Since there are t− 1 ≤ d− 1 jumps, and j1 ≤ J +m, we
conclude that jt ≤ J +m+ (d− 1)m.

This argument applies to all βi with i ∈ {1, . . . , h} and hence there are at most
h(J +m+ (d− 1)m+ 1) ≤ (deg(pm))(J +m+ (d− 1)m+ 1) possible values of α
occurring in Ov. Since J depends only on pm the proof is complete.

Although we will not use this in the sequel, the argument actually shows that
for q 6= 1 one can take

LP,d =
⊕

i=1,...h, 0≤j≤J+m+(d−1)m, s=1,...,d

KΨqjβi,s,

with the β1, . . . , βh and J defined as previously in terms of the Z-action on the
non-zero roots of pm as given by multiplication with powers of q.

�

7. Proof of Theorem 2.4

We can now put the pieces together and prove Theorem 2.4. We may clearly
assume that K is algebraically closed. In the notation of the theorem, since P is not
constant, σ(P ) is infinite by Theorem 3.4. If λ0 ∈ σ(P ), then Ker(P −λ0) has finite
dimension by Theorem 3.2. Since P and Q commute, we see that there are infinitely
many different pairs (λ0, µ0) ∈ K × K in the simultaneous point spectrum with
corresponding simultaneous eigenvectors vλ0,µ0 . As already remarked in Section 2,
∆P,Q(M,λ0, µ0)vλ0,µ0 = 0 for all such pairs. Suppose, then, that (λ0, µ0) is in
the simultaneous point spectrum and that ∆P,Q(M,λ0, µ0) is not constant. Then,
since (P − λ0)vλ0,µ0 = 0, and the degree of ∆P,Q(M,λ0, µ0) as a polynomial in
M is uniformly bounded by some d as λ0 and µ0 vary, Theorem 6.1 shows that
vλ0,µ0 ∈ LP,d where LP,d is a finite dimensional space which depends only on P and
d. But by linear independence, this can happen for at most dimLP,d pairs (λ0, µ0).
For the remaining infinitely many (λ0, µ0), ∆(M,λ0, µ0) must be a constant and
then, as vλ0,µ0 6= 0, it is zero in HK(q).

We conclude that, for all i, δi(λ0, µ0) = 0 for infinitely many different simul-
taneous eigenvalues. But then δi(P,Q) has an infinite dimensional kernel and by
Theorem 3.2 we are done.
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