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Abstract

Physiological limits have so far not played a central role in mechanism-based phar-
macodynamic modeling, except in models of feedback, where physiological limits act
intrinsically on deviations from a pre-set physiological ground state (e.g., the base-
line value or a set-point value). However, recently these concepts were introduced in
turnover models acting on the production or loss of response, respectively, even for
simple (nontolerant) systems. In the latter case, the physiological limit kicks in when
the state variable (response) approaches either a lower or an upper limit, not before.

In this paper we propose a new approach with either one (lower or upper) limit
or two (simultaneously acting lower and upper) limits (dual limits). We present an
analytical mathematical treatment as well as a numerical treatment via model simu-
lations. This approach allows for a baseline value to be only weakly dependent on the
lower/upper physiological limit. It also allows dual limits, one below and one above,
which is attractive because it may be applicable to commonly studied physiological
and biochemical systems such as turnover of water or fat.

Key words: Physiological Limits, Indirect Response models, Turnover models, Nonlinear
models, Penalty functions, Differential equations, Pharmacodynamics.

1 Introduction

Pharmacodynamic characterization of drug action has moved more and more into mech-
anism based pharmacodynamic models. These models provide a unique means for sepa-
rating drug and system parameters of complex pharmacological systems.

The four basic turnover models, also called Indirect Response (IDR) Models, (cf. Na-
gashima et al., 1969, Rescigno and Segre, 1961 and Dayneka et al., 1993), characterized
in Figure 1, have been very successful in analyzing drug effects on different physiological
systems. In some ways this is remarkable, since usually, for physiological reasons, the
response will be restricted to a limited range of values, a property which is not a priori
satisfied by solutions of the basic differential equation

dR

dt
= kin − koutR (1.1)
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Figure 1: The four basic turnover models I-IV: in Model I the drug acts by inhibiting the
turnover rate kin (production of response); in Model II by inhibiting the fractional turnover
rate kout (loss of response); in Model III the drug acts by stimulating the turnover rate
kin (production of response); in Model IV by stimulating the fractional turnover rate kout

(loss of response).

which represents the balance between production (kin) and elimination (koutR) of re-
sponse. In this equation kin and kout denote, respectively, the turnover rate and the
fractional turnover rate. They are often stimulated or inhibited by the drug through a
drug mechanism function S(C) (stimulating) or I(C) (inhibiting), where C denotes the
plasma concentration of the drug, so that Eq. (1.1) becomes:

dR

dt
= kinH1(C)− koutH2(C)R (1.2)

Here H1(C) and H2(C) stand for one of the drug mechanism functions, S(C) or I(C). We
assume that they are so defined that S(0) = 1 and I(0) = 1. Then, in the absence of any
drug (C = 0), Eq. (1.2) reverts back to Eq. (1.1), and the pharmacodynamic steady state
to the baseline given by

R0 = kin/kout

In the present paper we modify the four turnover models in order to incorporate
physiological limits – a lower bound R! and an upper bound Rh – whilst preserving the
properties of the basic turnover models within most of the range (R!, Rh). When the
response R(t) approaches a physiological limit the dynamics will depart from the one
exhibited by the corresponding classical linear turnover model to ensure that

R! < R(t) < Rh for all t ≥ 0 (1.3)

The main idea underlying these modifications consists of changing the production and
the loss term in such a manner that when the response approaches a physiological limit,
the right hand side of Eq. (1.2) tends to zero. Thus, Eq. (1.2) will be so modified that
regardless of the plasma concentration, and hence of the impact of the drug mechanism
functions H1(C) and H2(C), the inequalities in Eq. (1.3) are satisfied. In the next section
we present specific modifications, which achieve this effect for each of the four models I-IV.

Our approach to modeling the impact of physiological limits generalizes the approach
taken by Yao et al., 2006 which proposes modifications of the classical turnover models
that incorporate the influence of either an upper or a lower bound. We also mention
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earlier work by Bolie, 1961, Ackerman et al., 1964 and recent work of de Winter et al.,
2006, who, in a similar fashion, modify a feedback model in order to accommodate a lower
physiological bound in their analysis of glucose-insulin dynamics (For a recent review see
Landersdorfer and Jusko, 2008).

2 Methods

We propose two ways of incorporating physiological limits in turnover models. To explain
the underlying ideas of these methods, we use an example from mechanics and compare
the response of the system to the location of a piston in a cylinder of finite length. The
effect of the growth term in the turnover equation is to push the cylinder to the right and
the effect of the loss term is to push it to the left. The physiological limits are represented
by the end surfaces of the cylinder. If the piston approaches the upper bound, i.e. the
right end of the cylinder, then there are two ways in which we can prevent it from dropping
out of the cylinder:

(i) We can stop pushing, i.e. we let the growth term vanish when the piston approaches
the right end of the cylinder or,

(ii) We can impose a countervailing force on the piston, pushing it back into the cylinder
sufficiently strongly so that it does not leave the cylinder.

In this spirit we propose the following two approaches to incorporating physiological
limits into the classical turnover models:

Attenuation Method
(a) In order to ensure that the response R remains above a preassigned lower bound R!,
we modify the elimination term so that it drops down to zero as R approaches R!.

(b) In order to ensure that the response remains below a preassigned upper bound Rh, we
modify the production term so that it vanishes as R approaches Rh.

Penalty Method:
(a) In order to ensure that the response R remains above a preassigned lower bound R!,
we modify the production term so that increases and tends to infinity as R approaches R!.

(b) In order to ensure that the response remains below a preassigned upper bound Rh, we
modify the elimination term so that it increases and tends to infinity as R approaches Rh.

Thus, in the attenuation method, terms in the turnover equation vanish at a physiological
bound, whilst in the Penalty Method, which is well known in mechanics (cf. Lions, 1969),
terms tends to infinity as a physiological limit is approached.

Following these ideas, we introduce the modified turnover equation

dR

dt
= kinf(R)− koutg(R) (2.1)

in which f(R) and g(R) are specially chosen functions. This equation reduces to the
original equation (1.1) if we put

f(R) = 1 and g(R) = R (2.2)
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The choice of functions f(R) and g(R) is based on the principles outlined above:

In the Attenuation Method we choose f(R) and g(R) so that

f(R) > 0 for 0 ≤ R < Rh and f(Rh) = 0
g(R) > 0 for R! <R <∞ and g(R!) = 0

}
(2.3)

In the Penalty Method we choose f(R) and g(R) so that

f(R)→∞ as R→ R! and g(R)→∞ as R→ Rh (2.4)

Since we wish the modifications to pitch in only near the limits R! and Rh, and not so
much near the baseline R0 of equation (1.1), we impose the conditions

f(R) ≈ 1 and g(R) ≈ R for R ≈ R0
def=

kin

kout
(2.5)

In fact, in the modifications we propose, the approximate equalities in Eq. (2.5) will
be valid, not only near R0, but for most of the range (R!, Rh). In Figures 2 and 3 we show
typical graphs of the functions f(R) and g(R) in the two methods.
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(a) The function f(R); Rh = 2.5 (b) The function g(R); R! = 1.6

Figure 2: Graphs of typical functions f(R) and g(R) used in the attenuation method.
Analytical formulas for these functions are given in Appendix A

We shall prove that the properties of the functions f(R) and g(R) formulated in Eqs.
(2.3) and (2.4) imply that, starting from the baseline R0, the response R(t) will never
stray outside the admitted region (R!, Rh), i.e.,

R! < R(t) < Rh for t ≥ 0

In both methods, the modified turnover equation is nonlinear in that the right-hand
side of equation (2.1)

F (R) def= kinf(R)− koutg(R) (2.6)

is a nonlinear function of R. Suppose that Rss is a steady state of (2.1), i.e. a zero of the
function F (R) defined in Eq. (2.6). Then for small departures r from Rss we can expand
the function F (R) around Rss and write equation (2.1) as

dr

dt
= F (Rss + r) = F (Rss) + F ′(Rss)r + .....
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Figure 3: Graphs of typical functions f(R) and g(R) used in the penalty method. Ana-
lytical formulas for these functions are given in Appendix A

where F ′ stands for the derivative dF/dR. Hence, since F (Rss) = 0, we obtain

dr

dt
= F (Rss + r) ≈ F ′(Rss)r (2.7)

If Rss is stable, then F ′(Rss) ≤ 0 and |F ′(Rss)| is the rate constant which determines the
speed with which R(t) approaches Rss as t → ∞, i.e., it determines the dynamics near
Rss. Since these modified turnover models are nonlinear, the dynamics near the baseline
R0 will generally be different from that near the physiological limits R! or Rh. We shall
find that in both methods

|F ′(Rss)| > |F ′(R0)| when Rss ≈ R! or Rh

so that the rate of convergence will be faster near the physiological limits. We see this
clearly demonstrated in the simulations shown in the next section.

In the classical turnover models I – IV, in which the drug mechanism function H(C)
acts on either the production or the loss term in Eq. (1.1) and either stimulates (H(C) =
S(C)) or inhibits (H(C) = I(C)), the response curve R(t) will always lie to one side of
the baseline R0 of Eq. (1.1) :

R(t) < R0 in Models I and IV
R(t) > R0 in Models II and III

}
for 0 < t <∞

Thus, in the presence of physiological bounds R! below and Rh above, we need to modify
Models I – IV in such a way that

R(t) > R! in Models I and IV
R(t) < Rh in Models II and III

}
for 0 < t <∞ (2.8)

Therefore, in these simple situations, we only need impose one-sided bounds.
In more complex cases, the response curve may come close to the upper as well as to

the lower physiological bound over some interval of its time course. For instance, such a
scenario is possible when the drug acts on the production term as well as on the loss term.
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In a disease progression situation this may also happen when the baseline is is pushed
upwards towards the upper physiological bound and on a shorter time scale a drug acts
to push the response down to such an extent that it approaches the lower physiological
bound. We address this situation in Section 3.3.

We have introduced two different methods designed to incorporate physiological limits
into the four classical turnover models. They both involve changing the basic balance equa-
tion near the physiological limit, without changing the equation substantially elsewhere,
and in particular near the baseline. In the attenuation method the changes are such that
either the production or the loss term vanishes near the limits, in order to stop the system
from crossing the limit, and in the penalty method these terms become arbitrary large in
order to push the system back from the physiological limit.

3 Results

In this section we implement the ideas presented in the previous section in the turnover
models I-IV, derive some properties of the response versus time curve and present simu-
lations for the resulting nonlinear turnover models. This will be done first utilizing the
attenuation method and then the penalty method.

Throughout the drug mechanism functions will be given by

I(C) = 1− Imax
Cn

ICn
50 + Cn

and S(C) = 1 + Smax
Cn

SCn
50 + Cn

(3.1)

in which Imax, IC50, Smax, SC50 and n denote the maximum inhibition, the potency of
the inhibitory effect, the maximum stimulation, the corresponding potency, and the Hill
coefficient respectively.

3.1 Modeling physiological limits using the Attenuation Method

We begin by introducing simple piece-wise linear functions f(R) and g(R) which are
endowed with the properties listed in Eqs. (2.3) and (2.5). The function f(R) in the
production term is

f(R) =

{
1 for R ≤ R∗

f

A(Rh −R) for R > R∗
f

(3.2)

Its graph, shown in Figure 4, consists of two straight lines, one horizontal at the level 1
and one with slope −A (A > 0), which passes through the horizontal axis at R = Rh.
These lines intersect at R = R∗

f , where

R∗
f = Rh −

1
A

For the function g(R) in the loss term we put

g(R) =

{
(1 + A)(R−R!) for R < R∗

g

R for R > R∗
g

(3.3)
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Its graph (see Figure 4) also consists of two straight lines, one through the origin with
slope 1 and one with a slope 1 + A (A > 0) which passes through the horizontal axis at
R = R!. These lines intersect at R = R∗

g, where

R∗
g =

(
1 +

1
A

)
R!

In light of the condition (2.5) on f(R) and g(R), the kink should lie near a physiological
bound, and in particular we should have,

R0 < R∗
f < Rh for f(R)

R! < R∗
g < R0 for g(R)

It follows from Eqs. (3.2) and (3.3) that these requirements on R∗
f and R∗

g can be achieved
by choosing the slope parameter A large enough.
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R0 Rf
* R

1

Rh

g(R)

R0Rg
* RRl

f(R)

R0 Rf
* R

1

Rh

g(R)

R0Rg
* RRl

(a) The function f(R) (b) The function g(R)

Figure 4: Graphs of the functions f(R) and g(R) introduced in Eqs. (3.2) and (3.3)

It is interesting to compare these functions with the functions introduced by Yao et
al., 2006 which also addresses the question of physiological limits. There

f(R) = 1− R

Rh
and g(R) = R

(
1− R!

R

)
(3.4)

Graphs of these functions are shown in Figure 5. For comparison we have included the
classical functions f(R) = 1 and g(R) = R (dashed). Plainly, these functions satisfy the
conditions set forth in Eq. (2.3). However, since they differ significantly from the classical
functions over the entire range (R!, Rh), condition (2.5) is not satisfied.

A lower bound

Incorporating the impact of a lower bound R! on the response in the turnover model, we
modify the loss term so that it vanishes at R!. Thus, we obtain the equation

dR

dt
= kin − koutg(R) (3.5)

where g(R) is given by Eq. (3.3).
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Figure 5: Graphs of the functions f(R) and g(R) introduced by Yao et al., 2006 for
R! = 0.45 and Rh = 3 (cf. Eq. (3.4)) (solid lines) and the classical functions (cf. Eq (1.1))
(dashed lines)

As we have seen in Eq. (2.8), we need only modify Models I and IV.

Model I: Here the drug mechanism function is inhibitory and acts on the production
term. Thus, if we assume that we start from the baseline R0, the response R(t) will be a
solution of the following Initial Value Problem:

dR

dt
= kinI(C)− koutg(R), R(0) = R0 (3.6)

where I(C) is defined in Eq. (3.1).
In Theorem 1 we show that the solution R(t) of Problem (3.6) indeed stays above R!

for all time.

Theorem 1. Let R(t) be the solution of Problem (3.6), with the functions I(C) and g(R)
given by, respectively, Eqs. (3.1) and (3.3). Then

R(t) > R! for t > 0

Proof Plainly, R(0) = R0 > R!. Hence the assertion holds near time t = 0. Suppose, by
way of contradiction, that it does not hold for all time. Then there exists a first time t0
when R reaches the lower bound, i.e.,

R(t) > R! for 0 ≤ t < t0 and R(t0) = R!

This implies that dR/dt(t0) ≤ 0, i.e. R(t) is nonincreasing at t = t0. However, Eq. (3.6)
shows that at t = t0

dR

dt
= kinI(C(t0))− koutg(R(t0))

= kinI(C(t0))− koutg(R!)
= kinI(C(t0)) > 0

This means that R(t) must be increasing at t = t0, which contradicts our earlier finding.
Therefore we must conclude that R(t) never touches the lower bound R = R! and will
always stay above it. !
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Remark. By a similar argument one can show that the response curves decrease when
the drug concentration increases. Thus, let C1(t) and C2(t) be two drug concentration
curves, and let R1(t) and R2(t) be the corresponding response curves. Then

C1(t) < C2(t) =⇒ R1(t) > R2(t) (3.7)

It follows from Eq. (3.7) that a lower bound R(t) for the response versus time graph
can be obtained by putting C =∞ in the drug mechanism function I(C). This yields the
equation

dR

dt
= kin(1− Imax)− koutg(R) (3.8)

By a comparison argument, similar to the one used to prove Theorem 1, we can prove the
following ordering of graphs:

Theorem 2. Let R(t) be the solution of Problem (3.6), with the functions I(C) and g(R)
given by, respectively, Eqs. (3.1) and (3.3). Let R(t) be the solution of Eq. (3.8) which
starts at the baseline R0 of Problem (3.6). Then

R(t) > R(t) > R! for t > 0

The proof of the monotonicity property (3.7) and of Theorem 2 will be given in Appendix
B.

We infer from Theorem 2 that Rmax > Rmax. Since dR/dt = 0 when R = Rmax, we
conclude from equation (3.8) that

kin(1− Imax)− koutg(Rmax) = 0 (3.9)

For small values of Imax the response R remains close to the baseline and will stay
away from the kink in g(R), i.e., R(t) > R∗

g for all time t > 0. Therefore, it follows from
Eq. (3.3) that for the values of R(t), taken on for t > 0, we have g(R(t)) = R(t) and Eq.
(3.8) reverts to the classical turnover equation. This means that Rmax = R0(1− Imax).

However, if Imax becomes larger, then at some critical value of Imax, Rmax drops below
R∗

g and the lower limit may affect the response. Specifically, we find that if

Imax > 1−
R∗

g

R0

then Rmax < R∗
g and we conclude from Eq. (3.9) that

Rmax = R! + R0
1− Imax

1 + A
(3.10)

This claim will be proved in Appendix C.
If Imax > 1−R!/R0, then Rmax < R∗

g for all positive values of the slope parameter A,
so that we may let A tend to infinity in the expression for Rmax and conclude that

Rmax → R! as A→∞
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Thus, for a given large drug dose, the additional parameter A yields the freedom to fit
Rmax to the data (i.e., estimate the lower limit parameter R! separately from kin and kout).

In Figure 6 we present response-time curves for different functions g(R) in Eq. (3.6),
a piecewise linear one (on the left) and a linear one (on the right), for an increasing series
of drug doses.
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(a) g(R) as defined in Eq. (3.3) with A = 2 (b) g(R) = R−R!

Figure 6: Time course of the response R(t) for Model I, modified by the attenuation
method (Problem (3.6)), with two functions g(R). In both simulations the parameters
are R! = 0.4, Imax = 0.9, IC50 = 1, kin = 1.4 (left) and kin = 1 (right), kout = 1 and
C(t) = De−kt (k = 2) for D = 10n, n = 1, 2, . . . , 6.

Comparing the solution graphs in the linear and the piece-wise linear loss function
g(R) we see that the dynamics near the lower bound is quite different. Whilst for the
linear function R(t) approaches R! quite gently, for the piece-wise linear function, R(t)
drops rapidly until it is close to the lower bound R!, where it abruptly flattens.

Also, with the attenuation method, the distance Rmin−R! between the bottom of the
response curve and the lower physiological limit is much smaller than in the linear model
defined in Eq. (3.4).

This difference observed in Figure 6 can be explained by studying the local properties
of Eq. (3.6) near the lower limit R!. As seen in Eq. (2.7) this involves computing the
derivative of the right hand side F (R) of Eq. (3.6),

F (R) def= kinI(C)− koutg(R)

at R!. Plainly, for fixed C,

dF

dR

∣∣∣
R!

= −kout
dg

dR

∣∣∣
R!

=

{
− kout for linear loss (Eq. (3.4))
− kout(1 + A) for piece-wise linear loss (Eq. (3.3))

We see that for the piece-wise linear loss function g(R) the magnitude of the slope |F ′(R!)|
has increased by an amount koutA. This results in a shorter t1/2.

Thus, in combination with I(C), the slope parameter A can actually be estimated from
regressing the data near R!.
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Model IV: In this model the loss term in (3.8) is stimulated, so that the response R(t)
is now a solution of the problem

dR

dt
= kin − koutS(C)g(R), R(0) = R0 (3.11)

in which S(C) is defined in Eq. (3.1), g(R) in Eq. (3.3) and R0 = kin/kout. As in Model
I one can prove that

R(t) > R(t) > R! for all t > 0

where R(t) is the solution of the equation obtained from Eq. (3.11) by putting C = ∞,
i.e.,

dR

dt
= kin − kout(1 + Smax)g(R) (3.12)

which, like R(t), starts at the baseline R0 of Eq. (3.11). Plainly, Rmax > Rmax and arguing
as with Model I, one can show that if Smax > (R0/R!)− 1, then

Rmax → R! as A→∞

In Figure 7 we show response-time graphs for two different functions g(R), the same
two functions as in Figure 6. The dynamics near R! is now governed by the derivative of
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(a) g(R) as defined in Eq. (3.3) with A = 2 (b) g(R) = R−R!

Figure 7: Time course of the response R(t) for Model IV, modified by the attenuation
method (Problem (3.11)), with two functions g(R). In both simulations the parameters
are R! = 0.4, Smax = 3, SC50 = 1, kin = 1.4 (left) and kin = 1 (right), kout = 1 and
C(t) = De−kt (k = 2) for D = 10n, n = 1, 2, . . . , 6.

the right hand side of Eq. (3.11),

F (R) def= kin − koutS(C)g(R)

at R!. We find that

dF

dR

∣∣∣
R!

= −koutS(C)
dg

dR

∣∣∣
R!

=

{
− koutS(C) for linear loss (Eq. (3.4))
− koutS(C)(1 + A) for piece-wise linear loss (Eq. (3.3))
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if C is frozen. Thus, when g(R) is piece-wise linear then |F ′(R!)| is increased by an amount
of koutS(C)A, resulting in a shorter t1/2 than in the linear function g(R), and also shorter
than for the piece-wise function in Model I because of the additional factor S(C) > 1.
These differences are plainly evident in Figures 6 and 7.

An upper bound

In order to incorporate an upper physiological bound Rh into the turnover model following
the attenuation method, we modify the production term so that it vanishes at Rh. Thus,
we modify the basic balance equation (1.1) into

dR

dt
= kinf(R)− koutR (3.13)

where f(R) is given by Eq. (3.2).
In light of the observations made in Eq. (2.8), we only need consider Models II and

III.

Model II: In Model II the loss term is inhibited so that we are led to the problem

dR

dt
= kinf(R)− koutI(C) R, R(0) = R0 (3.14)

where I(C) is the inhibitory drug mechanism function given in Eq. (3.1) and R0 is the
baseline response. We can now show that

R(t) < R(t) < Rh for t ≥ 0

where R(t) is the solution of the problem

dR

dt
= kinf(R)− kout(1− Imax) R, R(0) = R0 (3.15)

Proceeding as in Model I and Appendix C, we find that if Imax > 1−R0/Rh, then

Rmax → Rh as A→∞

In Figure 8 we show response versus time graphs of Problem (3.14) for two functions f(R),
the piecewise linear one defined in Eq. (3.2) and the linear one defined in Eq. (3.4).

The dynamics near Rh is now governed by the derivative of the right hand side of Eq.
(3.14),

F (R) = kinf(R)− koutI(C)R

near the upper bound Rh. Thus,

dF

dR

∣∣∣
Rh

= kin
df

dR

∣∣∣
Rh

−koutI(C) =

{
− koutI(C) for linear loss (Eq. (3.4))
− koutI(C)− kinA for piece-wise linear growth (Eq. (3.2))

if C is frozen. Therefore, for Imax large enough the rate constant |F ′(Rh)| increases by an
amount of kinA, resulting, as in the earlier cases, in a shorter overall half life of response,
which means that the time to steady state is shortened.
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(a) f(R) as defined in Eq. (3.2) with A = 2 (b) f(R) = 1−R/Rh

Figure 8: Time course of the response R(t) for Model II, modified by the attenuation
method (Problem (3.14)), with two functions f(R). In both simulations the parameters
are Rh = 3 (top line), Imax = 0.9, kin = 1.0 in (a) and kin = 1.5 in (b), kout = 1,
C(t) = De−kt (k = 2) and D = 10n, n = 1, 2, . . . , 6.

Model III: Here the drug stimulates the production term and so we obtain the problem
dR

dt
= kinS(C)f(R)− koutR, R(0) = R0 (3.16)

where S(C) is given by Eq. (3.1). We find that the solution R(t) of Problem (3.16) is
bounded above by the solution R(t) of the problem

dR

dt
= kin(1 + Smax)f(R)− koutR, R(0) = R0 (3.17)

Plainly,
R(t)→ Rmax as t→∞

Here we find that if Smax > (Rh/R0)− 1, then

Rmax → Rh as A→∞

Thus, for a given large enough value of Smax, the slope parameter A makes it possible to
position Rmax arbitrary close to the upper bound Rh.

In Figure 9 we compare graphs of solutions of Problem (3.16) for two different functions
f(R) for identical values of the parameters, except for kin which was adjusted to obtain
equal baseline values.

The dynamics near Rh is determined by the derivative of the function

F (R) def= kinS(C)f(R)− koutR

at Rh when C is fixed:

dF

dR

∣∣∣
Rh

= kinS(C)
df

dR

∣∣∣
Rh

−kout =

{
− kout for linear loss (Eq. (3.4))
− kout − kinS(C)A for piece-wise linear growth (Eq. (3.2))

The rate constant |F ′(Rh)| now increases by an amount kinS(C)A leading to a shorter
overall half life of response. Notice that, as with the lower bound, stimulation leads to
faster convergence to Rmax than inhibition.
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(a) f(R) as defined in Eq. (3.2) with A = 5 (b) f(R) = 1−R/Rh

Figure 9: Time course of the response R(t) for Model III, modified by the attenuation
method (Problem (3.16)) with two functions f(R). In both simulations the parameters
are Rh = 3 (top line), Smax = 3, kin = 1.5 in (a) and kin = 1 in (b), kout = 1, C(t) = De−kt

(k = 2) and D = 10n, n = 1, 2, . . . , N (N = 5 in (a) and N = 4 in (b)).

3.2 Modeling physiological limits using the Penalty Method

In implementing the penalty method we use the functions

f(R) = 1 +
µ

R−R!
(3.18)

and
g(R) = R

(
1 +

µ

Rh −R

)
(3.19)

in which µ is a positive constant. For each positive value of µ the functions f(R) and g(R)
become unbounded as R approaches a physiological limit. Graphs of these functions are
shown in Figure 3. We see from equations (3.18) and (3.19) that if we keep R fixed, then

f(R)→ 1 0 < R < Rh

g(R)→ R R! < R <∞

}
as µ→ 0

Therefore, condition (2.5) is satisfied if we choose µ small.

A lower bound

In order to stop the response from dropping below a physiological limit R!, we modify
the production term in the classical turnover model so that it rises rapidly when the
response approaches R!. Thus, we consider the equation

dR

dt
= kinf(R)− koutR (3.20)

where f(R) is given by Eq. (3.18). The baseline response Rb is given by the root of the
right hand side of (3.20):

kinf(R)− koutR = 0
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that is,

kin

(
1 +

µ

Rb −R!

)
= koutRb

We readily find that

Rb = R0 +
R0

R0 −R!
µ + O(µ2) as µ→ 0 (3.21)

i.e., Rb ≈ R0 since we assume that µ is small. Thus, with this choice of function f(R),
the baseline Rb does depend on R! but because µ is small, only slightly so.

By the observations made in Eq. (2.8), we need only consider the Models I and IV.

Model I: In this model the production term is inhibited and so we consider the problem

dR

dt
= kinI(C)f(R)− koutR and R(0) = Rb (3.22)

where I(C) is defined by Eq. (3.1) and f(R) by Eq. (3.18). Let R(t) be the solution of
Problem (3.22) and R(t) the solution of the problem

dR

dt
= kin(1− Imax)f(R)− koutR, R(0) = Rb (3.23)

which is obtained from Problem (3.22) by putting C =∞. Then, arguing as in the proof
of Theorem 2 and Appendix B, one can show that

R(t) > R(t) > R! for all t > 0

Inspection of Eq. (3.23) shows that R(t) is decreasing and that

R(t)→ Rmax as t→∞

where Rmax is the zero of the right hand side of Eq. (3.23). Thus, Rmax satisfies the
equation

kin(1− Imax)f(Rmax)− koutRmax = 0

If Imax is small, then the response will not get anywhere near the physiological limit
R!, and if µ is also small, then Rmax ≈ R0(1− Imax). However for sufficiently large values
of Imax, the limit will have an important impact. In Appendix D we prove the following
threshold result:

Rmax →
{

R0(1− Imax) if R0(1− Imax) > R!

R! if R0(1− Imax) ≤ R!
as µ→ 0 (3.24)

In Figure 10 we show solution graphs of Problem (3.22) for two values of the parameter
µ and different values of the drug dose.

For the dynamics near R! we consider the right hand side of Eq. (3.22):

F (R) def= kinI(C)f(R)− koutR

15
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(a) µ = 1 (b) µ = 0.1

Figure 10: Time course of the response R(t) for Model I, modified by the penalty method
(Problem (3.22)) for two values of µ. In both simulations the parameters are R! = 0.4 ,
Imax = 0.9, kin = 3/8 (left) and kin = 6/7 (right), kout = 1 and C(t) = De−kt (k = 2) for
D = 10n, n = 1, 2, . . . , 5.

and compute its derivative near R = R!. We obtain

dF

dR
= kinI(C)

df

dR
− kout

and hence, whilst for the classical turnover equation, dF/dR = −kout near R!, we readily
see from the definition (3.18) of f(R) that f ′(R) = df/dR→ −∞ as R→ R!. Therefore

lim
R→R!

F ′(R) = kinI(C) lim
R→R!

f ′(R)− kout = −∞

Thus, in this modification of the classical turnover model the rate constant |F ′(R)| becomes
arbitrary large as the response approaches the lower limit R!.

Model IV: Now the loss term in the nonlinear turnover equation (3.20) is stimulated and
we obtain the problem

dR

dt
= kinf(R)− koutS(C)R, R(0) = Rb (3.25)

where S(C) is defined in Eq. (3.1) and f(R) by Eq. (3.18). As in Model I we find that

R(t) > R(t) > R! for t > 0

where R(t) is the solution of the problem

dR

dt
= kinf(R)− kout(1 + Smax)R, R(0) = Rb (3.26)

The solution R(t) is now a decreasing function bounded below by R!, and we find that

R(t)→ Rmax as t→∞
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where Rmax is the root of the right hand side of Eq. (3.26). We find that Rmax → R! as
µ→ 0. Near the lower limit R! the dynamics will be the same as in Model I since in this
model |F ′(R)| → ∞ as R→ R! as well.

In Figure 11 we show solution graphs of Problem (3.25) for two values of the parameter
µ and different values of the drug dose.
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(a) µ = 1 (b) µ = 0.1

Figure 11: Time course of the response R(t) for Model IV, modified by the penalty method
(Problem (3.25)), for two values of µ. In both simulations the parameters are R! = 0.4 ,
Smax = 3, kin = 3/8 (left) and kin = 6/7 (right), kout = 1 and C(t) = De−kt (k = 2) for
D = 10n, n = 1, 2, . . . , 5.

An upper bound

In order to stop the response from rising above a physiological limit Rh, we here
modify the loss term so that it increases rapidly when the response approaches Rh. Thus,
we consider the equation

dR

dt
= kin − koutg(R) (3.27)

where g(R) is defined by (3.19). The baseline response Rb is given by the root of the right
hand side of Eq. (3.27):

kin − koutg(R) = 0

that is,

kin = koutR

(
1 +

µ

Rh −Rb

)

We readily find that

Rb = R0 −
R0

R0 −R!
µ + O(µ2) as µ→ 0 (3.28)

i.e., Rb ≈ R0 when it is assumed that µ is small.

Here we only need to discuss Models II and III.
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Model II: In Model II the loss term is inhibited so that we are led to the problem

dR

dt
= kin − koutI(C)g(R), R(0) = Rb (3.29)

where I(C) is defined in Eq. (3.1) and g(R) by Eq. (3.19). We now find that

R(t) < R(t) < Rh for t > 0

where R(t) is the solution of the problem

dR

dt
= kin − kout(1− Imax)g(R), R(0) = Rb (3.30)

The solution R(t) is an increasing function bounded above by Rh, and we find that

R(t)→ Rmax as t→∞

where Rmax is the root of the equation

kin − kout(1− Imax)g(Rmax) = 0

Here we find that Rmax → Rh as µ→ 0.
In Figure 12 we show solution graphs of Problem (3.29) for two values of the parameter

µ and different values of the drug dose.
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(a) µ = 1 (b) µ = 0.1

Figure 12: Time course of the response R(t) for Model II, modified by the penalty method
(Problem (3.29)), for two values of µ. In both simulations the parameters are Rh = 3 ,
Imax = 0.9, kin = 1.5 (left) and kin = 1.05 (right), kout = 1 and C(t) = De−kt (k = 2) for
D = 10n, n = 1, 2, . . . , 5.

The dynamics near Rh is determined by the slope of the function

F (R) def= kin − koutI(C)g(R)

near Rh. Plainly,
dF

dR
= −koutI(C)

dg

dR
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and we see from the choice of function g(R) that

lim
R→R!

F ′(R) = −koutI(C) lim
R→R!

g′(R) = −∞

Therefore, the rate constant |F ′(R)| becomes arbitrary large and the overall half life of
response becomes shorter as the response approaches the upper bound Rh.

Model III: In Model III the production term is stimulated so that we are led to the
problem

dR

dt
= kinS(C)− koutg(R), R(0) = Rb (3.31)

where S(C) is defined in (3.1) and g(R) in (3.19). We also find that

R(t) < R(t) < Rh for t > 0

but R(t) is now the solution of the problem

dR

dt
= kin(1 + Smax)− koutg(R), R(0) = Rb (3.32)

The solution R(t) is an increasing function bounded above by Rh, and as with Model II
we find that

R(t)→ Rmax as t→∞

where Rmax is the zero of the right hand side of the differential equation in (3.31), and
Rmax → Rh as µ→ 0.

In Figure 13 we show solution graphs of Problem (3.31) for two values of the parameter
µ and different values of the drug dose.
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(a) µ = 1 (b) µ = 0.1

Figure 13: Time course of the response R(t) for Model III, modified by the penalty method
(Problem (3.31)), for two values of µ. In both simulations the parameters are Rh = 3 ,
Smax = 3, kin = 1.5 (left) and kin = 1.05 (right), kout = 1 and C(t) = De−kt (k = 2) for
D = 10n, n = 1, 2, . . . , 5.

As in the previous model, the rate constant |F ′(R)| becomes arbitrary large as the
response approaches the upper bound Rh.
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3.3 Two-sided bounds

We have come across two recent examples of dual physiological limits, namely turnover of
water (sheep) and of adipose tissue (mice). Norberg et al., 2005 studied volume turnover
kinetics of water in sheep during hemorrhage, fluid infusion, and the combination of both.
In their analysis the impairment of urinary output in sheep after hemorrhage was governed
by a physiological limit. This limit was expressed as a ratio of the bled volume (hemorrhage
blood volume)-to-the blood volume. When this ratio was less than 10 % no impairment
was seen on renal output. On the other hand, when the ratio approached 15 to 20%,
urinary output rapidly decreased to zero.

The example of adipose tissue in mice involved the CB1-receptor inverse agonist Ri-
monabant (or related compounds), as a test compound. Once a day doses of the test
compound(s) were administered via gavage to different dose groups of male mice. The
length of the study was three weeks of dosing, followed by a washout period up to about
120 days in total. A separate group of animals, on the same energy rich diet as the test
compound groups, received the vehicle (controls). Response-time data of three dose levels
of each test compound were regressed simultaneously by means of WinNonlin 5.2 (Phar-
sight Corporation, Car North Carolina, USA). Here the treatment pushed to response
towards the lower physiological limit, whilst at the same time, the baseline had the ten-
dency to drift upward in control animals as well as in treated animals when treatment
with the test compound was stopped. The reason for presenting a physiological system
including both an upper and a lower physiological limit in this communication is to anchor
our reasoning to real life experimental data The complete picture will be elaborated in
detail in a subsequent paper.

We also mention work of Sällström et al. 2005 and Visser et al. 2006 which involves
temperature data in which the body temperature can also be seen as an a priori lower
bound on the data.

A rise, such as found in the example involving adipose tissue, may be caused by a
slowly progressing disease. This situation may be modeled by a turnover equation of the
form

dR

dt
= kinG(t)− koutR (3.33)

in which G(t) models the disease progression. A typical example of a function G(t) is

G(t) =

{
1 + αt, for 0 < t < t∗

1 + αt∗ for t∗ < t <∞
(3.34)

in which α is a positive constant and t∗ the time at which G(t) ceases to grow. This
function was used in modeling the test compound and very recently, by Chen, Lu and
Balthasar, 2007. If G(t) is an increasing function over some period of time, then the base-
line Rb = R0G(t) may come close to the upper physiological limit. A drug, administered
to counteract this increase of the baseline may in turn push the response down and pos-
sibly to values close to a lower physiological limit. Incorportating the physiological limits
as well as the drug mechanism function, we end up with the following modification of Eq.
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(3.33):
dR

dt
= kinG(t)f(R)− koutS(C(t))g(R), R(0) = R0 (3.35)

in which S(C) is defined by Eq. (3.1). For simplicity we choose for C(t) a step function
and SC50 small. Then we can write S(C) approximately as

S(C(t)) = 1 + Smax{H(t)−H(t− t0)}, t0 > 0 (3.36)

where H(t) denotes the Heaviside function (H(t) = 0 for t < 0 and H(t) = 1 for t > 0).
In Figure 14 we exhibit simulations of Problem (3.35) for different values of Smax in

the presence of two physiological bounds: a lower bound R! = 0.4 and an upper bound
Rh = 1.4, whilst its initial baseline is R0 = 1. Here we have implemented the attenuation
method, in which f(R) and g(R) are given by respectively Eq. (3.2) and Eq. (3.3), as well
as the penalty method in which we have choose for f(R) and g(R) the functions defined
by respectively Eq. (3.18) and Eq. (3.19). These simulations were computed in Matlab
with a stiff ode solver (ode15s).
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Figure 14: Simulations of Problem (3.35) for Smax = 0.5, 1, 1.5, 2, 2.5, 3. and R0 = 1,
α = 0.15, kout = 1 and S(C(t)) is given by (3.36) with t0 = 2. The physiological limits are
R! = 0.4, Rh = 1.4. In the attenuation method, A = 4, so that R∗

f = 1.15 and R∗
g = 0.5,

and in the penalty method µ = 0.02.

The two simulations in Figure 14 are very similar, except that in the one using the atten-
uation method the kink in the functions f(R) and g(R) is clearly manifest around R∗

f and
R∗

g. This was to be expected since µ has been chosen so small that for R∗
g ≤ R ≤ R∗

f the
functions f(R) and g(R) differ very little from, respectively, 1 and R. Thanks to the rapid
convergence near the two physiological limits, for t > t0 = 2 the response curves closely
follow the slowly rising baseline. This is particularly evident in the attenuation method
where t1/2 increases abruptly as the response first crosses the kink of f or g.

It goes without saying that a-priori knowledge of the physiological bounds Rh and R!

reduces the number of free parameters and so facilitates the fitting to data sets.
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4 Discussion

Mathematical issues

The classical turnover model is based on a differential equation for the response which
involves two terms: a zero-order production term and a first order, i.e., linear, loss term.
The drug acts on either of these terms, or on both of them. This equation does not take
into account the common situation that the response is restricted by physiological limits:
temparature may not drop too low or rise too high and similarly, variations in glucose
concentration are limited.

We have proposed two methods for incorporating physiological limits into the classical
turnover model. They involve two types of nonlinear modifications of the classically linear
differential equation. They ensure that, if for physiological reasons the response R is
limited to the range (R!, Rh), then, regardless of drug action, the response R(t) will remain
within these bounds for all time, i.e.,

R! < R(t) < Rh for all t > 0

The underlying idea of these modifications is that the production and the loss term are
so altered that near a bound they either vanish or become infinity. Thus, in the event of a
lower bound R!, either the loss term vanishes or the production term becomes infinite, as
the response approaches R!. For an upper bound Rh the production term vanishes or the
loss term becomes infinite as the response approaches Rh. We refer to these two methods
as, respectively, the Attenuation and the Penalty method.

Characteristic features of these modifications are:

(a) The modifications are local in the sense that they are mainly restricted to a neighbor-
hood of the physiological bounds. This means that
• The modified equation and the classical turnover equation only differ near the bounds.
• It is possible to incorporate a lower and an upper bound simultaneously.

(b) The modified turnover equations involve one additional parameter beyond the physi-
ological limits.

(c) When the response approaches the physiological limit the dynamics changes and the
rate of change increases. This results in a shorter t1/2 as the response approaches Rmax

than in the essentially linear model due to Yao et al. (2006). Also, in the attenuation
method the value Rmax where the response levels off, is much closer than in the linear
model.

These differences offer a way to estimate the additional parameter from the data.

The penalty and the attenuation method were implemented into WinNonlin (based on
Runge Kutta 45) and run on the data obtained for adipose tissue. The penalty method
gave extremely long run times and was therefore abandoned. This failure is ascribed to
the steep gradients of the nonlinearity near the physiological limits making the system
to behave as a stiff system in the proximity of the lower and upper physiological limit.
Therefore, we adopted a method similar to the attenuation method, in that we added
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an ’IF-statement’ taking near physiological limits into consideration. This amounts to
defining the (discontinuous) functions f(R) and g(R) in (2.1) by

f(R) =

{
1 if R ≤ Rh

0 if R > Rh
and g(R) =

{
0 if R < R!

R if R ≥ R!

With these functions the implementation of the model into WinNonlin improved. Experi-
ence with simulations with fast ode solvers, such as ode15s in Matlab and Gear in XPPAUT
(Ermentrout, 2006), indicates that using such ode solvers improves results considerably.

The issue of physiological limits is not new. We recall the glucose-insulin system
originally proposed by Bolie, 1961 and Ackerman et al., 1964 and extended by numerous
investigators and more recently applied by de Winter et al., 2006:






dI

dt
= kin,I(G− 3.5)− kout,II

dG

dt
=

kin,G

I
− kout,GG

(4.1)

in which I denotes fasting serum insulin and G fasting plasma glucose (for a review see
the Landersdorfer and Jusko, 2008). It is well known that if glucose concentrations drop
below 3.5 mmol l−1 brain function deteriorates. This lower bound for the glucose has here
been incorporated by modifying the production term in the insulin equation. One may
ask oneself what the consequences might be of removing the constant term (3.5), choosing
another value, or model it as a parameter to be estimated. From a population perspective
it does not seem rational to incorporate a fixed term (3.5) lacking any source of variability.

A similar type of modification, in the spirit of the attenuation method, has recently
been proposed by Yao et al., 2006, (see Eq. (3.4) and Figure 5). In contrast to the charac-
teristics enumerated in (a) - (c) these modifications are not confined to the neighborhood
of the lower and upper bound but extend over the entire range of response values. In
addition the dynamics near the baseline and near the boundaries is here the same.

What are the consequences if we ignore physiological limits?

A physiological limit imposed on the pharmacological response may cause an asym-
metrical concentration-response relationship and thus impact the accuracy and precision
of estimating system and drug parameters such as kin/kout, Emax/Imax and EC50/IC50.
In Figure 15 we show how this may come about. Let us assume that the drug mechanism
function is based on one of the most commonly applied concentration-response relation-
ships, the Hill equation:

E =
EmaxCn

ECn
50 + Cn

(4.2)

in which Emax denotes the maximal effect, EC50 the concentration at which the effect has
reached half its maximal value and n the Hill coefficient. In Figure 15 the graph of this
function approaches what is called the ”True efficacy Level” as the concentration tends to
infinity. This ”True efficacy Level” yields an estimate for the value of Emax, as shown in
Figure 15 and for the potency EC50.
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Figure 15: Schematic illustration of the concentration-response relationship for a sys-
tem without a physiological limit (’True efficacy level’ curve, symmetrical concentration-
response relationship) and another governed by a physiological limit. The former system
may be represented by the sigmoid Emax-equation (4.2) , and the latter by an asymmetrical
concentration-response relationship).

However, as is demonstrated in Figure 15, a physiological upper limit may distort the
concentration-effect relationship, so that it is no longer described by a Hill equation, but
by an equation with a different shape.

As an example, we consider the distortion caused by a physiological upper bound in
Model III when it is modeled by a penalty function g(R) such as given in Eq. (3.19). In
this model the production term is stimulated and the pharmacodynamic state Rss is given
by the equation

R0S(C)− g(Rss) = 0 (4.3)

In the classical turnover model, we would have g(R) = R, and hence

Rss = R0S(C) = R0

(
1 + Smax

Cn

ECn
50 + Cn

)
(4.4)

However, if we modify the turnover model by the penalty method, we obtain

Rss

(
1 +

µ

Rh −Rss

)
= R0S(C)

which results in

Rss =
1
2

(
Rh + µ + R0S(C)−

√
(Rh + µ + R0S(C))2 − 4RhR0S(C)

)
(4.5)

In Figure 16 we compare the graphs of the functions of the classical and the modified
expressions for Rss, as they are defined in equations (4.4) and (4.5).

Thus, physiological limits cause biased estimates of the drug parameters Smax/Imax

and SC50/IC50 in the underlying turnover model, unless a-priori knowledge about the
physiological limits (Rh, R!) is incorporated.
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Figure 16: Graphs of the solution R = Rss(C) of the equation kinS(C)− koutg(R) = 0, in
which R0 = 1 and g(R) is either the classical function g(R) = R (dashed) or the penalty
function given by Eq. (3.19) with Rh = 3 and µ = 0.05 (solid). The function S(C) is
given by Eq. (3.1) with Smax = 3, SC50 = 1 and n = 1.

How can these ”limitations” be tackled by appropriate experimental design? We sug-
gest that the baseline behavior is studied under varying physiological and pharmacological
conditions. For example, if body weight (R) changes are the primary readout, we suggest
one investigates how R varies under different dietary conditions. We also believe that
independent information about upper and lower physiological limits needs to be found.
Coupled to the baseline variability is also information from vehicle or placebo groups (con-
trols). Recovery or response washout data then guide us about the system behavior back
to the baseline state.

We therefore suggest that each new analysis of a physiological or pharmacological sys-
tem (R) should be thoroughly scrutinized with respect to its upper and lower physiological
limits before invoking a drug property reasoning about Smax/Imax (Smax/Imax is only due
to the drug properties).

Based on our own experience we feel that the early suggestions proposed by Yao et al.,
2006 and Norberg et al., 2005 and the refinement of baseline modelling presented in this
paper will greatly impact the quality of estimating parameters.

Appendices

A The functions f(R) and g(R) in Figures 2 and 3

The piece-wise linear functions in Figure 2 are given by

f(R) = 1− 1
2

(
A(R−Rc) +

√
A2(R−Rc)2 + δ

)

g(R) = R +
1
2

(
A(R−Rc)−

√
A2(R−Rc)2 + δ

)

where Rc is the approximate location of the ”kink”, A the slope parameter, and δ a small
positive constant.

25



The singular functions in Figure 3 are given by

f(R) = 1 +
µ

R−R!
and g(R) = R

(
1 +

µ

Rh −R

)

where µ is a small positive constant.

B Proof of monotonicity of response with respect to con-
centration

We focus on Model I; the Models II, III and IV can be analyzed in an entirely similar
manner.

Thus, we consider the initial value problem

dR

dt
= kinI(C)− koutg(R), R(0) = R0

def= g−1(kin/kout) (B.1)

where I(C) is a decreasing function of C and I(0) = 1 (cf. Eq. (3.1)), and g(R) is an
increasing function of R and g−1 its inverse. For convenience we assume that g(R) is
continuously differentiable, i.e., its derivative g′(R) exists and is continuous.

We compare the solutions R1(t) and R2(t) of this problem for two different concentra-
tion profiles C1(t) and C2(t) when

C1(t) < C2(t) for t > 0 (B.2)

We shall then prove that

R1(t) > R2(t) for t > 0 (B.3)

Proof Let u = R1 −R2. Then

du

dt
= kin{I(C1)− I(C2)} − kout{g(R1)− g(R2)}, u(0) = 0 (B.4)

By the ”Mean Value Theorem” (cf. Rudin, 1964) we can write

g(R1(t))− g(R2(t)) = g′(θ(t)){R1(t)−R2(t)}

where θ(t) is an intermediate value between R1(t) and R2(t). This enables us to write the
equation in Problem (B.4) as

du

dt
= kin{I(C1)− I(C2)} − kouta(t)u, a(t) def= g′(θ(t)) (B.5)

which we can rewrite as

d

dt

(
u(t)ekoutA(t)

)
= kin{I(C1)− I(C2)}ekoutA(t), A(t) =

∫ t

0
a(s) ds (B.6)

Because I(C) is by assumption a decreasing function of C, it follows from Eq. (B.2) that

I(C1(t))− I(C2(t)) > 0 for t > 0
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Hence,
d

dt

(
u(t)ekoutA(t)

)
> 0 for t > 0

When we integrate this inequality over (0, t) and remember that u(0) = 0, we obtain the
inequality

u(t)ekoutA(t) > 0 for t > 0

Therefore u(t) > 0, and hence R1(t) > R2(t), for t > 0, as asserted. !
As a corollary we conclude that if we put C2(t) ≡ ∞, then Eq. (B.2) is satisfied and

hence R1(t) > R2(t) = R(t) for t > 0.

C Proof of the expression for Rmax in Model I - Eq. (3.10)

In this appendix we return to the analysis of Model I in the context of the attenuation
method and recall that the graph of the piece-wise linear function g(R) introduced in the
loss term has a kink at R∗

g, which is located above the lower bound R! but below the
baseline R0:

R∗
g =

(
1 +

1
A

)
R!

We prove the assertion that

Imax > 1−
R∗

g

R0
(C.1)

implies that
Rmax < R∗

g (C.2)

Proof Let us assume that (C.1) holds, and let us suppose to the contrary that

Rmax ≥ R∗
g (C.3)

Then, by Eq. (3.9) and the definition of the loss function g(R) (cf. Eq. (3.3)), we deduce
that

R0(1− Imax) = Rmax

Hence, by Eq. (C.3),
R0(1− Imax) ≥ R∗

g

or
Imax ≤ 1−

R∗
g

R0

which contradicts our assumption Eq. (C.1).
We conclude that assuming Eq. (C.3) leads to a contradiction, so that Eq. (C.2) must

hold, as asserted. !
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D Derivation of Eq. (3.24)

In order to obtain an expression for Rmax for Model I in the presence of a penalty function
f(R) we need to solve the equation

kin(1− Imax)f(Rmax)− koutRmax = 0 (D.1)

where f(R) is given by Eq. (3.18), i.e.,

f(R) = 1 +
µ

R−R!
, µ > 0

Thus, we need to solve the equation

R0(1− I)
(

1 +
µ

R−R!

)
−R = 0 (D.2)

where we have suppressed the subscript “max” and used the fact that R0 = kin/kout.
Multiplying Eq. (D.2) by R−R! and rearranging the terms, we obtain the quadratic

equation
R2 − {R! + R0(1− I)}R + R0(1− I)(R! − µ) = 0 (D.3)

with roots:

R± =
1
2

{
R! + R0(1− I)±

√
[R! −R0(1− I)]2 + 4R0(1− I)µ

}

Since we know that Rmax > R!, we conclude that Rmax = R+. From an elementary
computation we now find that as µ→ 0, then

Rmax →
{

R0(1− Imax) if R0(1− Imax) > R!

R! if R0(1− Imax) ≤ R!
(D.4)

as asserted.
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