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Abstract

In this paper we prove several new stability results for the reconstruction of bi-
nary images from two projections. We consider an original image that is uniquely
determined by its projections and possible reconstructions from slightly different
projections. We show that for a given difference in the projections, the reconstruc-
tion can only be disjoint from the original image if the size of the image is not
too large. We also prove an upper bound for the size of the image given the er-
ror in the projections and the size of the intersection between the image and the
reconstruction.
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1 Introduction

Discrete tomography is concerned with problems such as reconstructing binary
images on a lattice from given projections in lattice directions [6]. Each point
of a binary image has a value equal to zero or one. The line sum of a line
through the image is the sum of the values of the points on this line. The
projection of the image in a certain lattice direction consists of all the line
sums of the lines through the image in this direction.

Several problems related to the reconstruction of binary images from two or
more projections have been described in the literature [6,7]. Already in 1957,
Ryser gave an algorithm to reconstruct binary images from their horizontal
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and vertical projections and characterised the set of projections that corre-
spond to a unique binary image [11]. For any set of directions, it is possible
to construct images that are not uniquely determined by their projections in
those directions [6, Theorem 4.3.1]. The problem of deciding whether an image
is uniquely determined by its projections and the problem of reconstructing it
are NP-hard for any set of more than two directions [4].

Aside from various interesting theoretical problems, discrete tomography also
has applications in a wide range of fields. The most important are electron
microscopy [8] and medical imaging [5,13], but there are also applications in
nuclear science [9,10] and various other fields [12,15].

An interesting problem in discrete tomography is the stability of reconstruc-
tions. Even if an image is uniquely determined by its projections, a very small
error in the projections may lead to a completely different reconstruction [1,3].
Alpers et al. [1,2] showed that in the case of two directions a total error of
at most 2 in the projections can only cause a small difference in the recon-
struction. They also proved a lower bound on the error if the reconstruction
is disjoint from the original image.

In this paper we improve this bound, and we resolve the open problem of
stability with a projection error greater than 2.

2 Notation and statement of the problems

Let F1 and F2 be two finite subsets of Z2 with characteristic functions χ1 and
χ2. (That is, χh(x, y) = 1 if and only if (x, y) ∈ Fh, h ∈ {1, 2}.) For i ∈ Z, we
define row i as the set {(x, y) ∈ Z2 : x = i}. We call i the index of the row. For
j ∈ Z, we define column j as the set {(x, y) ∈ Z2 : y = j}. We call j the index
of the column. Following matrix notation, we use row numbers that increase
when going downwards and column numbers that increase when going to the
right.

The row sum r
(h)
i is the number of elements of Fh in row i, that is r

(h)
i =∑

j∈Z χh(i, j). The column sum c
(h)
j of Fh is the number of elements of Fh in

column j, that is c
(h)
j =

∑
i∈Z χh(i, j). We refer to both row and column sums

as the line sums of Fh.

Throughout this paper, we assume that F1 is uniquely determined by its row
and column sums. Such sets were studied by, among others, Ryser [11] and
Wang [14]. Let a be the number of rows and b the number of columns that
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Fig. 1. A uniquely determined set with the assumed row and column ordering.

contain elements of F1. We renumber the rows and columns such that we have

r
(1)
1 ≥ r

(1)
2 ≥ . . . ≥ r(1)

a > 0,

c
(1)
1 ≥ c

(1)
2 ≥ . . . ≥ c

(1)
b > 0,

and such that all elements of F2 are contained in rows and columns with
positive indices. By [14, Theorem 2.3] we have the following property of F1

(see Figure 1):

• in row i the elements of F1 are precisely the points (i, 1), (i, 2), . . . , (i, r
(1)
i ),

• in column j the elements of F1 are precisely the points (1, j), (2, j), . . . ,

(c
(1)
j , j).

We will refer to this property as the triangular shape of F1.

Everywhere except in Section 6 we assume that |F1| = |F2|. Note that we do
not assume F2 to be uniquely determined.

As F1 and F2 are different and F1 is uniquely determined by its line sums, F2

cannot have exactly the same line sums as F1. Define the difference or error
in the line sums as ∑

j≥1

|c(1)
j − c

(2)
j |+

∑
i≥1

|r(1)
i − r

(2)
i |.

As in general |t− s| ≡ t+ s mod 2, the above expression is congruent to

∑
j≥1

(
c
(1)
j + c

(2)
j

)
+
∑
i≥1

(
r
(1)
i + r

(2)
i

)
≡ 2|F1|+ 2|F2| ≡ 0 mod 2,

hence the error in the line sums is always even. We will denote it by 2α, where
α is a positive integer.

For notational convenience, we will often write p for |F1 ∩ F2|.

We consider two problems concerning stability.

Problem 1 Suppose F1 ∩ F2 = ∅. How large can |F1| be in terms of α?
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Alpers et al. [2, Theorem 29] proved that |F1| ≤ α2. They also showed that
there is no constant c such that |F1| ≤ cα for all F1 and F2. In Section 4 of
this paper we will prove the new bound |F1| ≤ α(1+logα) and show that this
bound is asymptotically sharp.

Problem 2 How small can |F1∩F2| be in terms of |F1| and α, or, equivalently,
how large can |F1| be in terms of |F1 ∩ F2| and α?

Alpers ([1, Theorem 5.1.18]) showed in the case α = 1 that

|F1 ∩ F2| ≥ |F1|+ 1
2
−
√

2|F1|+ 1
4
.

This bound is sharp: if |F1| = 1
2
n(n + 1) for some positive integer n, then

there exists an example for which equality holds. A similar result is stated in
[2, Theorem 19].

While [1,2] only deal with the case α = 1, we will give stability results for
general α. In Section 5 we will give two different upper bounds for |F1|. The
bounds have different asymptotic behaviour. Writing p for |F1∩F2|, the second
bound reduces to

|F1| ≤ p+ 1 +
√

2p+ 1

in case α = 1, which is equivalent to

p ≥ |F1| −
√

2|F1|.

Hence the second new bound can be viewed as a generalisation of Alpers’
bound. The first new bound is different and better in the case that α is very
large.

In Section 6 we will generalise the results to the case |F1| 6= |F2|.

3 Staircases

Alpers introduced the notion of a staircase to characterise F14F2 in the case
α = 1. We will use a slightly different definition and then show that for general
α the symmetric difference F14 F2 consists of α staircases.

Definition 3 A set of points (p1, p2, . . . , pn) in Z2 is called a staircase if the
following two conditions are satisfied:

• for each i with 1 ≤ i ≤ n− 1 one of the points pi and pi+1 is an element of
F1\F2 and the other is an element of F2\F1;
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Fig. 2. A staircase. The set F1 consists of the white and the black-and-white points,
while F2 consists of the black and the black-and-white points. The staircase is
indicated by the dashed line segments.

• either for all i the points p2i and p2i+1 are in the same column and the points
p2i+1 and p2i+2 are in the same row, or for all i the points p2i and p2i+1 are
in the same row and the points p2i+1 and p2i+2 are in the same column.

This definition is different from [1,2] in the following way. Firstly, the number
of points does not need to be even. Secondly, the points p1 and pn can both
be either in F1\F2 or in F2\F1. So this definition is slightly more general than
the one used in [1,2] for the case α = 1.

Consider a point pi ∈ F1\F2 of a staircase (p1, p2, . . . , pn). Assume pi−1 is
in the same column as pi and pi+1 is in the same row as pi. Because of the
triangular shape of F1, the row index of pi−1 must be larger than the row index
of pi, and the column index of pi+1 must be larger than the column index of pi.
Therefore, the staircase looks like a real-world staircase (see Figure 2). From
now on, we assume for all staircases that p1 is the point with the largest row
index and the smallest column index, while pn is the point with the smallest
row index and the largest column index. We say that the staircase begins with
p1 and ends with pn.

Lemma 4 Let F1 and F2 be finite subsets of Z2 such that

• F1 is uniquely determined by its row and column sums, and
• |F1| = |F2|.

Let α be defined as in Section 2. Then the set F14F2 is the disjoint union of
α staircases.

PROOF. We will construct the staircases one by one and delete them from
F14 F2. For a subset A of F14 F2, define

ρi(A) = |{j ∈ Z : (i, j) ∈ A ∩ F1}| − |{j ∈ Z : (i, j) ∈ A ∩ F2}|, i ∈ Z,
σj(A) = |{i ∈ Z : (i, j) ∈ A ∩ F1}| − |{i ∈ Z : (i, j) ∈ A ∩ F2}|, j ∈ Z,
τ(A) =

∑
i

|ρi(A)|+
∑
j

|σj(A)|.

We have 2α = τ(F14 F2).
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Assume that the rows and columns are ordered as in Section 2. Because of
the triangular shape of F1, for any point (i, j) ∈ F1\F2 and any point (k, l) ∈
F2\F1 we then have k > i or l > j.

Suppose we have deleted some staircases and are now left with a non-empty
subset A of F14F2. Let (p1, p2, . . . , pn) be a staircase of maximal length that
is contained in A. Let (x1, y1) and (xn, yn) be the coordinates of the points p1

and pn respectively. Each of those two points can be either in A ∩ F1 or in
A ∩ F2, so there are four different cases. (If n = 1, so p1 and pn are the same
point, then there are only two cases.) We consider two cases; the other two
are similar.

First suppose p1 ∈ A ∩ F1 and pn ∈ A ∩ F2. If (x, y1) is a point of A ∩ F2 in
the same column as p1, then x > x1, so we can extend the staircase by adding
this point. That contradicts the maximal length of the staircase. So there are
no points of A ∩ F2 in column y1. Therefore σy1(A) > 0.

Similarly, since pn ∈ A∩F2, there are no points of A∩F1 in the same column
as pn. Therefore σyn(A) < 0.

All rows and all columns that contain points of the staircase, except columns
y1 and yn, contain exactly two points of the staircase, one in A ∩ F1 and
one in A ∩ F2. Let A′ = A\{p1, p2, . . . , pn}. Then ρi(A

′) = ρi(A) for all i,
and σj(A

′) = σj(A) for all j 6= y1, yn. Furthermore, σy1(A
′) = σy1(A) − 1

and σyn(A′) = σyn(A) + 1. Since σy1(A) > 0 and σyn(A) < 0, this gives
τ(A′) = τ(A)− 2.

Now consider the case p1 ∈ A ∩ F1 and pn ∈ A ∩ F1. As above, we have
σy1(A) > 0. Suppose (xn, y) is a point of A ∩ F2 in the same row as pn. Then
y > yn, so we can extend the staircase by adding this point. That contradicts
the maximal length of the staircase. So there are no points of A ∩ F2 in row
xn. Therefore ρxn(A) > 0.

All rows and all columns that contain points of the staircase, except column
y1 and row xn, contain exactly two points of the staircase, one in A ∩ F1

and one in A ∩ F2. Let A′ = A\{p1, p2, . . . , pn}. Then ρi(A
′) = ρi(A) for all

i 6= xn, and σj(A
′) = σj(A) for all j 6= y1. Furthermore, σy1(A

′) = σy1(A)− 1
and ρxn(A′) = ρxn(A) − 1. Since σy1(A) > 0 and ρxn(A) > 0, this gives
τ(A′) = τ(A)− 2.

We can continue deleting staircases in this way until all points of F14F2 have
been deleted. Since τ(A) ≥ 0 for all subsets A ⊂ F1 4 F2, this must happen
after deleting exactly α staircases. �

Remark 5 Some remarks about the above lemma and its proof.
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(i) The α staircases from the previous lemma have 2α endpoints in total (where
we count the same point twice in case of a staircase consisting of one point).
Each endpoint contributes a difference of 1 to the line sums in one row or
column. Since all these differences must add up to 2α, they cannot cancel
each other.

(ii) A staircase consisting of more than one point can be split into two or more
staircases. So it may be possible to write F1 4 F2 as the disjoint union of
more than α staircases. However, in that case some of the contributions of
the endpoints of staircases to the difference in the line sums cancel each
other. On the other hand, it is impossible to decompose F14 F2 into fewer
than α staircases.

(iii) The endpoints of a staircase can be in F1\F2 or F2\F1. For a staircase T of
which the two endpoints are in different sets, we have |T ∩ F1| = |T ∩ F2|.
For a staircase T of which the two endpoints are in the same set, we have
|T ∩ F1| = 1 + |T ∩ F2| or |T ∩ F2| = 1 + |T ∩ F1|. Since |F1\F2| = |F2\F1|,
the number of staircases with two endpoints in F1\F2 must be equal to the
number of staircases with two endpoints in F2\F1. This implies that of the
2α endpoints, exactly α are in the set F1\F2 and α are in the set F2\F1.

Consider a decomposition of F14F2 as in the proof of Lemma 4. We will now
show that for our purposes we may assume that all these staircases begin with
a point p1 ∈ F1\F2 and end with a point pn ∈ F2\F1.

Suppose there is a staircase beginning with a point (x, y) ∈ F2\F1. Then there
also exists a staircase ending with a point (x′, y′) ∈ F1\F2: otherwise more
than half of the 2α endpoints would be in F2\F1, which is a contradiction to

Remark 5(iii). Because of Remark 5(i) we must have r(1)
x < r(2)

x and r
(1)
x′ > r

(2)
x′ .

Let y′′ be such that (x′, y′′) 6∈ F1 ∪ F2. Delete the point (x, y) from F2 and

add the point (x′, y′′) to F2. Then r(2)
x decreases by 1 and r

(2)
x′ increases by 1,

so the difference in the row sums decreases by 2. Meanwhile, the difference in
the column sums increases by at most 2. So α does not increase, while F1, |F2|
and |F1 4 F2| do not change. So the new situation is just as good or better
than the old one. The staircase that began with (x, y) in the old situation
now begins with a point of F1\F2. The point that we added becomes the new
endpoint of the staircase that previously ended with (x′, y′).

Therefore, in our investigations we may assume that all staircases begin with a
point of F1\F2 and end with a point of F2\F1. This is an important assumption
that we will use in the proofs throughout the paper. An immediate consequence
of it is that r

(1)
i = r

(2)
i for all i. The only difference between corresponding line

sums occurs in the columns.
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4 A new bound for the disjoint case

Using the concept of staircases, we can prove a new bound for Problem 1.

Theorem 6 Let F1 and F2 be finite subsets of Z2 such that

• F1 is uniquely determined by its row and column sums,
• |F1| = |F2|, and
• F1 ∩ F2 = ∅.

Let α be defined as in Section 2. Then

|F1| ≤
α∑
i=1

⌊
α

i

⌋
.

PROOF. Assume that the rows and columns are ordered as in Section 2. Let
a be the number of rows and b the number of columns that contain elements of
F1. Let (k, l) ∈ F1. Then all the points in the rectangle {(i, j) : 1 ≤ i ≤ k, 1 ≤
j ≤ l} are elements of F1. Since F1 and F2 are disjoint, none of the points in
this rectangle is an element of F2, and all the points belong to F14F2. So all
of the kl points must belong to different staircases, which implies α ≥ kl. For
all i with 1 ≤ i ≤ a we have (i, r

(1)
i ) ∈ F1, hence r

(1)
i ≤ α

i
. Since r

(1)
i must be

an integer, we have

|F1| =
a∑
i=1

r
(1)
i ≤

a∑
i=1

⌊
α

i

⌋
.

Since (a, 1) ∈ F1, we have a ≤ α, so

|F1| ≤
α∑
i=1

⌊
α

i

⌋
.

�

Corollary 7 Let F1, F2 and α be defined as in Theorem 6. Then

|F1| ≤ α(1 + logα).

PROOF. We have

|F1| ≤
α∑
i=1

⌊
α

i

⌋
≤ α

α∑
i=1

1

i
≤ α

(
1 +

∫ α

1

1

x
dx
)

= α (1 + logα) .

�
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Fig. 3. The construction from Example 8 with m = 3.

The following example shows that the upper bound cannot even be improved
by a factor 1

2 log 2
≈ 0.72.

Example 8 (taken from [1])

Let m ≥ 1 be an integer. We construct sets F1 and F2 as follows (see also
Figure 3).

• Row 1:
· (1, j) ∈ F1 for 1 ≤ j ≤ 2m,
· (1, j) ∈ F2 for 2m + 1 ≤ j ≤ 2m+1.
• Let 0 ≤ l ≤ m− 1. Row i, where 2l + 1 ≤ i ≤ 2l+1:
· (i, j) ∈ F1 for 1 ≤ j ≤ 2m−l−1,
· (i, j) ∈ F2 for 2m−l−1 + 1 ≤ j ≤ 2m−l.

The construction is almost completely symmetrical: if (i, j) ∈ F1, then (j, i) ∈
F1; and if (i, j) ∈ F2 with i > 1, then (j, i) ∈ F2. Since it is clear from the
construction that each row contains exactly as many points of F1 as points
of F2, we conclude that each column j with 2 ≤ j ≤ 2m contains exactly as
many points of F1 as points of F2 as well. The only difference in the line sums
occurs in the first column (which has 2m points of F1 and none of F2) and in
columns 2m + 1 up to 2m+1 (each of which contains one point of F2 and none
of F1). So we have

α = 2m.

Furthermore,

|F1| = 2m +
m−1∑
l=0

2l2m−l−1 = 2m +m2m−1.

Hence for this family of examples it holds that

|F1| = α +
1

2
α log2 α,

which is very close to the bound we proved in Corollary 7.
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5 Two bounds for general α

In case F1 and F2 are not disjoint, we can use an approach very similar to
Section 4 in order to derive a bound for Problem 2.

Theorem 9 Let F1 and F2 be finite subsets of Z2 such that

• F1 is uniquely determined by its row and column sums, and
• |F1| = |F2|.

Let α be defined as in Section 2, and let p = |F1 ∩ F2|. Then

|F1| ≤
α+p∑
i=1

⌊
α + p

i

⌋
.

PROOF. Assume that the rows and columns are ordered as in Section 2. Let
(k, l) ∈ F1. Then all the points in the rectangle {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ l}
are elements of F1. At most p of the points in this rectangle are elements of
F2, so at least kl − p points belong to F1 4 F2. None of the points in the
rectangle is an element of F2\F1, so all of the kl − p points of F14 F2 in the
rectangle must belong to different staircases, which implies α+ p ≥ kl. For all
i with 1 ≤ i ≤ a we have (i, r

(1)
i ) ∈ F1, hence r

(1)
i ≤ α+p

i
. Since r

(1)
i must be

an integer, we have

|F1| =
a∑
i=1

r
(1)
i ≤

a∑
i=1

⌊
α + p

i

⌋
.

Since (a, 1) ∈ F1, we have a ≤ α + p, so

|F1| ≤
α+p∑
i=1

⌊
α + p

i

⌋
.

�

Corollary 10 Let F1, F2, α and p be defined as in Theorem 9. Then

|F1| ≤ (α + p)(1 + log(α + p)).

PROOF. Analogous to the proof of Corollary 7. �

The following example shows that the upper bound cannot even be improved
by a factor 1

2 log 2
≈ 0.72, provided that α > p+1

2 log 2−1
log(p+ 1).

Example 11
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Fig. 4. The construction from Example 11 with k = 3 and m = 4.

Let k and m be integers satisfying k ≥ 2 and m ≥ 2k − 2. We construct sets
F1 and F2 as follows (see also Figures 4 and 5).

• Row 1:
· (1, j) ∈ F1 ∩ F2 for 1 ≤ j ≤ 2k−1,
· (1, j) ∈ F1 for 2k−1 + 1 ≤ j ≤ 2m − 2k−1 + 1,
· (1, j) ∈ F2 for 2m − 2k−1 + 2 ≤ j ≤ 2m+1 − 2k − 2k−1 + 2.
• Let 0 ≤ l ≤ k − 2. Row i, where 2l + 1 ≤ i ≤ 2l+1:
· (i, 1) ∈ F1 ∩ F2,
· (i, j) ∈ F1 for 2 ≤ j ≤ 2m−l−1 − 2k−l−2 + 1,
· (i, j) ∈ F2 for 2m−l−1 − 2k−l−2 + 2 ≤ j ≤ 2m−l − 2k−l−1 + 1.
• Let k − 1 ≤ l ≤ m− k. Row i, where 2l + 1 ≤ i ≤ 2l+1:
· (i, j) ∈ F1 for 1 ≤ j ≤ 2m−l−1,
· (i, j) ∈ F2 for 2m−l−1 + 1 ≤ j ≤ 2m−l.
• Let m − k + 1 ≤ l ≤ m − 1. Row i, where 2l − 2l−m+k−1 + 2 ≤ i ≤

2l+1 − 2l−m+k + 1:
· (i, j) ∈ F1 for 1 ≤ j ≤ 2m−l−1,
· (i, j) ∈ F2 for 2m−l−1 + 1 ≤ j ≤ 2m−l.

The construction is almost symmetrical: if (i, j) ∈ F1, then (j, i) ∈ F1; if
(i, j) ∈ F1 ∩ F2, then (j, i) ∈ F1 ∩ F2; and if (i, j) ∈ F2 with i > 1, then
(j, i) ∈ F2. Since it is clear from the construction that each row contains
exactly as many points of F1 as points of F2, we conclude that each column j
with 2 ≤ j ≤ 2m − 2k−1 + 1 contains exactly as many points of F1 as points
of F2 as well. The only difference in the line sums occurs in the first column
(which has 2m − 2k−1 + 1 points of F1 and only 2k−1 of F2) and in columns
2m− 2k−1 + 2 up to 2m+1− 2k − 2k−1 + 2 (each of which contains one point of
F2 and none of F1). So we have

11



Fig. 5. The construction from Example 11 with k = 2 and m = 4.

α=
1

2

(
(2m − 2k−1 + 1)− 2k−1 + (2m+1 − 2k − 2k−1 + 2)− (2m − 2k−1 + 1)

)
= 2m − 2k + 1.

It is easy to see that

p = |F1 ∩ F2| = 2k − 1.

Now we count the number of elements of F1.

• Row 1 contains 2m − 2k−1 + 1 elements of F1.
• Let 0 ≤ l ≤ k − 2. Rows 2l + 1 up to 2l+1 together contain 2l(2m−l−1 −

2k−l−2 + 1) = 2m−1 − 2k−2 + 2l elements of F1.
• Let k− 1 ≤ l ≤ m− k. Rows 2l + 1 up to 2l+1 together contain 2l · 2m−l−1 =

2m−1 elements of F1.
• Let m− k+ 1 ≤ l ≤ m− 1. Rows 2l − 2l−m+k−1 + 2 up to 2l+1− 2l−m+k + 1

together contain (2l − 2l−m+k−1)(2m−l−1) = 2m−1 − 2k−2 elements of F1.

Hence the number of elements of F1 is

|F1|= 2m − 2k−1 + 1 + (k − 1)(2m−1 − 2k−2) +
k−2∑
l=0

2l

+(m− 2k + 2)2m−1 + (k − 1)(2m−1 − 2k−2)

= 2m +m2m−1 + 2k−1 − k2k−1.

For this family of examples we now have

|F1| = α + p+
α + p

2
log2(α + p) +

p+ 1

2
− p+ 1

2
log2(p+ 1).
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We will now prove another bound, which is better if p = |F1 ∩ F2| is large
compared to α. Let u be an integer such that 2u = |F1 4 F2|. We will first
derive an upper bound on u in terms of a, b and α. Then we will derive a
lower bound on |F1| in terms of a, b and α. By combining these two, we find
an upper bound on u in terms of α and p.

Lemma 12 Let F1 and F2 be finite subsets of Z2 such that

• F1 is uniquely determined by its row and column sums, and
• |F1| = |F2|.

Let α, a and b be defined as in Section 2. Define u as 2u = |F1 4 F2|. Then
we have

u2 ≤ α

4
(a+ b)(a+ b+ α− 1).

PROOF. Decompose F14F2 into α staircases as in Lemma 4, and let T be
the set consisting of these staircases. Let T ∈ T be a staircase and i ≤ a + 1
a positive integer. Consider the elements of T ∩ F2 in rows i, i + 1, . . . , a. If
such elements exist, then let wi(T ) be the largest column index that occurs
among these elements. If there are no elements of T ∩F2 in those rows, then let
wi(T ) be equal to the smallest column index of an element of T ∩F1 (no longer
restricted to rows i, . . . , a). We have wi(T ) ≥ 1. Define Wi =

∑
T∈T wi(T ).

Let di be the number of elements of F1\F2 in row i. Let y1 < . . . < ydi
be the

column indices of the elements of F1\F2 in row i, and let y′1 < . . . < y′di
be

the column indices of the elements of F2\F1 in row i. Let Ti ⊂ T be the set
of staircases with elements in row i. The elements in F2\F1 of these staircases
are in columns y′1, y

′
2, . . . , y′di

, hence the set {wi(T ) : T ∈ Ti} is equal to
the set {y′1, y′2, . . . , y′di

}. The elements in F1\F2 are in columns y1, y2, . . . , yd
and are either the first element of a staircase or correspond to an element of
F2\F1 in the same column but in a row with index at least i + 1. In either
case, for a staircase T ∈ Ti we have wi+1(T ) = yj for some j. Hence the set
{wi+1(T ) : T ∈ Ti} is equal to the set {y1, y2, . . . , ydi

}. We have

∑
T∈Ti

wi+1(T ) =
di∑
j=1

yj ≤
di∑
j=1

(ydi
− j + 1) = diydi

− 1

2
(di − 1)di,

and ∑
T∈Ti

wi(T ) =
di∑
j=1

y′j ≥
di∑
j=1

(ydi
+ j) = diydi

+
1

2
(di + 1)di.

Hence

13



Wi =Wi+1 +
∑
T∈Ti

(wi(T )− wi+1(T ))

≥Wi+1 +
1

2
(di + 1)di +

1

2
(di − 1)di

=Wi+1 + d2
i .

Since Wa+1 ≥ α, we find

W1 ≥ α + d2
1 + · · ·+ d2

a.

We may assume that if (x, y) is the endpoint of a staircase, then (x, y′) is an
element of F1∪F2 for 1 ≤ y′ < y (i.e. there are no gaps between the endpoints
and other elements of F1 ∪ F2 on the same row). After all, by moving the
endpoint of a staircase to another empty position on the same row, the error
in the columns can only become smaller (if the new position of the endpoint
happens to be in the same column as the first point of another staircase, in
which case the two staircases fuse together to one) but not larger, and u, a
and b do not change.

So on the other hand, as W1 is the sum of the column indices of the endpoints
of the staircases, we have

W1 ≤ (b+ 1) + (b+ 2) + · · ·+ (b+ α) = αb+
1

2
α(α + 1).

We conclude

α +
a∑
i=1

d2
i ≤ αb+

1

2
α(α + 1).

Note that
∑a
i=1 di = u. By the Cauchy-Schwarz inequality, we have(

a∑
i=1

d2
i

)(
a∑
i=1

1

)
≥
(

a∑
i=1

di

)2

= u2,

so
a∑
i=1

d2
i ≥

u2

a
.

From this it follows that

αb+
1

2
α(α + 1) ≥ α +

u2

a
,

or, equivalently,

u2 ≤ αab+
1

2
α(α− 1)a.

By symmetry we also have

u2 ≤ αab+
1

2
α(α− 1)b.

14



Hence

u2 ≤ αab+
1

4
α(α− 1)(a+ b).

Using that
√
ab ≤ a+b

2
, we find

u2 ≤ α

(
(a+ b)2

4
+

(α− 1)(a+ b)

4

)
=
α

4
(a+ b)(a+ b+ α− 1).

�

Lemma 13 Let F1 and F2 be finite subsets of Z2 such that

• F1 is uniquely determined by its row and column sums, and
• |F1| = |F2|.

Let α, a and b be defined as in Section 2. Then we have

|F1| ≥
(a+ b)2

4(α + 1)
.

PROOF. Without loss of generality, we may assume that all rows and columns
that contain elements of F1 also contain at least one point F14F2: if a row or
column does not contain any points of F14F2, we may delete it. By doing so,
F14F2 does not change, while |F1| becomes smaller, so the situation becomes
better.

First consider the case r
(1)
i+1 < r

(1)
i − α for some i. We will show that this is

impossible. If a column does not contain an element of F2\F1, then by the
assumption above it contains an element of F1\F2, which must then be the
first point of a staircase. Consider all points of F2\F1 and all first points of
staircases in columns ri+1 + 1, ri+1 + 2, . . . , ri. Since these are more than α
columns, at least two of those points must belong to the same staircase. On the
other hand, if (x, y) ∈ F1\F2 is the first point of a staircase with ri+1 < y ≤ ri,
then we have x ≤ i, so the second point (x′, y′) in the staircase, which is in
F2\F1, must satisfy x′ ≤ i and therefore y′ > ri. So the second point cannot
also be in one of the columns ri+1 + 1, ri+1 + 2, . . . , ri. If two points of F2\F1

in columns ri+1 + 1, ri+1 + 2, . . . , ri belong to the same staircase, then they
must be connected by a point of F1\F2 in the same columns. However, by
a similar argument this forces the next point to be outside the mentioned
columns, while we assumed that it was in those columns. We conclude that it
is impossible for row sums of two consecutive rows to differ by more than α.

By the same argument, column sums of two consecutive columns cannot differ
by more than α. Hence we have r

(1)
i+1 ≥ r

(1)
i − α for all i, and c

(1)
j+1 ≥ c

(1)
j − α

for all j.

15



Fig. 6. The number of points of F1 (indicated by small black dots) is equal to the
grey area.

We now have r
(1)
2 ≥ b − α, r

(1)
3 ≥ b − 2α, and so on. Also, c

(1)
2 ≥ a − α,

c
(1)
3 ≥ a − 2α, and so on. Using this, we can derive a lower bound on |F1|

for fixed a and b. Consider Figure 6. The points of F1 are indicated by black
dots. The number of points is equal to the grey area in the picture, which
consists of all 1 × 1-squares with a point of F1 in the upper left corner. We
can estimate this area from below by drawing a line with slope α through
the point (a + 1, 1) and a line with slope 1

α
through the point (b + 1, 1); the

area closed in by these two lines and the two axes is less than or equal to the
number of points of F1.

For α = 1 those lines do not have a point of intersection. Under the assumption
we made at the beginning of this proof, we must in this case have a = b and
the number of points of F1 is equal to

a(a+ 1)

2
≥ a2

α + 1
=

(a+ b)2

4(α + 1)
,

so in this case we are done.

In order to compute the area for α ≥ 2 we switch to the usual coordinates in
R2, see Figure 7. The equation of the first line is y = αx−a, and the equation
of the second line is y = 1

α
x − 1

α
b. We find that the point of intersection is

given by

(x, y) =

(
aα− b
α2 − 1

,
−bα + a

α2 − 1

)
.

The area of the grey part of Figure 7 is equal to

1

2
a · aα− b

α2 − 1
+

1

2
b · bα− a
α2 − 1

=
a2α + b2α− 2ab

2(α2 − 1)
.

We now have

|F1| ≥
α(a2 + b2)− 2ab

2(α2 − 1)
≥
α (a+b)2

2
− (a+b)2

2

2(α2 − 1)
=

(a+ b)2

4(α + 1)
.

�

Theorem 14 Let F1 and F2 be finite subsets of Z2 such that
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(0, 0)

(0,−a)

(b, 0)

y = 1
αx− 1

αb

y = αx− a

Fig. 7. Computing the area bounded by the two lines and the two axes.

• F1 is uniquely determined by its row and column sums, and
• |F1| = |F2|.

Let α be defined as in Section 2, and let p = |F1 ∩ F2|. Write β =
√
α(α+ 1).

Then

|F1| ≤ p+

√
α

4

(
β +

√
β(α− 1) + 4(α + 1)p+ β2 +

α− 1

2

)2

− (α− 1)2α

16
.

PROOF. Write s = a + b for convenience of notation. From Lemma 12 we
derive

u ≤
√
α

2

(
s+

α− 1

2

)
.

We substitute |F1| = u+ p in Lemma 13 and use the above bound for u:

√
α

2

(
s+

α− 1

2

)
+ p ≥ |F1| ≥

s2

4(α + 1)
.

Solving for s, we find

s≤
√
α(α + 1) +

√√
α(α2 − 1) + 4(α + 1)p+ α(α + 1)2

= β +
√
β(α + 1) + 4(α + 1)p+ β2

Finally we substitute this in Lemma 12:

u ≤
√
α

4

(
β +

√
β(α− 1) + 4(α + 1)p+ β2 +

α− 1

2

)2

− (α− 1)2α

16
.

This, together with |F1| = u+ p, yields the claimed result. �

Remark 15 By a straightforward generalisation of [2, Proposition 13 and
Lemma 16], we find a bound very similar to the one in Theorem 14:

|F1| ≤ p+ (α + 1)(α− 1

2
) + (α + 1)

√
2p+

(2α− 1)2

4
.
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N

N

α

α

Fig. 8. The construction from Example 16 with N = 4 and α = 3.

Theorem 14 says that |F1| is asymptotically bounded by p + α
√
p + α2. The

next example shows that |F1| can be asymptotically as large as p+ 2
√
αp+α.

Example 16

Let N be a positive integer. We construct F1 and F2 with total difference in
the line sums equal to 2α as follows (see also Figure 8). Let (i, j) ∈ F1 ∩ F2

for 1 ≤ i ≤ N , 1 ≤ j ≤ N . Furthermore, for 1 ≤ i ≤ N :

• Let (i, j), (j, i) ∈ F1 ∩ F2 for N + 1 ≤ j ≤ N + (N − i)α.
• Let (i, j), (j, i) ∈ F1 for N + (N − i)α + 1 ≤ j ≤ N + (N − i+ 1)α.
• Let (i, j), (j, i) ∈ F2 for N + (N − i+ 1)α + 1 ≤ j ≤ N + (N − i+ 2)α.

Finally, for 1 ≤ t ≤ α, let (i, j) ∈ F2 with i = N + t and j = N + α + 1− t.

The only differences in the line sums occur in the first column (a difference of
α) and in columns N + Nα + 1 up to N + Nα + α (a difference of 1 in each
column). We have

p = N2 + 2 · 1

2
N(N − 1)α = N2 +N2α−Nα,

and

|F1| = N2 + 2 · 1

2
N(N + 1)α = N2 +N2α +Nα.

18



From the first equality we derive

N =
α

2(α + 1)
+

√√√√ p

α + 1
+

α2

4(α + 1)2
.

Hence

|F1| = p+ 2Nα = p+
α2

α + 1
+

√√√√ 4α2p

α + 1
+

α4

(α + 1)2
.

6 Generalisation to unequal sizes

Until now, we have assumed that |F1| = |F2|. However, we can easily generalise
all the results to the case |F1| 6= |F2|.

Suppose |F1| > |F2|. Then there must be a row i with r
(1)
i > r

(2)
i . Let j > b

be such that (i, j) 6∈ F2 and define F3 = F2 ∪ {(i, j)}. We have r
(3)
i = r

(2)
i + 1,

so the error in row i has decreased by one, while the error in column j has
increased by one. In this way, we can keep adding points until F2 together
with the extra points is just as large as F1, while the total difference in the
line sums is still 2α. Note that p = |F1∩F2| and |F1| have not changed during
this process, so the results from Theorem 14 and Corollary 10 are still valid
in exactly the same form.

Suppose on the other hand that |F1| < |F2|. Then there must be a row with

r
(1)
i < r

(2)
i . Let j be such that (i, j) ∈ F2\F1 and define F3 = F2\{(i, j)}. The

error in row i has now decreased by one, while the error in column j has at
most increased by one, so the total error in the line sums has not increased.
We can keep deleting points of F2 until there are exactly |F1| points left, while
the total difference in the line sums is at most 2α.

By using |F1 4 F2| = 2(|F1| − p), we can state the results from Theorem 14
and Corollary 10 in a more symmetric way, not depending on the size of F1.

Theorem 17 Let F1 and F2 be finite subsets of Z2 such that F1 is uniquely
determined by its row and column sums. Let α be defined as in Section 2, and
let p = |F1 ∩ F2|. Write β =

√
α(α + 1). Then

(1) |F14 F2| ≤ 2α + 2(α + p) log(α + p).

(2) |F14 F2| ≤
√
α
(
β +

√
β(α− 1) + 4(α + 1)p+ β2 + α−1

2

)2
− (α−1)2α

4
.
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