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Abstract. In this paper, which is part of a study of positive representations

of locally compact groups in Banach lattices, we initiate the theory of posi-

tive representations of finite groups in Riesz spaces. If such a representation
has only the zero subspace and possibly the space itself as invariant principal

bands, then the space is Archimedean and finite dimensional. Various notions

of irreducibility of a positive representation are introduced and, for a finite
group acting positively in a space with sufficiently many projections, these are

shown to be equal. We describe the finite dimensional positive Archimedean
representations of a finite group and establish that, up to order equivalence,

these are order direct sums, with unique multiplicities, of the order indecom-

posable positive representations naturally associated with transitive G-spaces.
Character theory is shown to break down for positive representations. Induc-

tion and systems of imprimitivity are introduced in an ordered context, where

the multiplicity formulation of Frobenius reciprocity turns out not to hold.

1. Introduction and overview

The theory of unitary group representations is well developed. Apart from its
intrinsic appeal, it has been stimulated in its early days by the wish, originating from
quantum theory, to understand the natural representations of symmetry groups of
physical systems in L2-spaces. Such symmetry groups do not only yield natural
unitary representations, but they have natural representations in other Banach
spaces as well. For example, the orthogonal group in three dimensions does not
only act on the L2-functions on the sphere or on three dimensional space. It also
has a natural isometric action on Lp-functions, for all p, and this action is strongly
continuous for finite p. Moreover, this action is obviously positive. Thus, for
finite p, these Lp-spaces, which are Banach lattices, afford a strongly continuous
isometric positive representation of the orthogonal group. It is rather easy to find
more examples of positive representations: whenever a group acts on a point set,
then, more often than not, there is a natural positive action on various naturally
associated Banach lattices of functions.

However, in spite of the plenitude of examples of strongly continuous (isometric)
positive representations of groups in Banach lattices, the theory of such represen-
tations cannot compare to its unitary counterpart. Very little seems to be known.
Is there, for example, a decomposition theory into indecomposables for such repre-
sentations, as a positive counterpart to that for unitary representations described
in, e.g., [2]? When asking such an—admittedly ambitious—question, it is impor-
tant to keep in mind that the unitary theory works particularly well in separable
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Hilbert spaces, i.e., for representations which can all be realized in just one space:
`2. Since there is a great diversity of Banach lattices, it is not clear at the time of
writing whether one can expect a general answer for all these lattices with a degree
of sophistication and uniformity comparable to that for the unitary representations
in this single Hilbert space `2. It may be more feasible, at least for the moment,
to aim at a better understanding of positive representations on specific classes of
Banach lattices. For example, the results in [4] show that, in the context of a Polish
group acting on a Polish space with an invariant measure, it is indeed possible to
decompose—in terms of Banach bundles rather than in terms of direct integrals
as in the unitary case—the corresponding isometric positive representation in Lp-
spaces (1 ≤ p <∞) into indecomposable isometric positive representations. To our
knowledge, this is the only available decomposition result at this time. Since this re-
sult covers only representations originating from an action on the underlying point
set, we still cannot decide whether a general (isometric) positive representation of
a (Polish) group in such Banach lattices can be decomposed into indecomposable
positive representations, and more research is necessary to decide this. This, how-
ever, is already a relatively advanced issue: as will become clear below, it is easy to
ask very natural basic questions about positive representations of locally compact
groups in Banach lattices which need answering. This paper, then, is a contribution
to the theory of such representations, with a hoped-for decomposition theory into
indecomposable positive representations in mind as a leading and focusing theme,
and starting with the obviously easiest case: the finite groups. We will now globally
discuss it contents.

If a group G acts as positive operators on a Banach lattice E, then the natural
question is to ask whether it is possible to decompose E = L⊕M as a G-invariant
order direct sum. In that case, L and M are automatically projection bands and
each other’s disjoint complement. Since bands in a Banach lattice are closed, the
decomposition is then automatically also topological, and the original representa-
tions splits as an order direct sum of the positive subrepresentations on the Banach
lattices L and M . If such a decomposition is only trivially possible, then we will
call the representation (order) indecomposable, a terminology already tacitly used
above. Is it then true that every indecomposable positive representation of a finite
group G in a Banach lattice is finite dimensional, as it is for unitary representa-
tions? This is not the case: the trivial group acting on C([0, 1]), which has only
trivial projection bands, provides a counterexample. Is it then perhaps true when
we narrow down the class of spaces to better behaved ones, and ask the same ques-
tion for Banach lattices with the projection property? After all, since bands are
now complemented by their disjoint complement, they seem close to Hilbert spaces
where the proof for the corresponding statement in the unitary case is a triviality,
and based on this complementation property. Indeed, if x 6= 0 is an element of
the Hilbert space under consideration where the finite group G acts unitarily and
irreducibly, then the orbit G · x spans a finite dimensional, hence closed, nonzero
subspace which is clearly invariant and invariantly complemented. Hence the orbit
spans the space, which must be finite dimensional. In an ordered context this proof
breaks down. Surely, one can consider the band generated by the orbit of a nonzero
element, which is invariantly complemented in an order direct sum if the space is
assumed to have the projection property. Hence this band is equal to the space,
but since there is no guarantee that it is finite dimensional, once cannot reach the
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desired conclusion along these lines. We have not been able to find an answer to
this finite dimensionality question for Banach lattices with the projection property
in the literature, nor could a number of experts in positivity we consulted provide
an answer. The best available result in this vein seems to be [9, Theorem III.10.4],
which implies as a special case that a positive representation of a finite group in a
Banach lattice with only trivial invariant closed ideals is finite dimensional. Still,
this does not answer our question concerning the finite dimensionality of inde-
composable positive representations of a finite group in a Banach lattice with the
projection property. The reason is simple: unless one assumes that the lattice has
order continuous norm, one cannot conclude that there are only trivial invariant
closed ideals from the fact that there are only trivial invariant bands. On the other
hand: there are no obvious infinite dimensional counterexamples in sight, and one
might start to suspect that there are none. This is in fact the case, and even more
holds true: a positive representation of a finite group in a Riesz space, with the
property that the only invariant principal bands are {0} and possibly the space
itself, is in a finite dimensional Archimedean space, cf. Theorem 3.14 below. As
will have become obvious from the previous discussion, such a result is no longer
a triviality in an ordered context. It provides an affirmative answer to our original
question because, for Banach lattices with the projection property, an invariant
principal band is an invariant projection band. It also implies the aforementioned
result that a positive representation of a finite group in a Banach lattice with only
trivial invariant closed ideals is finite dimensional. Indeed, an invariant principal
band is then an invariant closed ideal.

Thus, even though our original question was in terms of Banach lattices, and
motivated by analytical unitary analogies, an answer can be provided in a more
general, topology free context. For finite groups, this is—after the fact—perhaps
not too big a surprise. Furthermore, we note that the hypothesis in this finite
dimensionality theorem is not the triviality of all invariant order decompositions,
but rather the absence of a nontrivial G-invariant object, without any reference to
this being invariantly complemented in an order direct sum or not. It thus becomes
clear that it is worthwhile to not only consider the existence of nontrivial invariant
projection bands (which is the same as the representation being (order) decompos-
able), but to also consider the existence of nontrivial invariant ideals, nontrivial
invariant bands, etc., for positive representations in arbitrary Riesz spaces, and
investigate the interrelations between the corresponding notions of irreducibility.
In the unitary case, indecomposability and irreducibility (for which there is only
one reasonable notion) coincide, but in the present ordered context this need not
be so. Nevertheless, for finite groups acting positively in spaces with sufficiently
many projections, the most natural of these notions of irreducibility are all identical
and coincide with (order) indecomposability, cf. Theorem 3.16. Again, whereas the
corresponding proof for the unitary case is a triviality, this is not quite so obvious
in an ordered context.

As will become apparent in this paper, it is possible to describe all finite di-
mensional positive Archimedean representations of a finite group, indecomposable
or not. Once this is done, it is not too difficult to show that such finite dimen-
sional positive representations can be decomposed uniquely into indecomposable
positive representations, and that, up to order equivalence, all such indecompos-
able positive representations arise from actions of the group on transitive G-spaces,
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cf. Corollary 4.11 and Theorem 4.10. Since this decomposition into irreducible
positive representations with multiplicities is so reminiscent of classical linear rep-
resentation theory theory for finite groups, and to Peter-Weyl theory for compact
groups, one might wonder whether parts of character theory also survive. This
is hardly the case. For finite groups with only normal subgroups, such as finite
abelian groups, there is still a bijection between characters and order equivalence
classes of finite dimensional indecomposable positive Archimedean representations,
cf. Corollary 4.14, but we provide counterexamples to a number of other results as
they would be natural to conjecture.

Finally, we consider induction and systems of imprimitivity in an ordered con-
text. As long as topology is not an issue, this can be done from a categorical point
of view for arbitrary groups and arbitrary subgroups. Even though the construc-
tions are fairly routine, we have included the material, not only as a preparation
for future more analytical considerations, but also because there are still some dif-
ferences with the linear theory. For example, Frobenius reciprocity no longer holds
in its multiplicity formulation.

After this global overview we emphasize that, even though this paper contains
a basic finite dimensionality result and provides reasonably complete results for
finite dimensional positive Archimedean representations of finite groups (in analyt-
ical terms: for positive representations of finite groups in C(K) for K finite), the
basic decomposition issue for positive representations of a finite group in infinite
dimensional Banach lattices is still open. At the time of writing, the only results
in this direction seem to be the specialization to finite groups of the results in [4]
for Lp-spaces, and of those in [3], which is concerned with Jordan-Hölder theory for
finite chains of various invariant order structures in Riesz spaces. As long as the
group is only finite, a more comprehensive answer seems desirable.

The structure of this paper is as follows.
In Section 2 we introduce the necessary notation and definitions, and we recall

a folklore result on transitive G-spaces. Then, in Section 3, we investigate the re-
lations between various notions of irreducibility as already mentioned above. We
then establish one of the main results of this paper, Theorem 3.14, stating, amongst
others, that a principal band irreducible positive representation of a finite group is
always finite dimensional. The proof is by induction on the order of the group, and
uses a reasonable amount of general basic theory of Riesz spaces. We then continue
by examining the structure of finite dimensional positive Archimedean representa-
tions of a finite group in Section 4. Any such space is lattice isomorphic to Rn, for
some n, and its group Aut+(Rn) of lattice automorphisms is a semidirect product of
Sn and the group of multiplication (diagonal) operators, a result which also follows
from [8, Theorem 3.2.10], but which we prefer to derive by elementary means in our
context. Armed with this information we can completely determine the structure
of a positive representations of a finite group in Rn in Theorem 4.5: such a positive
representation is given by a representation into Sn ⊂ Aut+(Rn), called a permuta-
tion representation, and a single multiplication operator. We then determine when
two positive representations in Rn are order equivalent, which turns out to be the
case precisely when their permutation parts are conjugate. Consequently, in the
end, the finite dimensional positive Archimedean representations of a finite group
can be described in terms of actions of the group on finite sets. The decomposition
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result and the description of indecomposable positive representations already men-
tioned above then follow easily. The rest of Section 4 is concerned with showing that
character theory does not survive in an ordered context. Finally, in Section 5, we
develop the theory of induction and systems of imprimitivity in the ordered setting,
and show that Frobenius reciprocity does not hold in its multiplicity formulation.

2. Preliminaries

In this section we will discuss some preliminaries about automorphisms of Riesz
spaces, representations, order direct sums of representations and G-spaces. All
Riesz spaces in this paper are real. For positive representations in spaces admitting
a complexification it is easy, and left to the reader, to formulate the corresponding
complex result and derive it from the real case.

Let E be a not necessarily Archimedean Riesz space. If D ⊂ E is any subset,
then the band generated by D is denoted by {D}, and the disjoint complement of
D is denoted by Dd. If T is a lattice automorphism of E, then {TD} = T{D} and
T (Dd) = (TD)d. The group of lattice automorphisms of E is denoted by Aut+(E).

In this paper Rn is always equipped with the coordinatewise ordering.

Definition 2.1. Let G be a group and E a Riesz space. A positive representation
of G in E is a group homomorphism ρ : G→ Aut+(E).

For typographical reasons, we will write ρs instead of ρ(s), for s ∈ G.
If (Ei)i∈I is a collection of Riesz spaces, then the order direct sum of this collec-

tion, denoted ⊕i∈IEi, is the Riesz space with elements (xi)i∈I , where xi ∈ Ei for
all i ∈ I, at most finitely many xi are nonzero, and where (xi)i∈I is positive if and
only if xi is positive for all i ∈ I. If additionally ρi : G → Aut+(Ei) is a positive
representation for all i ∈ I, then the positive representation⊕

i∈I
ρi : → Aut+

(⊕
i∈I

Ei

)
,

the order direct sum of the ρi, is defined by (⊕i∈Iρi)s := ⊕i∈Iρis, for s ∈ G.
Let ρ : G→ Aut+(E) be a positive representation, and suppose that E = L⊕M

as an order direct sum. Then L and M are automatically projection bands with
Ld = M by [7, Theorem 24.3]. If both L and M are ρ-invariant, then ρ can be
viewed as the order direct sum of ρ acting positively on L and M .

If ρ : G → Aut+(E) and θ : G → Aut+(F ) are positive representations on Riesz
spaces E and F , respectively, then a positive map T : E → F is called a positive
intertwiner between ρ and θ if Tρs = θsT for all s ∈ G, and ρ and θ are called
order equivalent if there exists a positive intertwiner between ρ and θ which is a
lattice isomorphism.

Turning to the terminology for G-spaces, we let G be a not necessarily finite
group. A G-space X is a nonempty set X equipped with an action of G; it is
called transitive if there is only one orbit. For x ∈ X, let Gx denote the subgroup
{s ∈ G : sx = x}, the stabilizer of x. If X and Y are G-spaces, then X and
Y are called isomorphic G-spaces if there is a bijection φ : X → Y , such that
sφ(x) = φ(sx) for all s ∈ G and x ∈ X. We let [X] denote the class of all G-spaces
isomorphic to X.
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If X is a transitive G-space and x ∈ X, then sx 7→ sGx is a G-space isomorphism
betweenX andG/Gx with its naturalG-action. The next folklore lemma elaborates
on this correspondence.

Lemma 2.2. Let G be a not necessarily finite group. For each isomorphism class
[X] of transitive G-spaces, choose a representative X and x ∈ X. Then the conju-
gacy class [Gx] of Gx does not depend on the choices made, and the map [X] 7→ [Gx]
is a bijection between the isomorphism classes of transitive G-spaces and the con-
jugacy classes of subgroups of G.

Proof. It is easy to see that the map is well-defined and surjective. For injectivity,
let X and Y be transitive G-spaces, such that [Gx] = [Gy] for some x ∈ X and
y ∈ Y . We have to show that [X] = [Y ], or equivalently, G/Gx ∼= G/Gy. By
assumption Gx = rGyr

−1 for some r ∈ G, and the map sGx 7→ sGxr = srGy is
then an isomorphism of G-spaces between G/Gx and G/Gy. �

3. Irreducible and indecomposable representations

In the theory of unitary representations of groups, the nonexistence of nontriv-
ial closed invariant subspaces is the only reasonable notion of irreducibility of a
representation, and it coincides with the natural notion of indecomposability of a
representation. In a purely linear context, irreducibility and indecomposability of
group representations need not coincide, however, and the same is true in an or-
dered context where, in addition, there are several natural notions of irreducibility.
In this section, we are concerned with the relations between the various notions and
we establish a basic finite dimensionality result, Theorem 3.14. This is then used
to show that, after the fact, the various notions of irreducibility are equivalent for
finite groups if the space has sufficiently many projections, cf. Theorem 3.16. We
let G be a group, to begin with not necessarily finite.

Definition 3.1. A positive representation ρ : G → Aut+(E) is called band irre-
ducible if a ρ-invariant band equals {0} or E. Projection band irreducibility, ideal
irreducibility, and principal band irreducibility are defined similarly, as are closed
ideal irreducibility, etc., in the case of normed Riesz spaces.

Starting our discussion of the implications between the various notions of ir-
reducibility, we note that, obviously, band irreducibility implies projection band
irreducibility. If E has the projection property, then the converse holds trivially as
well, since all bands are projection bands by definition, but the next example shows
that this converse fails in general.

Example 3.2. Consider the representation of the trivial group on C[0, 1]. Now
every band is invariant, so this representation is not band irreducible, but C[0, 1]
does not have any nontrivial projection bands, and therefore it is projection band
irreducible.

For positive representations on Banach lattices, closed ideal irreducibility implies
band irreducibility. If the Banach lattice has order-continuous norm, then the
converse holds as well, since then all closed ideals are bands ([8, Corollary 2.4.4]),
but once again this converse fails in general, as the next example shows.

Example 3.3. Consider `∞(Z), the space of doubly infinite bounded sequences,
and define ρ : Z → Aut+(`∞(Z)) by ρk(xn) := (xn−k), the left regular representa-
tion. This representation is not closed ideal irreducible, since the space c0(Z) of
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sequences tending to zero is an invariant closed ideal. On the other hand, it is easy
to see that any nonzero invariant ideal must contain the order dense subspace of
finitely supported sequences, therefore ρ is band irreducible.

Finally, for positive representations on Banach lattices, ideal irreducibility obvi-
ously implies closed ideal irreducibility, but again there is an example showing that
the converse fails in general.

Example 3.4. Consider the left regular representation of Z on c0(Z), as in the
above example. Then `1(Z) is an invariant ideal, so this positive representation is
not ideal irreducible, but it is closed ideal irreducible since every nonzero invariant
ideal must contain the norm dense subspace of finitely supported sequences.

We continue by defining the natural notion of indecomposability for positive
representations, which is order indecomposability. As usual, the order direct sum
E = L⊕M is called nontrivial if L 6= 0 and L 6= E.

Definition 3.5. A positive representation ρ : G → Aut+(E) is called order inde-
composable if there are no nontrivial ρ-invariant order direct sums E = L⊕M .

We will now investigate the conditional equivalence between order indecompos-
ability and the various notions of irreducibility.

Lemma 3.6. A positive representation ρ : G → Aut+(E) is order indecomposable
if and only if it is projection band irreducible.

Proof. Suppose ρ is order indecomposable, and let B be a ρ-invariant projection
band. We claim that Bd is ρ-invariant. For this, let x ∈ (Bd)+ and s ∈ G. Then
(ρsx)∧y = ρs(x∧ρ−1

s y) = ρs0 = 0 for all y ∈ B+, so ρsx⊥B, i.e., ρsx ∈ Bd. Hence
E = B ⊕Bd is a ρ-invariant order direct sum, so either B = 0 or B = E.

Conversely, suppose that ρ is projection band irreducible. Let E = L ⊕M be
a ρ-invariant order direct sum. Then, as mentioned in the preliminaries, L and M
are projection bands, and therefore L = 0 or M = 0. �

Thus order indecomposability is equivalent with projection band irreducibility.
We have already seen that the latter property is, in general, not equivalent with
band irreducibility, but that equivalence between these two does hold (trivially) if
the Riesz space has the projection property. However, if the group is finite, we will
see in Lemma 3.9 and Theorem 3.16 below that these three notion are equivalent
under a much milder assumption on the space, as in the following definition.

Definition 3.7. A Riesz space E is said to have sufficiently many projections if
every nonzero band contains a nonzero projection band.

This notion is intermediate between the principal projection property and the
Archimedean property, cf. [7, Theorem 30.4]. In order to show that it is (in par-
ticular) actually weaker than the projection property, which is the relevant feature
for our discussion, we present an example of a Banach lattice which has sufficiently
many projections, but not the projection property.

Example 3.8. Let ∆ ⊂ [0, 1] be the Cantor set, and let E = C(∆). Then [8,
Corollary 2.1.10] shows that bands correspond to (all functions vanishing on the
complement of) regularly open sets, i.e., to open sets which equal the interior of
their closure, and projection bands correspond to clopen sets. The Cantor set has
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a basis of clopen sets, so that, in particular, every nonempty regularly open set
contains a nonempty clopen set. Therefore C(∆) has sufficiently many projections.
It does not have the projection property, since [0, 1/4) ∩∆ ⊂ ∆ is regularly open
but not closed ([12, 29.7]).

Lemma 3.9. Let G be a finite group, E a Riesz space with sufficiently many
projections, and ρ : G→ Aut+(E) a positive representation. Then the following are
equivalent:

(i) ρ is order indecomposable;
(ii) ρ is projection band irreducible;

(iii) ρ is band irreducible.

Proof. (iii) ⇒ (ii) is immediate. For (ii) ⇒ (iii), suppose ρ is projection band
irreducible. Let B0 be a nonzero ρ-invariant band. Let 0 6= B ⊂ B0 be a projection
band. Then

∑
s∈G ρsB is a projection band by [7, Theorem 30.1(ii)], and clearly

it is ρ-invariant, nonzero, and contained in B0. Therefore it must equal E, and so
B0 = E.

(i)⇔ (ii) follows from Lemma 3.6. �

This lemma will be improved significantly later on, see Theorem 3.16.
We will now investigate the question whether a positive representation of a finite

group, satisfying a suitable notion of irreducibility, is necessarily finite dimensional.
As explained in the introduction, this is not quite as obvious as it is for Banach
space representations. It follows as a rather special case from [9, Theorem III.10.4]
that a closed ideal irreducible positive representation of a finite group in a Banach
lattice is finite dimensional, but this seems to be the only known available result
in this vein. We will show, see Theorem 3.14, that a positive principal band irre-
ducible representation of a finite group in a Riesz space is finite dimensional. This
implies the aforementioned finite dimensionality result for Banach lattices. As a
preparation, we need four lemmas.

Lemma 3.10. Let G be a finite group, E a Riesz space and ρ : G → Aut+(E) a
positive principal band irreducible representation. Then E is Archimedean.

Proof. Suppose E is not Archimedean. Then E 6= 0 and there exist x, y ∈ E such
that 0 < λx ≤ y for all λ > 0. The band B generated by

∑
s∈G ρsx is principal,

ρ-invariant and nonzero, and therefore equals E. Let u ≥ 0 be an element of the
ideal I generated by

∑
s∈G ρsx. Then for some λ ≥ 0,

u ≤ λ
∑
s∈G

ρsx =
∑
s∈G

ρs(λx) ≤
∑
s∈G

ρsy,

and so
∑
s∈G ρsy is an upper bound for I+, and hence for B+ = E+, which is

absurd since E 6= 0. Therefore E is Archimedean. �

Lemma 3.11. Let E be a Riesz space with dim(E) ≥ 2. Then E contains a
nontrivial principal band.

Proof. Suppose E does not contain a nontrivial principal band. Then the trivial
group acts principal band irreducibly on E, so by Lemma 3.10, E is Archimedean.
Furthermore E is totally ordered, otherwise there exists an element x which is
neither positive nor negative and so x+ /∈ Bx− = E. However, by [1, Exercise 1.14
(proven on page 272)], a totally ordered and Archimedean space has dimension 0
or 1, which is a contradiction. Hence E contains a nontrivial principal band. �
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Lemma 3.12. Let E be an Archimedean Riesz space and let I ⊂ E be a finite
dimensional ideal. Then I is a principal projection band.

Proof. By [7, Theorem 26.11] I ∼= Rn. Let e1, . . . , en be atoms that generate I. It
follows that e1, . . . , en are also atoms in E, and that I =

∑
k Iek , where Iek denotes

the ideal generated by ek. By [7, Theorem 26.4] the Iek are actually projection
bands in E, and so I, as a sum of principal projection bands, is a principal projection
band by [7, Chapter 4.31, page 181]. �

Lemma 3.13. Let G be a finite group, E an Archimedean Riesz space, B′ ⊂ E a
nonzero principal band and ρ : G→ Aut+(E) a positive representation. Then there
exists a nonzero principal band B ⊂ B′ such that for all t ∈ G, either B ∩ ρtB = 0
or B = ρtB.

Proof. The set S := {S ⊂ G : e ∈ S,
⋂
s∈S ρsB

′ 6= 0} is partially ordered by
inclusion and nonempty, since {e} ∈ S. Pick a maximal element M ∈ S, and let
B :=

⋂
s∈M ρsB

′. Then B is a principal band by [7, Theorem 48.1]. Let t ∈ G and
suppose that B ∩ ρtB 6= 0. Then

0 6= B ∩ ρtB =
⋂
s∈M

ρsB
′ ∩ ρt

⋂
s∈M

ρsB
′ =

⋂
r∈M∪tM

ρrB
′,

and by the maximality of M we obtain M ∪ tM = M , and so tM ⊂M . Combined
with |tM | = |M | we conclude that tM = M , and then

ρtB = ρt
⋂
s∈M

ρsB
′ =

⋂
r∈tM

ρrB
′ =

⋂
r∈M

ρrB
′ = B.

�

Using these lemmas, we can now establish our main theorem on finite dimen-
sionality.

Theorem 3.14. Let G be a finite group, E a nonzero Riesz space and ρ : G →
Aut+(E) a positive principal band irreducible representation. Then E is Archimedean,
finite dimensional, and the dimension of E divides the order of G.

Proof. Lemma 3.10 shows that E is Archimedean. The proof is by induction on
the order of G. If G is the trivial group, then E is one dimensional by Lemma 3.11,
and we are done. Suppose, then, that the theorem holds for all groups of order
strictly smaller than the order or G. If E has only trivial principal bands, then by
Lemma 3.11 E has dimension one, and we are done again. Hence we may assume
that there exists a principal band 0 6= B′ 6= E. By Lemma 3.13 there exists a
nonzero principal band B ⊂ B′ 6= E such that H := {t ∈ G : B = ρtB} satisfies
Hc = {t ∈ G : B ∩ ρtB = 0}. It is easy to see that H is a subgroup of G, and
has strictly smaller order than G: otherwise B is a nontrivial ρ-invariant principal
band, contradicting the principal band irreducibility of ρ.

We will now show that ρ restricted to H is principal band irreducible on the
Riesz space B. Suppose 0 6= A ⊂ B is an H-invariant principal band of B. By [7,
Theorem 48.1] {

∑
s∈G ρsA} is a principal band, and so it is a nonzero ρ-invariant

principal band of E. Hence it equals E, so using [7, Theorem 20.2(ii)] in the second
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step and [14, Exercise 7.7(iii)] in the third step,

B = B ∩

{∑
s∈G

ρsA

}

=

{
B ∩

∑
s∈G

ρsA

}

=

{∑
s∈G

(B ∩ ρsA)

}

=

{∑
s∈H

(B ∩ ρsA) +
∑
s∈Hc

(B ∩ ρsA)

}

⊂

{∑
s∈H

(B ∩ ρsA) +
∑
s∈Hc

(B ∩ ρsB)

}

⊂

{∑
s∈H

(B ∩A) +
∑
s∈Hc

0

}

=

{∑
s∈H

A

}
= A.

We conclude that ρ|H : H → Aut+(B) is principal band irreducible, so B has
finite dimension by the induction hypothesis. By Lemma 3.12,

∑
s∈G ρsB is a

principal band, which is nonzero and invariant, hence equal to E, and so E has
finite dimension as well.

Consider the sum
∑
sH∈G/H ρsB. This is well defined, since ρtB = B for t ∈

H. Moreover, if sH 6= rH, then r−1s /∈ H and so ρr−1sB ∩ B = 0, implying
ρsB ∩ ρrB = 0. Therefore

∑
sH∈G/H ρsB is a sum of ideals with pairwise zero

intersection, which is easily seen to be a direct sum using [7, Theorem 17.6(ii)]. It
follows that

E =
∑
s∈G

ρsB =
∑

sH∈G/H

ρsB =
⊕

sH∈G/H

ρsB.

Therefore
|G|

dim(E)
=

|G|
|G : H|dim(B)

=
|H|

dim(B)
∈ N,

where the last step is by the induction hypothesis. Hence the dimension of E divides
the order of G as well. �

From Theorem 4.10, where we will explicitly describe all representations as in
Theorem 3.14, it will also become clear that the dimension of the space divides the
order of the group.

Remark 3.15. Note that Theorem 3.14 trivially implies a similar theorem for
positive representations which are ideal irreducible, or which are band irreducible.
It also answers our original question as mentioned in the Introduction: a positive
projection band irreducible representation of a finite group in a Banach lattice with
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the projection property is finite dimensional. Indeed, an invariant principal band
is then an invariant projection band.

When combining Theorem 3.14 with Lemma 3.9, we obtain the following result.
Amongst others it shows that, under a mild condition on the space, various notions
of irreducibility for a positive representation of a finite group are, after the fact,
actually the same for finite groups. It should be compared with the equality of ir-
reducibility and indecomposability for unitary representations of arbitrary groups,
and for finite dimensional representations of finite groups whenever Maschke’s the-
orem applies. As already mentioned earlier, if a Riesz space has sufficiently many
projections, it is automatically Archimedean, cf. [7, Theorem 30.4].

Theorem 3.16. Let G be a finite group, E a Riesz space with sufficiently many
projections and ρ : G→ Aut+(E) a positive representation. Then the following are
equivalent:

(i) ρ is order indecomposable;
(ii) ρ is projection band irreducible;

(iii) ρ is band irreducible;
(iv) ρ is ideal irreducible;
(v) ρ is principal band irreducible.

If these equivalent conditions hold, then E is finite dimensional, and the dimension
of E divides the order of G if E is nonzero.

Proof. By Lemma 3.9 the first three conditions are equivalent. Each of the last three
conditions implies that ρ is principal band irreducible, so by Theorem 3.14 each of
these three conditions implies that E is finite dimensional, hence lattice isomorphic
to Rn for some n ([7, Theorem 26.11]). But then the collections of bands, ideals
and principal bands in E are all the same, and hence the last three conditions are
equivalent as well. The remaining statements follow from Theorem 3.14. �

4. Structure of finite dimensional positive Archimedean
representations

Now that we know from Section 3 that positive representations of finite groups,
irreducible as in Theorem 3.14 or 3.16, are necessarily in Archimedean and finite
dimensional spaces, our goal is to describe the general positive finite dimensional
Archimedean representations of a finite group. In such spaces, the collections of
(principal) ideals, (principal) bands and projection bands are all the same, and we
will use the term “irreducible positive representation” throughout this section to
denote the corresponding common notion of irreducibility, which is the same as or-
der indecomposability. We will see in Theorem 4.9 that positive finite dimensional
Archimedean representations of a finite group split uniquely into irreducible positive
representations. Furthermore, the order equivalence classes of finite dimensional ir-
reducible positive representations are in natural bijection with the isomorphism
classes of transitive G-spaces, cf. Theorem 4.10. The latter result can be thought of
as the description of the finite dimensional Archimedean part of the order dual of a
finite group. The fact that such irreducible positive representations can be realized
in this way also follows from [9, Theorem III.10.4], where it is shown that strongly
continuous closed ideal irreducible positive representations of a locally compact
group in a Banach lattice, with compact image in the strong operator topology,
can be realized on function lattices on homogeneous spaces. This general result,



12 MARCEL DE JEU AND MARTEN WORTEL

however, requires considerable machinery. Therefore we prefer the method below,
where all follows rather easily once an explicit description of the general, not nec-
essarily irreducible, positive representation of a finite group in a finite dimensional
Archimedean space has been obtained, a result which has some relevance of its own.

Since the decomposition result below is such a close parallel to classical semisim-
ple representation theory of finite groups, it is natural to ask whether any other
features of this purely linear context survive, such as character theory. At the end
of this section we show that this is, for general groups, not the case, and in the
next section we will see that this is only partly so for induction.

We now proceed towards the first main step, the description of a positive finite
dimensional Archimedean representation of a finite group. Since an Archimedean fi-
nite dimensional Riesz spaces is isomorphic to Rn for some n ([7, Theorem 26.11]),
we start by describing its group Aut+(Rn) of lattice automorphisms. Naturally,
the well known result [8, Theorem 3.2.10] on lattice homomorphisms between
C0(K)-spaces directly implies the structure of Aut+(Rn), but in this case, where
K = {1, . . . , n}, this can be seen in an elementary fashion as below. Subsequently
we determine the finite subgroups of Aut+(Rn). After that, we can describe the
positive representations of a finite group in Rn and continue from there.

4.1. Description of Aut+(Rn). We denote the standard basis of Rn by {e1, . . . , en}.
A lattice automorphism must obviously map positive atoms to positive atoms, so
each T ∈ Aut+(Rn) maps ei to λjiej for some λji > 0. This implies that T can
be written uniquely as the product of a strictly positive multiplication (diagonal)
operator and a permutation operator. We identify the group of permutation opera-
tors with Sn, so each σ ∈ Sn corresponds to the operator mapping ei to eσ(i). The
group of strictly positive multiplication operators is identified with (R>0)n, and so
there exist unique m ∈ (R>0)n and σ ∈ Sn such that T = mσ.

For σ ∈ Sn and m ∈ (R>0)n, define σ(m) ∈ (R>0)n by σ(m)i := mσ−1(i). This
defines a homomorphism of Sn into the automorphism group of (R>0)n, hence we
can form the corresponding semidirect product (R>0)noSn, with group operation
(m1, σ1)(m2, σ2) := (m1σ1(m2), σ1σ2). On noting that, for i = 1, . . . , n,

σmσ−1ei = σmeσ−1(i) = σmσ−1(i)eσ−1(i) = mσ−1(i)ei = σ(m)iei = σ(m)ei,

it follows easily that χ : (R>0)n o Sn → Aut+(Rn), defined by χ(m,σ) := mσ, is a
group isomorphism. From now on we identify Aut+(Rn) and (R>0)n o Sn, using
either the operator notation or the semidirect product notation.

We let p : Aut+(Rn)→ Sn, defined by p(m,σ) := σ, denote the canonical homo-
morphism of the semidirect product onto the second factor.

4.2. Description of the finite subgroups of Aut+(Rn). Let G be a finite sub-
group of Aut+(Rn). Then ker(p|G) can be identified with a finite subgroup of
ker(p) = (R>0)n. Clearly the only finite subgroup of (R>0)n is trivial, and so p|G is
an isomorphism. It follows that every finite subgroup of Aut+(Rn) is isomorphic to
a finite subgroup of Sn. The next proposition makes this correspondence explicit.

Proposition 4.1. Let A be the set of finite subgroups G ⊂ Aut+(Rn), and let B
be the set of pairs (H, q), where H ⊂ Sn is a finite subgroup and q : H → Aut+(Rn)
is a group homomorphism such that p ◦ q = idH . Define α : A→ B and β : B → A
by

α(G) :=
(
p(G), (p|G)−1

)
, β(H, q) := q(H).
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Then α and β are inverses of each other.

Proof. Clearly p◦(p|G)−1 = idp(G), so α is well defined. Let G ∈ A, then β(α(G)) =

β(p(G), (p|G)−1) = G. Conversely, let (H, q) ∈ B, then α(β(H, q)) = α(q(H)) =
(p(q(H)), (p|q(H))

−1), and since p ◦ q = idH , it follows that p(q(H)) = H and that

(p|q(H))
−1 = (p|q(H))

−1 ◦ p ◦ q = q. �

By the above proposition each finite subgroup G of Aut+(Rn) is determined by
a subgroup H of Sn and a homomorphism q : H → Aut+(Rn) satisfying p◦q = idH .
We will now investigate such maps q. The condition p ◦ q = idH is equivalent with
the existence of a map f : H → (R>0)n, such that q(σ) = (f(σ), σ) for σ ∈ H. For
σ, τ ∈ H, we have q(στ) = (f(στ), στ) and

q(σ)q(τ) = (f(σ), σ)(f(τ), τ) = (σ(f(τ))f(σ), στ).

Hence q being a group homomorphism is equivalent with f(στ) = σ(f(τ))f(σ) for
all σ, τ ∈ H, and such maps are called crossed homomorphisms.

Crossed homomorphisms of a finite group into a suitably nice abelian group
(A,+) (in our case ((R>0)n, ·)) can be characterized by the following lemma, which
states, in the language of group cohomology, that H1(H,A) is trivial.

Lemma 4.2. Let H be a finite group acting on an abelian group (A,+) such that,
for all a ∈ A, there exists a unique element of H, denoted by a/|H|, satisfying
|H|(a/|H|) = a. Let f : H → A be a map. Then f is a crossed homomorphism,
i.e., f(st) = s(f(t)) + f(s) for all s, t ∈ H, if and only if there exists an a ∈ A such
that

f(s) = a− s(a) ∀s ∈ H.

Proof. Suppose f is a crossed homomorphism. Let a := 1
|H|
∑
r∈H f(r), then, for

s ∈ H,

s(a) =
1

|H|
∑
r∈H

s(f(r))

=
1

|H|
∑
r∈H

[f(sr)− f(s)]

=
1

|H|
∑
r∈H

[f(r)− f(s)]

= a− f(s).

Hence f(s) = a− s(a), as required. The converse is trivial. �

Combining this result with the previous discussion, we obtain the following.

Corollary 4.3. Let H be a finite subgroup of Sn and let q : H → Aut+(Rn) be a
map. Then q is a homomorphism satisfying p ◦ q = idH if and only if there exists
an m ∈ (R>0)n such that

q(σ) = (mσ(m)−1, σ) ∀σ ∈ H.

Rewriting this in multiplicative notation rather than semidirect product notation
yields the following.
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Corollary 4.4. Let G be a finite subgroup of Aut+(Rn). Then there is a unique
finite subgroup H ⊂ Sn and an m ∈ (R>0)n such that

G =
{
mσ(m)−1σ : σ ∈ H

}
= mHm−1.

Conversely, if H ⊂ Sn is a finite subgroup and m ∈ (R>0)n, then G ⊂ Aut+(Rn)
defined by the above equation is a finite subgroup of Aut+(Rn).

Proof. By Proposition 4.1, G = q(p(G)), for some q : p(G) → (R>0)n satisfying
p ◦ q = idp(G). So H = p(G) is unique, and the rest follows from the previous
corollary. �

Note that, given a finite subgroup G ⊂ Aut+(Rn), the subgroup H ⊂ Sn is
unique, but the multiplication operator m in Corollary 4.4 is obviously not unique,
e.g., both m and λm for λ > 0 induce the same G.

4.3. Positive finite dimensional Archimedean representations. In this sub-
section we obtain our main results on finite dimensional positive representations
of finite groups in Archimedean spaces: explicit description of such representa-
tions (Theorem 4.5), decomposition into irreducible positive representations (The-
orem 4.9) and description of irreducible positive representations up to order equiv-
alence (Theorem 4.10).

Applying the results from the previous subsection, in particular Proposition 4.1
and Lemma 4.2, we obtain the following. Recall that we view Sn ⊂ Aut+(Rn), by
identifying σ ∈ Sn with a permutation matrix, and a representation π : G→ Sn ⊂
Aut+(Rn) is called a permutation representation.

Theorem 4.5. Let G be a finite group and ρ : G→ Aut+(Rn) a positive represen-
tation. Then there is a unique permutation representation π and an m ∈ (R>0)n

such that
ρs = mπsm

−1 ∀s ∈ G.
Conversely, any permutation representation π : G → Sn and m ∈ (R>0)n define a
positive representation ρ by the above equation.

Proof. Applying Proposition 4.1 to ρ(G) and combining this with Lemma 4.2,
p : ρ(G) → p ◦ ρ(G) has an inverse of the form q(σ) = mσ(m)−1σ for some
m ∈ (R>0)n and all σ ∈ p ◦ ρ(G). We define π := p ◦ ρ, then for s ∈ G,

ρs = (q ◦ p)(ρs) = q(πs) = mπs(m)−1πs = mπsm
−1.

This shows the existence of π. The uniqueness of π follows from the uniqueness of
the factors in (R>0)n and Sn in

ρs = mπsm
−1 = [mπs(m)−1]πs.

The converse is clear. �

If ρ, π and m are related as in the above theorem, we will denote this as ρ ∼
(m,π). Note that, as in Corollary 4.4, π is unique, but m is not. Given the
permutation representation π, m1 and m2 induce the same positive representations
if and only if m1m

−1
2 = πs(m1m

−1
2 ) for all s ∈ G.

Recall that if ρ, θ : G → Aut+(Rn) are positive representations, we call them
order equivalent if there exists an intertwiner T ∈ Aut+(R>0)n between ρ and θ.
We call them permutation equivalent if there exists an intertwiner σ ∈ Sn; this
implies order equivalence.
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Proposition 4.6. Let G be a finite group and ρ1 ∼ (m1, π
1) and ρ2 ∼ (m2, π

2)
be two positive representations of G in Rn. Then ρ1 and ρ2 are order equivalent if
and only if π1 and π2 are permutation equivalent.

Proof. Suppose that ρ1 and ρ2 are order equivalent and let T = (m,σ) ∈ Aut+(Rn)
be an intertwiner. Then, for all s ∈ G,

ρ1
sT = (m1π

1
s(m1)−1, π1

s)(m,σ) = (m1π
1
s(m1)−1π1

s(m), π1
sσ)(4.1)

Tρ2
s = (m,σ)(m2π

2
s(m2)−1, π2

s) = (mσ(m2)σπ2
s(m2)−1, σπ2

s),(4.2)

and since these are equal, σ is an intertwiner between π1 and π2.
Conversely, let σ be an intertwiner between π1 and π2. Then, by taking m =

m1σ(m2)−1 and T = (m,σ) ∈ Aut+(Rn), it is easily verified that, for all s ∈ G,

(m1π
1
s(m1)−1π1

s(m), π1
sσ) = (mσ(m2)σπ2

s(m2)−1, σπ2
s),

and so by (4.1) and (4.2), T intertwines ρ1 and ρ2. �

We immediately obtain that every positive representation is order equivalent to
a permutation representation.

Corollary 4.7. Let G be a finite group and let ρ ∼ (m,π) be a positive represen-
tation of G in Rn. Then ρ is order equivalent to (1, π).

Remark 4.8. The method in this subsection also yields a description of the homo-
morphisms from a finite group into a semidirect product NoK with N torsion-free
and H1(H,N) trivial for all finite subgroups H ⊂ K, but we are not aware of a
reference for this fact.

Using Corollary 4.7, we obtain our decomposition theorem.

Theorem 4.9. Let G be a finite group and ρ : G → Aut+(E) a positive represen-
tation in a nonzero finite dimensional Archimedean Riesz space E. Let {Bi}i∈I be
the set of irreducible invariant bands in E. Then E = ⊕i∈IBi. Furthermore, any
invariant band is a direct sum of Bi’s.

Proof. We may assume that E = Rn, where bands are just linear spans of a number
of standard basis vectors. By Corollary 4.7, we may assume that ρ is a permutation
representation, which is induced by a group action on the set of basis elements. It
is then clear that the irreducible invariant bands correspond to the orbits of this
group action, and the invariant bands to unions of orbits. This immediately gives
the decomposition of ρ into irreducible positive representations, and the description
of the invariant bands. �

We will now give a description of what could be called the finite dimensional
Archimedean part of the order dual of a finite group. Note that Theorems 3.14
and Theorem 3.16 imply that a number of positive representations, irreducible in
an appropriate way, are automatically in finite dimensional Archimedean spaces.
Hence they fall within the scope of the next result, which is formulated in terms of
a function lattice in order to emphasize the similarity with [9, Theorem III.10.4].

Theorem 4.10. Let G be a finite group. If H ⊂ G is a subgroup, let (etH)tH∈G/H
be the canonical basis for the finite dimensional Riesz space C(G/H), defined by
etH(sH) = δtH,sH , for tH, sH ∈ G/H. Let πH : G → Aut+(C(G/H)) be the
canonical positive representation corresponding to the action of G on G/H, so that
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πHs etH := estH for s, t ∈ G. Then, whenever H1 and H2 are conjugate, πH1 and
πH2 are order equivalent, and the map

[H] 7→ [πH ]

is a bijection between the conjugacy classes of subgroups of G and the order equiv-
alence classes of irreducible positive representations of G in nonzero finite dimen-
sional Archimedean Riesz spaces.

Proof. It follows easily from Theorem 2.2 that the map is well-defined. As a con-
sequence of Corollary 4.7, every nonzero finite dimensional positive Archimedean
representation is order equivalent to a permutation representation, arising from an
action of G on {1, . . . , n} for some ≥ 1. Since the irreducibility of π is then equiv-
alent to the transitivity of this group action, this shows that the map is surjective.
As to injectivity, suppose that πH1 and πH2 are order equivalent, for subgroups
H1, H2 of G. Let n = |G : H1| = |G : H2|, and consider Rn with standard
basis {e1, . . . , en}. Choose a bijection between the canonical basis for C(G/H1)
and {e1, . . . , en}, and likewise for the canonical basis of C(G/H2). This gives a
lattice isomorphism between C(G/H1) and Rn, and similarly for C(G/H2). Af-
ter transport of structure, G has two positive representations on Rn which are
order equivalent by assumption, and which originate from two permutation rep-
resentations on the same set {1, . . . , n}. As a consequence of Proposition 4.6, the
permutation parts of these positive representations are permutation equivalent, i.e.,
the two G-spaces, consisting of {1, . . . , n} and the respective G-actions, are isomor-
phic G-spaces. Consequently, G/H1 and G/H2 are isomorphic G-spaces, and then
Lemma 2.2 shows that H1 and H2 are conjugate. �

If n ∈ Z≥0 and ρ is a positive representation, then nρ denotes the n-fold order
direct sum of ρ. Combining the above theorem with Theorem 4.9, we immediately
obtain the following, showing how the representations under consideration are built
from canonical actions on function lattices on transitive G-spaces.

Corollary 4.11. Let G be a finite group and let H1, . . . ,Hk be representatives of
the conjugacy classes of subgroups of G. Let E be a finite dimensional Archimedean
Riesz space and let ρ : G→ Aut+(E) be a positive representation. Then, using the
notation of Theorem 4.10, there exist unique n1, . . . , nk ∈ Z≥0 such that ρ is order
equivalent to

n1π
H1 ⊕ · · · ⊕ nkπHk .

4.4. Linear equivalence and order equivalence. If two unitary group represen-
tations are intertwined by a bounded invertible operator, they are also intertwined
by a unitary operator [2, Section 2.2.2]. We will now investigate the correspond-
ing natural question in the finite dimensional ordered setting: if two positive finite
dimensional Archimedean representations are intertwined by an invertible linear
map, are they order equivalent? By character theory, see for example [5, Theo-
rem XVIII.2.3], two representations over the real numbers are linearly equivalent if
and only if they have the same character. The following example, taken from the
introduction of [6], therefore settles the matter.

Example 4.12. Let G be the group Z/2Z × Z/2Z, and conser the permutation
representations π1, π2 : G→ Aut+(R6) determined by

π1
(0,1) := (12)(34) π1

(1,0) := (13)(24) π2
(0,1) := (12)(34) π2

(1,0) := (12)(56).
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Then, as is easily verified, π1 and π2 have the same character, and so they are
linearly equivalent. However, they are not order equivalent, since by examining the
orbits of standard basis elements it follows that the first representation splits into
three irreducible positive representations of dimensions 1, 1, and 4, and the second
splits into three irreducible positive representations of dimension 2 each.

Thus, in general, linear equivalence (equivalently: equality of characters) of pos-
itive representations does not imply order equivalence. One might then try to nar-
row down the field: is perhaps true that two irreducible positive representations,
which are linearly equivalent, are order equivalent? In view of Theorem 4.10 and
Theorem 2.2, this is asking whether a linear equivalence of the positive representa-
tions corresponding to two transitive G-spaces (which is equivalent to equality, for
each group element, of the number of fixed points in the two spaces) implies that
these G-spaces are isomorphic. The answer, again, is negative, but counterexam-
ples are now more intricate to construct than above, and the reader is referred to
[11, Theorem 1], providing an abundance of such counterexamples.

On the positive side, in some cases linear equivalence of irreducible positive
representations does imply order equivalence, as shown by the next result.

Lemma 4.13. Let G be a finite group, let N be a normal subgroup, and let
πN : G → Aut+(C(G/N)) be the irreducible positive representations as in Theo-
rem 4.10. Then an irreducible positive representation which is linearly equivalent
with πN is in fact order equivalent with πN .

Proof. Passing to an order equivalent model we may, in view of Theorem 4.10,
assume that the other irreducible positive representation is πH , for a subgroup H
of G. The fact that G/N is a group implies easily that the character of πN equals
|G : N |1N . Since the character of πH , which is equal to that of πN by their linear
equivalence, is certainly nonzero on H, we see that H ⊂ N . On the other hand,
equality of dimensions yields |G : N | = |G : H|, hence |N | = |H|. We conclude
that H = N . �

Combining Theorem 4.10 with the previous lemma yields the following.

Corollary 4.14. Let G be a finite group with only normal subgroups. If two fi-
nite dimensional irreducible positive representations of G are linearly equivalent
(equivalently: have the same character), they are order equivalent.

Thus, for such groups (so-called Dedekind groups), and in particular for abelian
groups, the classical correspondence between characters and irreducible representa-
tions survives in an ordered context—where, naturally, “irreducible” has a different
meaning. However, as Example 4.12 shows, already for abelian groups this corre-
spondence breaks down for reducible positive representations.

5. Induction

In this section we will examine the theory of induction in the ordered setting
from a categorical point of view. It turns out that the results are to a large extent
analogous to the linear case as covered in many sources, e.g., [5, Section XVIII.7].
Still, it seems worthwhile to go through the motions, as a preparation for future
more analytical constructions, and in doing so we then also obtain a slight bonus
(the original ordered module is embedded in the induced one as a sublattice, even
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though this was not required), keep track of several notions of irreducibility, and also
observe that Frobenius reciprocity holds only partially. Since we do not consider
topological issues at the moment, we are mostly interested in the case where the
group is finite, but the theory is developed at little extra cost in general for arbitrary
groups and subgroups. Our approach is thus slightly more general than, e.g., the
approach in [5], as we do not require our groups to be finite or our subgroups to be
of finite index.

For the rest of the section, G is a not necessarily finite group, H is a subgroup of
G, not necessarily finite or of finite index, R is a system of representatives of G/H,
and the Riesz spaces are not assumed to be finite dimensional. The only finiteness
condition is in Corollary 5.11, where G is assumed to be finite.

5.1. Definitions and basic properties. A pair (E, ρ), where E is a Riesz space
and ρ : G→ Aut+(E) is a positive representation, is called an ordered G-module. In
this notation, we will often omit the representation ρ. If E is an ordered G-module,
it is also an ordered H-module by restricting the representation to H. If (E, ρ)
and (F, θ) are ordered G-modules, then the positive cone of positive intertwiners
between ρ and θ will be denoted by Hom+

G(E,F ). Two ordered G-modules are
isomorphic ordered G-modules if there exists an intertwining lattice isomorphism.

Definition 5.1. Let F be an ordered H-module. A pair (IndGH(F ), j), where

IndGH(F ) is an ordered G-module and j ∈ Hom+
H(F, IndGH(F )) is called an induced

ordered module of F from H to G if it satisfies the following universal property:
For any ordered G-module E and T ∈ Hom+

H(F,E), there is a unique T ∈
Hom+

G(IndGH(F ), E) such that T = T ◦ j, i.e., such that the following diagram is
commutative:

F

j ##GGGGGGGGG
T // E

IndGH(F )

T

;;wwwwwwwww

If θ is the positive representation of H turning F into an ordered H-module, then
the positive representation of G turning IndGH(F ) into an ordered G-module will be

denoted by IndGH(θ) and will be called the induced positive representation of θ from
H to G.

First we will show, by the usual argument, that the induced ordered module is
unique up to isomorphism of ordered G-modules.

Lemma 5.2. Let F be an ordered H-module and let (E1, j1) and (E2, j2) be induced
ordered modules of F from H to G. Then E1 and E2 are isomorphic as ordered
G-modules.

Proof. Using the universal property, we obtain the unique maps j1 ∈ Hom+
G(E2, E1)

satisfying j1 = j1 ◦ j2 and j2 ∈ Hom+
G(E1, E2) satisfying j2 = j2 ◦ j1. It follows that

j1 = j1 ◦ j2 = j1 ◦ j2 ◦ j1.
Now consider the ordered G-module E1, and apply its universal property to itself -
we obtain the unique map idE1

∈ Hom+
G(E1, E1) such that j1 = idE1

◦ j1. Together
with the above equation, this shows that j1 ◦ j2 = idE1

. Similarly we obtain
j2 ◦ j1 = idE2

, and so j2 is an isomorphism of ordered G-modules. �
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We will now construct the induced ordered module, which is the usual induced
module, but now with an additional lattice structure. Let (F, θ) be an ordered
H-module. We define the ordered vector space

(5.1) Ẽ := {f : G→ F | f(st) = θt−1f(s) ∀s ∈ G, ∀t ∈ H},

with pointwise ordering. Using that θt−1 is a lattice isomorphism for t ∈ H, one eas-
ily verifies that Ẽ is a Riesz space, with pointwise lattice operations. Furthermore,
if S ⊂ G is a subset, then we define the subset

(5.2) ES := {f ∈ Ẽ | supp (f) ⊂ S}.

Let ρ : G→ Aut+(Ẽ) be defined by (ρsf)(u) := f(s−1u), for s, u ∈ G. Then ρ is a

positive representation turning Ẽ into an ordered G-module. Moreover, for s ∈ G,
supp (ρsf) = s · supp (f), so ρsEH = EsH . Now we define the ρ-invariant Riesz
subspace

(5.3) E :=
⊕
r∈R

ErH =
⊕
r∈R

ρrEH ⊂ Ẽ.

For x ∈ F , define a function j(x) : G → F by j(x)(t) := θt−1x for t ∈ H, and
j(x)(t) := 0 for t /∈ H. It is routine to verify that j(x) ∈ EH for all x ∈ F , and that
j : F → EH is an isomorphism of ordered H-modules between (F, θ) and (EH , ρ).
This last fact and the fact that E = ⊕r∈RρrF as an order direct sum will be used
to prove that (E, j) actually satisfies the desired universal property.

Lemma 5.3. Let (E, ρ) be an ordered G-module and let F be a Riesz subspace of
E which is invariant under the restricted representation θ = ρ|H of H in E, and
such that E = ⊕r∈RρrF as an order direct sum. Let j : F → E be the embedding.
Then (E, j) is an induced ordered module of F from H to G.

Proof. Let (E′, ρ′) be another ordered G-module, and let T : F → E′ be a positive
linear map such that T (θtx) = ρ′tT (x) for all t ∈ H and x ∈ F . We have to
show that there exists a unique positive linear map T : E → E′ extending T and
satisfying T ◦ ρs = ρ′s ◦ T for all s ∈ G.

We follow the proof of [10, Lemma 3.3.1]. If T satisfies these conditions, and if
x ∈ ρrF for r ∈ R, then ρ−1

r x ∈ F , and so

T (x) = T (ρrρ
−1
r x) = ρ′rT (ρ−1

r x) = ρ′rT (ρ−1
r x).

This formula determines T on ρrF , hence on E since it is the direct sum of the
ρrF . This proves the uniqueness of T .

For the existence, let x ∈ ρrF , then we define T (x) := ρ′rT (ρ−1
r x) as above. This

does not depend on the choice of representative r, since if we replace r by rt with
t ∈ H, we have

ρ′rtT (ρ−1
rt x) = ρ′rρ

′
tT (θ−1

t ρ−1
r x) = ρ′rT (θtθ

−1
t ρ−1

r x) = ρ′rT (ρ−1
r x).

Since E is the direct sum of the ρrF , there exists a unique linear map T : E → E′

which extends the partial mappings thus defined on the ρrF . It is easily verified
that Tρs = ρ′sT for all s ∈ G. Since all mappings involved are positive, T is positive
as well. �

Corollary 5.4. Let F be an ordered H-module. Then the induced ordered module
(IndGH(F ), j) of F from H to G exists, and IndGH(F ) is unique up to isomorphism
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of ordered G-modules. The positive map j is actually an injective lattice homomor-
phism of the ordered H-module F into the ordered H-module IndGH(F ). Moreover,

if E is finite dimensional and H has finite index |G : H|, then dim(IndGH(F )) =
|G : H|dim(E).

Proof. The existence follows from Lemma 5.3 and the construction preceding it,
which also shows that j has the property as described. The uniqueness follows
from Lemma 5.2. The last statement follows from (5.3). �

We continue with some properties of the induced positive representation.

Proposition 5.5. Let θ be a positive representation of a subgroup H ⊂ G. If
IndGH(θ) is either band irreducible, or ideal irreducible, or projection band irre-
ducible, then so is θ.

Proof. We will prove this for ideals, the other cases are identical. Let E be as in
(5.1), (5.2) and (5.3). Suppose θ is not ideal irreducible, so there exists a proper
nontrivial θ-invariant ideal B ⊂ Eθ. Then {f ∈ E : f(G) ⊂ B} ⊂ E is a proper

nontrivial IndGH(θ)-invariant ideal, so IndGH(θ) is not ideal irreducible. �

Proposition 5.6 (Induction in stages). Let H ⊂ K ⊂ G be a chain of subgroups
of G, and let F be an ordered H-module. Then

(IndGK(IndKH(F )), jGK ◦ jKH )

is an induced ordered module of F from H to G.

Proof. Let E be an ordered G-module. Consider the following diagram:

F
jKH //

T

##GGGGGGGGGG IndKH(F )
jGK //

T

��

IndGK(IndKH(F ))

Twwnnnnnnnnnnnnn

E

Here T is the unique positive map generated by T , and T is the unique positive

map generated by T . Since the diagram is commutative, T = T ◦ (jGK ◦ jKH ). If S is

another positive map satisfying T = S ◦ (jGK ◦ jKH ), then (S ◦ jGK)◦ jKH = T = T ◦ jKH ,

and so S ◦ jGK = T by the uniqueness of T . This in turn implies that S = T by the

uniqueness of T , and so (IndGK(IndKH(F )), jGK ◦ jKH ) satisfies the universal property,
as desired. �

5.2. Frobenius reciprocity. This subsection is concerned with the implications,
or rather their absence, of the functorial formulation of Frobenius reciprocity for
multiplicities of irreducible positive representations in induced ordered modules.

We start with the usual consequence of the categorical definition of the induced
ordered module: induction from H to G is the left adjoint functor of restriction
from G to H, for an arbitrary group G and subgroup H.

Proposition 5.7 (Frobenius Reciprocity). Let F be an ordered H-module and let
E be an ordered G-module. Then there is a natural isomorphism of positive cones

Hom+
H(F,E) ∼= Hom+

G(IndGH(F ), E).
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Proof. The existence of the natural bijection is an immediate consequence of the
very definition of the induced module in Definition 5.1. For λ, µ ≥ 0 and T, S ∈
Hom+

H(F,E) we have λT + µS = λT +µS as a consequence of the uniqueness part

of Definition 5.1 and the positivity of λT + µS. Hence the two positive cones are
isomorphic. �

Now suppose G is a finite group. For finite dimensional positive Archimedean
representations of G we have a unique decomposition into irreducible positive repre-
sentations, according to Corollary 4.11. Hence the notion of multiplicity is available,
and if ρ1 is a finite dimensional positive representation and ρ2 a finite dimensional
irreducible positive representation of G, we let m(ρ1, ρ2) denote the number of
times that a lattice isomorphic copy of ρ1 occurs in the decomposition of ρ2 of
Corollary 4.11. Now Let θ be a finite dimensional irreducible positive representa-
tion of a subgroup H ⊂ G and let ρ be a finite dimensional irreducible positive
representation of G. In view of the purely linear theory, cf. [10, Proposition 21],
and its generalization to unitary representations of compact groups, cf. [13, Theo-
rem 5.9.2], it is natural to ask whether

m(ρ, IndGH(θ)) = m(θ, ρ|H)

still holds in our ordered context. In the linear theory, and also for compact groups,
this follows from the fact that the dimensions of spaces of intertwining operators
in the analogues of Proposition 5.7 can be interpreted as a multiplicities. Since
the sets in Proposition 5.7 are cones and not vector spaces, and their elements are
not even necessarily lattice homomorphisms, there seems little chance of success
in our case. Indeed, Frobenius reciprocity in terms of multiplicities does not hold
for ordered modules, as is shown by the following counterexample. We let θ : H =
{e} → Aut+(R) be the trivial representation; then IndGH(θ) is the left regular
representation of G on the Riesz space with atomic basis {es}s∈G. This set of basis

elements has only one G-orbit, hence IndGH(θ) is band irreducible. Therefore, if ρ is

an arbitrary irreducible positive representation of G, m(ρ, IndGH(θ)) is at most one.
On the other hand, ρ|H decomposes as dim ρ copies of the trivial representation θ,
so m(θ, ρ|H) = dim ρ.

Another counterexample, where H is nontrivial, can be obtained by taking G =
Z/4Z and H = {0, 2}, and taking θ and ρ to be the left regular representation of
H and G, respectively. Then these are irreducible positive representations of the
respective groups, and it can be verified that IndGH(θ) ∼= ρ, so m(ρ, IndGH(θ)) = 1,
but ρ|H ∼= θ ⊕ θ, so m(θ, ρ|H) = 2.

5.3. Systems of imprimitivity. In this final subsection, we consider systems of
imprimitivity in the ordered setting. As before, G is an arbitrary group and H ⊂ G
an arbitrary subgroup. We start with an elementary lemma, which is easily verified.

Lemma 5.8. Let E and F be Riesz spaces and let T : E → F be a lattice isomor-
phism. If B ⊂ E is a projection band in E, then TB is a projection band in F , and
the corresponding band projections are related by PTB = TPBT

−1.

Let ρ : G → Aut+(E) be a positive representation. Suppose there exists a G-
space Γ, and a family of Riesz subspaces {Eγ}γ∈Γ, such that E = ⊕γ∈ΓEγ as an
order direct sum and ρsEγ = Esγ for all s ∈ G. Then we call the family {Eγ}γ∈Γ
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an ordered system of imprimitivity for ρ. If A ⊂ Γ, then the order decomposition

E =

⊕
γ∈A

Eγ

⊕
⊕
γ∈Ac

Eγ


implies that ⊕γ∈AEγ is a projection band. In particular, Eγ is a projection band
for all γ ∈ Γ. For a subset A ⊂ Γ, let P (A) denote the band projection P⊕γ∈AEγ
onto ⊕γ∈AEγ . Then the assignment A 7→ P (A) is a band projection valued map
satisfying

(5.4) P

(⋃
i∈I

Ai

)
x = sup

i∈I
P (Ai)x

for all x ∈ E+ and all collections of subsets {Ai}i∈I ⊂ Γ. An equivalent formulation
of (5.4) is P (supiAi) = supi P (Ai), where the first supremum is taken in the
partially ordered set of subsets of Γ, and the second supremum is taken in the
partially ordered space of regular operators on E. Either formulation is the ordered
analogue of a strongly σ-additive spectral measure. Furthermore, the map P is
covariant in the sense that, for s ∈ G,

P (sA) = P⊕γ∈AEsγ = Pρs⊕γ∈AEγ = ρs
(
P⊕γ∈AEγ

)
ρ−1
s = ρsP (A)ρ−1

s ,

where the above lemma is used in the penultimate step. Every positive representa-
tion admits a system of imprimitivity where Γ has exactly one element, and such
a system of imprimitivity will be called trivial. A system of imprimitivity is called
transitive if the action of G on Γ is transitive.

Definition 5.9. A positive representation ρ is called primitive if it admits only
the trivial ordered system of imprimitivity.

Every decomposition of E into ρ-invariant projection bands corresponds to an
ordered system of imprimitivity where the action of G on Γ is trivial, so ρ is pro-
jection band irreducible if and only if ρ admits no nontrivial ordered system of
imprimitivity with a trivial action. Hence a primitive positive representation is
projection band irreducible, i.e., order indecomposable.

Theorem 5.10 (Imprimitivity Theorem). Let ρ be a positive representation of G.
The following are equivalent:

(i) ρ admits a nontrivial ordered transitive system of imprimitivity;
(ii) There exists a proper subgroup H ⊂ G and a positive representation θ of

H such that ρ is order equivalent to IndGH(θ).

Proof. (ii) ⇒ (i): Suppose that ρ is order equivalent to IndGH(θ). Let Γ be the
transitive G-space G/H, which is nontrivial because H is proper, and consider
the spaces E and {EsH}sH∈Γ defined in (5.1), (5.2) and (5.3). By the discussion
following these definitions, E = ⊕sH∈ΓEsH , and ρuEsH = EusH , so this defines a
nontrivial transitive system of imprimitivity.

(i) ⇒ (ii): Suppose ρ admits a nontrivial transitive ordered system of imprim-
itivity. Then by Theorem 2.2 we may assume Γ = G/H for some subgroup H,
which must be proper since Γ is nontrivial. Choose a system of representatives R
of G/H, then we may assume Γ = R. Assume that the representative of H in R
is e. We have that E = ⊕r∈REr, and if t ∈ H, then t acts trivially on e ∈ R, so
ρtEe = Ee. Therefore we can define θ : H → Aut+(Ee) by restricting ρ to H and
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letting it act on Ee. Then by the definition of the system of imprimitivity {Er}r∈R
we have ρrEe = Er, and so ⊕

r∈R
ρrEe =

⊕
r∈R

Er = E,

which implies by Lemma 5.3 that ρ is induced by θ. �

Corollary 5.11. All projection band irreducible positive representations of a finite
group G are induced by primitive positive representations.

Proof. Let ρ be a projection band irreducible representation. If ρ is primitive we are
done, so assume it is not primitive. Then there exists a nontrivial ordered system
of imprimitivity {Eγ}γ∈Γ. Then for each orbit in Γ, the direct sum of Eγ , where
γ runs through the orbit, is a ρ-invariant projection band. Since ρ is projection
band irreducible, this implies that Γ is transitive. Therefore, by the Imprimitivity
Theorem 5.10, ρ is induced by a positive representation of a proper subgroup of G,
which is projection band irreducible by Proposition 5.5. If this representation is
primitive we are done, and if not we keep repeating the process until a representation
is induced by a primitive positive representation. Then by Proposition 5.6 the
representation ρ is induced by this primitive positive representation as well. �

We note that, in the above corollary, the representations need not be finite
dimensional, and that it trivially implies a similar statement for band irreducible
and ideal irreducible positive representations of a finite group.
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