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Abstract

We study of a new type of multi-bump blowup solutions of thezhkiurg-Landau equation. Multi-
bump blowup solutions have previously been found in nunsnulations, asymptotic analysis and
were proved to exist via geometric construction. In the geimconstruction of the solutions, the
existence of two types of multi-bump solutions was showre @pe is exponentially small &t= 0,
the other type of solutions is algebraically smallkat 0. So far, the first type of solutions were
studied asymptotically. Here, we analyse the solutionshviaire algebraically small @ = 0 by
using asymptotic methods. This construction is esseytififferent from the existing one, and ideas
are obtained from the geometric construction. Hence, thisgood example of where asymptotic
analysis and geometric methods are both needed for thellgvietare.

keywords: Ginzburg-Landau equation, multi-bump blowulpions.

1 Introduction

The Ginzburg-Landau equation (GL) arises as a model equatiosarious problems coming from
physics, biology and chemistry. For example, in Rayleigin&d convection, Taylor-Couette flow, non-
linear optics, models of turbulence, superconductivitypesfluidity and reaction-flusion systems, it
can derived, see [9, 3, 14, 6, 7] and the review article [2]régeneral, in ‘marginally unstable’ systems
of nonlinear partial dferential equations defined on unbounded domains, the padder behaviour
of small perturbations is described by the GL as a normal f¢8h This makes the GL relevant for
understanding the dynamics of instabilities.
We study the GL written in the following form

i(%qt) + (1 -ie)AD + (1 + ibe)| @2 = 0, (1.1)

wherex € RY, ¢ > 0 andt > 0. This equation can be obtained by rescaling the standand 6 the
GL as given in [8]. The cd&cients in the equation can be expressed in terms of th&ceats of the
underlying system of PDESs, therefore, we study the dynaofitise GL for a wide range of parameters.
In this article, we study solutions that become infinite irtéirtime, hence, blow up. For these
solutions, a contraction of the wave packet takes place,sandltaneously the amplitude grows and



blows up. In nonlinear optics this phenomenon is calledfeelfising where it is related to an extreme
increase of the field amplitude. In plasma physics it is dallave collapse.

In numerical simulations, sets of initial data for the GL wédound such that the solutions indeed
blow up, see [5, 10]. In these simulations, radially symimgegelf-similar, multi-bump blowup solutions
for the GL were found for Z d < 4. Here, multi-bump is related {®| having several maxima. In [5] an
asymptotic analysis of these solutions was also given. €dftar, the existence and local uniqueness of
a radially symmetric, multi-bump, self-similar blowup gtdbn was proved for 2 d < 4 in [11]. These
solutions only arise for dimensiowks> 2 since the dimensiod = 2 is the critical dimension for the GL;
it distinguishes between integrable and blowup behaviour.

After settinge = 0 in the GL-equation (1.1) it reduces to the well known nogdin Schrodinger
equation (NLS). Blowup solutions of the NLS have alreadyrbseidied extensively, see [15] for a
survey, and for most recent results, [12] and referencesgitheThe dimensionl = 2 is also critical for
the NLS. We assume <« 1 such that equation (1.1) is a small perturbation of the NLS.

In[11, 5], the radially symmetric, self-similar solutiongre analysed using the method of dynamical
rescaling, and we also use it here. This method exploitsdimmptotically self-similar behaviour of the
solutions. Following [11, 5], space, time, afdare scaled by factors of a suitably chosen norm of the
solutions, denoted bly(t), which blows up at the singularity,

_ ¥

to1
=T " " fo B (S)ds ué, 7) = LE)D(x, t). (1.2)

The corresponding norm of the rescaled solutim@mains constant in time, and as a consequence, the
rescaled problem is no longer singular. The rescaled saolutsatisfies

iur + (L —ig) [Uge + %Ug + (1 + ibe)uju + ia(r)(Ew)e = 0,
where
o _LdL _ o ldi
~ Tdt Ldr’

It follows from the numerical simulations that self-sinmildowup behaviour, with_(t) — 0, arises when
a(r) is a positive constant and thatcan be written asi(¢,7) = €V7Q(¢) for some positive constamt
that depends on the solution. After scalingith V—lv the following equation foQ can be obtained

1-ieg) d

Qe +

; 1Q§] ~- Q+ia(Q)s + (1 +ibs)Q?Q = 0. (1.3)

Here the parametea plays the role of a nonlinear eigenvalue. In [10], the camstais left as an
unknown; this does notiect the solutions since it can be scaled out.

Moreover, the initial and asymptotic conditions fdr namely thatd(x, 0) = Do(X) and that|®|
vanishes af| — oo, lead to the following initial and asymptotic conditions fQ

Q¢(0) = 0, ImQ(0) = 0, (1.49)
Q&) = 0 asé — oo. (1.5)

Here we have exploited the phase invariance of the equatiatefine the phase ab at the origin.
Alternatively, we could have kept as an unknown in (1.3) and s8{0) = 1, as in [10].
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Figure 1. a. The& = 1 solution branch, the solutions with one maximum efo( ), and thek = 2
solution branch, the solutions with two maxima erxq, ), plotted in the £, a)-plane wheral = 3 and
b = 0. b. Final-time profiles where the amplituf@ is plotted as a function of the spatial varialjléor
& = 0.1. The solutions correspond to the *’s in a. This is a reprddacoof the Figures 1.1 and 1.2 in [5].

First, we briefly summarise the results from the numericalugations and asymptotic analysis as
given in [5] for solutions wher@| hask maxima on the real line. Therks;solution branches are found
in the (, @)-plane on which a symmetric solution wikimaxima on {0, o) exists for every % d < 4.

In Figure 1a, which is a reproduction of Figure 1.1 from [l toranches fok = 1 andk = 2 where

b = 0 andd = 3 are given. These branches correspond to symmetric swdutiith one maximum at

& = 0 on the real linek = 1, and with two maximak = 2, on the real line. The latter solutions £ 2)
have a minimum af = 0. The normQ| of the solutions as found on the upper and lower part of both
branches at = 0.1, the points indicated by the *'s, are given in Figure 1b.

Everyk-solution branch consists of two parts which coalesce. Bhéisns on the upper part of the
branch are smooth perturbations of the solutions foundn®mNLS. Note that the intersection point of
this part of the branch with the = 0-axis corresponds exactly to the NLS solutions. Howewut®ns
on the lower part of the branch are not a simple perturbatfdheosolutions of the NLS. In this article,
we focus on solutions as found on the lower part ofkfsmlution branches.

Note that there is a clear distinction between solutionsaoich k is even and for which it is odd.
Whenk is odd thek-solution has a maximum &t= 0, on the other hand for evénit has a minimum
at¢é = 0. In the numerical simulations, the maxima that lie awaynfego= 0 are found fora small in
the ranget = O(%) and just to the left of = % which is the point where the linearisation of (1.3) has a
turning point. Thus, aa — 0%, all these maxima are createdét= co.

The existence and local uniqueness proof of [11] yields fargeven ktwo classes ok-bump
solutions for 2< d < 4, and with O< a < 1, as long as certain relations betweed, b ande hold. Here
we give the statement of the result and refer for more deta{l$1].

Theorem 1.1 (Rottschafer, 2008) For each:a 0 syficiently small,2 < d < 4, b > 0, and conditions
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on d e, b and a as given in [11], there exists ag(a) such that, if2 < n < nyg(a) and n even, there exist
2n locally unique k= n solutions of equation (1.3) with initial conditions (1a)d boundary conditions
(1.5). These symmetric solutions consist of n maxima onethkeline whereJ maxima are found on
0 < & < &max With Emax = 2—;/5_ These maxima are strictl?(log(%)) apart. Of the2n locally unique

k = n solutions, i+ 1 are characterized by the property th&@(£max)| is exponentially small; they are

said to be of type L. For the other-nl, said to be of type RQ|(émay) is strictly O(a%).

Moreover, the sets of solutions of types L and R can be sultetiveven further by distinguishing
in the magnitude ofQ| at¢ = 0. There exist solutions for whidiQ(0)| is exponentially small ira and
solutions with/Q(0)| not exponentially small but algebraically smallanBoth cases occur in both of the
sets of types L and R. From the construction in [11], sectiowdconclude that for thk = n solutions
of type L, two of the in totah + 1 solutions satisfy the fact th#(0)| is exponentially small, the rest
of then — 1 solutions have a value @®(0)| which is algebraically small. Thie = 2 solution of type R
(there only exists one) has a value|@{0)| which is exponentially small. Far > 4, then — 1 solutions
of type R can be subdivided into two solutions with an expdiaéiy small value oflQ(0)|, whereas for
the rest of then — 3 solutions|Q(0)| is algebraically small.

The solutions constructed in [5] are of type L wi(0)| exponentially small ira. In this article, we
perform an asymptotic analysis of the other type L solutionsvhich |Q| até = 0 isnot exponentially
small ina but algebraically small im. This analysis dfers on several major points from the one in [5]
and the one for the NLS in [4]. It even turns out that thesetgmia difer in more than just the magnitude
of |Q(0)|. Thek = 2 solutions as constructed in [5] have a maximur@@), this is not true for solutions
with |Q(0)| algebraically small. An important conclusion from the gs#é in this article is that solutions
that have a maximum close (@(%) also satisfy the fact thaQ(0)| is exponentially small. In order for
|Q(0)| to be algebraically small, the maximumust lie well beforeO(%), hencetpump < % must hold for
the position of the maximu,ump This follows from the matching in this article in sectioreid indeed
also from the construction in [11]. More specifically, theabysis in [11] implies that the maximum of
the solution lies to leading order &fymp = k1 Iog%1 for some positivek;. Here, we find that this indeed
is so and thak; = 1.

In this article, we construct solutions wil(0)| algebraically small ira which are of type L where
the focus lies on thk = 2 solution. Extension to solutions with more maxima in thteiival can be done
by extending the analysis in the so-called bump region ae @of] for the NLS.

Recall that solutions found in the numerical simulationgeha maximum a{)(%). Hence, the solu-
tions studied in this article have, so far, not been foundumeric simulations. Also, the solutions of
type R have, to our knowledge, not been found in numericalilsitions or asymptotic analysis so far.

Remark 1.1 In [11], the analysis is performed for the case that 0 although it can be extended to
negative values df. In this article, we do not assume thmit positive but find in section 5.1 thiat> —%
must hold (as long as we assume that 0).

Remark 1.2 Choosing a non-integer dimension as done here is equivialésitingd = 2 and the power
of the nonlinear term equal tar2for some positiver.



2 The main result and an overview of the approach.

In this section, we state the main result of this article dr@lrhethod we use to obtain it. By applying
asymptotic analysis, we construct the 2 solution with|Q| at¢ = 0 algebraically small, and a maximum
at% < % This solution can only be constructed when the parametdt®iproblem satisfy the relations
as specified in

Main result For a ande syficiently small,2 < d < 4, there exists a k= 2-solution branch on which a
symmetric k= 2 solution is found with a maximum &fump= 3 <  where

-1
5= (Iog ;11) . (2.2)

|

For this solution the value of Q @t= 0is given by

1d 1 d\\ ! ad
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On this branch the parameterskaand d satisfy

2-d
4305 (Iog %) ea=d-2- % (1+4b). (2.2)

Hence,Q(0) is indeednot exponentially small but algebraically small @ The above choice aof is
indeed of the form as was expected from the existence prdafl$fsee the Introduction.

The above relation (2.2) between the parameters is quitgadpé is a balance between an expo-
nentially small term, the left-hand side, and an algebhgicmall term, the right-hand side. Hence,
the leading order of this expression is given by the rightehaide. In the asymptotic construction of
the solutions in section 5 this leading order reduction a?)¥ indeed also found as a condition. The
reduction gives an expression for the lower part & & 2-branch similar to thé& = 2-branch given
in Figure la. However, the branch in Figure 1a is not the omenghere; the solutions found in the
numerics resulting in Figure 1a, have a maximum)@), whereas the above branch (2.2) corresponds
to solutions withémax = O(2) < 2.

The above result is obtained by studying solutions of equoatl.3) with initial condition (1.4) and
boundary condition (1.5). Asin [11, 5], we replace the barmdcondition (1.5) by a local asymptotic
condition at¢é — oo. For largeé, it follows from the boundary condition (1.5)Q(¢£)| — 0, that the
behaviour of the solutions is given by the dynamics of thedimpart of equation (1.3)

d

(- 19lQe + Y00 - 0+iakQ) =0 (2.3)

For this equation, there exists a pair of linearly indepandelutions for large given by
2 gpe?

Qu~&hE, QDT (2.4)
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Figure 2: The dferent regions on thé&-axis. As explained in section 2, solutions are studied @s¢h
different regions by using asymptotic analysis, and theredfteisolutions are matched.

SolutionQ; is rapidly varying ag¢| — oo, and has unbounded®-norm. The solutions we are looking
for, are slowly varying solutions, and hence, their lingtiprofile for large¢ is a multiple ofQ;. The
asymptotic expressions f@; and its derivative imply that

16Q: + (1 + é)Q| — 0asé — o (2.5)

must hold, see [11]. In the NLS-limit this corresponds taugohs with finite Hamiltonian. From the
fact thatQ; decays ato, it follows that the boundary condition (1.5) is satisfieddaherefore, condition
(1.5) can be omitted. Hence, from now on we study equatidd) (ombined with the conditions (1.4)
and (2.5).

The approach we take to study the solutions is to divide tisitipe real line,& > 0, into several
regions, see Figure 2, where we study @requation (1.3) by using asymptotic analysis. Thereaifter,
match the solutions as found in thesé&@alient regions.

In one of the regions, the maximum is foundsat épump = 5, this is the so-called bump region. In
this region, we find a sech-profile for the solution, see eadii, leading indeed to a bump solution. The
other regions lie to the left of the bump region whére< &, mp— the so-called inner region—, and to the
right of the bump region wherg > &,ymp Moreover, the region wheig > &pump consists of the far
field where¢ > % and of the region in between the bump region and far field @fighp < & < % In
this latter part, a WKBJ-analysis needs to be used to ma&chump region to the far field. See Figure 2
for a sketch of th&-axis where the dierent regions are indicated. The analysis in the inner regio
performed in section 4, that of the far field can be found irtise@. The matching of the inner solution
to the left of the bump region is done in section 6, and the baatption is matched to the far field in
section 7 via a WKBJ-analysis.

Remark 2.1 The method we apply to obtain the expression (2.1)sfor terms ofa is quite unusual.
This expression does not simply follow from the leading oralealysis; it only arises after matching
higher order terms of the solution in the inner region to that&on in the bump region, see section 6 for
a detailed explanation.

2.1 Global estimates

We can link the far field solution to the global behaviour @fvia a rigorous result that relates the
amplitude and phase of the solutions of (1.3). This relaisocentral in our final analysis, yielding the
parameter branch (2.2), and we will state it here.
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We decompos€) into amplitudeA and gradient of the phageas

Q(§)=A(§)e><p(i f; w(x)dx), (2.6)

the Q-equation (1.3) reduces to

d-1 d-1
¢2A—TAf+A—A3—s(2A§¢+A¢§+TA¢)+a§A¢
Ac d-1 & d-1 a
—Zl/IK—Tl//-i'K(Afg—Al//2+TAf)—K(A+§A{:)—b8A2

As in [5], we obtain from this system the following integrauation fory

Ace

e

Lemma 2.1 The phase& and the amplitude A satisfy

d-1
X

a 1 (v a2 A2
1//+?_§A2f:(2 d)Al//+8XA(AXX Ay” +

AX) — ebxA dx (2.7)
See [5] for a proof of this Lemma.

Once the structure of the solution is determined this emwaswill be evaluated upon takig— oo,
in section 8. This yields the resulting relation betweenghmmeters as given in (2.2).

3 The far field behaviour when¢ > 1

In this section, we consider the behaviour@for & > % The boundary condition (1.5) requires that
|Q| is very small in this range af—values and, therefore, equation (1.3) can be approximatetie
linearised equation

. d- .
(l - IS) (Q‘;:g + Tle) - Q + |a(§Q)§ =0. (31)

ia

Using the Liouville transformatio®(¢) = e“KHe)fzgl%dW this equation can be written in a selfadjoint
form, leading to the parabolic cylinder equation Yur

242
W + W(% ~1)=0, (3.2)

for0 < a,¢ < 1 and¢ > 1. The solutions to this equation change type at the turnoigtg = §
admitting exponentially decaying solutions fok % and polynomially decaying solutions fér> §

In the far field, wheret > 2, there exist (complex) constants v such that as fom ande small,
solutions are given by

Q) ~u§‘1‘”""(l+0($)) (3.3)

or

; 02 2 1
Q(f) - Vé:l—d+|/ae—|a§ /Zeasf /2 (1 + O(@)) ,



see [5]. The first of these two solutions is slowly varying aedaying, whereas the second is rapidly
varying and growing whean > 0. Therefore, only this first solution satisfies the localditan for Q(¢)
given in (2.5), implying that in the far field the solution is'gn by (3.3).

In the matching procedure in section 7, we return toWhequation (3.2) and analyse the solutions
close to the turning point = % by using the WKBJ-method.

4 Solutions in the inner region

In this section, we study the solutions in the inner regioemlQ| <« 1 andé <« 1. Again, thze linearised
equation (2.3) gives the leading order dynamics. Intrauyi¢che rescaling(é) = g it W(y) with
y= equatlon (2.3) is rescaled to

Wyy+d;1wy+(—1+§)wzo, (4.1)

to leading order. After introducing= 2y andW = Re Y we obtain

1d|a

ZR,+(d-1-2R, + ( > 8

)R 0, (4.2)

which reduces to leading order —without the secBrtérm— to the canonical Kummer equation. For this
Kummer equation, there exist two independent solutioneiehbyM (as, by, 2) (alternatively, denoted
as the confluent hypergeometric functidf (as; b1; 2)) andU(ag, by, 2) wherea; = % andb; =d-1.
Hence, to leading order, a solution to (4.2) is given by thedr combination

R(2) = ainM (d 1d 1z)+cUU(de 1)

whereai, andcy are constants. However, the functithis singular atz = 0 and thus we must set
Cy = 0.

Rescaling back to the original variables, the solution ®lthearisedQ equation (2.3) is given, to
leading order, by

! % ) (4.3)

a2 & d-
Qin(€) = aine 4V e mM(—,d—l, =
2 1-ie
for some constanti,. Then, the boundary conditioR:(0) = 0 is indeed satisfied.
Using thatM(a, by, 0) = 1, gives thaQ(0) = ;. Thus the condition, (1.4), th&(0) is real implies
thatain, must be real. Also, recall that we are constructing solstion which|Q| até = 0 is algebraically

small ina. This implies thatQ(0) = «aj, has to be algebraically small a(andnot exponentially small).

Remark 4.1 In [5] it is shown that in the inner region whefe<x 1, the amplitudeQ) of the solution
satisfies to leading order the so-called ground-state mouatich admits a discrete set of exponentially
decaying solutions. One of them beil@y = 0, and another the ground-state solution (or Townes sgliton
Here we concentrate on solutions closéQp= 0 because we requii@(0) to be small.



5 Asymptotic analysis of the solutions in the bump region

Now, we study the solution in the region where the maximathe: bump region. As was mentioned in
the Introduction, we will concentrate our analysis on sohg with one maximum in this region.

In this section, we assume a balance between the terms iQ thguation (1.3) that contain the
parametek, representing the perturbation away from the NLS, and tredlgrarameten, and therefore,
set

c=Ka,

whereK > 0 andK = O(1). Note that this choice corresponds to an analog of theddanch of the
k = 2 solutions in Figure 1a, although the solutions given it Bigure are not the solutions constructed
in this article, see the Introduction.

As was already explained in detail in the Introduction, weuase that the maximum of the solution
is found in the region wheré = O(%) anda <« § < 1. More specifically, we assume that the peak is

located at the point
K

fbump= 5,
with a < § <« 1, and seek to determine In other wordsk is defined such that the maximum|&ff lies
exactly at%. Furthermore, sincé is still free to be chosen, we can fix the leading ordex tf be equal
to 1, hence, we take = 1+ hot. Note that this is possible sinédas not a parameter in the equation
(contrary toe).

Now, we focus on the region around the maximum and rescal®4bguation (1.3) by setting
K
= — S. 51
£=+ (5.1)

This leads to

(1-iaK)|Qss+ 6

QS] —Q+ i?((K-ﬁ-éS)Q)s-i- (1+iabK)|QI2Q = 0. (5.2)

K+ 0S

Also, we expand both of the parameterandK in terms ofé anda:

a
K 1+5K5+“‘+3K%}+“‘+aka+“‘ (5.3)

a
K Ko+6K5+---+5Kg+---+aKa+---

o

where we fix the leading order term ofdentical to 1. Moreover, we require that the solutjQntakes
on a localised form that is independentscdinda, provided that they both are small. Up to this point in
the analysis we have not assumed any condition on the nelagitween powers af anda (apart from

a < §). To stress this, we have written the expansions in the afooue

We start the analysis of thHg-equation (5.2) by reducing the selfadjoiRi-terms in this equation as
much as possible. By introducing a rescaling in the phasg of

Q(9) = e 555(9), (5.4)



the leading order selfadjoint terms are reduced and becéimgtwer order. This leads to

Ses—S+|SPS=S

—ia(l - g((f;&ls)) (1- iaK)) - % (k (1 +iak) + 253)]

_ 2
0= 1 _jaK) —ias+ %K

: s 2
P + iaKSgs— iabK|S|“S. (5.5)

+Sg

We now expres$(s) as an asymptotic series amandéd

S(s) = Ko [So(s) + 6Ss(S) + - - - + :—zsé(s) +--+aSa(s) +--|, (5.6)

whereKg is a complex constant witho| = 1, andSg a real function; this can be done because of the
phase invariance of the equation.

Note that the above expansion ®has to be a consistent asymptotic expression in the bumarregi
Therefore, we need, for example, thi&teSs) < Sp and ImESs) — 0 for s — +oo (sinceSy is real) in
the bump region. Here, R8), resp ImE), is the real, resp imaginary, part®f Similar relations need to
hold for the higher order terms. The most common and easy evagtisfy both conditions is to assume
that ReSs) — 0 for s — +oo0 holds as well. It will turn out that this is not possible forth@ — +co0 and
s — —oo, and therefore, we will restrict the bump region to that pareresRe(Ss) <« Sp. Note that this
is quite unusual when applying the method of asymptoticyaigl However, it is not quite unexpected
because the solution in the inner region — to which this buohtion needs to be matched — contains for
&> 1 an exponentially decaying teramdan exponentially growing term, see section 6.

The assumption that the maximum|Qf lies até = %, hence at = 0, gives that

d d
0= (IQP):(¢ = 5) = (QP)s(s = 0) = 2QUQA(s = 0) = 2( Re §) 5 (ReS) + Im ()7 (Im S)) oo
(5.7)
This leads to conditions on the derivatives of the terms énetkpansion foS.

Substituting the expansion f&r(5.6) into theS-equation (5.5) leads at tki¥1)-level to the following
equation forSg
So,ss— So +1S0*So = 0. (5.8)

As mentioned before, we assume the solufigrof (5.8) to be real, so, we find
So(s) = V2sechs). (5.9)

Rewriting this in terms of the original variabke gives the following leading order expression of the
Q-solution in the bump region

Q) = e B DR Vasecht - ),

whereK € C and|Kq| = 1.
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5.1 Higher order terms in the bump region

Now, we study the equations for the higher order terms in K¥paesion forS; this analysis yields an
expression for the leading order termskofind gives the range afvalues where the expansion (5.6) is
asymptotic, thereby restricting the bump region.

TheO(6)-terms in equation (5.5) lead to the following equation $gr

Si.ss— S5 + S2Ss + 2/S0/?Ss = (1 - d)Sos. (5.10)

Splitting S into complex and real parts & = t; + ivs, we find

t(g’ss— t(g + 3Sgt5 (1 — d)So’s = f(g

0,

2
Vsss— Vs + SOV(s

wheref;s is defined as the right-hand side of the equatiortsfor
The equation fotts has two linearly independent solutions which are given/bfs) := Sps and
Y2(s) = Sos f s S%dx Here, the solutiong, andy, are constructed in such a way that the Wronskian
0,x

is equal to 1. Furthermorey is odd and localized, ang is even and unbounded. Using the method of
variation of constants, the general solution of thequation is then given by

t5=A61ﬁ1+Ba¢2—lﬁ1fo ¢2f5dx+¢2fo Y fsdx

for some constantds, Bs.
From the condition (5.7) tha@Q| obtains its maximum &t = 5 we find thatts; s(0) = 0 which in turn
implies thatA; = 0. After evaluating the integrals; is given by

_sech (s)
24+/2

This expression grows exponentially|gs— oo, more specifically,

s = [3Bs (cosh(3s) — 9cosh(s)) + 4((d — 1)(1 — cosh(29)) + 9Bs) sinh(s)] . (5.11)

s
ty »> ———
62
ass — =+oo. Unfortunately, the constar®s cannot be chosen such thigtdecays to zero for both
s — 400 and s— —oo. However, as explained above, for a correct asymptoticyaizalve do need that
the expansion fo6 (5.6) is an asymptotic expansion. Hence, the condiign« Sp must be satisfied
for all sin the bump region. Now, we can still chooBgand with this choice make certain thigtlecays
to zero either as — +co0 Or ass — —oo. It turns out (from the matching) that it is more convenient t
choose

ngi(l—d)

’

2d-1)
==
so thatts; decays to zero fos — +oo. For negative values afwe restrict to that part of the bump region
wherests < Sg is satisfied. This implies that the bump region can only darttzose negative-values
for which|g < log(3).

Bs
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Now, we analyse the equation f@y. Two linearly independent solutions to thgequation are given
by ¢1(S) = Sp and¢,(9) = So Lssigdx where¢, and ¢, are again constructed in such a way that the
Wronskian is identical to 1. Furthermoig, is even and localized, ant} is odd and unbounded. Then,
the general solution to thg-equation is given by the linear combination

Vs = Cs¢p1 + Dso,

for some constantSs, Ds. Now, sincevs must decay to zero as— +oo ande» is unbounded, we need
to setDs = 0.

The analysis at th@(s')-level for| > 2, can be performed in a similar way, where in the restricted
bump region (where fos < 0, |g < log %) the expansion fof indeed is asymptotic.

It turns out that in order to obtain an expression for theilegdrder term oK, Ko, in terms of the
parametersl andb, we need to study the equation@fa)-level. After collecting theD(a)-terms and
separating into real and imaginary part, w8k = t, + iv,, the equations are given by

tass—ta + 3S3ta 0
d-3
2

where the right-hand side of thig-equation is denoted k. Similar to the above analysis forwe can
solve both equations by using the solutions of the homogenequation and the method of variations
of constants. Thereafter, the requirement that the exparisr S (5.6) must be asymptotic, yields an
expression foKg.

From the analysis of thig-equation, yieldind, = Aqy1 + Bay2, we do not find any condition on the
parameters in the problem, therefore, we omit it here, amtiriee with the study of the solution of the
Va-equation.

The method of variation of constants yields

Vass— Va + SSVa So — sSos + KoSo,ss — bKoS§ = Ga,

S S
Va = Ca¢p1 + Dagp2 — 91 j; $20adX + ¢ fo $10adX

Now, we need for an asymptotic expansion tlgt— 0 as|g — co. Sinceg, is exponentially growing
this will result in conditions on the parameters. By usingtipy andg, are both even, we find from
assuming thay;] — 0 as|g — oo thatD, = 0. Moreover, the condition

« < ]d-3
0= fo $10a dX = j(; ¢1[ > So — $So;s + KoSo,ss bKoSS’] dx,
must be satisfied. Determining the integrals, this yields
2
d-2- §K0(1+4b) =0.

Hence, we find thalKy can be expressed in termstoandd, as

_ 3d-2)

—_ m. (5.12)

0
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In section 8, we find to leading order the same expressioKdas here by using the integral condition
(2.7) that was introduced in section 2.1.

Recall that the cd&cientKy determines the (leading order) relation betweandaby ¢ = Kga+hot.
From the fact that anda are both positive we conclude thidy must be positive, and hende,> —%
(sinced > 2). Moreover, forb close (ina) to b = —% the above analysis can only be performed with the
restriction thad — 2 is small.

6 Matching the bump region to the inner region

In the subsequent sections, we match the solutions as fousettions 3 — 5. In this section, we match
the solution in the inner region to the left-hand side of thkitson in the bump region, see Figure 2.
Thereatfter, in section 7, we match the right-hand side ofbilnap region to the far field by using a
WKBJ-method, to construct an asymptotic solution on thélnee.

By introducingy = -¢ + 5 wherey > 0, 1 <y < log % we write the inner solution and the bump
solution in terms of this new variablewhich represents the region where they are both valid. Tihen,
solution in the bump region is, to leading order, given by

Q(Y) = Ko V2d Ve, (6.1)

where|Ko| = 1. By using the asymptotics for the Kummer solution, the sofuin the inner region
becomes (in terms of)
d\ _as [k in(d-1)

Ld 2 . .
Qn(y) = @inﬂ_%r(E)ZT (E_y) ’ e_'WJr'Z_("y[e‘y+5 +e 7 &5, (6.2)

The solution (6.1) and the leading order term — the first teim(6.2) match perfectly upon choosing

- aK?
Ko eXp[—I@],

1d 1 d\\* 4d 1
din o0zmnz|l E 272 eXp —g , (63)

where we use thd)(0), and hence;,, must be real, see section 4. Also, we use the faciktkat + hot.

The aim of the analysis in this article is to construct solusi for whichQ(0), and hence;, = Q(0),
is algebraically small im (and not exponentially small). The above expressiomfigr(6.3), is only then
algebraically small when e>{p%] is algebraically small i. From this we can conclude th&must be
chosen such that>> a for everyl > 0.

Now, it can also be explained that taking the bump of the Bt &pymp = O(%), as in [5], imme-
diately implies thaQ(0) is exponentially small. Namely, choositigmp = O(%) corresponds to setting
6 = ain (6.3). This gives thati,, and henc&)(0), both are exponentially small.

In the subsequent analysis we will determine an expressioé in terms ofa. In order to obtain
such an expression (6.4) férwe focus on the second term in the expansion (6.2) of theisolut the
inner region.

13



With the above choice afi,, expansion (6.2) becomes

2 in(d-1)

Qin(y) = ‘/Elzoe'%y ey +ese 2 ey]'

In the matching procedure, the second term in this expnesaigst also be matched to a (higher order)
term of the solution valid in the bump region. Since the tesm)ﬁO(e‘%), this can only be done for
suitable choices af.

The expansion in the bump region contains term®f”, O (&) and O(a2) wherel;, m are
positive integersp, < mg andmy > 2. Now, we must match thé(e‘%)—term to one of these terms.
Note that a term 0®(e~5) cannot be matched to@(s'V-term. In case we match th@(e~)-term to
either a0 %)-term or a0(al?)-term (wherd, > 1, mp < my, my > 2) this results, in both cases, to the
following leading order expression

5oL 6.4
cslog 2
wherec; is a positive constant. Here, the higher order terms thee &y equating‘§ with aO(g%)-term
in the resulting expression férare incorporated in the higher order terms in the expredsion(5.3).

Upon choosing as given in expression (6.4), we find thi{ —%) = a%%. We will match this term to
aO0(a?)-term in the bump region, and therefore, we need to chogseduial to a positive integer. Thus,
2cs = N whereN e N.

Now, we show that matching to th&(a)-term S, in the bump region leads to a contradiction. The
reason for this is that the second term in (6.4) is exponigngeowing iny andS; = t5 + v, is not. First,
we study the behaviour of the functieg. In section 5.1 we assume thatdecays to zero as — +co.
There, this leads to the condition (5.12) 4. If we discard the assumption that decays as — +oo,
and hence, this condition (5.12), the matching can indeege®rmed. However, in section 8, the
integral condition (8.4) is used to determine a relatiomieenn the parameters and there we rediscover
the same expression (5.12) fidp as in section 5.1. This means thgtindeed decays exponentially to
Zero ass — +oco andcannotbe matched to the second term in (6.4).

Now, we analyse whether we can match to the real partf S;. For this we need that the second
term in (6.4) is also real (to leading order). From this ctindiwe obtain thaf"%2 = kr.k € Z, to
leading order. Hence, since<2d < 4, this implies thatl must be either close = 2 or close tad = 4.

We do not want to impose this extra restriction, thereforataming to theS;-term is not possible.

Concluding, we should match the second term in (6.4) t@X(@é)-term in the expression f& (5.6):

S,z =t +ivp. Therefore, we must choose
cs=1
so that the matching can indeed be performed.

The above analysis results in the expression

-1
0= (Iog %) . (6.5)

Also, this gives
d\\ .« 1\ 7
Q) = ajp = 2 (F(E)) 24Tda(log 5) ,

which indeed is algebraically small &
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7 Matching the bump solution to the far field solution

In this section, we match the bump region to the far field. Récat the far field solution determined in
section 3 is valid as long as> 2 <. In order to match the solution in the far field to the solutiorthe
bump region we need to track the solution through the rediahlies between the bump region, where
&= O(%), and the region where the far field solution is valid (where %). In this region, the dynamics
of the solution is described by the parabolic cylinder eigmat3.2) as found in section 3. This equation
has a turning point & = &p = % and exhibits exponential behaviour to the left, and parali@haviour

to the right if this turning point. We apply the WKBJ-methamdquation (3.2) to obtain the solution in
this region. Close tdp, equation (3.2) reduces to the Airy equation, see sectibn 7.

Upon introducingx = %, equation (3.2) becomes
4
W= — [1-%|w=0. (7.1)

Note that in the rescaled variable the turning point cowass tox, = 1. Using the WKBJ-method we
find that the solution is given by

W= (1- XZ)—%, [C_(y%ff q(s)ds+ C, eafl q(s) ds (7.2)

whereq(x) = 1 — x°. The integral in the exponential can be determined as

X
F(X) = f \Va(s)ds= %xx/l - X2 + %arcsinx— e (7.3)
1
and thus, the WKBJ-solution is, in terms of the original &htes, given by
262
QE) = e e (1 - Ty [c e 5F3) 4 c,efF D). (7.4)

Now, we match this solution both to the bump solution and &fé field solution. First, we match
the bump solution on the right-hand side to the WKBJ-sotutiBor that we study the solutions in the
region where they are both valid; we introduce 5 +y, withy > 0, 1 <y < % Then, the solution in
the bump region is given by '

Q(y) = Ko V2e Ve,
and the WKBJ-solution reduces to
1-d

iax? iak l Z c x « .
QWY) = e‘me‘ﬁy(g) [C_e¥V it +Cei™Y &,

to leading order. Sincg; > £, the second term in this expression is exponentially snaaltl the
solutions can be matched upon choosing

1-d

: =
KoV2 = ewZ(%) Ceita,

Combining this with the expression as obtainedKgrin equation (6.3), and the fact that= 1 + hot,
then yields
C.= V257 ei 4. (7.5)
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7.1 The Airy equation

At & = &p = 2 equation (3.2) has a turning point, hence, close to thistpibie WKBJ-approach

al
breaks down. Aroundi, we analyse (3.2) by zooming in around the turning point. Aiitéroducing
z=2a"3(1 - x) into (3.2) we find the Airy equation
WZZ_ ZW: O
The solution of this equation is given by a linear combinawd the Airy functions

W(2) = CaiAi(2) + CiBi(2). (7.6)

Now, we match this solution to the left &, to the WKBJ-expression in (7.4). For that we introduce
&=2-y withy >0, al <y< 1. In terms ofy, we find 2F(3¢) = —%a%y% such that the WKBJ-
solution (7.2) is to leading order given by

wIny
@
<

W(y) =ay 7 [C_e

Using the asymptotic expressions for> 1 as known for the Airy solutions, we find that this WKBJ-
solution can be matched to the Airy solution (7.6) upon chaps

1
C, = Ea%n—%cAi, C_ = atr 2Cp,

In a similar way as in [5, 13], the matching can be continueth&right-hand side of the turning
point and further into the far field. This analysis is givendetail in [13], therefore, we just give the
results here and refer to this analysis. It is found that tmestants in the solutions are related as

Il
5
@©

CAi
1 d73 1 | 1 7
\/_2 -3 5—2 +—6 e— Ioga+|—4C i

Finally, combining this with the above expression €ar (7.5) leads to

id 1
2 @

u = 22T s 0035 el -5 (7.7)

completing the matching between the bump solution and thigeld solution.

8 Evaluating the integral expression

In this section, we evaluate the integral expression (2%)given in Lemma 2.1, to obtain a relation
between the parameters in the problem. The relation thatngechrresponds, to leading order, to the
expression foKg, (5.12), as found in section 5.1.

We determine the integral expression (2.7) §os % Using the decomposition @ in amplitude
and phase as given in (2.6), leads §os % to the following expression foA andy

_ 1 __1 1
A=U(irof L)) ws vo-Lfieo) -
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Substituting these asymptotic estimates into expres@at), (it follows that foré > %

— 3 —
a_ €@ zd) fA2¢dx+f_‘92f xA(AXX—A¢2+ d le—bA3)dx, (8.2)
2 lul 0 2 Jo X
where both integrals converge &s» . Thus, lettingé — oo, we find the exact expression,
lul? = Mf AZydx + §f XA(AXX— Ay? + d- lAX - bA3) dx (8.3)
a 0 a Jo X

To obtain the resulting parameter branch (2.2) as givendtise2, we use the relation (7.7) that was
determined fou in the matching analysis in section 7. A second estimate: fimllows from (global)
estimates of both of the integral terms in (8.3).

In order to obtain the expression for the two integrals inregpion (8.3) over the whole (positive)
real line, we determine the integrals in thefeient regions as distinguished in the matching analysis.
For this we use approximations for the amplittl@ndy as obtained in Sections 3-7. It turns out that
the main contribution to both integrals comes from the bueggan; the other regions yield contributions
that are higher order compared to the one in the bump region.

In constructing the solution, we had to study the solutiorthien WKBJ-region in section 7. This
region has a width ar)(g), and hence, wdoneed to determine the integral over this region as well. This
is different from the analysis in [5]; there this was not necessary.

In the subsequent sections, we study the regions separdifdystart every section by stating the
amplitudeA and gradient of the phageas found for the solution in the previous sections. Usinge¢he
expressions, we obtain the integrals.

Note that all the analysis is to leading order, most of thestime will refrain from mentioning this.
Moreover, we use in the following analysis that 1 to leading order, although we only use this in the
last step of each evaluation.

8.1 The integral expression in the bump region

In this section, we integrate over the bump region where tineddis found at = 5. Hence, we integrate
fromé = -z + S uptoé = 2 + £, wherez;, z > 0,21,2 > 1,2, < 3 andz, < log 1. In this region,
we determine from section 5 that

- %
V=%
A = \/Esech‘f—g).

The first integral in expression (8.3) is then given by

Z+5 V)
f A2ydx f —%secﬁ(s)ds

K
1+ 5 V)

2a:<_ 2a

5T
to leading order.
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The second term in expression (8.3) can be evaluated as

2+ d-1
f xA(AXX - A+ — A bA3)dx

2+5

f ” 5(sech$) (sechg)) - —secﬁ(s) 2bsecﬁ(s))

Z1

+|d- 1)secﬁ(s)]_Zl

—%(1+4b).

8.2 The integral expression in the inner region

In the inner region,we integrate froén= 0 up to5 — z;, wherez; > 0 and 1< z < Iog% and, we find
in section 4 that

_ &
Y= Y (8.4)
A = aje flvl(d—ld 12§) (8.5)

We evaluate most of the integrals in expression (8.3) bygutie fact that the integral can be es-
timated by its value at the tail; faf large. Hence, we use the asymptotic expansion for the Kummer
function foré > 1, see [1],

T'(by) 2%

(2£)227P1e% + hot=

M(ay, by, 2¢) = Ia) -

r(g)gl—z"e?f + hot,

and replace the lower bougd= 0 of the integration by somg= y; where 1< y3 < §—2z. This indeed
gives the leading order of the integrals sices increasing and remains bounded §ot. ys.
The first integral in expression (8.3) is then given by

K_z1 2
|fd AZydx = |—§cx%f xe‘zX(M(u,d—l,Zx)) dx,
0 2 0 2
a_y d\? 5
= |_2d 4 ﬁ](r(z)) f X2 déZdeI,
Y3
5 20d—7 d 2
= |aof F(E)) (I3 —d,-2x]]y, |,
2d—5 d i
— |a(l’ﬁ,] - (1—*(2)) 6d 262(5 Zl)l
_ E 22 9‘
- % Sy

to leading order, and hence, its contribution to the integramaller than that of the solution in the bump
region (which is 00(2)).

The second integral in expression (8.3) is in this regiow almaller than the contribution to the
integral of the bump solution. We show this in Appendix A.
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8.3 The integral expression in the WKBJ-region

In the construction of the solution, the WKBJ-region runsniré; = § + 2 to & = % — Y2, where
2, ¥,>0, 1<z <3 anda3 <y, < 1. Hence, this region has the size of ord¥t), therefore, we
doneed to determine the contribution of this region to thegrakexpression. Again, it will turn out that
its contribution is much smaller than that of the bump region

In the WKBJ-region, we find from (7.4) and the relatiGn = %iC_ that to leading order

as
_ & 8.6
v = -2 (8.6)
1
2£2\72 1 4
A2 — C_2 1-d 1_a§ e aF( ) eaF( ) ,
IC_I°¢ 2 *2
1
2£2\72
= epefi- S ) et 8.7)

whereF is given by (7.3) and€C_ by (7.5), see section 7. Here, the second equality in theeggmmn for
A? is obtained by using that

0> —% (ayg)% = (afz) >F (ag)

> (@) = E(f + zz)—z, and hencel (%) <0 and%lF (%)l > 1.

2 2\6 4

From this we conclude that the second term\fris exponentially small, and hence, higher order.
The first integral in expression (8.3) is then given by

1
2 42 1 a2X2 T2 ax
|f AZydx f ~alC_|2x%d (1——) e aF3)dx,
& & 2 4

asp

2 (2 2-d d 14
= def (—) IC_)Ps 91— ) 2ea"Odsg
% a

IA

2

1-d
}(Z) C_2 max (sz‘d(l—sz)‘l)[ F(S)]

a& ag
2\a <% %)

1(2\* 2-d
N ]

a
= max{2 dat-2s1d ,—} €22 « =
{ Y23 6

to leading order. Again, the contribution of the above ind&gs smaller than the one in the bump region.
The second integral in expression (8.3) is determined inef\gpx B .

NERNI:

(8.8)

8.4 The integrals in the far field

For the far field, we integrate over &> + ¥, wherey> 0, §> = 1 Then, we have

I
=
™



Using this, the first integral in (8.3) is given by

0o 2 )
f A2y dx e f x~3dx
24 a Jz2

WP (2 NP
ﬂ—a(a +y) = ’u?ay 2 < aul.

N
I
jo)
+
<

The expression (7.7) found in section 7.1 implies thais exponentially small, and therefore, the con-
tribution of the far field to the first integral is certainly atter than the one in the bump region.
The second integral in (8.3) is obtained as

ﬁ ) xA(AXX - A2+ d )_( lAX - bA3) dx = |ﬂ|2ﬁ (—é —d+3- b|y|2) x3dx
aty 5y
1( 1 2\
= |2 (—g —-d+3- bl,u|2)(a+y)

1 1
2 2| &2 2
< |yl 5(3— 2 —d - byl )y < |ul%,

which again is an exponentially small contribution to thiegral.

9 The resulting relation for the parameters

In this section, we collect all the results from the aboveisas and substitute these into the integral
expression (8.3). This yields the following leading ordaation between the parameters

4d-2) 8¢
2 o —_— —
|- = 5 30 (1+4b). (9.1)
Note that the only contribution to right-hand side comesgiftbe bump region.
Now, we use the expression (7.7) farthis gives

40352 9gi~5 = d -2 - 3—2‘; (1+4b),

which, after setting = log % results in relation (2.2) as given in the main result inisec®.
The relation consists of a balance between an exponensiaiil term on the left-hand side and
an algebraically small term on the right-hand side. Theitepdrder of this relation is given by the

right-hand side and yields
3(d-2)

2(1+4b)°
This corresponds to the relation (5.12) that was foundfpim the bump region analysis, in section 5,
by using

¢ = Kawith K = Kg + hot.
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Organisation (NWO).
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A The second term of (8.3) in the inner region.

In this appendix, we determine the contribution of the sofutn the inner region to the second integral
in the integral expression (8.3). Using the expressions:f(ﬁA) andA (8.5) and that

e T e T

we find

E_Zl _
fé xA(AXX W _ Lo bA3) dx{
0

5-z -z
- [XAA(+%(d—2)A2 - f xA)2(+xA2(w2+bA2)d><{
0 0
_2%%af (1 (d\\? o (d-1  d- 2\
G e (e ),

[T (G e Bt b P (1)) e
,  \d+1 2 r 2

Ll GRS
[(d-1\* 4 s drd-7 1-d 2 ~4d-7; 1\2d i
~|(g75) CwrETE-a-2 e 2(~1)9297T[5 - d, ~2x] — 6+ e 227 (~1Y2r [4 — 2d, —4x]
Y3
|,d-1 o2 1d—-d112dx &% 44 o 11d—- 2d4x
_zd 15 -25 1) 3 e — ><4e2+26 sy i
-t Zdli(i):—g) - beas™

= 1'|b|e_421 < 1
0 0

Again, this indeed smaller than the contribution of the buatgion to integral.

B The second term of (8.3) in the WKBJ-region.

In the WKBJ-region, the second integral in (8.3) is evaldaising that

U{ xAAXX Ay? + d-1, bA3)d><{ =

Now, we evaluate both of these terms separately using theessipns fory (8.6) andA (8.7). This
second expression also gives

Co1-d,,, @ a2¢2\ 7! o 222 -3 ey A
Ac = Tf A+ 3 (1—7) A-IC_I¢ (1—7) e Fé—‘(f)

52 2
[XAA< + %(d - 2)A2] - f XAZ + XP2(y? + bAz)dx{ .
& &
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= A

2
First, we determine

&

XAA + }(d - 2)A2]
2 &

Then,

| f " xA2ydx
&

2,.2\-1 2,2 2:2\"3
lg-l(l—ﬁ) (1—d+d%)—(1—£) }

4 4

4 4

r 3

2,2\~3
100 (1— ax ) IC_PRe aF(P)(@2x% - 2) - 4x2‘d|C_|2e‘§F(a_2X)]
L &1
loade 2e2FGe)
SEIC PeriFEn) (8 — 1),

4
e « }
0 0

a (" 2,0
= |—§ X“A“ydX
&
< - Acydx = — A“yd -
< 2§2| . YwdXx als, t//X<<5,

using the estimate found in (8.8).

Also, we estimate

[

IA
&
™~
—_——
DN
|
—

1 _ _3 2
2 M (sl d(1- ?)y3(1-d(1- 52)))? max.

A
g
N
ml
NS
N
A

&2 1
f A% =X
& 4

e (1 | . 2
e a ()]aﬂ {Z maxse[%,%](s (1—32) (1-d@1- 82)) )

=

2

N

()

- 1\ 162
1 a?x? a2\t d-2 a?x?\ 2
2) L, asxt\(, axt B _axs
A {2(1 d+d 7 )(l 7 ) + > x(l 7 ) ,



% 2 4-2d .

- cf L (5) 21 - &)l 8F9ds
%1
2

1 2 -2 8 % 3

= ZIC_*|= [—e‘éF(S)] max (33‘2d 1-& ")

(3 e I

p2lesn oo L (B.1)
5 5

Hence, taking these terms together, the contribution oftkBJ-region to the second integral in
expression (8.3) is smaller than that in the bump region.
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