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Abstract

In countable state non-explosive minimal Markov processes the Kolmogorov forward equations hold
under sufficiently weak conditions. However, a precise description of the functions that one may integrate
with respect to these equations seems to be absent in the literature. This problem arises for instance
when studying the Poisson equation, as well as the average cost optimality equation in a Markov decision
process.

We will show that the class of non-negative functions for which an associated transformed Markov
process is non-explosive do have this desirable property. This characterisation easily allows to construct
counter-examples of functions for which the functional form of the Kolmogorov forward equations does not
hold.

Another approach of the problem is to study the transition operator as a transition semi-group on
Banach space. The domain of the generator is a collection of functions that can be integrated with respect
to the Kolmogorov forward equations. We focus on Banach spaces equipped with a weighted supremum
norm, and we identify subsets of the domain of the generator.
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1 Introduction

Let us consider a Markov process X = {Xt}t≥0 on the countable state space S, with transition function
{ Pt = ( pt,xy)x,y∈S}t≥0. Suppose for the moment that X is the minimal Markov process. Additionally
suppose X to be standard and stable, with (everywhere) right-continuous sample paths. Then each function
t 7→ pt,xy has a derivative qxy at t = 0. Under the assumptions above, the matrix of derivatives, Q say, has
the properties that for all x ∈ S

1. 0 ≤ qx = −qx,x <∞;

2.
∑
y qxy ≤ 0.

In accordance with [1], we will call the matrix of derivatives Q a q-matrix, whenever it has the two properties
above. The transition function (cf. [1] Theorem 2.2.2) {Pt}t satisfies the Kolmogorov forward equation

pt,xy = δxy +
∫ t

0

( PsQ)xyds, t ≥ 0, x, y ∈ S, (1.1)

with δxy the Kronecker delta, as well as the backward equation, and it is the minimal non-negative solution
to both equations.

Our question of interest is the following: for which functions f : S → R does the Kolmogorov equation
hold:

Exf(Xt) = f(x) +
∫ t

0

Ps(Qf)(x)ds. (1.2)
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Interpret Psh(x) =
∑
y ps,xyh(y) whenever this expectation is well-defined. Our interest in equation (1.2)

lies mainly in the fact that we may rewrite it as follows

Exf(Xt) = f(x) + Ex

∫ t

0

Qf(Xs)ds, (1.3)

provided e.g. Ex
∫ t
0
|Qf(Xs)|ds <∞. This then implies that the process Mt(f) = f(Xt)−

∫ t
0
Qf(Xs)ds−f(x)

is a martingale. The optional stopping theorem provides conditions allowing to replace the deterministic time
t by a stopping time. The resulting relation is the well-known Dynkin formula.

Regarding our question, clearly equation (1.1) is equal to equation (1.2) for the function δy, the indicator
function of the set {y}. Hence (1.2) holds for functions with finite support.

Other cases are not quite as clear. The only reference we have found so far, attacking this problem, is
Appendix C.3 of [8]. There it it is stated (without proof) that (1.3) holds for all functions f , such that Qf is
defined,

∫ t
0
Ps|Qf |ds <∞ for all t > 0, and Pt|f | <∞ for all t ≥ 0. The statement unfortunately is not true

without further assumptions, as we will show in this paper.

Strongly continuous semigroup An alternative approach is to consider Pt, t ≥ 0, as a semigroup of
bounded linear operators on some suitable Banach space B(S) of real-valued functions on S. Following the
set-up in [1] section 1.4, [7], the transition function Pt, t ≥ 0, associated with a Markov process is a semigroup
of operators, by virtue of the Chapman-Kolmogorov equations. It is a strongly continuous semi-group of
bounded linear operators on the Banach space B(S), equipped with norm || · ||, if || Pt|| = supf || Ptf ||/||f || <∞,
for each t ≥ 0, and limt↓0 || Ptf −f || = 0, for each f ∈ B(S). In [7] Proposition 1.1 it is shown that this implies
the existence of constants M ≥ 1, α ≥ 0, such that || Pt|| ≤Meαt.

Suppose that Pt, t ≥ 0, is a strongly continuous semigroup on B(S). A linear operator Q is called the
generator of the semigroup, if there exist a subspace D(Q) ⊂ B(S), such that to each f ∈ D(Q) there exists
an element g = Qf ∈ B(S), with

lim
t↓0
|| Ptf − f

t
− g|| = 0.

D(Q) is called the domain of the generator. The following main properties are well-known.

Theorem 1.1 Let t ≥ 0.

i) If f ∈ B(S) then
∫ t
0
Psfds ∈ D(Q) and Ptf = f +Q

∫ t
0
Psfds.

ii) If f ∈ D(Q) then Ptf ∈ D(Q) and
d

dt
Ptf = Q Ptf = PtQf.

iii) If f ∈ D(Q) then the Kolmogorov backward and forward equation hold:

Ptf = f +
∫ t

0

Q( Psf)ds = f +
∫ t

0

Ps(Qf)ds.

iv) D(Q) = B(S).

The domain D(Q) is non-empty. However, it is difficult to assess whether a given function belongs to it.
The particular Banach spaces that we are interested in are function spaces equipped with the weighted

supremum norm. Let V : S → R+ be a given function. It generates a weighted supremum norm || · ||V , given
by

||f ||V = sup
x∈S

|f(x)|
V (x)

.

The space
`∞(E, V ) = ({f : E → R | ||f ||V <∞}, || · ||V )

is a Banach space. Such spaces play an increasing role in the stability and control of Markov chains and
processes (cf. [4, 5, 6, 9, 8]). However, it can be deduced from [1] Lemma 1.4.7 and Proposition 1.4.8 that
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strongly continuous semigroups on `∞(V,E) necessarily have bounded q-matrices. A more delicate approach
is therefore required, see Section 6.

The set-up of the paper is as follows. Since explosiveness properties play a role in the analysis, we will
provide different characterisations of explosiveness in Section 2 from the literature. The section also provides
sufficient conditions for explosiveness, and for the lack of it, all gathered from the literature. Then we will
discuss alternative conditions for the Kolmogorov forward equation to hold in Section 3.

Explosiveness is equivalent to the existence of bounded, non-negative eigenvectors to positive eigenvalues
of the q-matrix (cf. [1], see Section 2). Section 4 will study how to transform these eigenvectors, when putting
a taboo on one state and vice versa. In Section 5 we will provide counterexamples to the conditions of [8].
Finally we will study the transition function as an operator on Banach space in Section 6.

In a subsequent paper [14], we will use the results obtained here to connect uniform drift conditions and
uniform exponential ergodicity conditions for a Markov decision process, cf. [8].

2 Explosiveness or the lack of it

For simplicity we will use the following condition.

Assumption 2.1 X is a minimal, standard and stable process with q-matrix Q.

Recursively define τ0 = 0 and
τn+1 = inf{t > τn |Xt 6= Xt−},

if X(τn) is not an absorbing state (i.e. qX(τn) 6= 0). We put τk = ∞, k > n, if X(τn) is an absorbing state
and then X(τk) = X(τn). The sequence {τn}n is a non-decreasing sequence of stopping times, representing
the successive jump times. Put further J∞ = limn→∞ τn.

Definition 2.1 X is said to be explosive, if there exists a state x ∈ S, such that P
x
{J∞ <∞} > 0.

We will recall a number of criteria for explosiveness from the literature.

Substochasticity criterion ([1], Theorem 2.2.2, Propositions 2.2.3, 2.2.4). Under the assumption that Q be
conservative and Assumption 2.1, X is explosive if and only if

∑
y pt,xy < 1 for at least one state x ∈ S and

one value of t (hence for all time points).

Eigenvectors ([1] Lemma 2.2.6, Theorem 2.2.7, Propositions 4.1.7, 4.1.12, 4.1.13). For describing interesting
properties associated with the existence of eigenvectors, we need the resolvent matrix: for any λ > 0

R(λ) =
∫ ∞

0

e−λt Ptdt. (2.1)

The resolvent matrix λR(λ) is a stochastic matrix if and only if Pt is stochastic for some t > 0 (and hence
for all t ≥ 0), cf. [1], Proposition 2.1.1. Consider the set of inequalities

λf ≤ Qf 0 ≤ f(x) ≤ 1, x ∈ S.

The maximum solution is the function

rλ(x) = λ

∫ ∞
0

e−λtP
x
{J∞ ≤ t}dt.

The vector rλ solves this system with equality and is hence a bounded, non-negative eigenvector to eigenvalue λ.

Eigenvector criterion Under Assumption 2.1, X is explosive if and only if there exists λ > 0, such that Q
has a bounded non-negative, non-zero eigenvector fλ to eigenvalue λ.

An eigenvector to eigenvalue λ of Q is the same object as a λ-invariant vector of Q. We will use the latter
terminology henceforth. Given any λ-subinvariant non-negative vector fλ of Q, λ > 0, one can obtain a
µ-invariant non-negative vector of Q, µ > 0, µ 6= λ, by the transformation

fµ = (I + (λ− µ)R(µ))fλ.
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One has fµ ≤ fλ, if µ ≥ λ, with fµ ↓ 0 componentwise, as µ→∞.
If f0 = limµ↓0 fµ is finite (it always exists by monotonicity!), then we can write fµ = (I− µR(µ))f0.

Sojourn sets To describe this criterion we need two further concepts. The first is the jump chain XJ : it
is a discrete time Markov chain on S with transition probabilities pJ,xy = qxy/qx, for y 6= x. The transition
matrix is denoted by PJ and we allow it to be substochastic. This clearly can be easily remedied by adding
a coffin state, to which transitions take place with probability 1−

∑
y pJ,xy, when the present state equals x.

The second concept is the taboo matrix. Let P be the transition matrix of a discrete time Markov chain
Xd = {Xd

t }t=0,1,... on the countable state space S, and let A ⊂, 6= S a given subset. With P we can associate
the taboo matrix AP with taboo set A, which has elements Apxy = pxy if y 6∈ A, and 0 otherwise. This
means that all transitions leading into the set A are ignored. By AP

(t) we denote the t-th iterate, whereas
AP

(0) is the identity matrix.
A set A ⊂ S is called a sojourn set (cf.[3] §I.17, [2]) if there exist x ∈ A and T ≥ 0, such that

P
x
{Xd

t ∈ A, for all t ≥ T |XT = x} > 0.

Sojourn set criterion ([3] Theorem II.19.3) Suppose that Assumption 2.1 holds and that Q is conservative.
X is explosive if and only if there exists a sojourn set A for the jump chain XJ and a state x such that

∞∑
t=0

∑
y∈A

p
(t)
J,xy

1
qy

<∞,

and limt→∞
∑
y S\Ap

(t)
J,xy > 0.

These conditions are generally hard to check. The following sufficient conditions for either explosiveness or
the lack of it, are easier to handle, although clearly not exhaustive.

Sufficient conditions for (non)-explosiveness First we need the concept of a moment function.
The function f : S → R+ is called a moment function, if there exists an increasing sequence of finite sets

{Kn}n, Kn ↑ ∞, with the property that

lim inf
n→∞

inf
x 6∈Kn

f(x) =∞.

Lemma 2.2 Suppose that Assumption 2.1 holds and that Q is conservative. For X to be non-explosive, it is
sufficient that

i) supx qx <∞; or

ii) ([1] Corollary 2.2.16, [10]) there exist a moment function V : S → R+ and a constant c, such that
QV ≤ cV ; or

iii) (analogously to [11] Theorem 2.7.1) X is irreducible and the jump chain XJ is recurrent.

Lemma 2.3 (cf. [11] Theorem 3.5.3) Suppose that Assumption 2.1 holds and that Q is conservative. For X
to be explosive it is sufficient that XJ is irreducible transient, but there exists a finite 0-invariant measure µ
for Q, i.e. µQ = 0.

3 Main results

This section connects the validity of the Kolmogorov forward equation (1.2) to non-explosiveness of a certain
associated Markov process. First we introduce some notation. Let f : S → R+ be a (strictly) positive function
with

Qf ≤ cf (3.1)
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for some constant c. This condition is a weak form of well-known drift conditions for ergodicity and exponential
ergodicity [10]. By [1] Proposition 2.2.3 it implies that Ptf ≤ ectf , provided X is a minimal process. As a
consequence t 7→ Ptf is continuous on [0,∞). The fact that 0 ≤ (Qf)+ ≤ cf implies∫ t

0

Ps(Qf)+ds <∞. (3.2)

Inequalities applied to vectors are meant to hold componentwise. We will first derive the following simple,
useful lemma.

Lemma 3.1 Suppose that X satisfies Assumption 2.1. Let f : S → R>0 satisfy (3.1) as well as the Kol-
mogorov forward equation (1.2). Then for any constant d ∈ R

edt Ptf(x) = f(x) +
∫ t

0

edu[ Pu(Qf)(x) + d Puf(x)]du. (3.3)

Proof. By (3.2) also
∫ t
0
Ps(Qf)−ds <∞. Hence

∫ t
0
Ps|Qf |(x)ds <∞. This justifies the use Fubini’s theorem

for the interchange of integrals in the second equality below: for any constant d,∫ t

0

eds Ps(Qf)(x)ds =
∫ t

0

[
∫ s

0

dedudu+ 1] Ps(Qf)(x)ds

=
∫ t

0

dedu
∫ t

u

Ps(Qf)(x)dsdu+ Ptf(x)− f(x)

= (edt − 1) Ptf(x)−
∫ t

0

dedu Puf(x)du+ Ptf(x)− f(x)

= edt Ptf(x)− f(x)−
∫ t

0

dedu Puf(x)du.

In the third equality we have used (1.2). Rewriting yields (3.3). QED

[10] uses the concept of the ‘extended generator’, and then by definition Eqn. (3.3) applies all functions
belonging to the domain of the extended generator. The problem there is to check whether a function belongs
to the domain of the extended generator.

With X we associate the minimal Markov process Xf with q-matrix Qf . First extend S with a coffin state
δ 6∈ S, i.e. Sδ := S ∪ {δ}. Then define

qfxy =


qxyf(y)/f(x), x 6= y, x, y 6= δ
qxx − c, x = y, x, y 6= δ
c−

∑
y∈S qxyf(y)/f(x), x 6= δ, y = δ

0, x = δ, y ∈ Sδ,

with δxy the Kronecker delta. This makes Qf a conservative q-matrix. Denote by {P ft }t again the (minimum)
transition function on the enlarged state space S ∪ {δ}. It holds (cf. [1] Lemma 5.4.2) that

pft,xy = e−ct pt,xyf(y)/f(x), x, y 6= δ. (3.4)

It follows that Xf is standard, whenever X is; it is stable, whenever X is. It is immediate that {P ft }t satisfy
the Kolmogorov forward and backward equations, if X is standard and stable. Note that X may not have a
conservative q-matrix, whereas Xf does.

The process Xf is not uniquely defined, since with each constant c in (3.1), a larger constant suffices as
well.

Theorem 3.2 Let X satisfy Assumption 2.1. Let f : S → R>0 satisfy (3.1),
Then f satisfies (1.2) if and only if the minimal Markov process Xf is non-explosive. If this is the case,

Ex
∫ t
0
|Qf(Xs)|ds <∞ and f satisfies (1.3) as well.
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Proof. Since f satisfies (3.1), Qf and Qf indS are well-defined. In particular

e−cu
[ Pu(Qf)(x)− c Puf(x)]

f(x)
= P fu (Qf1{S})(x), x ∈ S. (3.5)

Suppose that f satisfies (1.2). By the previous Lemma 3.1, f satisfies (3.3). So plugging in d = −c into (3.3)
and using (3.5), we get

P ft 1{S}(x) =
1

f(x)
e−ct Ptf(x) = 1 +

∫ t

0

P fu (Qf1{S})(x)du. (3.6)

Since the Kolmogorov forward equations hold for Xf and indicator functions of states, we have for x 6= δ that
u 7→

∑
pfu,xyq

f
yδ = d( pfu,xδ)/du is a finite, continuous function on [0,∞) ([1], Lemma 1.2.4). Hence

pft,xδ =
∫ t

0

∑
y 6=δ

pfu,xyq
f
yδdu, x 6= δ.

We can then add both equations to yield

∑
y

pft,xy = 1 +
∫ t

0

Ps(Q
f1{S∪{δ}})(x)ds = 1,

as Qf1{S∪{δ}} = 0. Hence Xf is non-explosive.
For the reverse statement, we assume that Xf is non-explosive and so the Kolmogorov forward equation

holds for the function 1{S∪{δ}} identically equal to 1 and the indicator 1{δ} of state δ. It therefore holds for
the indicator 1{S} of S. Lemma 3.1 is applicable, with constant d = c, and so

ect
∑
y∈S

pft,xy = 1 +
∫ t

0

ecu
(
P fu (Qf1{S})(x) + c P fu 1{S}(x)

)
du, x ∈ S.

By virtue of (3.5) and using the first equation in (3.6) we get (1.2).
Combination of (3.2) and (1.2) yields

∫ t
0
Pu(Qf)−(x)du < ∞. Hence

∫ t
0
Pu|Qf |du < ∞. (1.3) follows.

QED

Since I have found that the validity of the Kolmogorov forward equation for Markov processes with bounded
jumps and functions satisfying an elementary integrability condition is not clear to everyone, I have included
an interchange argument for completeness. It not unimportant neither for our analysis that the validity of the
bounded jump case be rigorously established.

Lemma 3.3 Let X satisfy Assumption 2.1. Suppose that Q has bounded jumps supx qx <∞. Let f : S → R
satisfy the integrability condition Pt|f | <∞ for all t ≥ 0. Then (1.2) holds, and so does (1.3).

Proof. We use the representation

Pt =
∑
n

e−τt
(τt)n

n!
P (n),

where P = (I + τ−1Q) and τ ≥ supx qx, given in [1] Proposition 2.2.10.
It is sufficient to show the result for f ≥ 0. This follows from the fact that the condition Pt|f | <∞ implies

Ptf
+ <∞ and Ptf

− <∞.
We will first show that t 7→ Ptf(x) is continuous for all x ∈ S. Let h > 0. Then

| Ptf(x)− Pt+hf(x)| ≤ e−λt
∑
n

τn
(t+ h)n − tn

n!
P (n)f(x) + e−λt(1− e−λh)

∑
n

(t+ h)n

n!
P (n)f(x).
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The second term converges to 0 as h ↓ 0. For the first term, notice for h < 1 that

∑
n≥0

τn
(t+ h)n − tn

n!
P (n)f(x) ≤

∑
n≥1

τn
∑n−1
k=0

(
n
k

)
tkhn−k

n!
P (n)f(x)

≤ h
∑
n≥1

(τ(t+ 1))n

n!
P (n)f(x)

≤ heλ(t+1) Pt+1f(x).

It follows that t 7→ Ptf(x) is right-continuous. Left-continuity is proved in a similar manner. Hence t 7→
Ptf(x) is integrable for each x ∈ S.

The rest is a simple interchange argument. Since the Kolmogorov backward equations apply to indicator
functions, we may write

Ptf(x) = f(x) +
∑
y

∫ t

0

(Q P )xydsf(y)

= f(x)−
∑
y

∫ t

0

qx ps,xydsf(y) +
∑
y

∫ t

0

∑
z

qxz ps,zydsf(y).

The second equality holds, because s 7→ Psf(x) is integrable, and so the first sum is finite. By Fubini’s
theorem and nonnegativity of all terms involved we may interchange integral and summation signs, and so we
get

Ptf(x) = f(x) +
∫ t

0

∑
y

p′s,xyf(y)ds = f(x) +
∫ t

0

( PsQ)f(x)ds.

Since Q is bounded, f is non-negative and s 7→
∑
y ps,xyf(y) is integrable, it follows that

∫ t
0

∑
y ps,xyqyf(y)ds

is finite, and non-negative. We may substract this term from the above integral to obtain that∫ t

0

∑
y

(
∑
z 6=y

ps,xzqzy)f(y)ds

is finite. By non-negativity of all terms involved we may now swap summations and get that this integral∫ t

0

∑
z

ps,xz
∑
y 6=z

qzyf(y)ds.

The final result follows by combination. QED

We can now prove our main result on the validity of the Kolmogorov forward equation (1.2).

Theorem 3.4 Let X satisfy Assumption 2.1. Let V : S → R>0 be a function such that (3.1) holds for some
constant c, i.e. QV ≤ cV . Suppose that the minimal process XV is non-explosive.

Let f ∈ `∞(S, V ) with Ex
∫ t
0
|Qf(Xs)|ds < ∞. Then f satisfies (1.2) and (1.3). In particular V satisfies

(1.2) and (1.3).

Proof. By Theorem 3.2 V satisfies the above condition as well as (1.2). Notice that we may assume c ≥ 0
without loss of generality, by simply enlarging the right-hand side of (3.1).

Let f ∈ `∞(S, V ) satisfy the above condition. We will use an approximation argument. Let Sn ↑ S, be an
increasing sequence of finite sets, converging to the whole space. Define approximating Q-matrices Q(n) by

q(n)
xy =

{
qxy, x ∈ Sn

0, otherwise.

The states outside Sn are absorbing. Index the associated minimal Markov process and transition kernel
by n. Xn are conservative, standard processes with bounded jumps. Since Q(n)V ≤ cV , one has that
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P
(n)
t |f | ≤ ect||f ||V . Hence the Kolmogorov forward equation (1.3) holds for the function f , i.e.

Exf(Xn
t ) = f(x) + Ex

∫ t

0

Q(n)f(Xn
s )ds, (3.7)

for all x ∈ S. We will first show convergence of the right-hand side to Ex
∫ t
0
Qf(Xs)ds. In other words, we

will show that
∫ t
0
P

(n)
s Q(n)f(x)ds→

∫ t
0
PsQf(x)ds, for any x ∈ S.

Notice that |Q(n)f | ≤ |Qf |, P (n)
s |Q(n)f | ≤ Ps|Qf |, componentwise. Hence | P (n)

s Q(n)f | ≤ Ps|Qf |. The
desired result will follow from the dominated convergence theorem if we can show that

P (n)
s Q(n)f(x)→ PsQf(x), n→∞, for x ∈ S, s ≥ 0. (3.8)

Fix x ∈ S and s ≥ 0. Let ε > 0. There exists a finite set Kε ⊃ x, such that Ps1{KC
ε }|Qf |(x) ≤ ε, where

KC
ε denotes the complement of Kε in S. Hence P

(n)
s 1{KC

ε }|Q
(n)f |(x) ≤ ε for all n. By [1] Proposition 2.2.14,

p
(n)
s,xy ↑ ps,xy, n→∞, for y ∈ Kε, provided n is large enough so that Sn ⊃ Kε. Hence

P (n)
s 1{Kε}Q

(n)f(x)→ Ps1{Kε}Qf(x), n→∞.

Choose Nε, with SNε ⊃ Kε, and | P (n)
s 1{Kε}Q

(n)f(x)− Ps1{Kε}Qf(x)| ≤ ε, n ≥ Nε. Then | P (n)
s Q(n)f(x)−

PsQf(x)| ≤ 3ε, n ≥ Nε. Eqn. (3.8) follows.
For convergence of the left-hand side of (3.7), we use the existence of a constant γ > 0 such that f ≤ γV .

Fix x ∈ S. Consider the transformed chains Xn,V , n = 1, . . ., XV .
As in [1] Proposition 2.2.14 p

(n),V
s,xy → pVs,xy, n→∞, for x, y ∈ S. In view of the fact that V satisfies (1.3)

and (3.7), and that the right-hand side of (3.7) for V converges to the right-hand side of (1.3), ExV (Xn
t ) →

ExV (Xt), n→∞. By relation (3.4) we have

P
(n),V
t 1{S}(x) =

e−ct

V (x)
ExV (Xn

t )→ e−ct

V (x)
ExV (Xt) = PVt 1{S}(x).

Since p
(n),V
s,x· , p

V
s,x· are probability distributions, this implies that p

(n),V
s,xδ → pVs,xδ, n→∞. Then it is an easy

consequence that p
(n),V
s,x· → pVs,x·, n→∞, setwise. We now may apply the generalised dominated convergence

theorem Proposition 11.18 [13] , and obtain that P
(n),V
t g(x) → PVt g(x), n → ∞, for g a bounded function.

Hence P
(n)
t g · V (x)→ Ptg · V (x), n→∞. Choose g(x) = f(x)/V (x), x ∈ S, g(δ) = 0. Using (3.4) this gives

required convergence of the left-hand side of (3.7) to the left-hand side of (1.3). QED

To check (non)-explosiveness of Xf it is sometimes helpful to perturb the transitions rates from a finite set of
states. We will justify this procedure in the next section.

4 Perturbation of transitions

Assume that X satisfies Assumption 2.1. Recall that explosiveness of XV is equivalent to the existence of a λ-
invariant, non-negative, bounded vector for QV . In particular, for λ > 0 there exists a function fλ : S → R+,
supx fλ(x) <∞, such that QV fλ = λfλ. What does this imply for the q-matrix of the process X itself?

Since the additional coffin state (if any) is absorbing, necessarily fλ(δ) = 0. Hence
∑
y∈S q

V
xyfλ(y) =

λfλ(x). In other words, ∑
y∈S

qxyfλ(y)V (y) = λfλ(x)V (x), x ∈ S.

Hence fλV is a V -bounded non-negative λ-invariant vector for Q, with λ > 0. The reverse implication clearly
holds trivially. We summarise this:

Let X satisfy Assumption 2.1 and suppose that QV ≤ cV for some constant c. Let λ > 0. fλ is a bounded non-
negative, (non-trivial) non-negative λ-invariant vector for QV , if and only if fλV is a V -bounded non-negative
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λ-invariant vector for Q. In either case, XV is explosive.

We will study the effect of perturbations. To this end, let us consider the taboo matrix KQ with finite set
K ⊂ S, defined by

Kqxy =
{
qxy, y 6∈ K, or x = y ∈ K
0, y ∈ K,x 6∈ K.

We impose a taboo on jumps towards the set K. Note that KQ is non-conservative in general. The associated
minimal taboo transition function will be denoted by {KPt}t.

Define τx = inf{t ≥ 0 |Xt = x}. Then clearly P
x
{τx = 0} = 1 for a stable process. Further define the

following map Tλ acting on finite functions g on E:

Tλg(x) = g(x)1{x 6=0} + (q0 + λ)Rx0(λ)g(0). (4.1)

Theorem 4.1 Suppose that X satisfies Assumption 2.1. Further, suppose that 0 ∈ S has the property that
P
x
{τ0 <∞} > 0 for each x ∈ S. The following holds.

i) Rx0(λ) = Exe
−λτ0R00(λ) (cf. Eqn. (2.1) for the definition of the resolvent).

ii) Tλg(x) = g(x)1{x 6=0} + Exe
−λτ0Tλg(0).

iii) The inverse T−1
λ exists and is defined by

T−1
λ g(x) =

{
g(0)/(q0 + λ)R00(λ), x = 0
g(x)− Exe

−λτ0g(0), x 6= 0.

iv) Let λ > 0. If fλ is a non-zero, non-negative λ-invariant vector of Q, then 0fλ = T−1
λ fλ is a non-zero

non-negative λ-invariant vector of 0Q. Vice versa, if 0fλ is a non-zero, non-negative λ-invariant vector
of 0Q, then fλ = Tλ0fλ is a non-zero non-negative λ-invariant vector of Q. Furthermore, fλ(0) > 0 if
and only if 0fλ(0) > 0, and then fλ is strictly positive on S.

Proof. We will first prove (i). To this end, note for every T > 0

Rx0(λ) =
∫ ∞

0

e−λt pt,x0dt

= Ex

∫ ∞
0

e−λt1{0}(Xt)dt

= Ex

∫ ∞
τ0∧T

e−λt1{0}(Xt)dt

= Exe
−λ(τ0∧T )RXτ0∧T 0(λ).

The last equation follows from the strong Markov property. On the event {τ0 <∞} one has

e−λ(τ0∧T )RXτ0∧T 0(λ)→ e−λτ0R00(λ), T →∞.

On the event {τ0 =∞}
e−λ(τ0∧T )RXτ0∧T 0(λ)→ 0, T →∞,

since RXτ0∧T 0(λ) ≤ 1/λ is bounded, and the first term converges to 0. A straightforward application of the
dominated convergence theorem gives the desired result. Assertions (ii, iii) follow directly from the definition
of the map Tλ.

Next we prove (iv). Suppose that fλ is a non-negative eigenvector of Q to eigenvalue λ > 0. By assumption
R00(λ) > 0. Put 0fλ = T−1

λ fλ. One has fλ = Tλ0fλ. In other words

fλ(x) = Tλ0fλ(x) = 0fλ(x)1{x 6=0} + (q0 + λ)Rx0(λ)0fλ(0).

9



Multiplying both sides of the above by Q yields for all x

Qfλ(x) =
∑
y 6=0

qxy 0fλ(y) + (q0 + λ)(QR(λ))x0 0fλ(0)

=
∑
y 6=0

qxy 0fλ(y) + (q0 + λ)(λRx0(λ)− δx0) 0fλ(0)

= 0Q 0fλ(x) + λ(q0 + λ)Rx0(λ) 0fλ(0)− λ 0fλ(0)1{0}(x). (4.2)

In the second equality we have used that QR(λ) = λR(λ)− I. By assumption

Qfλ(x) = λfλ(x) = λ 0fλ(x)1{x 6=0} + λ(q0 + λ)Rx0(λ)0fλ(0). (4.3)

Equating the right-hand sides of (4.2) and (4.3) and cancelling common terms yields

0Q 0fλ(x)− λ0fλ(0)1{0}(x) = λ 0fλ(x)1{x 6=0}.

In other words,
0Q 0fλ(x) = λ 0fλ(x).

We will next show that 0fλ(x) ≥ 0 for all x. By construction 0fλ(0) ≥ 0. In [1] Ch.2 Proposition 2.13 it is
shown that

e−λtPtfλ(x) ≤ fλ(x).

By assumed regularity, this implies that the stochastic process Mt = e−λtfλ(Xt), t ≥ 0 is a non-negative, right-
continuous supermartingale for each initial condition M0 with E|M0| < ∞. By the martingale convergence
theorem Mt converges a.s. to a non-negative random variable M∞ say. By Fatou’s lemma, E{M0} ≥ E{M∞},
so that M∞ is everywhere finite. Similarly, the stopped process (Mτ0

t )t is a right-continuous, non-negative
supermartingale that converges to the limit

Mτ0
∞ = M∞1{τ0=∞} + e−λτ0fλ(0)1{τ0<∞}.

An analogous application of Fatou’s lemma yields

E{M0} = E{Mτ0
0 } ≥ E{Mτ0

∞} ≥ E{e−λτ0}1{τ0<∞}fλ(0) = E{e−λτ0}fλ(0),

the latter being valid since e−λτ0 = 0 when τ =∞. For initial condition M0 ≡ x this implies

fλ(x) = E{M0} ≥ Exe
−λτ0fλ(0). (4.4)

Together with assertion (iii) this imply for x 6= 0 that

0fλ(x) = fλ(x)− (λ+ q0)R(x0)λ0fλ(0) = fλ(x)− Exe
−λτ0fλ(0) ≥ 0.

This shows that 0fλ is non-negative.
Finally assume that 0fλ is a non-negative λ-invariant vector of 0Q. Then fλ = Tλ0fλ is a λ-invariant vector

of Q. This follows by inserting 0Q0fλ = λ0fλ in Eqn. (4.2) and using the second equality of Eqn. (4.3).
By construction fλ(0) ≥ 0. It follows as well that fλ(0) > 0 if and only if 0fλ(0) > 0. By definition of Tλ,

fλ is then strictly positive on S. QED

The above theorem can be used to construct λ-invariant non-negative and non-trivial vectors for finite per-
turbations of a given q-matrix Q, from a λ-invariant vector for Q.

Let Q′ and Q both be q-matrices on the same state space. Q′ will be called a K-perturbation of Q, K ⊂ S,
if qxy = q′xy for x 6∈ K, y ∈ S. That is, only the transitions from states in K may differ.

Suppose that QV ≤ cV , for the function V : S → R>0 and a constant c. Further assume that Q′ is a
{0}-perturbation of Q, such that Q′V is well-defined and finite. Then clearly there exists a constant c′, such
that Q′V ≤ c′V . We assume that state 0 is reachable from any other state.

If Q has a λ-invariant vector fλ for some λ > 0, and if the conditions of the above theorem are satisfied,
then we may construct the taboo λ-invariant vector 0fλ of 0Q. It is immediate that fλ ∈ `∞(S, V ) implies
0fλ = T−1

λ fλ ∈ `∞(S, V ) by virtue of the expression for T−1
λ in Theorem 4.1 (iii).
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Now, from 0fλ we may construct a λ-invariant vector f ′λ ∈ `∞(S, V ) of Q′ in the following manner. Put
0f
′
λ(x) = 0fλ(x) for x 6= 0, and put

0f
′
λ(0) =

1
q0 + λ

∑
y 6=0

q′0y0f
′
λ(y).

Next, put f ′λ = T ′λ0f
′
λ, where T ′λ is the operator in (4.1) corresponding to the minimal process associated with

Q′. Then f ′λ ∈ `∞(S, V ) as well, for λ > c′.
To see the latter, index transition operators etc. for the minimal Markov process generated by Q′, by ′.

Since P
′

tV ≤ ec
′tV , it follows that R′(λ)V (x) ∈ `∞(S, V ) for λ > c′. But R′(λ)V (x) ≥ R′x0(λ)V (0). Since

V (0) > 0 by assumption, for g(x) = R′x0(λ)0f ′λ(0) it holds that g ∈ `∞(S, V ). By virtue of Theorem 4.1 one
has f ′λ(x) = 0f

′
λ(x)1{x6=0} + (q′0 + λR′x0(λ)0f ′λ(0) ∈ `∞(S, V ) for λ > c′.

Again, by considering the V -transformed process with q-matrix Q′,V , f ′λ generates a bounded non-negative
non-trivial λ-invariant vector for Q′,V . As indicated in the paragraph on eigenvectors Section 2, this implies
the existence of a bounded non-negative, non-trivial µ-invariant vector for Q′,V , for any µ > 0. In turn,
we obtain a V -bounded non-negative, non-trivial µ-invariant vector for Q′. We have proved the following
assertion.

Corollary 4.2 Assume the conditions of Theorem 4.1 to hold. Suppose that there exists a V -bounded λ-
invariant vector f for Q for some λ > 0. Then there exists a V -bounded λ-invariant vector for any {0}-
perturbation Q′, provided that

∑
y 6=0 q

′
0yV (y) <∞. Hence the minimal processes associated with QV and Q′,V

are either both explosive or both non-explosive. Taking V ≡ 1, it follows that process and perturbation are
either both explosive or both non-explosive.

Clearly the above corollary is not very surprising. Further, the assertion holds for {K}-perturbations as well,
with K ⊂ S a finite set, provided QKV is well-defined. Here QK denotes the q-matrix of the K-perturbed
process. The main novelty is the explicit construction of the eigenvector of the perturbed process.

5 Examples

We will consider three transformations of the following example. Let S = Z+. Let X be the minimal Markov
process associated with the Q-matrix defined by

qxy =


p2x, y = x+ 1, x 6= 0
(1− p)2x, y = x− 1, x 6= 0
−2x, y = x 6= 0
q0y = 0, y ∈ S.

Hence state 0 is absorbing. We further assume that p < 1/2.
If, instead, we were to put q01 = p = −q00, then the associated jump chain would become an irreducible,

ergodic Markov chain and X non-explosive by Lemma 2.2 (iii). This perturbed process has stationary distri-
bution π given by

π(x) =
(

p

2(1− p)

)x (
1− p

2(1− p)

)
.

It follows from Corollary 4.2 that our basic example is non-explosive.

Non-explosive transformation Let V (x) = αx, with 1 < α < (1− p)/p. Then

QV (x) =
(
αp+

1− p
α
− 1
)
· 2x · V (x)1{x6=0}.

For 1 < α < (1− p)/p one has c = 1− αp− 1−p
α > 0. Consequently

QV (x) ≤ −c · V (x)1{x 6=0}.

This implies [10] that X is a so-called V -exponentially ergodic Markov process with stationary distribution
concentrated on state 0.
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The Q-matrix QV equals

qVxy =


α · p2x, y = x+ 1, x 6= 0, δ
(1−p)
α 2x y = x− 1, x 6= 0, δ
−2x, y = x 6= 0, δ
(1− αp− 1−p

α )2x, y = δ, x 6= 0, δ

with δ an added coffin state. The associated jump process has transition matrix with non-zero entries

pV,Jxy =


αp, y = x+ 1, x 6= 0, δ
1−p
α , y = x− 1, x 6= 0, δ

1− αp− 1−p
α , y = δ, x 6= 0, δ

1, x = y, x ∈ {0, δ}.

So the transformed chain has two absorbing classes, {0} and {δ}. The set S \ {0} is a collection of transient
states, but in finite expected time the coffin state is reached from any other state. This follows from the fact
that the probability of jumping to the coffin state δ is bounded away from 0 as a function of state. Hence the
sojourn set criterion cannot be satisfied and so the V -transformation is non-explosive.

Alternatively, W (x) = βx with β ∈ (α, (1−p)/p) satisfies QW ≤ dW for a constant d as well. Consequently,
x 7→W ′(x) = W (x)/V (x), x ∈ S, W ′(δ) = 0, is a moment function for QV , with QVW ′ ≤ d′W ′ for a constant
d′. This provides an alternative argument for showing non-explosiveness.

Explosive transformation This is inspired by Example 3.5.4 from [11]. Let V (x) = αx, with α = (1−p)/p.
Then αp+(1−p)/α = 1 and the V -transformation has the birth and death rates of X interchanged. Moreover,
QV = 0, and the transitions leading to the coffin state from x ∈ S all have probability 0.

To show that XV is explosive is simplest by means of the following argument. We perturb the transitions
in state 0: put qV01 = (1 − p) = −qV00. Then the perturbed process, that we will call XV again, has become
irreducible. Since the associated jump process is transient, XV is transient as well.

The explosiveness properties are not affected, by virtue of the analysis in the previous section, since 0 can
be reached from any other state. However, there exists a 0-invariant finite measure m to QV given by

m(x) =
(

1− p
2p

)x (
1− 1− p

2p

)
,

provided p ∈ (1/3, 1/2). Hence the perturbed process XV must be explosive by virtue of Lemma 2.3. This
applies to the original process as well, and so by virtue of Theorem 3.2 V does not satisfy the Kolmogorov
forward equations (1.2) and (1.3) for the original process.

Notice that this implies Theorem Appendix C.3 of [8] not to be true without further conditions. Indeed,
QV (x) = 0 implies that ∫ t

0

Ps|QV (Xs)|(x)ds = 0 <∞.

Consequently, PtV ≤ V is finite. These are precisely the conditions required in [8].

Explosiveness for V with QV ≤ −cV + d1{K} The final example is related to the following question.
Suppose that there exist V , positive constants c, d and a finite set K, such that QV ≤ −cV + d1{K}. By
virtue of [10] it is known that X is V -exponentially ergodic. This result has been mentioned earlier in our
discussion of the first transformation. A question of interest is whether this strong stability property implies
non-explosiveness of the transformed process XV . This question has been my original motivation for this
research.

We will construct a function V showing that unfortunately this is not necessarily true. Let p = 2/5. Then
(1− p)/p = 3/2. We will determine numbers α1, α2, . . . ∈ (1, 3/2), such that

i) αn ↑ 3/2;

ii) QV (x) = −cV (x) for all states x 6= 0, for V (x) =
∏x
n=1 αn, V (0) = 1; and
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iii) XV explosive.

One has QV (x) = −cV (x) for x 6= 0, if

αx+1 =
5
2

(1− c · 2−x)− 3
2αx

. (5.1)

Then α2 > α1 if and only if
5
2

(1− c · 2−1) >
3

2α1
+ α1, (5.2)

and c < 2. The function f(α) = 3/(2α) + α takes values less than 5/2 for α ∈ (1, 3/2). Choose α1 ∈ (1, 3/2)
and c accordingly so that (5.2) is satisfied.

An induction argument yields that {αn}n=1,... is an increasing sequence. Indeed, by (5.1) for n > 2

αn+1 − αn = c
5
2

(
1

2n−1
− 1

2n
) +

3
2

(
1

αn−1
− 1
αn

) > 0,

since αn > αn−1 by the induction assumption. On the other hand, by (5.1) αn ≤ 5/2. As a consequence,
{αn}n is an increasing, bounded sequence, and so it has a limit, α∗. α∗ satisfies

α∗ =
5
2
− 3

2α∗
.

Solving gives the roots 1 and 3/2. Since α∗ > α1 > 1, α∗ = 3/2.
Next transform the Markov process by V . Use that QV ≤ 0. This yields the process

qVxy =


2
5αx+12x, y = x+ 1, x 6= 0
3

5αx
2x, y = x− 1, x 6= 0

c− 2x, y = x 6= 0
0, otherwise.

We need to check explosiveness of this process. A direct construction of a bounded λ-invariant vector is
gruesome. The simplest road is to use the same trick as in the previous explosiveness example. To this end,
we need that the Markov process be irreducible.

Set the transition rates from state 0 to q01 = 1 = −q00 and denote the new process again by XV . As in
the previous example, the explosiveness properties are not affected. However, the resulting jump chain has
the following transition probabilities

pV,Jxy =


2αx+1

5(1− c · 2−x)
, y = x+ 1, x 6= 0

3
5(1− c · 2−x)αx

, y = x− 1, x 6= 0

1 y = 1, x = 0,

and all other transitions are equal to 0. This is a transient chain, since for all x large enough, pV,Jx x+1 >

pV,Jx x−1 + 1/10. On the other hand, QV has the left 0-invariant measure m with

m(x) = m(0)
5α1

6

x−1∏
k=1

α2
k+1

3
≤ m(0)

5α1

6

(3
4

)x−1

, x ≥ 1.

The measure m is finite and so the Markov process XV must be explosive. Consequently, V does not satisfy
the Kolmogorov forward equations (1.2) and (1.3).

6 Domain of the generator

As has been mentioned in the introduction, strong continuity of a semigroup on the Banach space `∞(S, V )
is a property implying the jumps to be bounded. The reverse statement is true as well. We have the following
relation.
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Lemma 6.1 Suppose that X is a minimal Markov process on the countable state space S. Assume that X
has a q-matrix Q with supx qx <∞. Let τ ≥ supx qx. Suppose that P = I+τ−1Q is a bounded linear operator
on the space `∞(S, V ). Then { Pt}t a strongly continuous transition semi-group on `∞(S, V ), in particular
|| Pt − I||V → 0, t ↓ 0.

Proof. Note that

|| Pt − I||V ≤ e
−τt

∑
n≥1

(λτ ||P ||V )n

n!
= e−τt(eτt||P ||V − 1)→ 0, t ↓ 0.

QED

Clearly || Pt||V <∞ implies || P ||V <∞ and so the condition in the above lemma follows naturally, if {Pt}t is
a transition semi-group on `∞(S, V ).

Suppose next that X is a stable, conservative, minimal Markov process. For convenience we assume that
S is equipped with the discrete topology, so as to make all functions on S continuous. Let W : S → R+ be a
function satisfying (3.1) for the constant d, i.e. QW ≤ dW . Define

C0(S,W ) = {f : S → R
∣∣∣∣ ||f ||W <∞,

for each ε > 0∃ a finite set K ⊂ S, such that supx 6∈K |f(x)|/W (x) < ε

}
as the collection of functions with finite norm w.r.t. W , that become arbitrarily small outside compact sets.
Working on C0(S,W ) has one big prerogative. If { Pt}t is a transition semigroup on C0(S,W ), then pointwise
continuity Ptf(x)→ f(x), t ↓ 0, for x ∈ S and each f ∈ C0(S,W ), implies strong continuity as a semigroup
(see [12] Lemma III.6.7).

Lemma 6.2 Let X satisfy Assumption 2.1, and suppose that Q is conservative. If Q has a λ-invariant vector
f ≥ 0, for some λ > 0, then f 6∈ C0(S,W ).

Proof. Suppose f ∈ C0(S,W ). Then the function x 7→W (x)/f(x) is a moment function for Xf . Since Qf is
conservative, Xf is non-explosive by virtue of Lemma 2.2 (ii). Theorem 3.4 therefore applies with the function
V = f and constant c = λ.

For any µ > λ, Q has a non-negative eigenvector fµ ≤ f to eigenvalue µ, with Ptfµ(x) ≤ ectW (x) · ||fµ||W .
Since fµ ∈ `∞(S, f), by virtue of Theorem 3.4 the Kolmogorov forward equation applies to fµ. By virtue of
Lemma 3.1, using the constant d = −µ, this implies

Ptfµ(x) = fµ(x)eµt, t ≥ 0.

On the other hand, Ptfµ ≤ eλtf · ||fµ||f , t ≥ 0. A contradiction, since µ > λ. QED

Denote by `∞(S, V,W ) the Banach space of functions f : S → R, with ||f ||V < ∞, equipped with the norm
|| · ||W . Clearly, if V ∈ C0(S,W ) then `∞(S, V,W ) ⊂ C0(S,W ).

Theorem 6.3 Let X satisfy Assumption 2.1, and suppose that Q is conservative. {Pt}t is a strongly con-
tinuous semigroup on C0(S,W ) if and only there exist a function V : S → R+, and a constant c such
that V ∈ C0(S,W ), and QV ≤ cV . Under either condition XV is non-explosive, and D(Q) ⊃ {f ∈
`∞(S, V,W ) | ||Qf ||W <∞}.

Proof. Suppose that {Pt}t≥0 is a strongly continuous semigroup on C0(S,W ). Choose any f ≥ 0, f ∈
C0(S,W ). Let g = Rλf , then g ∈ D(Q) ([12] p.236 (4.14)), for λ > 0, g is non-negative, and (λI−Q)g = f .
In other words λg = f +Qg, and hence λg ≥ Qg. As in [1] Proposition 4.6, we can derive that Qg = Qg. The
conclusion follows by putting V = g.

Next we suppose that there exist a function V ∈ C0(S,W ) and a constant c such that QV ≤ cV . As has
been pointed out already, `∞(S, V,W ) ⊂ C0(S,W ). Since Pt|f | ≤ ectV · ||f ||V , it follows that Ptf ∈ C0(S,W )
for any function f ∈ `∞(S, V,W ).

We prove that Ptf ∈ C0(S,W ) for all f ∈ C0(S,W ). By assumption QW ≤ dW , so that PtW ≤ edtW .
I.o.w. || Pt||W ≤ edt <∞. Let f ∈ C0(S,W ). Then || P f ||W ≤ || Pt||W ||f ||W <∞ and so Ptf ∈ `∞(S,W ).
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Let next {Kn}n be an increasing sequence of finite sets, with limnKn = S. Let fn = 1{Kn}f be the
projection of f on Kn. Then fn ∈ `∞(S, V ), ||fn||V , ||fn||W <∞ and ||fn − f ||W → 0 as n→∞.

Since C0(S,W ) is a Banach space, this implies that `∞(S, V,W ) = C0(S,W ). Further, || Ptfn− Ptf ||W ≤
|| Pt||W ||fn − f ||W → 0, n→∞ and hence Ptf ∈ C0(S,W ).

This proves that { Pt}t is a transition semigroup on C0(S,W ). Next we will show pointwise continuity.
For the function W

lim sup
t↓0

PtW (x) ≤ lim sup
t↓0

ectW (x) ≤W (x), x ∈ S.

On the other hand, by Fatou’s lemma

lim inf
t↓0

PtW (x) ≥
∑
y

lim inf
t↓0

pt,xyW (y) = W (x).

Consequently, limt↓0 PtW (x) = W (x). The result for f ≥ 0, f ∈ `∞(S,W ) follows by an application of the
generalised dominated convergence Theorem (cf.[13]), analogously to the proof of Theorem 3.4.

Non-explosiveness of XV follows as in the proof of Lemma 6.2, since W (x)/V (x) is a moment func-
tion for XV , and XV is conservative. For the final statement, by definition one has that D(Q) ⊂ {f ∈
C0(S,W ) | ||Qf ||W <∞}. Note that Qf = Qf on D(Q) (cf. [1] Section 1.4).

Let next f ∈ `∞(S, V,W ) with ||Qf ||W < ∞. Then f satisfies the conditions of Theorem 3.4 with W
playing the role of the bounding vector. Hence the Kolmogorov forward equation applies. This easily can be
shown to imply f ∈ D(Q). QED

One may wonder to what extent the Banach space setting is useful for the denumerable state space case
compared to setting up the analysis from the q-matrix, apart from elegance of the approach. The main result
that Banach space techniques provide us, seems to me to be strong continuity of the transition semigroup as
a consequence of pointwise continuity, when the space is C0(S,W ).
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