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Abstract. We show that a continuous additive positively homogeneous map
from a closed not necessarily proper cone in a Banach space onto a Banach
space is an open map precisely when it is surjective. This generalization of
the usual Open Mapping Theorem for Banach spaces is then combined with
Michael's Selection Theorem to yield the existence of a continuous bounded
positively homogeneous right inverse of such a surjective map; a strong version
of the usual Open Mapping Theorem is then a special case. As another conse-
quence, an improved version of the analogue of Andô's Theorem for an ordered
Banach space is obtained for a Banach space that is, more generally than in
Andô's Theorem, a sum of possibly uncountably many closed not necessarily
proper cones. Applications are given for a (pre)-ordered Banach space and for
various spaces of continuous functions taking values in such a Banach space
or, more generally, taking values in an arbitrary Banach space that is a �nite
sum of closed not necessarily proper cones.

1. Introduction

Consider the following question, that arose in other research of the authors: Let
X be a real Banach space, ordered by a closed generating proper cone X+, and
let Ω be a topological space. Then the Banach space C0(Ω, X), consisting of the
continuous X-valued functions on Ω vanishing at in�nity, is ordered by the natural
closed proper cone C0(Ω, X+). Is this cone also generating? If X is a Banach
lattice, then the answer is a�rmative. Indeed, if f ∈ C0(Ω, X), then f = f+ − f−,
where f±(ω) := f(ω)± (ω ∈ Ω). Since the maps x 7→ x± are continuous, f± is
continuous, and since ‖f±(ω)‖ ≤ ‖f(ω)‖ (ω ∈ Ω), f± vanishes at in�nity. Thus a
decomposition as desired has been obtained. For general X, the situation is not
so clear. The natural approach is to consider a pointwise decomposition as in the
Banach lattice case, but for this to work we need to know that at the level of X
the constituents x± in a decomposition x = x+−x− can be chosen in a continuous
and simultaneously also bounded (in an obvious terminology) fashion, as x varies
over X. Boundedness is certainly attainable, due to the following classical result:

Theorem 1.1. (Andô's Theorem [2]) Let X be a real Banach space ordered by a
closed generating proper cone X+ ⊆ X. Then there exists a constant K > 0 with
the property that, for every x ∈ X, there exist x± ∈ X+ such that x = x+−x− and
‖x±‖ ≤ K‖x‖.

Continuity is not asserted, however. Hence we are not able to settle our question
in the a�rmative via Andô's Theorem alone and stronger results are needed. With
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Ω a compact Hausdor� space, it is a consequence of a result due to Asimow and
Atkinson [3, Theorem 2.3] that C(Ω, X+) is generating in C(Ω, X) when X+ is
closed and generating in X. A similar result due to Wickstead [12, Theorem 4.4]
establishes this for C0(Ω, X) when Ω is locally compact (cf. Remark 4.6). We will
also retrieve these results, but by a di�erent method, namely by establishing the
general existence of a continuous bounded decompositions, analogous to that for
Banach lattices, as a special case of Theorem 4.5 below.

In fact, although the above question and results are in the context of ordered
Banach spaces, it will become clear in this paper that for these spaces one is merely
looking at a particular instance of more general phenomena. In short: if T : C →
X is a continuous additive positively homogeneous surjection from a closed not
necessarily proper cone in a Banach space onto a Banach space, then T has a well-
behaved right inverse, and (stronger) versions of theorems such as Andô's, where
several cones in one space are involved, are then almost immediately clear. We will
now elaborate on this, and at the same time explain the structure of the proofs.

The usual notation to express that X+ is generating is to write X = X+ −X+,
but the actually relevant point turns out to be that X = X+ + (−X+) is a sum of
two closed cones: the fact that these are related by a minus sign is only a peculiarity
of the context. In fact, if X is the sum of possibly uncountably many closed cones,
which need not be proper (this is redundant in Andô's Theorem), then it is possible
to choose a bounded decomposition: this is the content of the �rst part of Theorem
4.1. However, this is in itself a consequence of the following more fundamental
result, a special case of Theorem 3.2. Since a Banach space is a closed cone in
itself, it generalizes the usual Open Mapping Theorem for Banach spaces, which is
used in the proof.

Theorem 1.2. (Open Mapping Theorem) Let C be a closed cone in a real or
complex Banach space, not necessarily proper. Let X be a real or complex Banach
space, not necessarily over the same �eld as the surrounding space of C, and T :
C → X a continuous additive positively homogeneous map. Then the following are
equivalent:

(1) T is surjective;
(2) There exists some constant K > 0 such that, for every x ∈ X, there exists

some c ∈ C with x = Tc and ‖c‖ ≤ K‖x‖;
(3) T is an open map;
(4) 0 is an interior point of T (C).

As an illustration of how this can be applied, suppose X =
∑
i∈I Ci is the sum of

a �nite (for the ease of formulation) number of closed not necessarily proper cones.
We let Y be the sum of |I| copies of X, and let C ⊂ Y be the direct sum of the
Ci's. Then the natural summing map T : C → X is surjective by assumption, so
that part (2) of Theorem 1.2 provides a bounded decomposition. Andô's Theorem
corresponds to the case where X is the image of X+ × (−X+) ⊂ X ×X under the
summing map.

In this fashion, generalizations of Andô's Theorem are obtained as a consequence
of an Open Mapping Theorem. However, this still does not resolve the issue of
a decomposition that is not only bounded, but continuous as well. A possible
attempt to obtain this would be the following: if T : Y → X is a continuous
linear surjection between Banach spaces (or even Fréchet spaces), then T has a
continuous right inverse, see [1, Corollary 17.67]. The proof is based on Michael's
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Selection Theorem, which we will recall in Section 2. Conceivably, the proof as in [1]
could be modi�ed to yield a similar statement for a continuous surjective additive
positively homogeneous T : C → X from a closed cone C in a Banach space onto
X. In that case, if X =

∑
i∈I Ci is a �nite (say) sum of closed not necessarily

proper cones, the setup with product cone and summing map would yield the
existence of a continuous decomposition, but unfortunately this time there is no
guarantee for boundedness. Somehow the generalized Open Mapping Theorem as
in Theorem 1.2 and Michael's Selection Theorem must be combined. The solution
lies in a re�nement of the correspondences to which Michael's Selection Theorem is
to be applied, and take certain subadditive maps on C into account from the very
beginning. In the end, one of these maps will be taken to be the norm on C, and
this provides the desired link between the generalized Open Mapping Theorem and
Michael's Selection Theorem, cf. the proof of Proposition 3.5. It is along these lines
that the following is obtained. It is a special case of Theorem 3.6 and, as may be
clear by now, it implies the existence of a continuous bounded (and even positively
homogeneous) decomposition if X =

∑
i∈I Ci. It also shows that, if T : Y → X is

a continuous linear surjection between Banach spaces, then it is not only possible
to choose a bounded right inverse for T (a statement equivalent to the usual Open
Mapping Theorem), but also to choose a bounded right inverse that is, in addition,
continuous and positively homogeneous.

Theorem 1.3. (Strong Open Mapping Theorem) Let X and Y be real or com-
plex Banach spaces, not necessarily over the same �eld, and let C be a closed not
necessarily proper cone in Y . Let T : C → X be a surjective continuous additive
positively homogeneous map.

Then there exists a constant K > 0 and a continuous positively homogeneous
map γ : X → C, such that:

(1) T ◦ γ = idX ;
(2) ‖γ(x)‖ ≤ K‖x‖, for all x ∈ X.

The underlying Proposition 3.5 is the core of this paper. It is reworked into
the somewhat more practical Theorems 3.6 and 3.7, but this is all routine, as are
the applications in Section 4. For example, the following result (Corollary 4.2) is
virtually immediate from Section 3. We cite it in full, not only because it shows
concretely how Andô's Theorem �guring so prominently in our discussion so far
can be strengthened, but also to enable us to comment on the interpretation of the
various parts of this result and similar ones.

Theorem 1.4. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+. Let J be a �nite set, possibly
empty, and, for all j ∈ J , let ρj : X × X → R be a continuous seminorm or a
continuous linear functional. Then:

(1) There exist a constant K > 0 and continuous positively homogeneous maps
γ± : X → X+, such that:
(a) x = γ+(x)− γ−(x), for all x ∈ X;
(b) ‖γ+(x)‖+ ‖γ−(x)‖ ≤ K‖x‖, for all x ∈ X.

(2) If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equiva-
lent:
(a) For every ε > 0, there exist maps γ±ε : SX → X+, where SX := {x ∈

X : ‖x‖ = 1}, such that:
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(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ SX ;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε), for all x ∈ SX ;

(iii) ρj((γ
+
ε (x), γ−ε (x)) ≤ (αj + ε), for all x ∈ SX and j ∈ J .

(b) For every ε > 0, there exist continuous positively homogeneous maps
γ±ε : X → X+, such that:

(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ X;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;

(iii) ρj((γ
+
ε (x), γ−ε (x)) ≤ (αj + ε)‖x‖, for all X and j ∈ J .

The existence of a bounded continuous positively homogeneous decomposition in
part (1) is of course a direct consequence of Theorem 1.3. Naturally, the argument
as for Banach lattices then shows that C0(Ω, X) = C0(Ω, X+)− C0(Ω, X+) for an
arbitrary topological space Ω, so that our original question has been settled in the
a�rmative.

The equivalence under (2) has the following consequence: If there exist maps
γ± : SX → X+, such that x = γ+(x) − γ−(x), ‖γ+(x)‖ + ‖γ−(x)‖ ≤ K, and
ρj((γ

+(x), γ−(x)) ≤ αj , for all x ∈ SX and j ∈ J , then certainly maps as under
(2)(a) exist (take γ±ε = γ±, for all ε > 0), and hence a family of much better
behaved global versions exists as under (2)(b), at an arbitrarily small price in the
constants.

The possibility to include the ρj 's in part (2) (with similar occurrences in other
results) is a bonus from the re�nement of the correspondences to which Michael's
Selection Theorem is applied. For several issues, such as our original question con-
cerning C0(Ω, X), it will be su�cient to use part (1) and conclude that a continuous
bounded decomposition exists. In this paper we also include some applications of
part (2) with non-empty J . Corollary 4.3 shows that approximate α-conormality
of a (pre)-ordered Banach space is equivalent with continuous positively homoge-
neous approximate α-conormality, and Corollary 4.9 shows that approximate α-
conormality of X is inherited by various spaces of continuous X-valued functions
on a topological space.

We emphasize that, although Banach spaces that are a sum of cones, and ordered
Banach spaces in particular, have played a rather prominent role in this introduc-
tion, the actual underlying results are those in Section 3, valid for a continuous
additive positively homogeneous surjection T : C → X from a closed not necessar-
ily proper cone C in a Banach space onto a Banach space X. That is the heart of
the matter.

This paper is organized as follows.
Section 2 contains the basis terminology and some preliminary elementary re-

sults. The terminology is recalled in detail, in order to avoid a possible misunder-
standing due to di�ering conventions.

In Section 3 the Open Mapping Theorem for Banach spaces and Michael's Se-
lection Theorem are used to investigate surjective continuous additive positively
homogeneous maps T : C → X.

Section 4 contains the applications, rather easily derived from Section 3. Banach
spaces that are a sum of closed not necessarily proper cones are approached via the
naturally associated closed cone in a Banach space direct sum and the summing
map. The results thus obtained are then in turn applied to a (pre)-ordered Banach
space X and to various spaces of continuous X-valued functions.
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2. Preliminaries

In this section we establish terminology, include a few elementary results con-
cerning metric cones for later use, and recall Michael's Selection Theorem.

If X is a normed space, then SX := {x ∈ X : ‖x‖ = 1} denotes its unit sphere.

2.1. Subsets of vector spaces. For the sake of completeness we recall that a
non-empty subset A of a real vector space X is star-shaped with respect to 0 if
λx ∈ A, for all x ∈ A and 0 ≤ λ ≤ 1, and that it is balanced if λx ∈ A, for all x ∈ A
and −1 ≤ λ ≤ 1. A is absorbing in X if, for all x ∈ X, there exists λ > 0 such that
x ∈ λA. A is symmetric if A = −A.

The next rather elementary property will be used in the proof of Proposition
3.1.

Lemma 2.1. Let X be a real vector space and suppose A,B ⊆ X are star-shaped
with respect to 0 and absorbing. Then A ∩ B is star-shaped with respect to 0 and
absorbing.

Proof. It is clear that A ∩ B is star-shaped with respect to 0. Let x ∈ X, then,
since A is absorbing, x ∈ λA for some λ >0. The fact that A is star-shaped with
respect to 0 then implies that x ∈ λ′A for all λ′ ≥ λ. Likewise, x ∈ µB for some
µ > 0, and then x ∈ µ′B for all µ′ ≥ µ. Hence x ∈ max(λ, µ)(A ∩B). �

A subset C of the real or complex vector space X is called a cone in X if
C + C ⊆ C and λC ⊆ C, for all λ ≥ 0. We note that we do not require C to be a
proper cone, i.e., that C ∩ (−C) = {0}.

2.2. Cones. The cones �guring in the applications in Section 4 are cones in Banach
spaces, but one of the two main results leading to these applications, the Open
Mapping Theorem (Theorem 3.2), can be established for the following more abstract
objects.

De�nition 2.2. Let C be a set equipped with operations + : C × C → C and
· : R≥0 ×C → C. Then C will be called an abstract cone if there exists an element
0 ∈ C, such that the following hold for all u, v, w ∈ C and λ, µ ∈ R≥0:

(1) u+ 0 = u;
(2) (u+ v) + w = u+ (w + v);
(3) u+ v = v + u;
(4) u+ v = u+ w implies v = w;
(5) 1u = u and 0u = 0;
(6) (λµ)u = λ(µu);
(7) (λ+ µ)u = λu+ µu;
(8) λ(u+ v)=λu+ λv.

Here we have written λ · u as λu for short, as usual.
The natural class of maps between two cones C1 and C2 consists of the additive

and positively homogeneous maps, i.e., the maps T : C1 → C2 such that T (u+v) =
Tu+ Tv and T (λu) = λu, for all u, v ∈ C and λ ≥ 0.

De�nition 2.3. A pair (C, d) will be called a metric cone if C is an abstract cone
and d : C × C → R≥0 is a metric, satisfying

d(0, λu) = λd(0, u),(2.1)

d(u+ v, u+ w) ≤ d(v, w),(2.2)
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for every u, v, w ∈ C and λ ≥ 0 . A metric cone (C, d) is a complete metric cone if
it is a complete metric space.

Remark 2.4. (1) Once Michael's Selection Theorem is combined with the Open
Mapping Theorem (Theorem 3.2), C will be a closed not necessarily proper
cone in a Banach space, and the metric will be induced by the norm. In
that case it is translation invariant, but for the Open Mapping Theorem as
such requiring (2.2) is already su�cient. The natural similar requirement
d(0, λu) ≤ λd(0, u), which is likewise su�cient for the proofs, is easily seen
to be actually equivalent to requiring equality as in (2.1) above.

(2) Although we will not use this, we note that, if (C, d) is a metric cone, then
+ : C ×C → C is easily seen to be continuous, as is the map λ→ λu from
R≥0 into C, for each u ∈ C.

The following elementary results will be needed in the proof of Proposition 3.1.

Lemma 2.5. Let (C, d) be a metric cone as in De�nition 2.2.

(1) If c1, . . . , cn ∈ C, then d(0,
∑n
i=1 ci) ≤

∑n
i=1 d(0, ci).

(2) Let X be a real or complex normed space and suppose T : C → X is posi-
tively homogeneous and continuous at 0. Then T maps metrically bounded
subsets of C to norm bounded subsets of X

Proof. For the �rst part, using the triangle inequality and (2.2) we conclude that

d(0,
∑n
i=1 ci) ≤ d(0, cn)+d(cn,

∑n
i=1 ci) ≤ d(0, cn)+d(0,

∑n−1
i=1 ci), so the statement

follows by induction.
As to the second part, by continuity of T at zero there exists some δ > 0 such

that ‖Tc‖ < 1 holds for all c ∈ C satisfying d(0, c) < δ. If U ⊆ C is bounded,
choose r > 0 such that U ⊆ {c ∈ C : d(0, c) < r}. Since d(0, λu) = λd(0, u), for all
u ∈ C and λ ≥ 0, δr−1U ⊆ {c ∈ C : d(0, c) < δ}. Then by positive homogeneity of
T , supu∈U ‖Tu‖ ≤ δ−1r <∞. �

2.3. Correspondences. Our terminology and de�nitions concerning correspon-
dences follow that in [1]. Let A,B be sets. A map ϕ from A into the power set of B
is called a correspondence from A into B, and is denoted by ϕ : A� B. A selector
for a correspondence ϕ : A� B is a function σ : A→ B such that σ(x) ∈ ϕ(x) for
all a ∈ A. If A and B are topological spaces, we say a correspondence ϕ is lower
hemicontinuous if, for every a ∈ A and every open set U ⊆ B with ϕ(a) ∩ U 6= ∅,
there exists an open neighborhood V of a in A such that ϕ(a′) ∩ U 6= ∅ for every
a′ ∈ V . The following result is the key to the proof of Proposition 3.4 concerning
the existence of continuous sections for surjections of cones onto normed spaces.

Theorem 2.6. (Michael's Selection Theorem [1, Theorem 17.66]) Let ϕ : A � Y
be a correspondence from a paracompact space A into a real or complex Fréchet
space Y . If ϕ is lower hemicontinuous and has non-empty closed convex values,
then it admits a continuous selector.

3. Main results

In this section we establish our main results, Theorems 3.2, 3.6 and 3.7. Theorem
3.2 is an Open Mapping Theorem for surjections from complete metric cones onto
Banach spaces; its proof is based on the usual Open Mapping Theorem. Together
with the technical Proposition 3.4 (based on Michael's Selection Theorem) it yields
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the key Proposition 3.5. This is then reworked into two more practical results.
The �rst of these, Theorem 3.6, guarantees the existence of continuous bounded
positively homogeneous right inverses, while the second, Theorem 3.7, shows that
the existence of a family of possibly ill-behaved local right inverses implies the
existence of a family well-behaved global ones.

As before, if X is a normed space, then SX := {x ∈ X : ‖x‖ = 1} is its unit
sphere.

We start with the core of the proof of the Open Mapping Theorem, which employs
a certain Minkowski functional. The use of such functionals when dealing with cones
and Banach spaces goes back to Klee [5] and Andô [2].

Proposition 3.1. Let (C, d) be a complete metric cone as in De�nition 2.2. Let X
be a real Banach space and T : C → X a continuous additive positively homogeneous
surjection. Let B := {c ∈ C : d(0, c) ≤ 1} denote the closed unit ball around zero
in C, and de�ne V := T (B) ∩ (−T (B)). Then V is an absorbing convex balanced
subset of X and its Minkowski functional ‖ ·‖V : X → R, given by ‖x‖V := inf{λ >
0 : x ∈ λV }, for x ∈ X, is a norm on X that is equivalent to the original norm on
X.

Proof. It follows from Lemma 2.5 and De�nition 2.3 that B := {c ∈ C : d(0, c) ≤ 1}
is convex. Hence T (B) is convex and contains zero, since T is additive and positively
homogeneous. Since 0 ∈ T (B), its convexity implies that T (B) is star-shaped with
respect to 0. Furthermore, T (B) is absorbing, as a consequence of the surjectivity
and positive homogeneity of T and (2.1). Thus T (B) is star-shaped with respect to
0 and absorbing, and since this implies the same properties for −T (B), Lemma 2.1
shows that V := T (B)∩(−T (B)) is star-shaped with respect to 0 and absorbing. As
V is clearly symmetric, its star-shape with respect to 0 implies that it is balanced.
Furthermore, the convexity of T (B) implies that V is convex. All in all, V is
an absorbing convex balanced subset of the real vector space X, and hence its
Minkowski functional ‖ · ‖V is a seminorm by [8, Theorem 1.35]. Because T is
continuous at 0, Lemma 2.5 implies that supy∈V ‖y‖ ≤ M for some M > 0. If
x ∈ X and λ > ‖x‖V , then the de�nition of ‖ · ‖V and the star-shape of V with
respect to 0 imply that x ∈ λV , so that ‖x‖ ≤ λM . Hence

(3.1) ‖x‖ ≤M‖x‖V (x ∈ X).

We conclude that ‖ · ‖V is a norm on X. In view of (3.1), the equivalence of ‖ · ‖V
and ‖ · ‖ is an immediate consequence of the Bounded Inverse Theorem for Banach
spaces, once we know that (X, ‖ · ‖V ) is complete. We will now proceed to show
this, using the completeness of (C, d).

To this end, it su�ces to show ‖·‖V -convergence of all ‖·‖V -absolutely convergent
series. Let {xi}∞i=1 be a sequence in X such that

∑∞
i=1 ‖xi‖V < ∞. Since ‖x‖ ≤

M‖x‖V for all x ∈ X,
∑∞
i=1 ‖xi‖ <∞ also holds, hence by completeness of X the

‖ · ‖-sum x0 :=
∑∞
i=1 xi exists. We claim that

∥∥∥x0 −
∑N−1
i=1 xi

∥∥∥
V
→ 0 as N → ∞,

i.e., that x0 is also the ‖ · ‖V -sum of this series.
In order to establish this, we start by noting that, for x ∈ X, there exists x′ ∈ V

such that x = 2‖x‖V x′. This is clear if ‖x‖V = 0. If ‖x‖V 6= 0, then 2‖x‖V > ‖x‖V
and, as already observed earlier, this implies that x ∈ 2‖x‖V V . Therefore for every
i ∈ N there exists x′i ∈ V satisfying xi = 2‖xi‖V x′i. Since V ⊂ T (B), for every i ∈ N
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there exists bi ∈ B such that Tbi = x′i, so that xi = 2‖xi‖V Tbi = T (2‖xi‖V bi).
Note that d(0, 2‖xi‖V bi) = 2‖xi‖V d(0, bi) ≤ 2‖xi‖V .

From (2.2 and Lemma 2.5) it then follows that, for any �xed N ∈ N and all
n,m ∈ N with N ≤ m ≤ n,

d

(
m∑
i=N

2‖xi‖V bi,
n∑

i=N

2‖xi‖V bi

)
≤ d

(
0,

n∑
i=m+1

2‖xi‖V bi

)

≤
n∑

i=m+1

d(0, 2‖xi‖V bi)

≤
n∑

i=m+1

2‖xi‖V .

We conclude that, for any �xed N ∈ N, {
∑n
i=N 2‖xi‖V bi}

∞
n=N

is a Cauchy sequence
in (C, d) and hence, by completeness, converges to some cN ∈ C. Using Lemma 2.5
again we �nd that

d(0, cN ) = lim
n→∞

d

(
0,

n∑
i=N

2‖xi‖V bi

)
≤ lim sup

n→∞

n∑
i=N

d(0, 2‖xi‖V bi) ≤
∞∑
i=N

2‖xi‖V ,

so that cN ∈ (
∑∞
i=N 2‖xi‖V )B, as a consequence of (2.1). By the continuity,

additivity and positive homogeneity of T , TcN = limn→∞ T (
∑n
i=N 2‖xi‖V bi) =

limn→∞
∑n
i=N T (2‖xi‖V bi) = limn→∞

∑n
i=N xi =

∑∞
i=N xi with respect to the

‖ · ‖-topology. Hence

x0 −
N−1∑
i=1

xi =

∞∑
i=N

xi = TcN ∈

( ∞∑
i=N

2‖xi‖V

)
T (B).

Similarly, the inclusion V ⊂ −T (B) implies that, for every i ∈ N, there exists b̃i ∈ B
such that −T b̃i = x′i. Then c̃N = limn→∞

∑n
i=N 2‖xi‖V b̃i exists for all N ∈ N,

c̃N ∈ (
∑∞
i=N 2‖xi‖V )B, and T c̃N = −

∑∞
i=N xi, so that

x0 −
N−1∑
i=1

xi =

∞∑
i=N

xi = −T c̃N ∈

( ∞∑
i=N

2‖xi‖V

)
(−T (B)).

We conclude that x0 −
∑N−1
i=1 xi ∈ (

∑∞
i=N 2‖xi‖V )V . Therefore,∥∥∥∥∥x0 −

N−1∑
i=1

xi

∥∥∥∥∥
V

≤
∞∑
i=N

2‖xi‖V → 0

as N →∞, and hence (X, ‖ · ‖V ) is complete. �

The Open Mapping Theorem is now an easy consequence.

Theorem 3.2. (Open Mapping Theorem) Let (C, d) be a complete metric cone
as in De�nition 2.2; for example, C could be a closed not necessarily proper cone
in a Banach space. Let X be a real or complex Banach space and T : C → X a
continuous additive positively homogeneous map. Then the following are equivalent:

(1) T is surjective;
(2) There exists some constant K > 0 such that, for every x ∈ X, there exists

some c ∈ C with x = Tc and d(0, c) ≤ K‖x‖;
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(3) T is an open map;
(4) 0 is an interior point of T(C).

Proof. Given the nature of the statements in (1)-(4), we may assume that X is a
real Banach space, by viewing a complex one as such if necessary. We �rst prove
that (1) implies (2). By Proposition 3.1, there exists a constant L > 0 such that
‖x‖V ≤ L‖x‖, for all x ∈ X. If ‖x‖ 6= 0, then 2L‖x‖ > L‖x‖ ≥ ‖x‖V . Hence
x ∈ 2L‖x‖V , which is also trivially true if x = 0. In particular, for all x ∈ X
there exists some c ∈ B such that x = 2L‖x‖T (c). Then x = T (2L‖x‖c), and
d(0, 2L‖x‖c) = 2L‖x‖d(0, c) ≤ 2L‖x‖.

Next, we prove that (2) implies (3). Let U ⊆ C be an open set, and let x ∈ T (U)
be arbitrary with b ∈ U satisfying Tb = x. Since U is open, there exists some r > 0
such that W := {c ∈ C : d(b, c) < r} is contained in U . We de�ne W ′ := {c ∈ C :
d(0, c) < r}. Then b + W ′ ⊆ W , since d(b, b + w′) ≤ d(0, w′) < r for all w′ ∈ W ′.
Now, by hypothesis, for every x′ ∈ X with ‖x′‖ < rK−1, there exists some w′ ∈W ′
with Tw′ = x′. With BX := {x ∈ X : ‖x‖ < 1}, by additivity of T , it follows that
x+ rK−1BX ⊆ T (b+W ′) ⊆ T (W ) ⊆ T (U). We conclude that T (U) is open.

That (3) implies (4) is trivial, and (4) implies (1) by the positive homogeneity
of T . �

Remark 3.3. (1) Since a real or complex Banach space is a complete metric
cone, Theorem 3.2 generalizes the Open Mapping Theorem for Banach
spaces that was used in the proof of the preparatory Proposition 3.1.

(2) If C is a closed cone in a Banach space, X is a topological vector space,
and T : C → X is continuous, additive and positively homogeneous, then
we can conclude that T is an open map, provided that we know beforehand
that the closure of {Tc : c ∈ C, ‖c‖ ≤ 1} is a neighborhood of 0 in X. This
follows from [7, Theorem 1] . Since we do not have such a hypothesis, this
result does not imply ours. The di�erence is not only that in our case T is
assumed to be surjective, but, more fundamentally, that our image space
is in fact a Banach space, for which an Open Mapping Theorem is already
known to hold that serves as a stepping stone for the more general result.

(3) In [10] an Open Mapping Theorem is established for maps between two
abstract cones in a certain class, provided that we know beforehand that
these maps satisfy a so-called almost-openness condition. Since we do not
have such a hypothesis, this result does not imply ours. Again the di�erence
lies in the image space: in our context this is not just a cone, but actually
a full Banach space with accompanying Open Mapping Theorem.

(4) A result in the vein of our Theorem 3.2 is the following result of Klee's [5,
Theorem 3.2]: Suppose E and F are metrizable topological vector spaces,
C is a convex cone in E, and T is a continuous additive transformation
of C onto F such that T (U ∩ C) = −T (U ∩ C) for each member U of a
neighborhood basis U of 0 in E. Suppose F is of the second category and
C is complete. Then T is open. Although similar in nature, it does not
imply our Theorem 3.2, which does not require an enveloping space of the
cone or, more importantly, a symmetry property for T . Neither does our
Theorem 3.2 imply Klee's result, not even if T is additionally required to be
positively homogeneous, because, as is well known, the compatible metric
on a metrizable topological vector spaces can be assumed to be translation
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invariant, but there is no guarantee for the homogeneity condition (2.1) of
De�nition 2.3 to hold.

Parenthetically let us remark that, interestingly enough, the symmetry
condition in Klee's result is actually equivalent to T being continuous and
open. This follows from that result and, for the converse implication, the
following observation in a general topological context: Let E be a topo-
logical space with subspace C, and let T : C → F be a continuous open
(not necessarily surjective) map into a topological space F . Let p ∈ C and
suppose σ : F → F is a homeomorphism of F of �nite order such that
σ(T (p)) = T (p). Then there exists a neighborhood basis U of p in E such
that σ(T (U ∩ C)) = T (U ∩ C), for all U ∈ U . To see this, let V be a
neighborhood of p in E. Since T is open, T (V ∩ C) is a neighborhood of

T (p). Let n be the order of σ and put W =
⋂n−1
i=0 σ

i(T (V ∩ C)). Then
W is a neighborhood of T (p), W ⊆ T (V ∩ C) and σ(W ) = W . Since T is
continuous, T−1(W ) is a neighborhood of p in C. Let U ′ be a neighborhood
of p in E such that U ′ ∩ C = T−1(W ). Put U = U ′ ∩ V , so that U is a
neighborhood of p in E and U ⊆ V . Then T (U ∩ C) = T (U ′ ∩ V ∩ C) =
T (T−1(W ) ∩ V ∩ C) ⊆ T (T−1(W )) ∩ T (V ∩ C) ⊆ W ∩ T (V ∩ C) = W ,
where the �nal equality holds since W ⊆ T (V ∩ C) by construction. The
latter relation also implies that T (U ∩ C) = T (T−1(W ) ∩ V ∩ C) ⊇ W .
Hence T (U ∩C) = W is mapped into and onto itself by σ, and we conclude
that the collection of all U thus obtained forms a neighborhood basis U of
p in E as required.

We will now proceed with the second basic result, Proposition 3.4, which is
concerned with families of continuous right inverses for a surjective (this follows
from the hypotheses) map.

Proposition 3.4. Let X be a real or complex normed space and let Y be a real
or complex topological vector space, not necessarily Hausdor� and not necessarily
over the same �eld as X, with C ⊆ Y a closed not necessarily proper cone. Let I
be a �nite set, possibly empty. For each i ∈ I, let αi ∈ R and let ρi : C → R be a
continuous subadditive positively homogeneous map.

Suppose that T : C → X is a continuous additive positively homogeneous map
with the property that, for every ε > 0, there exists a map σε : SX → C, such that:

(1) T ◦ σε = idSX
;

(2) ρi(σε(x)) ≤ αi + ε, for all x ∈ SX and i ∈ I;
(3) σε(SX) is bounded in Y .

Then, for every ε > 0, the correspondence ϕε : SX � Y , de�ned by

ϕε(x) := {y ∈ C : Ty = x, ρi(y) ≤ αi + ε for all i ∈ I} (x ∈ SX),

has non-empty closed convex values, and is lower hemicontinuous on SX .
If Y is a Fréchet space, there exist continuous maps σ′ε : SX → C, for all ε > 0,

satisfying:

(a) T ◦ σ′ε = idSX
;

(b) ρi(σ
′
ε(x)) ≤ αi + ε, for all x ∈ SX and i ∈ I.

If ε > 0 and σ′ε(SX) is bounded in Y in the sense of topological vector spaces, then
σ′ε can be extended to a continuous positively homogeneous map σ′ε : X → C on the
whole space, satisfying:
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(a) T ◦ σ′ε = idX ;
(b) ρi(σ

′
ε(x)) ≤ (αi + ε)‖x‖ , for all x ∈ X and i ∈ I.

Before embarking on the proof, let us point out that the salient point lies in the
fact that the right inverses σ′ε of T on the unit sphere of X are continuous, whereas
this is not required for the original family of the σε's, and that this extra property
can be achieved retaining the relevant inequalities. It is for this that Michael's
Selection Theorem is used. The subsequent conditional extension of such a σ′ε to
the whole space is rather trivial.

Furthermore, we note that, although in the applications we have in mind the
constants αi will be positive and each ρi will be the restriction to C of a continuous
seminorm or (if Y is a Banach space) a continuous real-linear functional on the
whole space Y , the present proof does not require this.

Proof. Let ε > 0 be arbitrary. Since σε(x) ∈ ϕε(x), for all x ∈ SX , ϕε is non-empty-
valued. By continuity of T and the ρi's, ϕε is closed-valued. Since T is a�ne on
the convex set C, and each ρi, if any, is subadditive and positively homogeneous,
ϕε is convex-valued.

We will now show that ϕε is lower hemicontinuous, for any �xed ε > 0. To this
end, let x ∈ SX be arbitrary, and let U ⊆ Y be open such that ϕε(x) ∩ U 6= ∅.

We start by establishing that there exists some y ∈ ϕε(x)∩U such that ρi(y) <
αi + ε, for all i ∈ I (if any), where the inequality that is valid for σε(x) has been
improved to strict inequality for y. As to this, choose y′ in the non-empty set
ϕε(x) ∩ U , and de�ne yt := tσε/2(x) + (1 − t)y′, for t ∈ [0, 1]. Then yt ∈ C and
Tyt = x, for all t ∈ [0, 1]. Now, for all t ∈ (0, 1] and all i ∈ I,

ρi(yt) ≤ tρi(σε/2(x)) + (1− t)ρi(y′)

≤ t
(
αi +

ε

2

)
+ (1− t) (αi + ε)

< t (αi + ε) + (1− t) (αi + ε)

= (αi + ε) .

Since U is open, there exists some t0 > 0 such that y := yt0 ∈ U . Then y is as
required.

Having found and �xed this y, we de�ne η := mini∈I{αi+ε−ρi(y)} > 0 if I 6= ∅,
and η := 1 if I = ∅; here we use that I is �nite.

Next, let W ⊆ Y be an open neighborhood of zero such that y + W ⊆ U .
Since ση/2(SX) is bounded by assumption, we can �x some 0 < r ≤ 1 such that
r′ση/2(SX) ⊆W , for all 0 ≤ r′ < r, and αir

′ < η/2, for all 0 ≤ r′ < r and all i ∈ I.
Now, if x′ ∈ X satis�es 0 < ‖x′‖ < r, then

y + ‖x′‖ση/2
(

x′

‖x′‖

)
∈ C,

T

(
y + ‖x′‖ση/2

(
x′

‖x′‖

))
= x+ x′,

and

y + ‖x′‖ση/2
(

x′

‖x′‖

)
∈ y + ‖x′‖ση/2(SX) ⊂ y +W ⊂ U.



A STRONG OPEN MAPPING THEOREM FOR SURJECTIONS

FROM CONES ONTO BANACH SPACES
12

Furthermore, for such x′ and for i ∈ I we �nd, using αi‖x′‖ < η/2 and ‖x′‖ < r ≤ 1,
that

ρi

(
y + ‖x′‖ση/2

(
x′

‖x′‖

))
≤ ρi(y) + ‖x′‖ρi

(
ση/2

(
x′

‖x′‖

))
≤ ρi(y) + ‖x′‖

(
αi +

η

2

)
< ρi(y) +

η

2
+
η

2
= ρi(y) + η

≤ ρi(y) + αi + ε− ρi(y)

= αi + ε.

Therefore, if x+ x′ ∈ SX with 0 < ‖x′‖ < r, we conclude that

y + ‖x′‖ση/2(x′/‖x′‖) ∈ ϕε(x+ x′) ∩ U.

Hence ϕε is lower hemicontinuous on SX , as was to be proved.
If Y is a Fréchet space then, since SX as a metric space is paracompact [9],

Michael's Selection Theorem (Theorem 2.6), applied to each individual ϕε, supplies
a family of continuous maps σ′ε : SX → C, such that σε(x) ∈ ϕε(x), for all ε > 0
and all x ∈ SX . Then the σ′ε are as required.

If ε > 0 and σ′ε(SX) happens to be bounded in the topological vector space Y ,
we extend σ′ε : SX → C to a positively homogeneous C-valued map on all of X,
also denoted by σ′ε, by de�ning

σ′ε(x) :=

{
0 for x = 0;

‖x‖σ′ε
(

x
‖x‖

)
for x 6= 0.

The continuity of σ′ε at 0 then follows from the boundedness of σ′ε(SX), and at other
points it is immediate. It is easily veri�ed that such a global σ′ε has the properties
as claimed. �

Combination of Theorem 3.2 and Proposition 3.4 yields the following key result
on right inverses of surjections from cones onto Banach spaces. The structure of
the proofs makes it clear that it is ultimately based on the Open Mapping Theorem
for Banach spaces and Michael's Selection Theorem.

Proposition 3.5. Let X and Y be real or complex Banach spaces, not necessarily
over the same �eld, and let C be a closed not necessarily proper cone in Y . Let
T : C → X be a surjective continuous additive positively homogeneous map.

Furthermore, let J be a �nite set, possibly empty, and, for all j ∈ J , let ρj :
C → R be a continuous subadditive positively homogeneous map. For example,
each ρj could be the restriction to C of a globally de�ned continuous seminorm or
continuous real-linear functional.

(1) If ρj is bounded from above on SY ∩ C, for all j ∈ J , then there exist
constants K > 0, αj ∈ R (j ∈ J), and a map γ : SX → C, such that:
(a) T ◦ γ = idSX

;
(b) ‖γ(x)‖ ≤ K, for all x ∈ SX ;
(c) ρj(γ(x)) ≤ αj, for all x ∈ SX and j ∈ J .
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(2) If K > 0, αj ∈ R (j ∈ J), and γ : SX → C satisfy (a), (b) and (c) in part
(1), then, for every ε > 0, there exists a continuous positively homogeneous
map γε : X → C such that:
(a) T ◦ γε = idX ;
(b) ‖γε(x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;
(c) ρj(γ(x)) ≤ (αj + ε)‖x‖, for all x ∈ X and j ∈ J .

Proof. As to the �rst part, we start by applying part (2) of Theorem 3.2 and obtain
K > 0 and a map γ : SX → C, such that T ◦ γ = idSX

and ‖γ(x)‖ ≤ K (x ∈ SX).
If j ∈ J , and βj ∈ R is such that ρj(c) ≤ βj for all c ∈ SY ∩ C, where we may

assume that βj ≥ 0, then ρj(γ(x)) ≤ Kβj , for all x ∈ SX . Indeed, this is obvious
if γ(x)=0, and if γ(x) 6= 0 we have

ρj (γ(x)) = ‖γ(x)‖ρj
(

γ(x)

‖γ(x)‖

)
≤ Kβj .

The existence of the αj := Kβj is then clear.
As to the second part, suppose that K > 0, αj ∈ R (j ∈ J) and γ : SX → C

satisfy (a), (b) and (c) in part (1). We augment J to I := J∪{‖ ‖}, where we choose
an index symbol ‖ ‖ /∈ J , and let ρ‖ ‖(c) := ‖c‖, for c ∈ C, and put α‖ ‖ := K. We
can now apply Proposition 3.4 with σε = γ for all ε > 0, since its hypotheses
(1), (2) and (3) are then satis�ed. The continuous σ′ε : SX → C as furnished by
Proposition 3.4 are, in particular, such that ρ‖ ‖(σ

′
ε(x)) ≤ α‖ ‖ + ε, i.e., such that

‖σ′ε(x)‖ ≤ K + ε, for all x ∈ SX . Hence each of the sets σ′ε(SX) is bounded in Y ,
and the last part of Proposition 3.4 applies, yielding global σ′ε : X → C that can
be taken as the required γε. �

Let us remark explicitly that the αj 's need not be non-negative and that in part
(2) the ρj 's are not required to be bounded from above on SY ∩C as in part (1), but
rather on γ(SX) (as a consequence of the hypothesized validity of (1)(c)), which is
a weaker hypothesis.

We extract two practical consequences from Proposition 3.5. First of all, if the
ρj 's are bounded from above on SY ∩C then part (1) of Proposition 3.5 is applicable
and its conclusion shows that the hypothesis of part (2) are satis�ed. Taking ε = 1,
say, we therefore have the following, which has the Strong Open Mapping Theorem
(Theorem 1.3) as a special case when J is empty.

Theorem 3.6. (Strong Open Mapping Theorem, General Version) Let X and Y be
real or complex Banach spaces, not necessarily over the same �eld, and let C be a
closed not necessarily proper cone in Y . Let T : C → X be a surjective continuous
additive positively homogeneous map.

Furthermore, let J be a �nite set, possibly empty, and, for all j ∈ J , let ρj :
C → R be a continuous subadditive positively homogeneous map that is bounded
from above on SY ∩ C. For example, each ρj could be the restriction to C of a
globally de�ned continuous seminorm or continuous real-linear functional.

Then there exist constants K > 0 and αj ∈ R (j ∈ J) and a continuous positively
homogeneous map γ : X → C, such that:

(1) T ◦ γ = idX ;
(2) ‖γ(x)‖ ≤ K‖x‖, for all x ∈ X;
(3) ρj(γ(x)) ≤ αj‖x‖, for all x ∈ X and j ∈ J .
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The next consequence of Proposition 3.5 states that the existence of a family
of possibly ill-behaved right inverses on the unit sphere is actually equivalent with
the existence of a family of well-behaved global ones. Note that, compared with
Theorem 3.6, the boundedness assumption from above for the ρj 's on SY ∩ C has
been replaced with the assumptions (1)(c) and (2)(c) below.

Theorem 3.7. Let X and Y be real or complex Banach spaces, not necessarily
over the same �eld, and let C be a closed not necessarily proper cone in Y . Let
T : C → X be a surjective continuous additive positively homogeneous map.

Furthermore, let J be a �nite set, possibly empty, and, for all j ∈ J , let ρj :
C → R be a continuous subadditive positively homogeneous map. For example,
each ρj could be the restriction to C of a globally de�ned continuous seminorm or
continuous real-linear functional.

If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equivalent:

(1) For every ε > 0, there exists a map γε : SX → C, such that:
(a) T ◦ γε = idSX

;
(b) ‖γε(x)‖ ≤ K + ε, for all x ∈ SX ;
(c) ρj(γε(x)) ≤ αj + ε, for all x ∈ SX and j ∈ J .

(2) For every ε > 0, there exists a continuous positively homogeneous map
γε : X → C such that:
(a) T ◦ γε = idX ;
(b) ‖γε(x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;
(c) ρj(γε(x)) ≤ (αj + ε)‖x‖, for all x ∈ X and j ∈ J .

Proof. Clearly the second part implies the �rst. For the converse implication, let
ε > 0 be given. Then, by assumption, there exists a map (we add accents to avoid
notational confusion) γ′ε/2 : SX → C, such that:

(1) T ◦ γ′ε/2 = idSX
;

(2) ‖γ′ε/2(x)‖ ≤ K + ε/2, for all x ∈ SX ;
(3) ρj(γ

′
ε/2(x)) ≤ αj + ε/2, for all x ∈ SX and j ∈ J .

We can now apply part (2) of Proposition 3.5, with K replaced with K + ε/2, αj
with αj + ε/2, γ with γ′ε/2, and ε with ε/2. The map γε/2 as furnished by part

(2) of Proposition 3.5 can then be taken as the map γε in part (2) of the present
Theorem. �

4. Applications

By varying C and the ρj 's various types of consequences of Theorems 3.6 and 3.7
can be obtained, and we collect some in the present section, considering situations
where the ρj 's are restrictions to C of globally de�ned continuous seminorms or
continuous real-linear functionals. This seems to be a natural context to work in,
but we note that it is not required as such by these two underlying Theorems, nor
by the key Proposition 3.5, so that applications of another type are conceivable.

As in earlier sections, if X is a normed space, then SX := {x ∈ X : ‖x‖ = 1} is
its unit sphere.

To start with, Theorems 3.6 and 3.7 are clearly applicable when T : C → X is
the restriction to C of a global continuous linear map T : Y → X and (as already
mentioned in these Theorems) each of the ρj 's is the restriction of a globally de�ned
continuous seminorm or continuous real-linear functional. Furthermore, Y is a
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closed cone in itself, so that these Theorems can be specialized to yield statements
on well-behaved right inverses for continuous linear surjections between Banach
spaces. For reasons of space, we refrain from explicitly formulating all these quite
obvious special cases.

Instead, we give applications to the internal structure of a Banach space that
is a sum of closed not necessarily proper cones, and to the structure of spaces of
continuous functions with values in such a Banach space. Thus we return to the to
the improvements of Andô's Theorem and our original motivating question alluded
to in the introduction.

The following result applies, in particular, when X =
∑n
i=1 Ci is the sum of a

�nite number of closed not necessarily proper cones. In that case, the Banach space
Y in the following Theorem is the direct sum of n copies of X.

Theorem 4.1. Let X be a real or complex Banach space. Let I be a non-empty
set, possibly uncountable, and let {Ci}i∈I be a collection of closed not necessarily
proper cones in X, such that every x ∈ X can be written as an absolutely convergent
series x =

∑
i∈I ci, where ci ∈ Ci, for all i ∈ I.

Let Y = `1(I,X) be the `1-direct sum of |I| copies of X, and let C be the natural
closed cone in the Banach space Y , consisting of those elements where the i-th
component is in Ci. Finally, let J be a �nite set, possibly empty, and, for all j ∈ J ,
let ρj : Y → R be a continuous seminorm or a continuous real-linear functional.

Then:

(1) There exist a constant K > 0 and a continuous positively homogeneous
map γ : X → C with continuous positively homogeneous component maps
γi : X → Ci (i ∈ I), such that:
(a) x =

∑
i∈I γi(x), for all x ∈ X;

(b)
∑
i∈I ‖γi(x)‖ ≤ K‖x‖, for all x ∈ X.

(2) If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equiva-
lent:
(a) For every ε > 0, there exists a map γε : SX → C with component maps

γε,i : SX → Ci (i ∈ I), such that:
(i) x =

∑
i∈I γε,i(x), for all x ∈ SX ;

(ii)
∑
i∈I ‖γε,i(x)‖ ≤ (K + ε), for all x ∈ SX ;

(iii) ρj(γε(x)) ≤ (αj + ε), for all x ∈ SX and j ∈ J .
(b) For every ε > 0, there exists a continuous positively homogeneous map

γε : X → C with continuous positively homogeneous component maps
γε,i : X → Ci (i ∈ I), such that:

(i) x =
∑
i∈I γε,i(x), for all x ∈ X;

(ii)
∑
i∈I ‖γε,i(x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;

(iii) ρj(γε(x)) ≤ (αj + ε)‖x‖, for all x ∈ X and j ∈ J .

Proof. Let T : C → X be the canonical summing map. Then Theorem 3.6 yields
part (1), and Theorem 3.7 yields part (2). �

In order to illustrate Theorem 4.1 we consider the situation where X is a Banach
space, (pre)-ordered by a closed not necessarily proper coneX+. IfX+ is generating
in the sense of (pre)-ordered Banach spaces, i.e., if X = X+ − X+, and if X+ is
proper, then Andô's Theorem (Theorem 1.1) applies. On the other hand, Theorem
4.1, also yields this result (and an even stronger one) by writingX = X++(−X+) as
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the sum of two closed cones, coincidentally related by a minus sign. For convenience
we formulate the result explicitly in the usual notation with minus signs.

Corollary 4.2. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+. Let J be a �nite set, possibly
empty, and, for all j ∈ J , let ρj : X × X → R be a continuous seminorm or a
continuous linear functional. Then:

(1) There exist a constant K > 0 and continuous positively homogeneous maps
γ± : X → X+, such that:
(a) x = γ+(x)− γ−(x), for all x ∈ X;
(b) ‖γ+(x)‖+ ‖γ−(x)‖ ≤ K‖x‖, for all x ∈ X.

(2) If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equiva-
lent:
(a) For every ε > 0, there exist maps γ±ε : SX → X+, such that:

(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ SX ;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε), for all x ∈ SX ;

(iii) ρj((γ
+
ε (x), γ−ε (x)) ≤ (αj + ε), for all x ∈ SX and j ∈ J .

(b) For every ε > 0, there exist continuous positively homogeneous maps
γ±ε : X → X+, such that:

(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ X;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;

(iii) ρj((γ
+
ε (x), γ−ε (x)) ≤ (αj + ε)‖x‖, for all X and j ∈ J .

Proof. We apply Theorem 4.1 with I = {1, 2}, C1 = X+ and C2 := −X+, and
then let γ+ = γ1 and γ− = −γ2 in part (1), and γ+

ε = γε,1 and γ−ε = −γε,2 in part
(2) �

We continue in the context of a real (pre)-ordered normed space X ordered by a
closed generating not necessarily proper cone X+. If α > 0, then we will say that
X is

(1) α-conormal if, for each x ∈ X, there exist x± ∈ X+, such that x = x+−x−
and ‖x+‖ ≤ α‖x‖;

(2) approximately α-conormal if X is (α+ ε)-conormal, for all ε > 0.

Andô's Theorem is equivalent to asserting that every real Banach space, ordered
by a closed generating proper cone, is α-conormal for some α > 0. Clearly, α-
conormality implies approximate α-conormality. What is less obvious is that ap-
proximate α-conormality is equivalent with a continuous positively homogeneous
version of the same notion, as is the content of the following consequence of Corol-
lary 4.2.

Corollary 4.3. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+, and let α > 0. Then the following
are equivalent:

(1) X is approximately α-conormal;
(2) For every ε > 0, there exist continuous positively homogeneous maps γ±ε :

X → X+, such that:
(a) x = γ+

ε (x)− γ−ε (x), for all x ∈ X;
(b) ‖γ+

ε (x)‖ ≤ (α+ ε)‖x‖, for all x ∈ X.

Proof. Clearly part (2) implies part (1). For the converse we will apply Corollary
4.2 with J = {1}, as follows. Let ε > 0 be given and �xed. For each x ∈ SX , the
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(α + ε/2)-conormality of X implies that, for each x ∈ SX , we can choose and �x
γ±ε/2(x) ∈ X+, such that

x = γ+
ε/2(x)− γ−ε/2(x) (x ∈ SX),

and ‖γ+
ε/2(x)‖ ≤ (α+ ε/2). Then ‖γ−ε/2(x)‖ ≤ (α+ ε/2 + 1), so that

‖γ+
ε/2(x)‖+ ‖γ−ε/2(x)‖ ≤ (2α+ 1 + ε) (x ∈ SX).

De�ne ρ1 : X ×X → R by ρ1((x1, x2)) := ‖x1‖, for x1, x2 ∈ X, so that

ρ1((γ+
ε/2(x), γ−ε/2(x)) = ‖γ+

ε/2(x)‖ ≤ α+ ε/2 ≤ α+ ε (x ∈ SX).

Thus we have found constantsK = 2α+1 > 0, α1 = α and maps γ±ε/2 : SX → X+

satisfying (i), (ii) and (iii) in part (2)(a) of Corollary 4.2. Hence the continuous
positively homogeneous maps as in part (2)(b) of Corollary 4.2 also exist, and these
are as required. �

Remark 4.4. The term �conormality� is due to Walsh [11] and several variations of
it have been studied. For example, a real normed space X is said to be α-max-
conormal if, for each x ∈ X, there exist x± ∈ X+, such that x = x+ − x− and
max(‖x+‖, ‖x−‖) ≤ α‖x‖; X is approximately α-max-conormal if it is (α+ε)-max-
conormal, for every ε > 0. As another example, X is said to be α-sum-conormal
if, for each x ∈ X, there exist x± ∈ X+, such that x = x+ − x− and ‖x+‖ +
‖x−‖ ≤ α‖x‖; X is approximately α-sum-conormal if it is (α + ε)-sum-conormal,
for every ε > 0. Just as Corollary 4.3 shows that approximately α-conormality
implies its continuous positively homogeneous version, the elements x± �guring
in the de�nitions of approximately α-max-conormality and approximately α-sum-
conormality can be chosen in a continuous and positively homogeneous fashion.
The proof is analogous to the proof of Corollary 4.3, but now taking ρ1(x1, x2) :=
max(‖x1‖, ‖x2‖) for approximately α-sum-conormality, and ρ1(x1, x2) := ‖x1‖ +
‖x2‖ for approximately α-sum-conormality.

The dual notion of conormality is normality (terminology due to Krein [6]).
Several equivalences between versions of normality of an ordered Banach space X
and conormality of its dual (and vice versa) are known, but are scattered through-
out the literature under various names. The most complete account of normality-
conormality duality relationships may be found in [4].

Finally, we return to our original motivating context in the introduction, but
in a more general setting. As a rule, no additional hypotheses on the topological
space Ω are necessary to pass from X to a space of X-valued functions, since the
arguments are pointwise in X, but for some converse implications it is required
that the vector valued function space in question is non-zero. If Cc(Ω) 6= {0}, for
example if Ω is a non-empty locally compact Hausdor� space, then this assumption
is always satis�ed.

Theorem 4.5. Let X be a real or complex Banach space. Let I be a non-empty
set, possibly uncountable, and let {Ci}i∈I be a collection of closed not necessarily
proper cones in X, such that every x ∈ X can be written as an absolutely convergent
series x =

∑
i∈I ci, where ci ∈ Ci, for all i ∈ I. Let Ω be a topological space. Then

there exists a constant K > 0 with the property that, for each X-valued continuous
function f ∈ C(Ω, X) on Ω, there exist fi ∈ C(Ω, Ci) (i ∈ I), such that
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(1) For every ω ∈ Ω, f(ω) =
∑
i∈I fi(ω), and

∑
i∈I ‖fi(ω)‖ ≤ K‖f(ω)‖;

(2) ‖fi‖∞ ≤ K‖f‖∞, for all i ∈ I, where the right hand side, or both the left
hand side and the right hand side, may be in�nite;

(3) The support of each fi is contained in that of f ;
(4) If f vanishes at in�nity, then so does each fi;
(5) If ω1, ω2 ∈ Ω and λ1, λ2 ≥ 0 are such that λ1f(ω1) = λ2f(ω2), then

λ1fi(ω1) = λ2fi(ω2), for all i ∈ I.
In particular, if I is �nite, so that X =

∑
i∈I Ci, then we can write the following

vector spaces as the sum of cones naturally associated with the Ci, where the cones
are closed in the last three normed spaces:

(1) C(Ω, X) =
∑
i∈I C(Ω, Ci) for the continuous X-valued functions on Ω;

(2) Cb(Ω, X) =
∑
i∈I Cb(Ω, Ci) for the bounded continuous X-valued functions

on Ω;
(3) C0(Ω, X) =

∑
i∈I C0(Ω, Ci) for the continuous X-valued functions on Ω

vanishing at in�nity;
(4) Cc(Ω, X) =

∑
i∈I Cc(Ω, Ci) for the compactly supported continuous X-

valued functions on Ω.

Proof. We apply part (1) of Theorem 4.1 and let fi := γi ◦ f (i ∈ I). This supplies
the fi as required for the �rst part, and the statement on the �nite number of
naturally associated cones is then clear. �

Clearly then, the answer to our original question in the introduction is a�rma-
tive: If X is a Banach space with a closed generating proper cone X+, and Ω is a
topological space, then C0(Ω, X+) is generating in C0(Ω, X). In fact, Theorem 4.5
shows that X+ need not even be proper.

Remark 4.6. As mentioned in the introduction, if Ω is a (locally) compact Hausdor�
space and X is a (pre-)ordered Banach space with closed generating cone X+,
certain special cases of Theorem 4.5 also follow from [3, Theorem 2.3] and [12,
Theorem 4.4]. Both of these results proceed through an application of Lazar's
a�ne selection theorem to show that cones of continuous a�neX+-valued functions
on a Choquet simplex K are generating in spaces of continuous a�ne X+-valued
functions on K. If Ω is a compact Hausdor� space, the fact that C(Ω, X+) is
generating in C(Ω, X) follows from [3, Theorem 2.3] by taking K to be the Choquet
simplex of all regular Borel probability measures on Ω, and considering the maps
µ 7→

∫
Ω
fdµ (µ ∈ K, f ∈ C(Ω, X)) and ω 7→ a(δω) (ω ∈ Ω, a ∈ A(K,X)), where

A(K,X) denotes the space of continuous a�ne X-valued functions on K.

The converse of the four last statements in Theorem 4.5 also holds provided the
function spaces are non-zero, as is shown by our next (elementary) result. Note
that C(Ω, X) and Cb(Ω, X) are zero only when Ω 6= ∅ and X = {0}.

Lemma 4.7. Let X be a real or complex normed space. Let I be a �nite non-empty
set, and let {Ci}i∈I be a collection of cones in X, not necessarily closed or proper.
Let Ω be a topological space.

If C(Ω, X) 6= {0} and C(Ω, X) =
∑
i∈I C(Ω, Ci), then X =

∑
i∈I Ci; similar

statements hold for Cb(Ω, X), C0(Ω, X) and Cc(Ω, X).

Proof. If there exists 0 6= f ∈ C(Ω, X), then composing f with a suitable continuous
linear functional on X yields a non-zero ϕ ∈ C(Ω). Choose ω0 ∈ Ω such that



A STRONG OPEN MAPPING THEOREM FOR SURJECTIONS

FROM CONES ONTO BANACH SPACES

19

ϕ(ω0) 6= 0; we may assume that ϕ(ω0) = 1. If x ∈ X, then (employing the
usual notation) ϕ ⊗ x =

∑
i∈I fi, for some fi ∈ C(Ω, Ci) (i ∈ I) by assumption.

Specializing this to the point ω0 shows that x =
∑
i∈I ci, for some ci ∈ Ci (i ∈ I).

The proofs for Cb(Ω, X) , C0(Ω, X) and Cc(Ω, X) are similar. �

Corollary 4.8. Let X be a real or complex Banach space. Let I be a non-empty
�nite set, and let {Ci}i∈I be a collection of closed not necessarily proper cones in
X. Let Ω be a topological space. If Cc(Ω) 6= {0}, for example if Ω is a non-empty
locally compact Hausdor� space, then the following are equivalent:

(1) X =
∑
i∈I Ci;

(2) C(Ω, X) =
∑
i∈I C(Ω, Ci);

(3) Cb(Ω, X) =
∑
i∈I Cb(Ω, Ci);

(4) C0(Ω, X) =
∑
i∈I C0(Ω, Ci);

(5) Cc(Ω, X) =
∑
i∈I Cc(Ω, Ci).

Proof. If X = {0} there is nothing to prove. If X 6= {0}, then the fact that
Cc(Ω) 6= {0} implies that Cc(Ω, X) 6= {0}, hence that the other three spaces of
X-valued functions are non-zero as well. Combining Theorem 4.5 and Lemma 4.7
therefore concludes the proof. �

Theorem 4.5 and Corollary 4.8 are based on part (1) of Theorem 4.1. It is also
possible to take part (2) into account and, e.g., obtain results on various types
of conormality for spaces of continuous functions with values in a (pre)-ordered
Banach space. Here is an example, where part (2) of Theorem 4.1 is used via an
appeal to Corollary 4.3. Note that, analogous to Corollary 4.8, the approximate
α-conormality of X and of the three normed spaces of X-valued functions are all
equivalent if Cc(Ω) 6= {0}.

Corollary 4.9. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+, and let Ω be a topological space.
Suppose that α > 0.

If X is approximately α-conormal, then so are Cb(Ω, X), C0(Ω, X), and Cc(Ω, X).
If Cb(Ω, X) 6= {0} and Cb(Ω, X) is approximately α-conormal, then X is ap-

proximately α-conormal.
If C0(Ω, X) 6= {0} and C0(Ω, X) is approximately α-conormal, then X is ap-

proximately α-conormal.
If Cc(Ω, X) 6= {0} and Cc(Ω, X) is approximately α-conormal, then X is ap-

proximately α-conormal.

Proof. Let X be approximately α-conormal, and let f ∈ Cb(Ω, X) and ε > 0 be
given. Corollary 4.3 supplies continuous positively homogeneous maps γ±ε : X →
X+ , such that x = γ+

ε (x)− γ−ε (x) and ‖γ+
ε (x)‖ ≤ (α+ ε)‖x‖, for all x ∈ X. Then

γ±ε ◦ f ∈ Cb(Ω, X+), f = γ+
ε ◦ f − γ−ε ◦ f , and ‖γ±ε ◦ f‖∞ ≤ (α + ε)‖f‖∞, so that

Cb(Ω, X) is approximately α-conormal. The proof for C0(Ω, X) and Cc(Ω, X) is
similar.

If Cb(Ω, X) 6= {0} and Cb(Ω, X) is approximately α-conormal, let x ∈ X and
ε > 0 be given. As in the proof of Corollary 4.7 we �nd a non-zero ϕ ∈ Cb(Ω), and
we may assume that ‖ϕ‖∞ = 1 and ϕ is real-valued. Passing to −ϕ if necessary we
obtain a sequence {ωn} ⊂ Ω such that 0 < ϕ(ωn) ↑ 1. Hence there exists ωn0

∈ Ω
such that 0 < ϕ(ωn0) and (α + ε/2)ϕ(ωn0)−1 < α + ε. By assumption, there exist
f± ∈ Cb(Ω, X+), such that ϕ⊗x = f+−f− and ‖f+‖∞ ≤ (α+ε/2)‖ϕ⊗x‖∞ = (α+
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ε/2)‖x‖. In particular, ϕ(ωn0)x = f+(ωn0) − f−(ωn0). Since ϕ(ωn0)−1f±(ωn0) ∈
X+, and ‖ϕ(ωn0

)−1f+(ωn0
)‖ ≤ ϕ(ωn0

)−1‖f+‖∞ ≤ ϕ(ωn0
)−1(α + ε/2)‖x‖ ≤ (α +

ε)‖x‖, we conclude that X is approximately α-conormal.
The proofs for C0(Ω, X) and Cc(Ω, X) are similar. �

Remark 4.10. In the context of Corollary 4.9, the conclusion that the Banach
spaces Cb(Ω, X) and C0(Ω, X) are approximately α-conormal shows that part (1)
of Corollary 4.3 is satis�ed for these (pre)-ordered Banach spaces. Hence (2) is
valid as well. Therefore, if X is approximately α-conormal, then Cb(Ω, X) and
C0(Ω, X) are continuously positively homogeneously approximately α-conormal in
the sense of part (2) of Corollary 4.3. The converse holds for Cb(Ω, X) if this space
is non-zero, and similarly for C0(Ω, X).

Acknowledgements. The authors would like to thank Klaas Pieter Hart for help-
ful correspondence and Anthony Wickstead for bringing the references [3] and [12]
to their attention.

References

1. C.D. Aliprantis and K.C. Border, In�nite dimensional analysis, third ed.,
Springer, Berlin, 2006.

2. T. Andô, On fundamental properties of a Banach space with a cone, Paci�c J.
Math. 12 (1962), 1163�1169.

3. L. Asimow and H. Atkinson, Dominated extensions of continuous a�ne func-
tions with range an ordered Banach space, Quart. J. Math. Oxford Ser. (2) 23
(1972), 383�389.

4. C.J.K. Batty and D.W. Robinson, Positive one-parameter semigroups on or-
dered Banach spaces, Acta Appl. Math. 2 (1984), no. 3-4, 221�296.

5. V.L. Klee, Jr., Boundedness and continuity of linear functionals, Duke Math.
J. 22 (1955), 263�269.

6. M. Krein, Propriétés fondamentales des ensembles coniques normaux dans
l'espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 28 (1940), 13�17.

7. K.F. Ng, An open mapping theorem, Proc. Cambridge Philos. Soc. 74 (1973),
61�66.

8. W. Rudin, Functional analysis, second ed., McGraw-Hill Inc., New York, 1991.
9. A.H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54

(1948), 977�982.
10. O. Valero, Closed graph and open mapping theorems for normed cones, Proc.

Indian Acad. Sci. Math. Sci. 118 (2008), no. 2, 245�254.
11. B. Walsh, Ordered vector sequence spaces and related classes of linear operators,

Math. Ann. 206 (1973), 89�138.
12. A.W. Wickstead, Spaces of linear operators between partially ordered Banach

spaces, Proc. London Math. Soc. (3) 28 (1974), 141�158.

Marcel de Jeu, Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA

Leiden, The Netherlands

E-mail address: mdejeu@math.leidenuniv.nl

Miek Messerschmidt, Mathematical Institute, Leiden University, P.O. Box 9512,

2300 RA Leiden, The Netherlands



A STRONG OPEN MAPPING THEOREM FOR SURJECTIONS

FROM CONES ONTO BANACH SPACES
21

1Miek Messerschmidt, Unit for BMI, North-west University, Private Bag X6001,

Potchefstroom, South Africa, 2520

E-mail address: mmesserschmidt@gmail.com

1Current address


