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Abstract. When an i.i.d. sequence of letters is cut into words according to i.i.d. renewal times,
an i.i.d. sequence of words is obtained. In the annealed LDP (large deviation principle) for the
empirical process of words, the rate function is the specific relative entropy of the observed
law of words w.r.t. the reference law of words. In Birkner, Greven and den Hollander [3] the
quenched LDP (= conditional on a typical letter sequence) was derived for the case where
the renewal times have an algebraic tail. The rate function turned out to be a sum of two
terms, one being the annealed rate function, the other being proportional to the specific
relative entropy of the observed law of letters w.r.t. the reference law of letters, obtained
by concatenating the words and randomising the location of the origin. The proportionality
constant equals the tail exponent of the renewal process.

The purpose of the present paper is to extend both LDP’s to letter sequences that are
not i.i.d. It is shown that both LDP’s carry over when the letter sequence satisfies a mixing
condition called summable variation. The rate functions are again given by specific relative
entropies w.r.t. the reference law of words, respectively, letters. But since neither of these
reference laws is i.i.d., several approximation arguments are needed to obtain the extension.
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1. Introduction and main results

1.1. Notation. Let E be a finite set of letters and Ẽ = ∪`∈NE` the set of finite words drawn
from E. Write EZ and ẼZ for the sets of two-sided sequences of letters and words, and let
θ and θ̃ denote the left-shifts acting on these sets, respectively. The set of probability laws
on EZ and ẼZ that are shift-invariant, respectively, shift-invariant and ergodic w.r.t. θ and
θ̃ are denoted by P inv(EZ) and P inv(ẼZ), respectively, P inv,erg(EZ) and P inv,erg(ẼZ), and are
endowed with the topology of weak convergence.

Let X = (Xk)k∈Z be a two-sided random sequence of letters sampled according to a shift-
invariant probability distribution ν on EZ. Let τ = (τi)i∈Z be a two-sided i.i.d. sequence of
renewal times drawn from a common probability law % on N, independent of X. The latter
form a renewal process T = (Ti)i∈Z given by

T0 = 0, Ti = Ti−1 + τi, i ∈ Z. (1.1)

Let Y = (Yi)i∈Z be the two-sided random sequence of words cut out from X according to τ ,
i.e.,

Yi = X(Ti−1,Ti] = (XTi−1+1, . . . , XTi), i ∈ Z. (1.2)
The joint law of X and τ is denoted by P. Write |Yi| to denote the length of word i.

The reverse of cutting is glueing. The concatenation operator κ : ẼZ → EZ glues a word
sequence into a letter sequence. In particular, κ(Y ) = X. Given Q ∈ P inv(ẼZ) with mQ =
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EQ(|Y1|) <∞, let ΨQ ∈ P inv(EZ) be defined by

ΨQ(A) =
1

mQ
EQ

|Y1|−1∑
k=0

1{θkκ(Y )∈A}

 , A ⊂ EZ, (1.3)

i.e., the law of κ(Y ) when Y is drawn from Q, turned into a stationary law by randomizing the
location of the origin.

For n ∈ N, let (Y(0,n])
per ∈ ẼZ denote the n-periodized version of Y . We are interested in

the empirical distribution of words

Rn =
1

n

n−1∑
i=0

δ
θ̃i(Y(0,n])

per , (1.4)

both under P (= annealed law) and under P(· | X) for ν-a.a. X (= quenched law).

1.2. Large deviation principles. If ν is i.i.d., then P is i.i.d. and the annealed LDP is
standard, with the rate function given by the specific relative entropy of the observed law of
words w.r.t. P. The quenched LDP, however, is not standard. The quenched LDP was obtained
in Birkner [2] for the case where % has an exponentially bounded tail, and in Birkner, Greven
and den Hollander [3] for the case where % has a polynomially decaying tail:

lim
m→∞
%(m)>0

log %(m)

logm
= −α, α ∈ [1,∞). (1.5)

(No condition on the support of % is needed other than that it is infinite.) In the latter case,
the quenched rate function turns out to be a sum of two terms, one being the annealed rate
function, the other being proportional to the specific relative entropy of the observed law of
letters w.r.t. ν, obtained by concatenating the words and randomising the location of the origin.
The proportionality constant equals α− 1 times the average word length.

The goal of the present paper is to extend both LDP’s to the situation where ν is no longer
i.i.d., but satisfies a mixing condition called summable variation, which will be defined in
Section 3. In what follows, H(· | ·) denotes specific relative entropy (see Dembo and Zeitouni [4],
Chapter 6, for the definition and key properties).

Theorem 1.1 (Annealed LDP). If ν has summable variation, then the family of probability
laws P(Rn ∈ · ), n ∈ N, satisfies the LDP on P inv(ẼZ) with rate n and with rate function
Iann : P inv(ẼZ) 7→ [0,∞] given by the specific relative entropy

Iann(Q) = H(Q | P). (1.6)

Iann is lower semi-continuous, has compact level sets, is affine, and has a unique zero at Q = P.

Theorem 1.2 (Quenched LDP). If ν has summable variation, then for ν-a.a. X the family
of conditional probability laws P(Rn ∈ · | X), n ∈ N, satisfies the LDP on P inv(ẼZ) with rate n
and with rate function Ique : P inv(ẼZ) 7→ [0,∞] given by the sum of specific relative entropies

Ique(Q) = H(Q | P) + (α− 1)mQH(ΨQ | ν). (1.7)

Ique is lower semi-continuous, has compact level sets, is affine, and has a unique zero at Q = P.

Theorem 1.3. Both LDPs remain valid when E is a Polish space.

Remark: If mQ =∞, then the second term in (1.7) is defined to be α− 1 times the truncation
limit limtr→∞m[Q]trH(Ψ[Q]tr | [ν]tr), where tr is the operator that truncates all the words to
length ≤ tr. See Birkner, Greven and den Hollander [3] for details.
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Remark: Both rate functions are the same as for the i.i.d. case, even though the reference
laws P and ν are no longer i.i.d. This lack of independence will require us to go through
several approximation arguments. Both LDP’s can be applied to the problem of pinning of a
polymer chain at an interface carrying correlated disorder. This application, which is our main
motivation for extending the LDP’s, will be discussed in a future paper.

1.3. Outline. In Section 2 we collect some basic facts, introduce the relevant mixing coefficients,
and define summable variation. We give examples where this mixing condition holds, respectively,
fails. In Section 3 we prove the annealed LDP by applying a result from Orey and Pelikan [14].
In Section 4 we prove the quenched LDP by going over the proof in Birkner, Greven and den
Hollander [3] for i.i.d. letter sequences and checking which parts have to be adapted. In Section 5
we extend the LDP’s from finite E to Polish E by using the Dawson-Gärtner projective limit
LDP.

2. Basic facts, mixing coefficients and summable variation

2.1. Basic facts. Throughout the paper we abbreviate

X(m,n] = (Xm+1, . . . , Xn), Y(m,n] = (Ym+1, . . . , Yn), −∞ ≤ m ≤ n ≤ ∞. (2.1)

The associated sigma-algebra’s are written as

F(m,n] = σ(X(m,n]), G(m,n] = σ(Y(m,n]). (2.2)

Since X is no longer i.i.d., the distribution of a word in Y depends on the outcome of all the
previous words. However, since the word lengths are still i.i.d., when we condition on the past
of the word sequence only the past of the letter sequence is relevant, as is stated in the next
lemma.

Lemma 2.1. P(A | G(−∞,0]) = P(A | F(−∞,0]) a.s. for all A ∈ G(0,∞).

Proof. Fix r ∈ N and y1, . . . , yr ∈ Ẽ, and pick A = {Y(0,r] = y(0,r]}. Write

P(A | G(−∞,0]) = P
(
T(0,r] = |y|(0,r], X(0,

∑r
i=1 |yi|]

= κ(y(0,r]) | G(−∞,0]

)
, (2.3)

where |yi| is the length of word yi. Since σ(τ(0,r]) is independent of G(−∞,0], we have

P(A | G(−∞,0]) = P
(
X(0,

∑r
i=1 |yi|]

= κ(y(0,r]) | G(−∞,0]

) r∏
i=1

%(|yi|). (2.4)

But X and τ are independent as well, and so

P(A | G(−∞,0]) = ν
(
X(0,

∑r
i=1 |yi|]

= κ(y(0,r]) | F(−∞,0]

) r∏
i=1

%(|yi|), (2.5)

which yields the claim after we argue backwards. �

Write N0 = N ∪ {0}. Let (νx−(·);x− ∈ E−N0) be a regular version of ν(· | X(−∞,0]), i.e.,

ν(A) =

∫
x−∈E−N0

νx−(A) dν(x−), A ∈ F(0,∞). (2.6)

From the regular conditional probabilities of ν we obtain regular conditional probabilities of P
as follows.

Lemma 2.2. The collection (Py−(·), y− ∈ Ẽ−N0) of probability laws on ẼN defined by

Py−(A) =

∫
EZ

P(A | FZ) dνκ(y−) ∀A ∈ G(0,∞), (2.7)

constitute a regular version of the conditional probability P(· | G(−∞,0]).
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Proof. For every y− ∈ Ẽ−N0 , Py−(·) defined in (2.7) is a probability measure. It therefore is
enough to prove (2.7) for cylinder sets. Letm ∈ N, (yi)1≤i≤m ∈ Ẽm and A =

⋂
1≤i≤m{Y (i) = yi}.

Then ∫
EZ

P(A | FZ) dνκ(y−) =

∫
EZ

dνκ(y−) 1{X∈κ(A)}
∏

1≤i≤m
%(|yi|)

= νκ(y−)(X ∈ κ(A))
∏

1≤i≤m
%(|yi|).

(2.8)

Since
∫
Ẽ−N0

dP(y−) νκ(y−)(·) =
∫
E−N0 dν(x−) νx−(·) = ν(·), we have∫

Ẽ−N0

dP(y−)

∫
EZ

P(A | FZ) dνκ(y−) = ν(X ∈ κ(A))
∏

1≤i≤m
%(|yi|) = P(A), (2.9)

which proves the claim. �

2.2. Mixing coefficients. We need the following mixing coefficients for letters and words:

Definition 2.3. (a) For Λ1 ⊂ −N0 and Λ2 ⊂ N, let

ϕ(Λ1,Λ2) = sup
x−,x̂−∈E−N0

(x−)Λ1
=(x̂−)Λ1

sup
A∈FΛ2

:

ν
x− (A)>0

|log νx−(A)− log νx̂−(A)| . (2.10)

(b) For Λ ⊂ N, let

ψ(Λ) = sup
y−,ŷ−∈Ẽ−N0

sup
A∈GΛ

P
y− (A)>0

∣∣log Py−(A)− log Pŷ−(A)
∣∣ . (2.11)

The restrictions νx−(A) > 0 and Pŷ−(A) > 0 are put in to avoid ∞−∞. Nonetheless, (2.10)
and (2.11) may be infinite. Note that if Λ1 = ∅, then the supremum in Definition 2.3(a) is
taken over all x−, x̂− ∈ E−N0 without any restriction ((x−)Λ denotes the restriction of x− to
Λ). We will use the following abbreviations:

ϕ(k, ·) = ϕ((−k, 0], ·), k ∈ N, ϕ(0, ·) = ϕ(∅, ·), ϕ(·, `) = ϕ(·, (0, `]), ` ∈ N. (2.12)

Lemma 2.4. Let 0 ≤ m < n, y(m,n] ∈ Ẽn−m and A = {Y(m,n] = y(m,n]}. For all y−, ŷ− ∈
Ẽ−N0,

Py−(A) ≤ E

[
exp

{
ϕ
(

0,
(
Tm, Tm +

n∑
k=m+1

|yk|
])}

Pŷ−(A | Tm)

]
. (2.13)

Proof. Using Definition 2.3(a), we have

Py−(A) = E

[
νκ(y−)

(
X(

Tm,Tm+
∑n
k=m+1 |yk|

] = κ(y(m,n])
)]

≤ E

[
exp

{
ϕ

(
0,
(
Tm, Tm +

n∑
k=m+1

|yk|
])}

νκ(ŷ−)

(
X(

Tm,Tm+
∑n
k=m+1 |yk|

] = κ(y(m,n])
)]

= E

[
exp

{
ϕ

(
0,
(
Tm, Tm +

n∑
k=m+1

|yk|
])}

Pŷ−(A | Tm)

]
.

(2.14)
�
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Lemma 2.5. For all k ∈ N0, ` ∈ N,

ϕ(k, `) ≤
`−1∑
m=0

ϕ(k +m), (2.15)

where ϕ(k) = ϕ(k, 1), k ∈ N0.

Proof. We show that, for all m ∈ N0 and k, ` ∈ N,

ϕ(m, k + `) ≤ ϕ(m, k) + ϕ(m+ k, `), (2.16)

which yields the claim via iteration. To prove (2.16), pick x(0,k+`] ∈ Ek+` and x−, x̂− ∈ E−N0

with (x−)[−m,0] = (x̂)[−m,0], and consider the events

A(0,k+`] = {X(0,k+`] = x(0,k+`]}, A(0,k] = {X(0,k] = x(0,k]}, A(k,k+`] = {X(k,k+`] = x(k,k+`]}.
(2.17)

Estimate
νx−(A(0,k+`]) = νx−(A(0,k]) νx−x(0,k]

(A(k,k+`])

≤ eϕ(m,k) νx̂−(A(0,k]) e
ϕ(m+k,`) νx̂−x(0,k]

(A(k,k+`])

= eϕ(m,k)+ϕ(m+k,`) νx̂−(A(0,k+`]),

(2.18)

where x̂−x(0,k] is the concatenation of x̂− and x(0,k]. Insert this estimate into (2.3) and take
the supremum over x(0,k+`] and x−, x̂− to get (2.16). �

Note that k 7→ ϕ(k) is non-increasing on N0.

2.3. Summable variation. The key mixing condition in our LDP’s is summable variation:

(SV)
∑
n∈N0

ϕ(n) <∞. (2.19)

The term summable variation is borrowed from the theory of Gibbs measures, where logarithms
of probabilities play the role of interaction potentials, and coefficients similar to our ϕ(n)’s are
used to measure the absolute summability of these interaction potentials.

(I) Random processes (with finite alphabet) that satisfy (SV) include i.i.d. processes (ϕ(n) = 0
for all n ∈ N0), Markov chains of order m (ϕ(0) <∞ and ϕ(n) = 0 for all n ≥ m), and chains
with complete connections whose one-letter forward conditional probabilities have summable
variation. Ledrappier [12, Example 2, Proposition 4] shows that such chains have a unique
invariant measure and are Weak Bernoulli under (SV). Berbee [1, Theorem 1.1] shows that
they have a unique invariant measure and are Bernoulli when

∑
n∈N exp[−

∑n
m=1 ϕ(m)] =∞,

a condition slightly weaker than (SV). (Uniqueness of the invariant measure has been proved
more recently by Johansson and Öberg [10] and by Johansson, Öberg and Pollicott [11] under
the even weaker condition

∑
n∈N ϕ(n)2 <∞.) Yet other examples satisfying (SV) include Ising

spins labeled by Z with a ferromagnetic pair potential that has a sufficiently thin tail.

(IIa) A class of random processes that fail to satisfy (SV) is the following. Let E = {0, 1}, and
let p be any probability law on N such that p(`) ∼ C`−γ for some γ > 2. Since

∑
`∈N `p(`) <∞,

there exists a stationary Markov chain (Ak)k∈Z on N0 with the following transition probabilities:

P(A1 = n+ 1 | A0 = n) =

∑
`>n+1 p(`)∑
`>n p(`)

, P(A1 = 0 | A0 = n) =
p(n+ 1)∑
`>n p(`)

, n ∈ N0.

(2.20)
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The process (Xk)k∈Z defined by Xk = 1{Ak=0} fails to satisfy (SV). Indeed, pick n ∈ N and
x, x[n] ∈ E−N0 be such that xi = 1 for i ∈ −N0, x[n]i = 0 for i ∈ (−n, 0] and x[n]i = 1 for
i ∈ (−∞,−n]. Then

ϕ(1) ≥ log νx(X1 = 1)− log νx[n](X1 = 1) = log p(1)− log

(
p(n+ 1)∑
`>n p(`)

)
. (2.21)

Since this lower bound holds for all n ∈ N, we conclude by letting n→∞ that ϕ(1) =∞.

(IIb) Another class of random processes that fail to satisfy (SV) is random walk in random scenery.
Let S = (Sn)n∈Z be a simple random walk on Zd, d ≥ 1, i.e., S0 = 0 and Sn − Sn−1 = Xn with
(Xn)n∈Z i.i.d. random variables uniformly distributed on {e ∈ Zd : ‖e‖ = 1}. Let ξ = (ξ(x))x∈Zd
be i.i.d. random variables taking the values 0 and 1 with probability 1

2 each, and define
Zn = (Xn, ξ(Sn)). Then Z = (Zn)n∈Z is stationary and ergodic, but not i.i.d. In den Hollander
and Steif [9, Theorems 2.4 and 2.5] it is shown that Z is Weak Bernoulli if and only if d ≥ 5.
Since (SV) implies Weak Bernoulli (Ledrappier [12, Proposition 4]), Z does not satisfy (SV)
when 1 ≤ d ≤ 4.

3. Annealed LDP

The annealed LDP in Theorem 1.1 is a process-level LDP. Such LDP’s were proven by
Donsker and Varadhan [6, 7] for reference processes that are Markov or Gaussian. Orey [13] and
Orey and Pelikan [14] gave a proof for ratio-mixing processes (see below), using the observation
that any random process can be viewed as a Markov process by keeping track of its past.

Proposition 3.1. (Orey and Pelikan [14, Theorem 2.1]) Suppose that P has the following
ratio-mixing property:

(RM) There exists a non-decreasing function n 7→ m(n) such that
0 ≤ m(n) < n, lim

n→∞
m(n)/n = 0, lim

n→∞
ψ((m(n), n])/n = 0.

(3.1)

Then the family of probability laws P(Rn ∈ ·), n ∈ N, satisfies the LDP on P inv(ẼZ) with rate
n and with rate function given by the specific relative entropy

Q 7→ H(Q | P) =

∫
y−∈Ẽ−N0

Q(dy−)

∫
y∈Ẽ

Qy− |1(dy) log

(
dQy− |1
dPy− |1

(y)

)
. (3.2)

The specific relative entropy H(Q | P) is defined to be infinite when Qy− |1 � Py− |1 fails on
a set of y−’s with a strictly positive Q-measure. An alternative form of (3.2) is

H(Q | P) =

∫
y−∈Ẽ−N0

Q(dy−)H
(
Qy−(Y1 ∈ · ) | Py−(Y1 ∈ · )

)
. (3.3)

The latter can be viewed as the specific relative entropy of the laws of two Markov processes,
namely, the laws of the past processes Y ∗ = (Y (n),∗)n∈N with Y (n),∗ = (Y (n−m))m∈N, n ∈ N,
when Y is distributed according to Q, respectively, P . The regular conditional probability
laws (Py−(Y1 ∈ · ), y− ∈ Ẽ−N0) play the role of transition probabilities for Y ∗, and regularity
translates into the Feller property.

We are now ready to prove Theorem 1.1.

Proof. From Lemma 2.4 and the fact that ` 7→ ϕ(0, `) is non-decreasing, we get Py−(A) ≤
eϕ(0,∞)Pŷ−(A). Hence Definition 2.3(b) gives ψ((m,n]) ≤ ϕ(0,∞) for all 0 ≤ m < n. From
Lemma 2.5 we get

ϕ(0,∞) ≤
∑
n∈N0

ϕ(n). (3.4)

Hence, if (SV) holds, then (RM) holds for m(n) = 0, and so we can apply Proposition 3.1. �
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4. Quenched LDP

In Sections 4.1–4.3 we prove several lemmas that are needed in Section 4.4 to give the proof
of Theorem 1.2. This proof is an extension of the proof in [3] for i.i.d. ν. We focus on those
ingredients where the lack of independence of ν requires modifications.

4.1. Decoupling inequalities. Abbreviate

C(ϕ) = exp

∑
n∈N0

ϕ(n)

 <∞. (4.1)

Lemma 4.1. For all x−, x̂− ∈ E−N0 , A ∈ F(0,∞) and n ∈ N,

C(ϕ)−1νx̂−(A) ≤ νx−(A) ≤ C(ϕ)νx̂−(A), (4.2)
C(ϕ)−1νx̂−(A) ≤ ν

(
A | X(−n,0] = x−(−n,0]

)
≤ C(ϕ)νx̂−(A). (4.3)

Proof. To prove (4.2), pick k ∈ N and A ∈ F(0,k). If νx̂−(A) = 0 then νx−(A) = 0 as well
because ϕ(k) <∞ and there is nothing to prove, so we can assume νx̂−(A) > 0. Then, by the
definition of ϕ(k) and Lemma 2.5,

e−C(ϕ) ≤ e−ϕ(0,k) ≤ νx−(A)

νx̂−(A)
≤ eϕ(0,k) ≤ eC(ϕ). (4.4)

To prove (4.3), write

ν
(
A | X(−n,0] = x−(−n,0]

)
=
ν({X(−n,0] = x−(−n,0]} ∩A)

ν(X(−n,0] = x−(−n,0])

=

∫
x̃−∈E−N0 dν(x̃−) νx̃−({X(0,n] = x−(−n,0]} ∩ θ

−nA)∫
x̃−∈E−N0 dν(x̃−) νx̃−(X(0,n] = x−(−n,0])

=

∫
x̃−∈E−N0 dν(x̃−) νx̃−(X(0,n] = x−(−n,0])νx̃−,x−(−n,0]

(A)∫
x̃−∈E−N0 dν(x̃−) νx̃−(X(0,n] = x−(−n,0])

≤

∫
x̃−∈E−N0 dν(x̃−) νx̃−(X(0,n] = x−(−n,0]) e

C(ϕ) νx̂−(A)∫
x̃−∈E−N0 dν(x̃−) νx̃−(X(0,n] = x−(−n,0])

= eC(ϕ) νx̂−(A),

(4.5)

where the inequality uses (4.2). The reverse inequality is obtained in a similar manner. �

Lemma 4.2. Let m ∈ N, and let (i1, . . . , im), (j1, . . . , jm) be two collections of integers
satisfying i1 < j1 ≤ i2 < j2 ≤ . . . < im−1 < jm−1 ≤ im < jm. For 1 ≤ k ≤ m, let Ak ∈ F(ik,jk]

and pk = ν(Ak). Suppose that ν satisfies condition (SV). Then

ν (∩1≤k≤mAk) ≤ C(ϕ)m−1
∏

1≤k≤m
pk. (4.6)
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Proof. We give the proof for m = 2. The general case can be handled by induction. Let
i1 < j1 ≤ i2 < j2, A1 ⊂ Ej1−i1 and A2 ⊂ Ej2−i2 . For all x− ∈ E−N0 ,

ν
(
X(i1,j1] ∈ A1, X(i2,j2] ∈ A2

)
=

∑
x(i1,j1]∈A1

x(i2,j2]∈A2

ν
(
X(i1,j1] = x(i1,j1], X(i2,j2] = x(i2,j2]

)

=
∑

x(i1,j1]∈A1

x(i2,j2]∈A2

ν
(
X(i1−j1,0] = x(i1,j1], X(i2−j1,j2−j1] = x(i2,j2]

)

=
∑

x(i1,j1]∈A1

x(i2,j2]∈A2

ν
(
X(i1−j1,0] = x(i1,j1]

)
ν
(
X(i2−j1,j2−j1] = x(i2,j2] | X(i1−j1,0] = x(i1,j1]

)

≤ C(ϕ)
∑

x(i1,j1]∈A1

x(i2,j2]∈A2

ν
(
X(i1−j1,0] = x(i1,j1]

)
νx−
(
X(i2−j1,j2−j1] = x(i2,j2]

)

= C(ϕ)p1

∑
x(i2,j2]∈A2

νx−
(
X(i2−j1,j2−j1] = x(i2,j2]

)
,

(4.7)

where the inequality uses (4.3) in Lemma 4.1. Averaging x− w.r.t. ν, we get

ν(X(i1,j1] ∈ A1, X(i2,j2] ∈ A2) ≤ C(ϕ)p1p2. (4.8)

�

4.2. Successive occurrences of patterns.

Lemma 4.3. Fix m ∈ N and let A ∈ F(0,m] be such that ν(A) > 0. Let (σn)n∈Z be defined by

σ0 = inf{k ≥ 0: θkX ∈ A}+m,

∀` ∈ N, σ` = inf{k ≥ σ`−1 : θkX ∈ A}+m,

∀` ∈ −N, σ` = sup{k ≤ σ`+1 − 2m : θkX ∈ A}+m.

(4.9)

If ν satisfies condition (SV), then ν-a.s.,

lim sup
n→∞

1

n

∑
1≤`≤n

log[σ` − σ`−1] ≤ C(ϕ)Eν [log σ1]. (4.10)

Proof. The strategy of proof consists in writing the sum in (4.10) as an additive functional of
an ergodic process and to use Birkhoff’s ergodic theorem. First note that the sequence (σn)n∈N0

cuts blocks out of the letter sequence X, which we denote by

Bn = X(σn−1,σn] ∈ Ẽ, n ∈ N. (4.11)

Each of these blocks belongs to the following subset of words:

ẼA =
{
y ∈ Ẽ : |y| ≥ m; ∀ 0 ≤ k < |y| −m : y(k,k+m] /∈ A; y(|y|−m,|y|] ∈ A

}
. (4.12)

Define the process B? = (B?
n)n∈N0 in E−N0 by putting B?

n = X(−∞,σn]. This process is
Markovian and its transition kernel is given by

PAx (x̂) = P(B?
n+1 = x̂ | B?

n = x) =
∑
y∈ẼA

1{x̂=x,y}νx(X(0,|y|] = y), x, x̂ ∈ E−N0 . (4.13)

For the collection (PAx (·), x ∈ E−N0) to be a proper transition kernel, σ1 must be νx-a.s. finite
for all x ∈ E−N0 . Since ν(A) > 0, we know from the Recurrence Theorem in Halmos [8] that
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σ1 is ν-a.s. finite. Since ν and (νx)x∈E−N0 are equivalent under condition (SV) (note that
C(ϕ)−1ν(·) ≤ νx(·) ≤ C(ϕ)ν(·) as a consequence of (4.2) in Lemma 4.1), σ1 is νx-a.s. finite for
all x ∈ E−N0 . Since (with a slight abuse of notation) the B?

n’s are also in E−N0 × ẼA, we can
write ∑

1≤`≤n
log[σ` − σ`−1] =

∑
1≤`≤n

log |π(B?
` )|, (4.14)

where π is defined by π : (u, v) ∈ E−N0 × ẼA 7→ v. We next apply Birkhoff’s ergodic theorem to
the sum in the right-hand side, i.e., to the process B?. This process has a stationary distribution,
which we denote by PA. It is easy to check that PA is the law of X(−∞,σ0] conditional on the
event ∩`∈−N0{σ` > −∞}, which has probability one according to the Recurrence Theorem.
Again using (4.2) in Lemma 4.1, we see that for all sets A and B that are measurable w.r.t.
σ(B?

(−∞,0]) and σ(B?
(0,∞)), respectively,

C(ϕ)−1PA(A)PA(B) ≤ PA(A ∩ B) ≤ C(ϕ)PA(A)PA(B). (4.15)

Therefore PA is Weak Bernoulli (Ledrappier [12]), and hence is ergodic. Thus, we have

lim
n→∞

1

n

∑
1≤`≤n

log[σ` − σ`−1] = EPA(log[σ1 − σ0]). (4.16)

Moreover, for all x̂− ∈ E−N0 ,

EPA(log[σ1 − σ0]) =

∫
Eνx− (log[σ1 − σ0])dPA(x−) ≤ C(ϕ)Eνx̂− (log[σ1 − σ0]), (4.17)

which gives EPA(log[σ1 − σ0]) ≤ C(ϕ)Eν(log[σ1 − σ0]) and completes the proof. �

4.3. Decomposition of relative entropy.

Lemma 4.4. Suppose that ϕ(0) <∞. Then, for all Q ∈ P inv(ẼZ),

H(Q | P) = −H(Q)− EQ[log %(τ1)]−mQEΨQ [log νX(−∞,0]
(X1)],

H(ΨQ | ν) = −H(ΨQ)− EΨQ [log νX(−∞,0]
(X1)].

(4.18)

Proof. To get the first relation, write H(Q | P) = −H(Q)− EQ[log PY(−∞,0]
(Y1)],

EQ[log PY(−∞,0]
(Y1)] = EQ[log %(τ1)] + EQ[log νX(−∞,0]

(X(0,τ1])] (4.19)

and (recall (1.3))

EQ[log νX(−∞,0]
(X(0,τ1])] = EQ

[
τ1−1∑
k=0

log νX(−∞,k]
(Xk+1)

]
= mQEψQ [log νX(−∞,0]

(X1)], (4.20)

where we use the abbreviation νx−(xΛ) = νx−(XΛ = xΛ), Λ ⊂ N. The second relation follows
in a similar manner. �

All terms in the right-hand side of (4.18), except possibly H(Q), are finite because E is finite,
% satisfies (1.5), and ϕ(0) <∞.

Lemma 4.5. If ν satisfies condition (SV), then for all Q ∈ P inv,erg(ẼN),

lim
n→∞

1

n
log ν(X(0,Tn]) = mQEΨQ [log νX(−∞,0]

(X1)] Q− a.s. (4.21)
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Proof. First observe that (4.3) in Lemma 4.1 gives

C(ϕ)−1νX(−∞,0]
(X(0,Tn]) ≤ ν(X(0,Tn]) ≤ C(ϕ)νX(−∞,0]

(X(0,Tn]). (4.22)

Next write

log νX(−∞,0]
(X(0,Tn]) =

Tn−1∑
k=0

log νX(−∞,k]
(Xk+1) =

n−1∑
i=0

Ti+1−1∑
k=Ti

log νX(−∞,k]
(Xk+1). (4.23)

Use (4.23) and the ergodicity of Q to obtain, for Q-a.s. Y ,

lim
n→∞

1

n
log νX(−∞,0]

(X(0,Tn]) = EQ

[
τ1−1∑
k=0

log νX(−∞,k]
(Xk+1)

]
= mQEΨQ [log νX(−∞,0]

(X1)].

(4.24)
Combine (4.22–4.24) to get the claim. �

4.4. Proof of quenched LDP. We are now ready to give the proof of Theorem 1.2.

Proof. The proof is an extension of the proof in [3] for i.i.d. ν. Since the latter is rather long, it
is not possible to repeat all the ingredients here. Below we restrict ourselves to indicating the
necessary modifications, which are based on the results in Sections 4.1–4.3. We leave it to the
reader to go over the full proof in [3] and check that, indeed, these are the only modifications
needed.

Decomposition of relative entropies. Replace Eq.(1.25) and Eq.(1.26) of [3] by the relations in
Lemma 4.4.

Upper bound. Fix ε1, δ1 > 0. Replace the fourth line in the definition of the event defined in Eq.
(3.4) of [3] by {

1

M
log ν(X(0,TM ]) ∈ mQEΨQ [log νX(−∞,0]

(X1)] + [−ε1, ε1]

}
. (4.25)

By Lemma 4.5, the event in Eq.(3.4) of [3] has probability at least 1− δ1/4 for M large enough.
Parts 3.2 and 3.3 of [3] are unchanged. The next (harmless) modification is in Eq.(3.39) of [3],
which has to be replaced by

P (∩1≤k≤n{Ak = ak}) ≤ [C(ϕ)p]
∑

1≤k≤n ak , (4.26)

where Ak is the indicator defined in Eq.(3.36) and Eq.(3.37) of [3], and ak ∈ {0, 1}. This relation
can be proved via Lemma 4.2.

Lower Bound. One modification is needed to go from Eq.(4.7) to Eq.(4.8) of [3], since the
increments of the σ(M)

` , ` ∈ N, defined in Eq.(4.6) of [3] are no longer i.i.d. Use Lemma 4.3
instead. �

5. Extension to Polish spaces

In this section we prove Theorem 1.3, i.e., we extend the LDP’s in Theorems 1.1–1.2 from a
finite letter space to a Polish letter space. We first prove the LDP’s for a sequence of coarse-
grained finite letter spaces associated with a sequence of nested finite partitions of the Polish
letter space. After that we apply the Dawson-Gärtner projective limit LDP (see Dembo and
Zeitouni [4], Lemma 4.6.1). A somewhat delicate point is that (SV) for the full process does
not necessarily imply (SV) for the coarse-grained process. Indeed, the first supremum in (2.10)
decreases under coarse-graining while the second supremum increases. The way out is to use
(SV) for the full process to prove the decoupling inequalities in Section 4.1 for the coarse-grained
process.
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Let X = (Xk)k∈Z be a stationary process on a Polish space (E, d), with (νx−(·), x− ∈ E−N0)
a regular version of the conditional probability ν(· | X(−∞,0]) satisfying condition (SV), i.e.,

C(ϕ) = exp

∑
n∈N0

ϕ(n)

 <∞, (5.1)

where
ϕ(n) = sup

x−,x̂−∈E−N0 :
d(x−,x̂−)≤2−n

sup
A∈F1 :
νx− (A)>0

| log νx−(A)− log νx̂−(A)| (5.2)

with
d(x−, x̂−) =

∑
k∈N0

2−(k+1)
[
1 ∧ d

(
x−−k, x̂

−
−k
)]
. (5.3)

We assume that, for any x−, x̂− ∈ E−N0 , the measures νx− |1 = νx−(X1 ∈ · ) and νx̂− |1 =
νx̂−(X1 ∈ · ) are equivalent, so that the Radon-Nikodym derivative dνx− |1/dνx̂− |1 exists and

sup
A∈F1 :
νx− (A)>0

[
log νx−(A)− log νx̂−(A)

]
= supess

[
log

dνx− |1
dνx̂− |1

]
, (5.4)

leading to the alternative definition

ϕ(n) = sup
x−,x̂−∈E−N0 :

d(x−,x̂−)≤2−n

supess
[

log
dνx− |1
dνx̂− |1

]
. (5.5)

Similarly as in Section 2.3, we note that (SV) holds for i.i.d. processes, for Markov chains of
finite order with ϕ(0) <∞, and a subclass of chains with complete connections whose letter
space is countable (Berbee [1]). Other examples are rotators that are labelled by Z, take values
in the unit circle, and interact with each other according to a Hamiltonian with long-range
potentials that have a sufficiently thin tail.

The following lemma generalizes (4.2) in Lemma 4.1.

Lemma 5.1. For all x−,x̂− ∈ E−N0 and A ∈ F(0,∞),

C(ϕ)−1νx̂−(A) ≤ νx−(A) ≤ C(ϕ)νx̂−(A). (5.6)

Proof. For all x−, x̂− ∈ E−N0 and n ∈ N,

dνx− |n
dνx̂− |n

(x1, . . . , xn) =
dνx− |1
dνx̂− |1

(x1)×
dνx−x1

|1
dνx̂−x1

|1
(x2)× · · · ×

dνx−x1···xn−1
|1

dνx̂−x1···xn−1
|1

(xn) (5.7)

≤ exp[ϕ(0) + ϕ(1) + · · ·+ ϕ(n− 1)] ≤ C(ϕ), (5.8)

which proves the claim. �

Let Ec = {E1, . . . , Ec}, c ∈ N, be a finite partition of E. Identify EZc with {1, . . . , c}Z. Let
X(c) = (X

(c)
k )k∈Z on EZc be the coarse-graining of X on EZ defined by

X(c)
n =

c∑
i=1

i 1{Xn∈Ei}. (5.9)

Write F (c)
(0,∞) = σ(X

(c)
(0,∞)). The following lemma generalizes (4.3) in Lemma 4.1.
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Lemma 5.2. For all x− ∈ E−N0, c ∈ N, i−, j− ∈ {1, . . . , c}−N0, A ∈ F (c)
(0,∞) and m,n ∈ N,

C(ϕ)−1νx−(A) ≤ ν
(
A | X(c)

(−n,0] = i−(−n,0]

)
≤ C(ϕ)νx−(A), (5.10)

C(ϕ)−2ν
(
A | X(c)

(−m,0] = j−(−m,0]

)
≤ ν

(
A | X(c)

(−n,0] = i−(−n,0]

)
≤ C(ϕ)2ν

(
A | X(c)

(−m,0] = j−(−m,0]

)
, (5.11)

C(ϕ)−1ν
(
A | X(c)

(−n,0] = i−(−n,0]

)
≤ ν(A) ≤ C(ϕ)ν

(
A | X(c)

(−n,0] = i−(−n,0]

)
, (5.12)

provided that the events on which we condition have positive probability.

Proof. Note that (5.11) follows by applying (5.10) twice, while (5.12) follows by integrating x−
w.r.t. ν in (5.10). Therefore it suffices to prove (5.10). To that end write

ν
(
A | X(c)

(−n,0] = i−(−n,0]

)
=

∫
E−N0 νx̃−({X(c)

(0,n] = i−(−n,0]} ∩ θ
−nA) dν(x̃−)

ν(X
(c)
(−n,0] = i−(−n,0])

. (5.13)

The integral in the numerator equals∫
E−N0

[ ∫
En

dνx̃−(x(0,n]) 1{x(c)
(0,n]

=i−
(−n,0]

} νx−,x(0,n]
(A)
]

dν(x̃−), (5.14)

from which the claim follows via Lemma 5.1. �

In what follows we need the notion of conditional local absolute continuity (which is weaker
than absolute continuity).

Definition 5.3. Let F be a Polish space equipped with its Borel σ-algebra, and let λ, µ be
two stationary probability measures on FZ with respective regular conditional probabilities
(λx− , x

− ∈ F−N0) and (µx− , x
− ∈ F−N0). The law λ is said to be conditionally locally absolutely

continuous w.r.t. to the law µ (written as λ �cond µ) when, for λ-a.a. x− and all n ∈ N, λx− |n
is absolutely continuous w.r.t. to µx− |n (written as λx− |n � µx− |n), where λx− |n and µx− |n
are the marginal laws on the first n coordinates.

Note that because F is Polish the set {x− ∈ F−N0 : λx− |n � µx− |n} is measurable. We are
now ready to prove Theorem 1.3.

Proof. We need to prove both the annealed LDP and the quenched LDP.

Annealed LDP. Lemma 5.1 shows that under condition (SV) Lemmas 2.4–2.5 carry over from
finite letters to Polish letters. Therefore the ratio-mixing property of Orey and Pelikan [14]
again yields the annealed LDP.

Quenched LDP. The proof comes in 4 steps.

1. We first use Lemmas 5.1–5.2 to show that Lemmas 4.2–4.5 carry over to the coarse-grained
process X(c) defined in (5.9) for every c ∈ N. This is straightforward, except that Lemma 4.5
carries over to Q ∈ P inv,erg((Ẽc)Z) only when ΨQ �cond ν

(c), where ν(c) denotes the law of
X(c). We will see in Step 4 below that, because H(ΨQ | ν(c)) =∞ when ΨQ �cond ν

(c) fails,
this restriction does not affect the LDP.

2. To prove the restricted version of Lemma 4.5, let Q ∈ P inv,erg((Ẽc)Z) be such that
ΨQ �cond ν

(c). Using the notation introduced below (4.20), we know from Lemma 5.2 (by
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letting n→∞ in Eq. (5.12) and using the Martingale Convergence Theorem) that, for ν(c)-a.a.
X

(c)
(−∞,0],

ν
(
C(ϕ)−1νX(c)(−∞,0]

(
X

(c)
(0,n)

)
≤ ν

(
X

(c)
(0,n)

)
≤ C(ϕ)νX(c)(−∞,0]

(
X

(c)
(0,n)

) ∣∣∣ X(c)
(−∞,0]

)
= 1. (5.15)

By conditional local absolute continuity we have, for ΨQ-a.a. X
(c)
(−∞,0],

ΨQ

(
C(ϕ)−1νX(c)(−∞,0]

(
X

(c)
(0,n)

)
≤ ν

(
X

(c)
(0,n)

)
≤ C(ϕ)νX(c)(−∞,0]

(
X

(c)
(0,n)

) ∣∣∣ X(c)
(−∞,0]

)
= 1.

(5.16)
This implies that, for ΨQ-a.a. X

(c)
(−∞,0],

C(ϕ)−1νX(c)(−∞,0]

(
X

(c)
(0,n)

)
≤ ν

(
X

(c)
(0,n)

)
≤ C(ϕ)νX(c)(−∞,0]

(
X

(c)
(0,n)

)
, (5.17)

which settles the restricted version of Lemma 4.5.

3. By the same argument as in Section 4.4, we now know that the quenched LDP holds for X(c)

for all c ∈ N (see Step 4 below for comments). Picking for Ec = {E1, . . . , Ec}, c ∈ N, a nested
sequence of finite partitions of E as in [3, Section 8], we conclude from the Dawson-Gärtner
projective limit LDP that the quenched LDP also holds for X, with rate function

Ique(Q) = sup
c∈N

Ique
c (Q(c)), Q ∈ P inv(ẼZ), (5.18)

where Q(c) is the coarse-graining of Q, and Ique
c is the coarse-grained rate function. The

argument in [3, Section 8] shows that the supremum equals the rate function given in (1.7), i.e.,
the coarse-grained relative entropies converge to the full relative entropies as c→∞. (Deuschel
and Stroock [5, Lemma 4.4.15] implies that the coarse-grained relative entropies are monotone
in c.)

4. To obtain the quenched LDP, we must prove Eq.(3.1) and Eq.(4.1) in [3] for the coarse-grained
process. In Steps 1–3 this has already been achieved for Q ∈ P inv,fin((Ẽc)Z) with ΨQ �cond ν

(c).
Eq.(4.1) in [3] trivially carries over when the latter restriction fails, but for Eq.(3.1) an additional
argument is needed. We must show that there exists a sequence (Ok(Q))k∈N of shrinking open
neighborhoods of Q such that

lim
k→∞

lim sup
N→∞

1

N
log P(c)

(
R

(c)
N ∈ Ok(Q) | X(c)

)
= −∞, (5.19)

where P(c) denotes the coarse-graining of P. This can be done via an annealed estimate. Indeed,
for ν(c)-a.a. X(c),

lim sup
N→∞

1

N
log P(c)

(
R

(c)
N ∈ Ok(Q) | X(c)

)
≤ lim sup

N→∞

1

N
log P(c)

(
R

(c)
N ∈ Ok(Q)

)
≤ − inf

Q′∈Ok(Q)
H(Q′ | P(c)),

(5.20)

where the last inequality follows from the annealed LDP. (This needs justification, since the
annealed LDP was proved under condition (SV), which is not necessarily satisfied for ν(c).
However, by Lemma 5.2, a decoupling inequality holds for a.a. pairs of coarse-grained pasts.
Therefore there must be a regular conditional probability of ν(c) satisfying Orey and Pelikan’s
ratio-mixing condition.) A sequence (Ok(Q))k∈N satisfying (5.19) is easily obtained by letting
k →∞ and using the lower semi-continuity of Q′ 7→ H(Q′ | P(c)) together with the fact that
H(Q | P (c)) ≥ mQH(ΨQ | ν(c)) =∞ (see [3, Eqs.(1.30–1.32)]). �
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