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Notation

A family (A4;)ier is a rule that assigns to each object i of an index class I
an object A;. Let S1, Sy be sets. Then we denote the set of elements of S;
which are not elements of Sy by S1 — So.

Let X be a set. A permutation of X is bijective map o: X — X. Denote
the set of all permutations of X by S(X). The set S(X) has the structure
of a group with the identity map id: X — X as identity element and the
composition o o 7 as the product o7 for all o,7 € S(X). For all n € Z>o,
denote S({1,...,n}) by S, and denote the sign map S,, — {£1} by sgn.

Denote the ring of natural numbers by Z and denote the algebraically
closed field of complex numbers by C. Let R be a ring. Then we denote the
group of units of R by R*. An R-module is an abelian group M together
with a homomorphism of rings R — End(M). Let M be an R-module and
let n: R — End(M) be the associated homomorphism of rings. Then we
denote n(r)(m) by r-m for all r € R and m € M. Let M, N be R-modules.
Then a map ¢: M — N is called R-linear if ¢(r-m) =1r-£4(m) for all r € R
and m e M.

Let K be a field. Then we denote the characteristic of K by char(K).
Let V be a vector space over K. Then we denote the dual of V' by V*. Let
£:V — W be a K-linear map. Then we call the K-linear map

o Wr VX
p = ol

the dual of . We denote the group of invertible K-linear maps V — V by
GL(V) and we denote the subgroup of GL(V') consisting of all maps with
determinant 1 by SL(V).

A K-algebra A is a (not necessarily commutative) ring A that comes
with a homomorphism of rings ¢: K — A such that each element of the
image of ¢ commutes with all elements of A. Let Ay, A be K-algebras.
Then a homomorphism of K-algebras A; — Ao is a homomorphism of rings
A7 — Ay that is K-linear.



Introduction

Let K be an algebraically closed field. If the characteristic of K does not
equal 2, then it is well known that for all elements a, b, ¢ € K, the polynomial

az’ + bz +c € K[z]

is a square if and only if its discriminant b?> — 4ac is zero. The previous
sentence has a homogeneous analogue: if the characteristic of K does not
equal 2, then it is well known that for all elements a, b, ¢ € K, the polynomial

az’ + bry + ¢y’ € K[z,

is a square if and only if b? — 4ac is zero. We see that, under some assump-
tions about the characteristic of the field K, we can determine whether
a homogeneous polynomial of degree two in two variables is a square by
checking whether a certain polynomial in its coefficients is zero.

Suppose that the characteristic of K does not divide 6 and let a,b,c,d
be elements of K. Then one can check that the polynomial

az® + bx’y + cxy® + dy’ € K|z, y|

is a cube if and only if we have bc — 9ad = b*> — 3ac = ¢® — 3bd = 0.

Suppose that the characteristic of K equals zero. Then it is possible
to prove that there exist seven polynomials ¢q1,...,q7 in K[zo,...,x4] such
that for all elements a, b, ¢, d,e € K the polynomial

azt + by + cx’y? + day® + eyt € K[z, y)

is a square if and only if ¢;(a,b,c,d,e) = 0 for each i € {1,...,7}.
Seeing the previous statements, the obvious question to ask is whether
these statements generalize is some way.

For each integer n € Z>¢, denote the subspace of K|[z,y| consisting of
all homogeneous polynomials degree n and zero by V,,. Let d € Z>o and
e € Z>1 be integers and let C'T; be the subset of Vj. consisting of all e-th
powers of polynomials in V. The main question of this thesis is: how can
we tell whether a polynomial g € V. is an element of C'Ty or not?



This question can be asked for all algebraically closed fields K, all inte-
gers d € Z>o and all integers e € Z>1. We will mostly assume the field K
and the integer e to be fixed, which is why we do not include these symbols
in the notation for the set CT; and many of the objects that we will define
later.

One possible way to answer the question is: the set C'T,; turns out to be
an affine variety inside the affine space A(Vg,). This means that there exists
a prime ideal I; of K|z, ..., 24| such that for all elements ¢y, ..., cq € K,
the polynomial

g = coy™ + cray® 4 4 cge 129y 4 cger™ € Vg,

is an element of CTy if and only if f(cp,...,cq.) = 0 for each f € I.
Since the ring K[xo,...,Z4] is Noetherian, the prime ideal I; is generated
by finitely many polynomials. So as suggested in the beginning, for all
algebraically closed fields K and integers d € Z>o and e € Z>1, there exists
a finite list of polynomial giving us a membership test for C'Ty which only
requires a finite number of computations per polynomial g € V.. Moreover,
this list of polynomials can be chosen such that it generates a prime ideal.
The problem we will work on in this thesis is to find such a list of generators
explicitly.

Related to the set C'Ty is the homogeneous polynomial map

powg: Vg — Vg

fo=

of degree e whose image equals CTy. To the polynomial map pow,, we
will associate a homomorphism of K-algebras pow}; from the K-algebra of
polynomials on Vg, to the K-algebra of polynomials in V;. We will show that
the kernel of the map pow); is equal to the ideal I;. Since the polynomial
map pow, is homogeneous of degree e, the homomorphism of K-algebras
pow}; restricts to a K-linear map

POW} () Sym‘(V¢) — Sym™ (V)

for each integer ¢ € Z>¢. We will study the ideal I; by studying the maps
pow, @) and the function

ZZO — ZZO

1 — dimg (ker powfh(i)) ,

which is called the Hilbert function of the ideal I,.



In this thesis we will state two conjectures. The first conjecture states
that if the characteristic of K is not divisible by (de)!, then the ideal I; is
equal to an ideal J; of which we have an explicit list of generators which
are all homogeneous of degree d + 1. The second conjecture states that the
K-linear map powz’ () is injective, which is implied by the first conjecture in
the case where the characteristic of K is not divisible by (de)!. We will show
that if the second conjecture is true, then the map powjl’(i) is surjective for
all i > d and

Zzo — ZZO

SN 0 ifi <d
/L . .
(dei—i-z) - (ze;li-d) ifi>d
is the Hilbert function of I;. We will also prove that the first and second
conjectures are equivalent for d = 1 and that the second conjecture holds
ford=1and d = 2.



Relation to other work

I found out in the late stages of writing this thesis that this problem has been
worked on before me by Abdelmalek Abdesselam and Jaydeep Chipalkatti.
See [AC1] and [AC2].

The affine variety C'Ty is the cone over an projective variety T, inside
the projective space P(Vy.). This projective variety Ty is also defined in the
beginning of section 3 of [AC2]. In Proposition 3.1 of [AC2], Abdelmalek
Abdesselam and Jaydeep Chipalkatti give an alternate characterisation of
this subset T of P(V4.) and use this characterisation to give an explicit
list of homogeneous generators of degree d + 1 for a homogeneous ideal
whose zero set equals Ty. Conjecture 5.1 of [AC2] then states that this
homogeneous ideal is in fact equal to the ideal I;. In Chapter 4 of this
thesis, we similarly give an alternate characterisation of the subset Ty of
P(Vge) and use this characterisation to give an explicit list of homogeneous
generators of degree d + 1 for a homogeneous ideal J; whose zero set equals
T4. Our first conjecture then states that this homogeneous ideal J; is in fact
equal to the ideal 1.

We will prove that the map pOWf; () is injective for all 4 < 2 when the field
K equals C, which implies the second conjecture for K = C and either d =1
or d = 2 by taking ¢ = d. One of the main steps in this proof is to relate the
map powl () toa homomorphism ¥; 4 of representations of GL(K') and to
prove that these map V; 4 are injective if we have ¢ < 2. For all integers
i,d € Z>0, the dual of the map ¥; 4 can be identified with the map W ;.
Proving that the map V; 4 is injective is equivalent to proving that its dual
map is surjective. So we can reformulate one of the previous statements
as: the map W,; is surjective if ¢ < 2. This reformulated statement has
already been proved by Abdelmalek Abdesselam and Jaydeep Chipalkatti
in the case i = 2. See Theorem 1.1 of [AC1].



Chapter 1

Category theory

In this chapter, let K be any field.

In this thesis, we will see various correspondences which are best stated in
the language of category theory. Many of the categories we will come across
are abelian and many of the functors are additive and either invertible or an
equivalence of categories. The goal of this chapter is to define these terms.

1.1 Categories

Definition 1.1. A category C consists of the following data:
(i) a class | C| of objects of C,

(ii) a set Homg (A, B) of morphisms A — B for every pair of objects
(A, B) of C,

(iii) a composition map
Homeg(B,C) x Homg (A, B) — Homg (A4, C)
for all objects A, B,C € |C| and
(iv) an identity morphism id4 € Homc(A, A) for each object A € |C].

Let A, B,C €| C| be objects. Then we write f: A — B to indicate that f
is an element of Homg (A, B) and we write g o f for the composition of two
morphisms f: A— Band g: B— C.

To be a category, these data C must satisfy the following conditions:

(a) for all objects A, B,C,D € |C| and all morphisms f: A — B,
g: B— Cand h: C — D, we have ho(go f) = (hog)o f;

(b) for all objects A, B € | C| and each morphism f: A — B, we have
idpof = f = foida;



(c) for all objects A, A, B, B’ € | C| such that (A4, B) # (A’, B'), the sets
Homc (A4, B) and Homc(A', B') are disjoint.

Examples 1.2.

(i) The sets form the class of objects of the category Set whose morphisms
are maps.

(ii) The vector spaces over K form the class of objects of the category
Vect ;r whose morphisms are K-linear maps.

(iii) Let R be a ring. Then the R-modules form the class of objects of the
category R-Mod whose morphisms are R-linear maps.

Let C be a category

Definition 1.3. Let A, B € |C| be objects and let f: A — B be a mor-
phism.

(i) We call f an isomorphism if there exists a morphism g: B — A such
that go f =id4 and f o g =idp.

(ii) We call f a monomorphism when we have g = h for all morphisms
g,h: C — A such that fog= foh.

(iii) We call f an epimorphism when we have g = h for all morphisms
g,h: B — C such that go f =ho f.

Definition 1.4. A subcategory of C is a category D such that the following
conditions hold:

(i) we have |[D| C |C|;
(ii) we have Homp (A, B) C Homc(A, B) for all objects A, B € |[D|;
(iii) the composition map
Homp (B, C) x Homp (A, B) — Homp (A4, C)
is the restriction of the composition map
Home(B,C) x Homg (A, B) — Homeg (A4, C)
for all objects A, B,C € |D|;

(iv) for each object A € |D|, the identity morphism of A is the same in
the categories C and D.

Definition 1.5. Let C be a category and let D be a subcategory of C.
Then D is called a full subcategory of C if Homp (A, B) = Homg (A, B) for
all objects A,B € |D|.



Let C be a category and let P be a property that an object of C might
or might not have. Then there exists a unique full subcategory D of C such
that | D | is the class of objects of C that have the property P. We call this
category D the full subcategory of C consisting of all objects of C that have
the property P.

Example 1.6. The finite-dimensional vector spaces over K form the class
of objects of the category fVect - whose morphisms are K-linear maps. The
category fVecty is the full subcategory of Vectj consisting of all vector
spaces over K that are finite dimensional.

1.2 Functors

Let C,D, E be categories.

Definition 1.7. A covariant functor F: C — D is a rule, which assigns to
each object A € |C | anobject F(A) € | D | and to each morphism f: A — B
a morphism F(f): F(A) — F(B), such that the following conditions hold:

(a) for all objects A,B,C € |C]| and all morphisms f: A — B and
g: B — C, we have F(go f) =F(g) o F(f);

(b) for each object A € |C|, we have F(ida) = idg(4).

Definition 1.8. Let F: C — D be a covariant functor. Then we call F
invertible if the following conditions hold:

(a) for every object B € | D], there exists precisely one object A € |C|
such that F(A) = B;

(b) for all objects A, B € | C|, the map

Homg(A,B) — Homp(F(A),F(B))
o= FE(f)

is bijective.

Example 1.9. Let idc: C — C be the rule that assigns to each object
A €| C| the object A itself and to each morphism f: A — B the morphism
f itself. Then id¢ is an invertible covariant functor. We call id¢ the identity
functor on C.

Definition 1.10. A contravariant functor F: C — D is a rule, which as-
signs to each object A € |C| an object F(A) € |D| and to each morphism
f+ A — B amorphism F(f): F(B) — F(A), such that the following condi-
tions hold:



(a) for all objects A,B,C € |C]| and all morphisms f: A — B and
g: B— C, we have F(go f) = F(f) o F(g);

(b) for each object A € [C|, we have F(ida) = idp(4)-

Example 1.11. Let (—)*: Vecty — Vecty be the rule that assigns to
each vector space V over K its dual V> and to each K-linear map ¢ its dual
¢*. Then (—)* is a contravariant functor. The dual of a finite-dimensional
vector space over K is finite dimensional over K. So (—)* restricts to a
contravariant functor (—);: fVect; — fVecty-.

Definition 1.12. Let F: C — D be a contravariant functor. Then we call
F invertible if the following conditions hold:

(a) For every object B € |D |, there exists precisely one object A € |C|
such that F(A) = B.

(b) For all objects A, B € |C|, the map

Homg(A,B) — Homp(F(B),F(A))
o= F(f)

is bijective.

1.13. By a functor, we mean a covariant functor or a contravariant func-
tor. Let F: C — D and G: D — E be functors. Then we get a functor
GoF: C — E by taking the composition of the rules F and G. If F and
G are both covariant or both contravariant, then GoF is covariant. If
one of F and G is covariant and the other is contravariant, then GoF is
contravariant.

1.14. Let F: C — D be an invertible covariant functor. Then the rule
G: D — C which assigns to each object B € | D | the unique object A € | C|
such that F(A) = B and assigns to each morphism ¢ the unique morphism f
such that F(f) = g, is also an invertible covariant functor. By construction,
we have GoF = id¢ and Fo G = idp.

Definition 1.15. Let F,G: C — D be covariant functors. A natural trans-
formation p: F = G is a family of morphisms (pua: F(A4) — G(4))4¢|c|
such that for all objects A,B € |C| and each morphism f: A — B the
diagram

FA) YL g(B)

=
hS
=
o]

comimutes.



Example 1.16. Let (—)*: Vecty — Vect) be the contravariant functor
from Example 1.11. By taking the composition of (—)* with itself, we get
the covariant functor (—)**: Vect; — Vecty.

For a vector space V over K, let eyy: V. — V** be the K-linear map
sending v to the K-linear map (¢ — ¢(v)). Let V, W be vector spaces over
K, let £: V — W be a K-linear map and let v be an element of V. Then
we have

ey (v)) =7 (0 = @(v) = (9 = p(v)) 0 £
= (¢ = (9)(v)) = (6= (90 )(v)) = (¢ = $(L(v))) = ew (£(v)).
Therefore the diagram
Vv

o e

XX XX X X
VX —Ww

commutes. So we see that {ey: V — V™ }y/c)veet, | 18 a natural transfor-
mation idyect, = (—)**.

Let the contravariant functor (—){: fVecty — fVecty be the restric-
tion of (—)* and let (=) : fVecty — fVecty be the composition of (=)
with itself. Then {ev:V — V**}y¢ tvect, | 15 a natural transformation

ideectK = (_)fXX'

Definition 1.17. Let F, G: C — D be covariant functors. Let u: F = G
be a natural transformation. Then we call p a natural isomorphism if p14 is
an isomorphism for all objects A € |A].

Proposition 1.18. Let V' be a vector space over K and let ey : V — V**
be the K-linear map sending v to the K-linear map (¢ — ¢(v)). Then ey
is injective. In particular, if V is finite dimensional over K, then ey is an
isomorphism.

Proof. Let v € V' be a non-zero element. Then there exists a basis (v;);er
of V containing v. Let ¢: V — K be the K-linear map sending v; to
1 for all @ € I. Then we see that ¢(v) = 1. Hence the K-linear map
ey (v) = (p + ¢(v)) is non-zero. Hence ey is injective.

Suppose that V is finite dimensional over K. Then V', V* and V** all
have the same dimension over K. So since ey is injective, we see that ey is
an isomorphism. ]

Example 1.19. Consider the covariant functor (—)*: fVecty — fVecty
from Example 1.16. By the Proposition 1.18, we see that

{ev: V= Vb ye et |

is a natural isomorphism idpvect, = (=)™

10



Definition 1.20. Let F: C — D and G: D — C either both be co-
variant functors or both be contravariant functors. If there exist natural
isomorphisms py: ide = GoF and v: idp = Fo G, then we call F and
G equivalences of categories. We call the categories C and D equivalent if
there exists an equivalence of categories C — D.

Examples 1.21.
(i) Any invertible covariant functor is an equivalence of categories.

(ii) The contravariant functor (—){ : fVecty — fVecty from Example 1.11
is an equivalence of categories by Example 1.19.

1.3 Abelian categories

Definition 1.22. A category L is called linear if for all objects A, B € | L |
the set of morphism Homy, (A, B) is an abelian group and for all objects
A, B,C € |L| the composition map

Homy, (B, C) x Homy, (A, B) — Homy, (A, C)
is bilinear.
Let L be a linear category.

Definition 1.23. A direct sum of a pair (A4, B) of objects of L is an object
S € |L| together with morphisms i4: A — S and ig: B — S such that for
each object C' € |L| and all morphisms f: A — C and g: B — C, there
exists a unique morphism h: S — C such that f =hoig and g =hoip.

When a direct sum of a pair (A, B) of objects of L exists, it is unique
up to a unique isomorphism and we denote it by A @ B.

Definition 1.24. An object Z € | L | is called a zero object if for each object
A € |L| there exists a unique morphism A — Z and a unique morphism
Z — A.

When a zero object exists, it is unique up to a unique isomorphism and
we denote it by 0.

Definition 1.25. A linear category A is called additive if it has a zero
object and it has a direct sum A @ B for all pairs (A, B) of objects of A.

Examples 1.26.
(i) The categories Vect, and fVecty are additive.

(ii) Let R be a ring. Then the category R-Mod is additive.

11



Definition 1.27. Let F: A — B be a covariant functor between additive
categories. Then F is called additive if the map

Homa (A,B) — Homp(F(A),F(B))
= F(f)
is a homomorphism of groups for all objects A, B € | A|.

Definition 1.28. Let F: A — B be a contravariant functor between addi-
tive categories. Then F is called additive if the map

Homa (A,B) — Homp(F(B),F(A))
o= F(f)

is a homomorphism of groups for all objects A, B € | A |.

Remark 1.29. One can check that additive functors between additive cat-
egories preserve zero objects and direct sums.

Example 1.30. The contravariant functor (—)*: Vecty, — Vecty from
Example 1.11 is additive.

Definition 1.31. Let L be a linear category, let A, B € | L | be objects and
let f: A — B be a morphism.

(i) A kernel of f is a morphism ¢: K — A such that the following condi-
tions hold:

e we have for=0;

e for each morphism ¢': KT — A such that f o.f =0, there exists
a unique morphism e: KT — K such that «f = coe.

(ii) A cokernel of f is a morphism 7: B — @ such that the following
conditions hold:

e we have mo f = 0;

e for each morphism 7': B — Q' such that 7' o f = 0, there exists
a unique morphism e: Q — Q' such that 7t = e o .

Let f: A— B be a morphism. If 1: K — A and //: K/ — A are kernels
of f, then there exists a unique isomorphism K — K’ such that the diagram

K—=A

|

K/

commutes. So if f has a kernel, we denote it by ¢: ker(f) — A.

12



If 7: B = Q and 7': B — @' are cokernels of f, then there exists a
unique isomorphism @ — @’ such that the diagram

B—/=(Q
BN
Ql
commutes. So if f has a cokernel, then we denote it by m: B — coker(f).

Definition 1.32. An additive category A is called abelian if the following
conditions hold:

(i) every morphism of A has a kernel and a cokernel;
(ii) every monomorphism of A is the kernel of its cokernel;
(iii) every epimorphism of A is the cokernel of its kernel.
Examples 1.33.
(i) The categories Vect, and fVecty are abelian categories.

(ii) Let R be a ring. Then the category R-Mod is an abelian category.

13



Chapter 2

Basic algebraic geometry

In this chapter, let K be an algebraically closed field.

Algebraic geometry starts with the statement that a polynomial induces

a function: every polynomial f € Klxy,...,z,] gives rise to a polynomial
function
K" —» K
(T1,...,xn) = flx1,...,20)

which we identify with f. Algebraic geometry is the study of zeros of poly-
nomial functions.

The vector space K™ comes with the standard basis (ej,...,e,). Note
that the basis dual to this standard basis is (z1,...,z,), i.e., for each i €
{1,...,n} the function z; sends (a1, ...,a,) to a; and we have

v=x1(v)er + -+ z,(v)ey

for all v € K™. The ring K[x1,...,2,] is the algebra of polynomials on K.
So algebraic geometry typically actually starts with the choice of a standard
basis of a finite-dimensional vector space over K. This choice is not necessary
however.

In this chapter, we define what a polynomial on a finite-dimensional
vector space over K is without choosing a standard basis. We then use
this definition to give an introduction to algebraic geometry. In particular,
we define symmetric powers of a vector space, polynomial maps, affine and
projective varieties and morphisms between such varieties.

The content of this chapter is mostly based on [Mo], but written in a way
that does not require the choice of a basis. The propositions in this chapter
that are stated without proof can be translated to propositions from [Mo]
by picking a basis of each vector space.

14



2.1 Tensor products, symmetric powers and alter-
nating powers

Let U,V,W be vector spaces over K and let n € Z>o be a non-negative
integer.

2.1. We denote the tensor product of V and W over K by V ® W. Recall
that for each bilinear map w: V x W — U, there exists a unique K-linear
map ¢: V@ W — U such that (v ®@w) = w(v,w) for allv € V and w € W.
We call this the universal property of the tensor product of V and W. We
see that

VoW — U
vRw — w(v,w)

is a valid way to define a K-linear map ¢: V ® W — U whenever w is a
bilinear map V' x W — U and we will frequently define maps this way.

2.2. We call the tensor product of n copies of V' the n-th tensor power of V'
and denote it by V®". Note that for all multilinear maps w: V" — U, there
exists a unique K-linear map ¢: V®" — U such that

(v ® - @uy) =w(vr,...,vp)

for all v1,...,v, € V. We use this universal property frequently to define
K-linear maps from V",
For example, for each K-linear map £: V' — W the map

w: Vo e
(V1,..yvp) = l(v1) @+ @ L(vy)
is multilinear and hence corresponds to the K-linear map
yen o wen
Vv, = L(v) @ ®L(vy)

which we will denote by £,
Let /1: U — V and ¢5: V — W be K-linear maps. Then we have
(57 0 €7 = (L9 0 £1)®™. So we see that we get a functor

(—)®": Vecty — Vecty
So if ¢; is an isomorphism, then E?" is also an isomorphism. Also note that
if ¢1 is injective, then " is also injective and that if ¢ is surjective, then

(9™ is also surjective.
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Definition 2.3. Define the n-th symmetric power Sym”™ (V') of V to be the
quotient of V®" by its subspace generated by

U1®"'®'Un_UU(1)®”'®UU(n)
for all vq,...,v, € V and 0 € S,.

By definition, the n-th symmetric power Sym™(V) of V comes with a
projection map 7ft: V¥ — Sym" (V). For elements vy,...,v, € V, we
denote the element 7(;(v1 ® - -+ ® vp,) of Sym™ (V) by v1 © -+ - © vy,.

2.4. Let (v;);er be a totally ordered basis of V. Then
(Viy, @+~ @y, |i1,...,0n €I)
is a basis of V®". So we see that
{vi, ®--- O, li1,...,in € I}

spans Sym” (V). By reordering the v;, of an element v;; ® --- ® v;,, we get
the same element of Sym™ (V') and these relations span all relations between
the elements of this spanning set. So we see that

(’l)“@"'@’l)inﬁl,...,in6.[,’1;1 Sgln)

is a basis of Sym" (V).
Suppose that V' has dimension m over K and let I be the set {1,...,m}
with the obvious ordering. Note that

n+m-—1
()
is the number of ways we can order n symbols e and m — 1 symbols #. An
element v;, ® -+ ®v;, of the basis of Sym" (V) corresponds to the ordering
of these symbols such that for all j € {1,...,m} the number of e symbols
between the (j—1)-th and j-th symbols # equals #{k|i;, = j}. For example,
the ordering e e # e # corresponds to the element vy ® vy ® vo when the

dimension of V over K equals 3. We see that this correspondence is one
to one. So if the dimension of V over K equals m, then the dimension of

Sym"™ (V') over K equals
n+m-—1
m—1 )

2.5. Let w: V™* — U be a symmetric multilinear map. Then there exists a
unique K-linear map ¢: Sym"™ (V) — U such that

(v © - Ouy) =w(vr,...,vp)
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for all v1,...,v, € V. We call this the universal property of the n-th sym-
metric power of V. This shows that

¢: Sym™(V) — U
V1O Ov, — wvr,...,vp)

is a valid way to define a K-linear map ¢: Sym"(V) — U whenever we have
a symmetric multilinear map w: V" — U.
Let £: V — W be a K-linear map. Then the map

w: V" — Sym" (W)
(U1, yvn) = L(v1) @ O L(vy)

is multilinear and symmetric. We denote the corresponding K-linear map
Sym"™ (V) — Sym" (W) by Sym"(¢). We get a functor

Sym"(—): Vecty — Vecty

Note that similar to the map ¢®" from 2.2, the map Sym"(¢) is injective
whenever £ is injective and surjective whenever £ is surjective.

2.6. Let £: V — W be a K-linear map. Then the diagram

¢&n

ven wen
Sym" (V) —220 _ gumn(w)

commutes. So we see that the family 7" of K-linear maps my; over all vector
spaces V over K is a natural transformation (—)®" = Sym"(—).

2.7. Suppose that char(K) { n!l. Then the K-linear map
gy Sym™ (V) — Ve
1
V1O Oy ] ; Vo(1) @+ @ Vg (n)
g n

is a section of 7{,. Note that the family /" of K-linear maps i, over all
vector spaces V over K is a natural transformation Sym"(—) = (—)®".

2.8. The group S, acts on V®" by the homomorphism
S, — GL(V®")
o = (’U1®'--®’Un’—>’U071(1)®--'®’U071(n)).

Let (V®™)% be the subspace of V" that is fixed by S,. Then we see that
/% o 7% is an idempotent endomorphism of V& with image (V7). So
we see that (j; is an isomorphism onto (V®)Sn with the restriction of T
as inverse.
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Definition 2.9. Define the symmetric algebra Sym(V') of V' to be the com-
mutative graded K-algebra

P sym’(v)
1=0

where the product map Sym(V') x Sym(V') — Sym(V') is the unique bilinear
map which sends (V1 ®- - QUp, WL O+ - QW) OV O OV, QWL O+ - QW
for all vq,...,vp,w1,..., Wy € V.

2.10. Note that V = Sym'(V) is a subspace of Sym(V). Let A be a com-
mutative K-algebra and let £: V' — A be a K-linear map. Then there exists
a unique homomorphism of K-algebras

n: Sym(V) — A

such that n|y = ¢. We call this the universal property of the symmetric
algebra of V. This unique homomorphism of K-algebras 7 is the unique
K-linear map Sym(V) — A which sends v1 ® -+ ® vy, to £(v1) - - - £(vy,) for
all elements v1,...,v, € V.

We see that K-linear maps £: V' — A correspond one to one with homo-
morphisms of K-algebras n: Sym(V) — A. We call n the extension of ¢ to
Sym(V') and we call ¢ the restriction of 7 to V.

Example 2.11. Let (vy,...,v,) be a basis of V over K. Then the unique
homomorphism of K-algebras

n: Sym(V) — Klz1,..., %)
such that n(v;) = z; for all ¢ € {1,...,n} is an isomorphism.

Definition 2.12. Define the n-th alternating power A"V of V to be the
quotient of V®" by its subspace generated by

{n®- - @uvplvi,...,v, € V,v; = v; for some i # j}.

By definition, the n-th alternating power A™V of V' comes with a pro-
jection map m: V®* — A™V. For elements vy,...,v, € V, we denote the
element m(vy ® -+ @ v,) of A"V by v1 A+ Avp.

2.13. Let vy,...,v, be elements of V. Then for all 1 < i < j < n, the
element

VO QUR RV RUF V1@ RV RV D DUy
of V& is equal to the difference between

VR @V F0)® - ® v +v) @By,
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and
(M® U QU - QUuu+tv1®  QU® QU@ Q).
So we see that
VIA AN NUOGA - AUy ==V A ANV A= Aoy A Aoy
for all 1 <7 < j7 <n and therefore we have
V1 A Avp = 8g0(0)Vg(1) A A Vg

for all o € S,.
Let (v;)ier be a totally ordered basis of V. Then

(Viy @ - @y, li1,...,in € 1)
is a basis of V®". So we see that
{viy, Noo A iy oo yin € i < -+ <in}
spans A"V.
2.14. Let w: V" — U be a multilinear map with the property that
w(vy,...,vp) =0

for all vy,...,v, € V such that v; = v; for some i # j. Then there exists a
unique K-linear map ¢: A"V — U such that £(vy A--- Avp) = w(vr,...,v,)
for all vy,...,v, € V. We call this the universal property of the n-th alter-
nating power of V. It shows that

LAY — U
VA Ay, = w(V,...,U)

is a valid way to define a K-linear map ¢ whenever we have a multilinear map
w: V"™ — U with the property that w(vy,...,v,) =0 for all vy,...,v, € V
such that v; = v; for some 7 # j.

Let £: V — W be a K-linear map. Then the map

w: Vh = AW
(V1. .y 0n) = Lv) A ANl (vy)
is a multilinear map with the property that w(vi,...,v,) = 0 for all ele-
ments v1,...,v, € V such that v; = v; for some i # j. We denote the

corresponding K-linear map A"V — A"W by A™¢. This gives us the func-
tor A"(—): Vecty — Vecty.
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2.15. Consider the multilinear map

w: (KM)" - K

(V1,...,0) = det(vr -+ vp)
where (v1 --- vp) is the n x n matrix whose i-th column equals v; for all
i€ {1,...,n}. The map w is multilinear and we have det(v; --- v,) = 0 for
all vi,...,v, € K™ such that v; = v; for some ¢ # j. Let

det: A"(K") — K

v A Aoy = det(vg, ..., vp)
be the K-linear map corresponding to w and let (e, ..., e,) be the standard

basis of K™. Then e; A --- A ey, spans A"(K"™) and we have
det(eg A+ Aey) = 1.
So e1 A -+ Aey is a non-zero element of A”(K™) and hence a basis of A™(K™).
2.16. Let (v;);er be a totally ordered basis of V. Then
{vig Ao A i1y e yin € Tig < -+ <}
spans A"V. Let iy,...,4, € I be such that i1 < --- < i,. Let
iy A"V = K

be the K-linear map det oA™¢ where £: V' — K™ is the K-linear map sending
v;,, to eg for all k € {1,...,n} and sending v; to 0 for all i € I —{iy,..., i}
One can check that
|1 if i =g forall k
Pir.in (VUjy © -+ O Vj,) = { 0 otherwise
for all j1,...,7, € I such that j; < --- < j,. Hence
(’Uil /\--'/\’l)in”il,...,in elig <--- <in)

is a basis of A"V with dual basis (@i, i, |i1,---,in € I,i1 < -+ < ip).
In particular, we see that if V' has dimension m over K, then A"V has

dimension (’;:) over K. We also see that for elements wq,...,w, € V, the
element wi A- - - Aw, of A"V is non-zero if and only if wy, ..., w, are linearly
independent over K.
Let w1, ..., w, be elements of V and write
wy = Z @k Vi
i€l

for each k € {1,...,n}. Let i1,...,i, € I be such that i; < --- < i,. Then
we see that

goilmin(wl A A wn) = det((alil, - alin) cee (aml, .. amn))

is the determinant of the n x n matrix (a;;, )} ;_;-
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2.2 Polynomial functions

Let V be a finite-dimensional vector space over K.

2.17. An element of V* is a K-linear map V — K. So V* is a subset of
the K-algebra Map(V, K) consisting of all maps V' — K. The K-linear map

Sym (V*) — Map(V,K)
PrO--Opn = (Ve er(v). . @n(v))
is the extension of the inclusion map V* — Map(V, K) to Sym(V*).
Since the field K is infinite, the following proposition holds.
Proposition 2.18. The homomorphism of K-algebras
Sym (V*) — Map(V,K)
P1O- - Opp = (V= e1(v) - en(v))
is injective.
Definition 2.19. Define the algebra P(V') of polynomials on V' to be the
commutative graded K-algebra Sym(V*). We call an element f € P(V)

a polynomial on V' and we call the image of f in Map(V, K) a polynomial
function on V.

Proposition 2.18 tells us that we can identify polynomials on V with
polynomial functions on V. Let f € P(V) be a polynomial on V and let v
be an element of V. Then we denote the value of the polynomial function
fonV atwvby f(v).

Definition 2.20. Let U be a vector space over K and let ey: U — U**
be the K-linear map sending u to (¢ — ¢(u)). For an element u of U, let
eval,: P(U) — K be the extension of the K-linear map ey(u): U* — K to
P(U). Define eval_y: U — P(U)* to be the map sending u to eval,.

Note that eval,(f) = f(v) for all v € V and f € P(V).

2.3 Polynomial maps

Let U, V, W be finite-dimensional vector spaces over K.

Definition 2.21. Let a: V. — W be a map. Then we say that a is a
polynomial map if for all ¢ € W* the composition ¢ o « is a polynomial
function on V.

By the kernel of a polynomial map a: V — W, we mean the set ker «
consisting of all elements v € V' such that a(v) = 0.
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2.22. Let a: V — W be a map and let (¢1,...,¢,) be a basis of V*. Then
« is a polynomial map if and only if the composition ; o « is a polynomial
function on V for each i € {1,...,n}, because a linear combination of poly-
nomial functions on V is again a polynomial function on V. In particular, a
map V — K is a polynomial map if and only if it is a polynomial function
on V, because the identity map idy is a basis of K*.

Definition 2.23. Let a: V — W be a polynomial map. Then « gives us
the K-linear map ¢: W* — P(V) sending a K-linear map ¢: W — K to
the polynomial on V' corresponding to the polynomial function ¢ o v on
V. Define the homomorphism of K-algebras a*: P(W) — P(V) to be the
extension of ¢ to P(W).

Let n: P(W) — P(V) be a homomorphism of K-algebras and let
WX — P(V)
be the restriction of n to W*. Since W is finite dimensional over K, the
K-linear map ey : W — W>** sending w to (¢ — ¢(w)) is an isomorphism
by Proposition 1.18. So there exists a unique map «: V — W making the

diagram
é)(

P(V)X W X %
eval(>T €WT
\%4 w

commute.
Lemma 2.24. The map « is a polynomial map and we have a* = n.

Proof. Let ¢ be an element of W*. To prove that « is a polynomial map
such that o* = 7, it suffices to prove that g o« is the polynomial function on
V associated to the polynomial ¢(¢) on V, because 7 is the unique extension
of £ to P(W).

Let v be an element of V. Note that the diagram

ZX

P(V)X WXX
EWX (Lp)
eval<)T EW
1% _ W - K

commutes. So we have (poa)(v) = eyx (@) (€* (eval,)). Recall that the map
0 P(V)* — W>** sends ¢ to the K-linear map ¢ o £. So we have

ewx () (" (evaly)) = (eval, of)(p) = evaly (£(p)) = £(p)(v).

We see that ¢ o «v is indeed the polynomial function on V' associated to the
polynomial /() on V. Hence « is a polynomial map and since o* and 7 are
both the extension of ¢ to P(W), we see that a* = 1. O
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We see that polynomial maps V' — W and homomorphisms of K-
algebras P(W) — P(V') correspond one to one.

Proposition 2.25. Let a: V' — W be a polynomial map and let f: W — K
be a polynomial function on W. Then f o « is the polynomial function on
V associated to polynomial o*(f) on V.

Proof. Recall that a*: P(W) — P(V) is the extension of the K-linear map
0: W* — P(V) to P(W) where ¢ sends ¢ to the polynomial on V' cor-
responding to the polynomial function ¢ o « on V. So we know that o*
satisfies

(1O Opn) = Lp1)---L(pn)

(proa)---(pnoa)

= (v @i(a(v)) - pn(a(v)))
(

w = pr(w) - pp(w)) o a

for all ¢1,...,p, € W*. Note that (v — ¢1(v) - p,(v)) is the polynomial
function on W corresponding to the polynomial ¢; @ -+ ® ¢, on W for
all p1,...,¢0, € W*. So since such polynomials on W span P(W) as a
vector space over K, we see that f o « is the polynomial function on V'
corresponding to the polynomial o*(f) on V for all f € P(W). O

Corollary 2.26. Let a: U — V and 8: V — W be polynomial maps. Then
B o« is a polynomial map and (5o «a)* = a* o f*.

Proof. Let f: W — K be a polynomial function on W. Then f o § is
the polynomial function on V' corresponding to the polynomial 8*(f) on
V. Therefore (f o 3) o a is the polynomial function on U corresponding to
the polynomial o*(8*(f)) on U. In particular, we see that ¢ o (5o «) is the
polynomial function on U corresponding to the polynomial (a*o3*)(p) on U
for all o € W*. Hence o« is a polynomial map and (foa)* =a*of*. O

We get a contravariant functor from the category whose objects are finite-
dimensional vector spaces over K and whose morphisms are polynomial
maps to the category of K-algebras.

Definition 2.27. Let a: V — W be a polynomial map and let n € Z>g
be a non-negative integer. We say that « is homogeneous of degree n if the
restriction of a* to W* is a non-zero K-linear map ¢: W>* — Sym"(V>).

Remark 2.28. Any K-linear map ¢: W* — P(V') can be written uniquely
as the sum of K-linear maps ¢;: W* — Sym®(V*) for i € Z>g. Since W
is finite dimensional over K, only finitely many of these maps ¢; can be
non-zero. As a consequence, any polynomial map V — W can be uniquely
written as a finite sum of homogeneous polynomial maps V' — W of distinct
degrees.
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2.29. Let a: V — W be a map. Then « is a homogeneous polynomial
map of degree zero if and only if « is constant and non-zero and « is a
homogeneous polynomial map of degree one if and only if « is K-linear and
non-zero.

A K-linear combination of two homogeneous polynomial maps V' — W
of degree n € Z> is either zero or a homogeneous polynomial map V" — W
of degree n.

Let a: U — V and 8: V — W be homogeneous polynomial maps of
degree n and m. Then (8 o « is either zero or a homogeneous polynomial
map of degree nm.

The next proposition will give us a useful way to construct homogeneous
polynomial maps. To prove the proposition, we use a following lemma.

Lemma 2.30. Let n € Z>( be a non-negative integer.

(a) The K-linear map

V*@W — Hompg(V,W)
pOw — (v p(v)w)

is an isomorphism.
(b) The K-linear map

Hompg (U, Homg (V,W)) — Homg (U ® V,W)
g = (v g(u)(v)

is an isomorphism.

(¢) The K-linear map

V¥eW* — (VeWw)*
p@¢ = (VW= p(v)p(w))

is an isomorphism.

(d) The K-linear map

pe (VT (Ve
On® R, = (V@ - Quy > p1(v1)...pn(vy))

is an isomorphism.
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(e) Let mpp: VO™ — Sym"™(V) and nfl,: (V)®" — Sym™(V*) be the
projection maps and let v be the K-linear map making the diagram

-1

(Vem) ——= (V)@

nX T

Sym"™(V)* Y Sym"™ (V)

commute. If char(K) { n!, then v is an isomorphism.
Proof.

(a) Let (v1,...,v,) be a basis of V and let (¢1,...,¢,) be its dual basis.
Then the K-linear map

Homg (V,W) — V@W
foe D e flu)
i=1
is the inverse.

(b) The K-linear map

Hom (U ® V,W) — Homg (U, Homg (V, W))
fe= (u= (v fuew)))

is the inverse.
(¢) Using part (a) and (b), we have

VX@W* = Homg(V, W) = Homg (V, Homg (W, K))
~ Homg (Vo W,K)=(VeW)*.

This isomorphism sends ¢ ® ¢ to (v — p(v)P) to (v @ w — (v)p(w))
for all ¢ € V> and ¢ € W*.

(d) We will prove part (d) using induction on n. Part (d) holds for n = 0, 1.
Suppose that part (d) holds for n € Z>;. Then we see using part (c)
that

(V)" = (V)T e v = (Ve @ VX
> (VEngV)" = (Vo)X
For all ¢1,...,pnpt1 € VX, this isomorphism sends ¢, ® - -+ ® @np11 to
(V1@ @vn = ©1(v1) .. Pn(Vn)) @ Pny1
to (V1 ® - @ VUpy1 — P1(v1) - @nt1(Vn+1)). Therefore part (d) holds
for n + 1. So by induction, part (d) holds for all n € Z>o.
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(e) Suppose that char(K) tn!. Let
g Sym™(V) — Vo
1
VO Ou ZS V(1) @ -+ @ Vg
gESn

be the section of 7y, from 2.7 and similarly let .7, be the section of
7« Let v/ be the K-linear map making the diagram

(Von) L ()
Sym"(V)* Sym"™ (V)

commute. Then we have

/

vov = W‘T}Xo,ufl

ow"}XoLe.XoMoLT‘L/X
— X

— mou o (G o) oo i

_ n -1 _:1X n

= Tyx Op OldSym”(V) O O Lyyx

1

1

Tyx O f - 0 idgymn (y)x OH O Lyrx
= Tyx Olyx
= ldgymn(vx)
and we similarly have v/ ov = idgymn(y)x. So v/ is the inverse of v. [

Remark 2.31. In the language of category theory, part (b) of the proposi-
tion states that the functor — ® V': fVect, — fVect is left adjoint to the
functor Homg (V, —): fVecty — fVecty.

Let n € Z>o be a non-negative integer and let 6: V' — Sym" (V') be the
map sending v to vO",
Proposition 2.32. For each K-linear map ¢: Sym" (V) — W, the map fod

is either zero or a homogeneous polynomial map of degree n. In particular,
the map § is a homogeneous polynomial map of degree n if V is not zero.

Proof. Let v: Sym™(V)* — Sym"(V*) be the K-linear map from part (e)
of Lemma 2.30. Let £: Sym" (V) — W be a K-linear map and let
n: P(W)— P(V)

be the extension of the K-linear map vof*: W* — Sym(V*) to P(W). Let
a: V. — W be the polynomial map corresponding to 1. By the construction
of a, the diagram

P(V)X (vol™) WX
eval(_)T TEW
% w
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commutes. Recall that ey is an isomorphism. It suffices to prove that
a = Lo or equivalently that the diagram

P(V)* (vol™) WX
eval(_)T EW
1% Sym"™(V) ——~=W

commutes.
Let v be an element of V' and let ¢ be an element of W*. Then we have

(ew 0 L0 8)(v) () = ew (L(v™")) () = (L(v")) = (w0 £)(v™")
and
((vo ) oeval_y) (v)(p) = (v o £)* (evaly)(p) = (eval, ov)(p o £).

So it is suffices to check that eval, ov: Sym™(V)* — K sends ¢ to ¢(v®").
Note that the K-linear map

6:(VX)®" - K
P1®--®p = @1(v) - on(v)

makes the diagram

(VEn)x ey an (V9") K

iu—l lid

(Ve K

i”vx iid

Sym” (V) eval, e

commute. So the diagram

(VEn)x eyan (087) i
/ lul Lid
(Vony e (V) k¢
TféT J{’Tvx lid
Sym™ (V)" v Sym® (V) eval, e

also commutes. Let ¢ be an element of Sym"(V)*. Then we see that
(evaly ov)(¢) = eyen (V") (1 () = (¢ 0 Ty ) (v5") = H(v").
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So £ o = « is a polynomial map which is either zero or homogeneous
of degree n. Taking ¢ to be the identity on Sym"™(V'), we see that 0 is a
homogeneous polynomial of degree n if V' is not zero. O

Let V,W be finite dimensional vector spaces over K and let r € Z>q.
Let (v1,...,v,) be a basis of V. Let (wi,...,wy) be a basis of W and let
(¢1,...,¢m) be its dual basis. For ¢ € {1,...,n} and j € {1,...,m}, let
@ij € Hompg (V,W)* be the map

@ij: Homg (VW) — K
t = (l(vi))
Then @11, ..., ¢nm form a basis of Hompg (V, W)*. Since we have chosen
bases for V and W, we can identify a K-linear map ¢: V — W with the
matrix (a;;);; such that £(v;) = 3770 ajjw; for all i € {1,...,n}. Note that
this matrix is precisely (yi;(€))i;-
Since v, ...,v, form a basis of V', we know that
(Viy Ao A |1 <idp < -2 <ip <)

is a basis of A"V. Since wy,...,w, form a basis of W, we similarly know
that
(wjl/\"'/\wjr|1 S]l < e <jr Sm)

is a basis of A"W. Let (¢5,..j.|1 < j1 <--- < jr <m) be its dual basis. For
1<ip <~ <ip<mnand 1 <j; < - <jp <m,let ¢y 4,5 .5 be the
K-linear map

Biy.ivjrgr s Homg (A"V,A"W)  — K
o= g ((viy A Awi,))
Then the ¢, i, j,..;, form for a basis of Homg (A"V, A"W)*.
Proposition 2.33.
(i) The map

a: Homg (V, W) — Hompg(A"V,A"W)

¢ — A

is a homogeneous polynomial map of degree 7.

(ii) The homomorphism of K-algebras a* sends ¢;,. 4,j,..j. to the deter-
minant of the r x r submatrix of the matrix

$1r - Pim
M= : :
Ol ---  Pnm.
over P(Hompg (V,W)) consisting of the rows iy,...,4, and columns
Jiy-esgpforall 1 <iyp <---<ip<mand 1 <j; <---<jr <m.
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Proof. Let £: V — W be a K-linear map. Let 1 <141 < --- < 4, < n and
1 <71 <+ <jr <m be integers. By 2.16, we see that

(Piivgagir © ) (€) = @jy i, (L3 ) A= A E(vi,)

is the determinant of the r xr submatrix of M consisting of the rows i1, ..., %,
and columns ji, ..., jr, which is a polynomial function on Homg (V, W). So
since the ¢;, j.j,. j. form a basis of Homg (A"V,A"W) we see that « is
polynomial. We also see that (b) holds. Since the determinant of a matrix
is homogeneous in the entries of the matrix, we see that « is homogeneous
of degree r. O

2.4 Affine varieties

Let V be a finite-dimensional vector space over K.
Definition 2.34. Define the affine space A(V') to be the set V.

Definition 2.35. Let S be a subset of P(V'). Define the zero set of S to be
the subset

Zpv)(S) =={P € A(V)|f(P) =0 for all fe€ S}
of A(V).
Proposition 2.36.

(i) Let S be a subset of P(V) and let I be the ideal of P(V') generated
by S. Then we have ZA(V) (S) = ZA(V) (I)

(ii) We have Zyy)(0) = A(V) and Zyy(P(V)) = 0.
(iii) Let I be a set and let (S;);er be a family of subsets of P(V'). Then we
have
% (U S¢> =) Zao)(S)-
iel i€l
(iv) Let I,J be ideals of P(V'). Then we have

ZaonyINJT) = Zyan(LT) = Zyvy(I) U Zyvy ().

By Proposition 2.36, the subsets of A(V') of the form Zy)(S) for some
subset S C P(V) form the closed subsets of a topology on A(V).

Definition 2.37. Define the Zariski topology on A(V') to be the topology
on A(V') whose closed subsets are the subsets of the form Z () for some
subset S of P(V).
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Remark 2.38. Let (z1,...,2,) be a basis of V*. Then P(V) is isomor-
phic to K[z1,...,2,] by Example 2.11. So the ring P(V') is Noetherian.
Therefore all closed subsets of A(V') are of the form Z,(y(S) for some finite
subset S of P(V).

Definition 2.39. Let X be a subset of A(V). Define the ideal of X to be
the ideal
Iywy(X) = {f € P(V)|f(P) =0 for all P € X}

of P(V).

Proposition 2.40. Let a: V — W be a polynomial map. Then we have
Iy (ima) = ker a® and Zy vy (a*(W™)) = ker a.

Proof. The ideal of im « is the ideal
{f e PW)|f(P)=0 for all P € ima«a}

of P(W). Let f € P(W) be a polynomial on W. Then we see that f(P) =0
for all P € ima if and only if (f o a)(P) = 0 for all P € A(V). Recall
from Proposition 2.25 that a*: P(W) — P(V) sends f to the polynomial
associated to the polynomial function f o a. So we see that (f o «a)(P) =0
for all P € A(V) if and only o*(f) is the polynomial on V associated to the
zero function V' — K. The polynomial associated to the zero function is the
zero polynomial. Hence Iy (y)(im ) = ker a*.
The zero set of a*(W*) is the subset

(P e A(V)|f(P) =0 for all fea*(W>)}

of A(V). Let P € A(V) be a point. Then we have f(P) = 0 for all
f e o (W) if and only if we have p(a(P)) = (p o a)(P) = 0 for all
¢ € W*. So we see that P is an element of the zero set of o*(W*) if
and only if a(P) is contained in the zero set of W*, which is {0}. Hence
Zpwy(a®(WX)) = ker a. O

Proposition 2.41.
(i) The map S = Zyy)(S) is inclusion reversing.
(ii) The map X + I4(y)(X) is inclusion reversing.

(iii) 'LetA)((Vl))e a subset of A(V). Then Zy(Iy)(X)) is the closure of X
in .

Theorem 2.42 (Hilbert’s Nullstellensatz). Let I be an ideal of P(V'). Then
Inovy(Zay(I)) is the radical ideal of 1.

Proof. See 1.10 from [Mo]. O
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Corollary 2.43. The map S — Z,(y(S) induces a bijection between the
set of closed subsets of A(V') and the set of radical ideals of P(V).

Definition 2.44. A topological space X is called irreducible when for all
closed subsets X7, Xo of X with X1 UXs = X, we have X; = X or Xy = X.

Proposition 2.45. Let X be a closed subset of A(V'). Then X is irreducible
if and only if the radical ideal I(y)(X) of P(V) is prime.

Definition 2.46. An affine variety inside A(V') is an irreducible closed sub-
set of A(V'). An affine variety is an affine variety inside some affine space.

Example 2.47. The zero ideal of P(V') is prime. Hence A(V) is an affine
variety inside A(V).

Proposition 2.48. Let V. W be finite dimensional vector spaces over K
and let r € Z>(. Then the kernel of the homogeneous polynomial map

a: Homg(V,W) — Hompg(A"V,A"W)
p = Ny
of degree r from Proposition 2.33 is the affine variety inside A(Homg (V, W))

consisting of the linear maps V' — W with rank lower than r. Its correspond-
ing prime ideal is generated by o (Homg (A"V, A"W)*).

Proof. Recall that for wq,...,w, € W, the element wy A --- A w, of A"W

is non-zero if and only if wq,...,w, are linearly independent over K. Com-
bining this with the fact that a K-linear map ¢: V. — W has rank r if
and only if there exist vy,...,v, € V such that £(v1),...,¢(v,) are linearly

independent over K, we see that the kernel of « is the zero of ima*. By
Theorem 2.10 from [BV] applied with B = K and m = r, we see that the
ideal generated by o*(Homg (A"V, A"W)*) is prime. Hence the kernel of «
is the affine variety inside A(Homg (V, W)) corresponding to the prime ideal
generated by o*(Hompg (A"V, A"W)>). O

Let X be an affine variety inside A(V).

Definition 2.49. Define the Zariski topology on X to be the induced topol-
ogy on X from the Zariski topology on A(V).

2.50. Let f € P(V) be a polynomial on V. Then the polynomial function
f:V — K restricts to a function f|x: X — K. This gives us a homomor-
phism of K-algebras n: P(V) — Map(X, K) sending f € P(V) to f|x. By
definition, the ideal I4(y(X) of P(V) is the kernel of 7. So we see that an
element of P(V')/I5y)(X) corresponds to a map X — K.

Definition 2.51. Define the coordinate ring of X to be the K-algebra
K[X]:= P(V)/IpqH(X). For an element f € K[X] and a point P € X, we
denote the value of the map corresponding to f at P by f(P).
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(i) Let S be a subset of K[X]. Define the zero set of S to be the subset
Zx(S):={P e X|f(P)=0forall feS}
of X.
(ii) Let Y be a subset of X. Define the ideal of Y to be the ideal
Ix(Y):={f € K[X]|f(P) =0 for all P € Y}
of K[X].
Proposition 2.52. Let X be an affine variety.
(i
(i

) The map S +— Zx(S) is inclusion reversing.
)

(iii) Let Y be a subset of X. Then Zx(Ix(Y)) is the closure of Y in X.
)
)

The map Y — Ix(Y) is inclusion reversing.

(iv) Let I be an ideal of K[X]. Then Ix(Zx(I)) is the radical ideal of I.

(v

The map S — Zx(S) induces a bijection between the closed subsets
of X and the radical ideals of K[X].

(vi) Let Y be a closed subset of X. Then Y is irreducible if and only if the
radical ideal Ix(Y') of K[X] is prime.

2.5 Morphisms of affine varieties

Let V,W be finite dimensional vector spaces over K. Let X be an affine
variety inside A(V') and let Y be an affine variety inside A(W).

Definition 2.53. Let ®: X — Y be a map. We say that ® is a morphism
of affine varieties if there exists a polynomial map «: V — W such that
®(P) = «a(P) for all P € X.

2.54. Let ®: X — Y be a morphism and let a: V' — W be a polynomial
map such that ®(P) = a(P) for all P € X. Consider the homomorphism of
K-algebras

a*: P(W)— P(V)

which sends a polynomial f on W to the polynomial on V' associated to the
polynomial function foa on V' by Proposition 2.25. Let nx: P(V) — K|[X]
and 7y : P(W) — K[Y] be the projection maps. Let f € Iyy)(Y) be a
polynomial on W that is zero on Y. Then we see that f o « is zero on X.
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So a*(Ipw)(Y)) € Inw)(X). Therefore a* induces a homomorphism of
K-algebras ®*: K[Y] — K[X] making the diagram

P(W) " P(V)
K[Y] o K[X]

commute.

Let g: V — W also be a polynomial map such that ®(P) = (P) for all
P € X. Then we see that (a — 8)(z) = 0 for all x € X. So the polynomial
function f o (o — 3) on V is zero for all f € P(W). Hence the image of
the homomorphism of K-algebras (o — 5)*: P(W) — P(V) is contained
in Iyy)(X). So we see that a and 3 induce the same homomorphism of
K-algebras K[Y]| — K[X]. Hence ®* is well-defined.

2.55. Let 0: K[Y] — K[X] be a homomorphism of K-algebras. Consider
the restriction ¢ of the composition 6 o 1y : P(W) — K[X] to W*. Let
¢: W* — P(V) be any K-linear map making the diagram

W d P(V)
x iﬂx
K[X]

commute and let n: P(W) — P(V) be the extension of ¢ to P(W). Then
the diagram

W £ P(V)
Trywxi \ lm(
K[Y] b K[X]

commutes and therefore the diagram

also commutes. Let a: V' — W be the polynomial map associated to 7.
Then o (Iyw)(Y)) € Iy (X). So we have a(X) C Zy)(Iyw(Y)) =Y.
Let ®: X — Y be the morphism of affine varieties we get by restricting



a to X. Then we have ®* = 6, because the diagram

P(W) ——= P(V)
Wyl 6 lwx
K[Y] K[X]

commutes. So we see that the morphism ® is uniquely determined by 6.

Theorem 2.56. The morphisms of affine varieties X — Y correspond one
to one with the homomorphisms of K-algebras K[Y] — K[X].

Let U be an open subset of the affine variety X inside A(V) and let U
have the induced topology of X.

Definition 2.57. Let P € U be a point and let f: U — K be a function.

(i) The function f is called regular at P if there exists an open subset U’
of U containing P together with polynomial functions g, h on V such
that h(z) # 0 and f(z) = g(z)/h(x) for all x € U'.

(ii) The function f is called regular if it is regular at all points of U.
(iii) Define Ox(U) to be the K-algebra of regular functions on U.
Proposition 2.58.

e Let f: U — K be aregular function and consider K as the topological
space A(K) with the Zariski topology. Then f is continuous.

e Let f,g: U — K be regular functions such that f|y = g|y for some
non-empty open subset U’ of U. Then f = g.

e The natural map K[X] — Ox(X) is an isomorphism.

Proposition 2.59. Let X,Y be affine varieties and let ®: X — Y be a
map. Then the following are equivalent:

e the map ® is a morphism of affine varieties;

e the map ® is continuous and for every open subset U of Y and every
regular function f € Oy (U), the function fo ®: ®~1(U) — K is
regular on ®~1(U).
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2.6 Projective varieties

Let V be a finite-dimensional vector space over K.

Definition 2.60. Define the projective space P(V) to be the set of one-
dimensional subspaces of V. For a non-zero element v € V', denote the
one-dimensional subspace of V' spanned by v by [v].

Let v, w be non-zero element of V. Then we see that [v] = [w] if and
only if v = Aw for some A € K*.

2.61. We call an ideal I of the graded K-algebra P(V') homogeneous if it
is generated by homogeneous polynomials F on V. Let v be an element
of V, let F' € P(V) be a homogeneous polynomial on V' of degree d and
let A be a non-zero element of K. Then we see that F(\v) = A F(v). So
whether F'(v) = 0 holds or not depends on only [v]. We write F([v]) = 0
when F(v) = 0.

Definition 2.62. Let S be a subset of P(V) consisting of homogeneous
polynomials on V. Define the zero set of S to be the subset

Zpy(S) == {P € P(V)|F(P) =0 for all F € S}.

of P(V). Let I be a homogeneous ideal of P(V'). Then we define the zero
set Zp(y)(I) of I to be the zero set of the set of all homogeneous polynomial
on V contained in 1.

Proposition 2.63.

(i) Let S be a subset of P(V') consisting of homogeneous polynomials on
V and let I be the homogeneous ideal generated by S. Then we have

Zpvy(I) = Zp)(S).
(ii) We have Zpq)(0) = P(V) and Zp)(P(V)) = 0.

(iii) Let I be a set and let (S;)ier be a family of subsets of P(V') whose
members consists of homogeneous polynomials on V. Then we have

Zpv) (U Si) = () Ze) ().
iel el
(iv) Let I,J be homogeneous ideals of P(V'). Then we have

Zpovy(I D) = Zpyy (1) = Zpy (1) U Zpy(J).

Proposition 2.63 tell us that the subsets of P(V') of the form Zp(y)(S)
for some subset S of P(V) which consists of homogeneous polynomials on
V, form the closed subsets of a topology on P(V').
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Definition 2.64. Define the Zariski topology on P(V') to be the topology
on P(V') whose closed subsets are the subsets of the form Zp((S) for some
subset S of P(V) which consists of homogeneous polynomials on V.

Let (v1,...,vy) be a basis of V and let (z1,...,z,) be its corresponding
dual basis.

2.65. Let i € {1,...,n} be an integer. Consider the open subset
Ui := {[v] € P(V)l|zi(v) # 0}

of P(V). Every point P € Uj is of the form [v] for some unique v € V' such
that x;(v) = 1. So the map

wi:ZA(V)(wi_l) - U;
vo— [y

is a bijection. The inverse of v; is the map U; — Z(y)(z; — 1) sending [v]
to z;(v) " tw.

Since the ideal (xz; — 1) is a prime ideal of P(V) = K|[xy,...,z,], we see
that Iy (Za)(zi —1)) = (x; —1). So the coordinate ring of Zy ) (z; —1)
is the K-algebra P(V')/(x;—1). Note that the homomorphism of K-algebras

PV)/(z;—1) — P(keruz;)
ORI 22

is an isomorphism, allowing us to identify these two K-algebra with each
other. We call the homomorphism of K-algebras

dehom;: P(V) — P(ker z;)

we get by taking the composition of this isomorphism with the projection
map P(V) — P(V)/(xz; — 1) the dehomogenisation map with respect to ;.

Let f € P(ker z;) be a polynomial of degree d. Then there exists a unique
homogeneous polynomial F' € P(V') of degree d such that dehom;(F') = f.
We call the map hom;: P(kerx;) — P(V) sending f to F' the homogenisa-
tion map.

Proposition 2.66. Write X = Z, ) (7; — 1).

e Let S be a subset of P(V) consisting of homogeneous polynomials.
Then we have

b7 (Zey(S) NU;) = Zx (dehomy ().

e Let I be an ideal of P(kerz;) and take Y = Zx(I). Then the closure
of ¥;(Y) in P(V) is the zero set of {hom;(f)|f € I}.
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e The bijection ¢;: X — U; is a homeomorphism.

We call the maps 1, ...,1, the affine charts of P(V') corresponding to
the basis (v1,...,v,) of V. We call the map 1);: ZA(V)(.CEZ' — 1) = U; the
affine chart of P(V') corresponding to x; = 1.

Definition 2.67. Let X be a subset of P(V). Define the ideal of X to
be the homogeneous ideal Ipy)(X) of P(V) generated by all homogeneous
polynomials f € P(V) such that f(P) =0 for all P € X.

Definition 2.68. A projective variety inside P(V') is a closed irreducible
subset of P(V). A projective variety is a projective variety inside some
projective space.

Definition 2.69. Let X be a projective variety inside P(V'). Define the
Zariski topology on X to be the induced topology from P(V).

Let X be a projective variety inside P(V') and let U be an open subset
of X.

Proposition 2.70. Let (v1,...,v,) be a basis of V and let (z1,...,2,) be
its dual basis. Let v;: Zyyy(2; — 1) — U; be the associated affine charts.
Let f: U — K be a map, let P € U be a point and let i € {1,...,n} be an
integer such that P € U;. Then the following are equivalent:

e the function f o);: @Z)i_l(U NU;) — K is regular at gbi_l(P);

e there exists an open subset U’ of U containing P together with homo-
geneous polynomial maps G, H € P(V) of the same degree such that
H(v) # 0 and f([v]) = G(v)/H(v) for all [v] € U".

Definition 2.71.

e Let P € U be a point. Then a function f: U — K is called regular at
P if the equivalent conditions of the previous proposition hold.

e A function f: U — K is called regular if it is regular at all points of U.

e Define Ox (U) to be the K-algebra of regular functions on U.

Definition 2.72. Let X,Y be affine or projective varieties. Let &: X — Y
be a map. Then we call & a morphism of varieties if ® is continuous and for

all open subsets U of Y and all regular functions f € Oy (U), the function
fo®: @ 1(U) — K is regular on ®~1(U).

Proposition 2.73. Let a: V — W be a homogeneous polynomial map such
that a=1(0) = {0}. Then the map

d: P(V) —
[v] = [e(v)]

is a morphism of projective varieties.
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Proof. Let S be a subset of P(W) consisting of homogeneous polynomials.
Then the subset

‘Irl(ZP(W) (S))

1({P e P(W)|F(P) =0 for all F € S})
ZP(V)({FOOé|F S S})

is closed in P(V'). Hence @ is continuous.

Let U be an open subset of P(W), let f € Opy)(U) be a regular function
and let [vg] € ®~1(U) be a point. Since the function f is regular on U, there
exists an open subset U’ of U containing ®([vg]) together with homogeneous
polynomial maps G, H € P(W) of the same degree such that H(w) # 0 and
f([w]) = G(w)/H(w) for all [w] € U’. So we have the open subset ®~(U’)
of ®~1(U) containing [vo] together with the homogeneous polynomial maps
Goa,Hoa € P(V) of the same degree such that (H o «)(v) # 0 and
(fo®)([v]) = (Goa)(v)/(H oa)(v) for all [v] € @~ 1(U’). Hence f o ® is
regular at [vg]. So f o @ is a regular function on ®~*(U). Hence ® is a
morphism. O

Definition 2.74. Let X be a projective variety inside P(V'). Define the
cone of X to be the affine variety

cone(X) :={v e A(V)|v] € X} U{0}

inside A(V') which corresponds to the prime ideal Ipy)(X) of P(V).
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Chapter 3

The varieties of e-th powers

In this chapter, let K be an algebraically closed field and let d € Z>( and
e € Z>1 be integers.

For an integer n € Z>q, recall that the vector subspace of K[z, y| spanned
by the homogeneous polynomials degree n is denoted by V,,. Let C'T; be the
subset of V. consisting of all e-powers of polynomials in V. Consider the
map

powg: Vg — Ve

fo=

whose image equals CTy. By the universal property of the e-th symmet-
ric power of Vy, the symmetric multilinear map w: V7 — Vg sending
(f1,.--, fe) to fi1--- fe corresponds to the K-linear map

£ Syme(Vd) — Ve
1O Ofe = fife

Let 0: Vg — Sym®(V;) be the map sending a polynomial f to f©¢. Then
the diagram

Sym®(Vy)

commutes. So by Proposition 2.32, the map pow,: V; — Vg is a homo-
geneous polynomial map of degree e. Corresponding to pow,, we have the
homomorphism of K-algebras

pOWE:P(Vde) — P(Vd)

[ = fopow,
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where we identify polynomial functions on V,, with their corresponding poly-
nomial maps on V,, for n = d and n = de. By Proposition 2.40 we know
that the ideal I := Iy(y,,)(CTy) corresponding to the subset CTy of A(Vge)
is equal to the kernel of pow}.

Since the field K is algebraically closed, each element A € K is the e-th
power of some element AT € K. So for all polynomials ¢ € CTy and elements
A € K, we have \g € CT}. Consider the subset T;; := {[g] € P(Vg)|g € CTy}
of P(Vye). The polynomial map pow,: Vy — Ve is homogeneous and satisfies
povv;l(O) = {0}. So by Proposition 2.73, we see that the map

Hd: P(Vd) — ]P)(Vde)
/1 = [

is a morphism of projective varieties. Since the topological space P(Vy) is
irreducible and the map II; is continuous, we know that the image T, of
I1, is irreducible. By Theorem 7.8 from [Mo], the projective space P(Vj) is
complete. So by Corollary 7.6 of [Mo], we also know that the image Ty of
I1,; is closed. Hence Ty is a projective variety inside P(Vg.). Note that C'Ty
is the cone of T,; and therefore an affine variety inside A (V) as we claimed
before. We see that I is equal to IP(Vde)(Td) and hence I; is a homogeneous
ideal of P(Vye).

In this chapter, we will explain why we may restrict ourselves to the case
where char(K) { e. Assume that char(K) { e. The e-th power of a monic
polynomial is monic. We will use this fact to show that Il; is an isomorphism
onto its image when restricted to the affine chart My of P(Vy) consisting of
all d-monic polynomials in A(Vj). By shifting this affine chart My, we can
cover the whole of P(V;). We will use this shifting and the fact that we get
an isomorphism from My to its image, to show that Il is an isomorphism
onto its image. Lastly, we will give two methods using Grobner bases to
compute the ideal Iy for instances of d € Z>¢ and e € Z>1.

3.1 Reducing to the case where char(K) te

In the section, denote the morphism
P(Var) — P(Vgtet)
t
1= 1]
by HZTT for all df € Z>p and et € Z>1 and denote its image by TC%T .

Let e1,ea € Z>1 be integers. Then we have II3'“ = Hflil oIIy'. So a
factorisation of e allows us to write Il = II§ as a composition of morphisms
of the form Hﬂ with di € Z>¢ and e' € Z>.
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Lemma 3.1. Suppose that e = char(K) > 0. Then T consists of the
classes of homogeneous polynomials in K[z¢, y¢] of degree de.

Proof. Let [f] € P(Vy) be the class of a homogeneous polynomial f € V; of
degree d. Then we have

f = boyd + blxyd_l + -+ bdl'd

for some by, ...,bg € K not all zero. Since e = char(K), the e-th power map
is additive. Hence

fe — bgyde + bixey(dfl)e 4t bzxde

is a homogeneous polynomial in K[z¢ y°] of degree de. So we see that T
is contained in the set of classes of homogeneous polynomials in K[z€¢, y¢] of
degree de.

Let

g= cOyde _i_cexey(dfl)e 4ot Cdexde

be a homogeneous polynomial in K[z y¢] of degree de. Since K is al-
gebraically closed, there exist bg,...,by € K such that b = ¢ for all
i €{0,...,d}. We have

g= bgyde + b§$ey(d—1)e 4ot ngde _ (boyd + blxyd_l 4ot bdxd)e'

So we see that T is the set of classes of homogeneous polynomials in
K[z¢, y¢] of degree de. O

3.2. Note that the map V; — V. which sends f to f(x€,y¢) is K-linear and
injective. So by Proposition 2.73, we see that the map

I P(Va)
[f]

is a morphism of projective varieties. Let n € Z>1 be an integer. Then we
have

— IP)(VYdG)
= [f(@%y°)]
(f) (@™ ") = (f(=",y"))"
for each polynomial f € V. So we see that the diagram

e

115
P(Vy) P(Vye)

N im@
€

1T
P(Va,) & > P(Ven)

commutes.
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Proposition 3.3. Suppose that char(K) = p for some prime number p > 0.
Then T3” is the image of the morphism

Fsepn,1 o---olh olly:P(Vy) = P(Vge)

for all n € Z>o.

Proof. We will prove the proposition using induction. We have II§ = II.
So the proposition holds for n = 0. Suppose that we have

ep” __ P P
T _1m(rdepn,1o...ordeond).

We have HZPHI = HZZR o HZ. By Lemma 3.1, the morphisms HZ and FZ
have the same image. So we see that

T;p"H =im (Hzan) =im (HZI;" o FZ) .
So since the diagram

epn

P(Va) P(Viepn)
FS\L iFZep"
H;Zn
P(Vap) P(Viepn+1)
commutes, we see that
T§p7L+1 — im <F36pn o Hzpn)

S (T;p )
= im (FZep" 0---0 er o Hd> .
O

The morphism I'G: P(Vy) — P(Vg.) is easy to understand. Therefore it
suffices to consider the case where char(K) 1 e.

3.2 The affine variety of de-monic e-th powers

In this section, assume that char(K) 1 e.

Let n € Z>o be a non-negative integer and consider the K-linear map
dehom: K[z,y] — K]|z]
fo= [z,

This map induces a one-to-one correspondence between the elements of V,
and the polynomials in K[z] of degree at most n.
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Definition 3.4. Let f € V,, be a homogeneous polynomial of degree n and
let m € Z>o be a non-negative integer. Then we say that f is m-monic if
dehom(f) is monic of degree m.

We see that every element of P(V,,) can be written uniquely as [f] for
some polynomial f € V;, that is m-monic for some m € Z>o.

3.5. Consider the basis (y", zy"1,...,2") of V;,. Let (co,...,cy,) be its dual
basis. So we have

f=alf)y" +ea(flay" ™+ +eal(f)a”

for all f € V;,. Denote the affine variety Z(v;)(c, — 1) inside A(V,,) by M,
and let

Y M, — U,
fo=[f]

be the affine chart corresponding to ¢, = 1 as in 2.65. Recall that M, has
coordinate ring P(V,,)/(c, — 1) = P(kercy,).

3.6. Let (bo,...,bq) be the basis of V) dual to (y%, zyd=t, ..., 2% and let
(co, - - ¢cq4e) be the basis of V5 dual to (yde, xyde=t ..., 2%). Then we have
H;l(wde(Mde)) = 14(My), because an e-th power of a polynomial f € V; is
de-monic if and only if f is d-monic. The map

Td: Mg — Mg
foe f
which sends a d-monic polynomial f € V,, to its e-th power is a mor-

phism of affine varieties, because it is the restriction of the polynomial map
pow,: Vg — Vge. Note that the diagram

I

P(Vy) ¢ P(Vye)

¢dT dee
My T Mge

commutes. Let S; be the image of 1.

Studying n-monic homogeneous polynomials in V;, is the same as study-
ing monic polynomials in K[z] of degree n. So we start by determining when
the latter is an e-th power.

Lemma 3.7. Let R be a commutative ring, let f € R|[z] be a polynomial
of degree d and let by, ..., by be elements of K such that

f=by+biz+---+ bd,lzdfl + bdzd.
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Then we have

de

fezz Z bi, ... bi, 2.

5=0 \ 0<iy,....ie<d
11+ tie=]

Proof. Trivial. O
Lemma 3.8. Let R be a commutative ring such that e € R*, let g € R|z]
be a monic polynomial of degree de and let co, ..., cqe € R be such that

g=cotciz+ -+ cge12%7 + gz

(a) There is a unique monic polynomial f € R[z] of degree d such that the
degree of g — f€ is lower than de — d.

(b) Define the elements by,...,b; € R recursively and in opposite order
by the equations

1
b; = - | cde—a+i = § biy ... b,
1<i1,..,0e <d
i1t tiomde—dti

fori € {0,...,d—1} and by = 1. Then the unique polynomial f from
part (a) is equal to Z?:o bzt

Proof. Let f € R[z] be a monic polynomial of degree d and let by, ..., by be
elements of R such that f =bg+biz+---+ ba—12%"1 + byz%. Then we have

de

fezz Z bi, ... bi, 2.

7=0 \ 0<i1,....ie<d

i1+ tie=]
by Lemma 3.7. So we see that
de
g_fezz cj — Z bi1~~-bi5 2.
Jj=0 0<iy,...ie<d
i1+"'+ie:j

Note that cge = bg = 1. So there exists a unique monic polynomial f € K|z]
of degree d such that the degree of g — f€ is lower than de — d if and only if
we can solve the system of equations

cj = Z bil...bieje{de_da"'vde_]‘}
0<iy,....ie<d
i1+ tie=]
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uniquely for by, ...,bg_1. Substituting j = de — d + i, we get the equations

Cde—dti = > bi,...bi|i€{0,...,d—1}
0<iy,...,ie<d
i1+Fic=de—d—+i

Note that if 0 <4q,...,7. < d and i1 + - - - + i = de — d + 4, then either we
have i1,...,7c > i or we have #{k|ix, = i} = 1 and #{k|ix = d} = e — 1.
Since by = 1, we see that

Z bi, ...bi, =eb; + Z biy ... bi,.

0<in,eie<d 1<t yeyie <d
i1+-Fie=de—d+i i1+ Fie=de—d+i

for all i € {1,...,d — 1}. So since e € R*, we can rewrite the equations to

1 )

bl:g Cde—d+i — ' Z b’il"‘b’ie Y/E{O,,d—l}
1< yeenyle <d
i1+ Fie=de—d+i

We see that if we know b;11,...,bg, then we can solve the i-th equation
uniquely for b;. Therefore we can solve uniquely for by, ..., bs_1, because we
know that by is equal to 1. We see from the last set of equations that part
(b) holds. O

Applying the lemma with R = K, we see that for each monic polynomial
in g € K|z] of degree de there is a unique monic polynomial f € KJz] of
degree d such that the degree of g — f¢ is lower than de — d.

3.9. Let R be the ring K]cg,...,cde]/(cde — 1) and let g € R][z] be the
polynomial g = co+c12+- -+ cge_12%  +cgez®. Let f = Z?:o pi2' € R[Z]
be the polynomial defined recursively and in opposite order by the equations

1
i = g Cde—d+i — E Piy - - - Di.
1<01 e nyie <d
i14-+ie=de—d+i

for i € {0,...,d — 1} and pg = 1. Then Lemma 3.8 tells us that f is the
unique monic polynomial R[z] of degree d such that the degree of g — f€ is
lower than de — d. For each integer j € {0, ..., de}, take

Qj:Cj— Z DPiy -+ - Die-

0<iy,...,ie<d
7fl++le:]
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Then we have g — f7/ = Z?io quj by Lemma 3.7. We see that ¢; € R is zero
for all j € {de—d,...,de}. Note that p; is a polynomial which contains only
the variables ¢ge—gii, ..., Cge—1,¢qe = 1 for each i € {0,...,d}. Therefore
the polynomial g; — c¢; contains only the variables cge—gd, ..., Cde—1,Cae = 1
for each j € {0,...,de —d — 1}.

3.10. Let g € K|[z] be a monic polynomial of degree de and let ay, ..., age
be elements of K such that ¢ = ag + a1z + - - - + age—12%"1 + agez®. Then

d

F=> pilao, ..., az)?

i=0
is a monic polynomial in K[z] of degree d such that

1

de—d
gj(ao, ..., aq)’.

de —
g — fe = qu(a07"')ade)zj =
7=0 7=0

So we see that this polynomial f is the unique monic polynomial f € K|z]
of degree d such that the degree of g — f¢ is lower than de — d. Hence
the monic polynomial g € K|[z] of degree de is an e-th power if and only if
g;j(aog,...,aq.) =0 for all j € {0,...,de —d —1}.

Proposition 3.11. The image S; of the morphism Y4: My — My is
the subvariety of My, corresponding to the prime ideal (qo,...,Gde—d—1)
of K[Mde] .

Proof. By 3.10 and the correspondence between elements of V. and poly-
nomial in K[z] of degree at most de, we see that Sg = Inr, (qo, - - -, dde—d—1)-
So it suffices to show that this ideal (qo, ..., qge—q—1) of K[Mgye] is prime.
Recall that K[My.] = K|co,. .., ¢de]/(cdge — 1). Also recall from 3.9 that
for each j € {0,...,de — d — 1}, the polynomial ¢; — ¢; contains only the
variables ¢ge_g, - -+, Cde—1,Cde = 1. So the homomorphism of K-algebras

K[Mge)/(qo,---,qde—a—1) — KlCde—d,---Cde—1]
cj—q; ifj€{0,...,de—d—1}

c; — ¢; if je{de—d,...,de—1}
1 if j =de
is an isomorphism from the quotient of K[Mgy.] by (qo, ..., Gde—d—1) t0 a
domain. Hence the ideal (qo,- .., qde—d—1) is prime corresponds to the sub-
variety Sg of Mye. O

Theorem 3.12. The morphism Y;: My — S, of affine varieties is an iso-
morphism.
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Proof. The map

o Vde — Vd
d

g = Y _pilco(g),- -, cae-1(g), Da'y®™
i=0

is a polynomial map. So the restriction

d: My — My

d
g = Y pilco(9),- - caclg))a’y™
1=0

of o to My, is a morphism of affine varietes. By 3.10 and the correspondence
between elements of Vg, and polynomial in K[z] of degree at most de, we
see that ® sends a de-monic polynomial ¢ € My, to the unique d-monic
polynomial f € My such that the degree of g(z,1)— f(z,1)¢ is lower than de—
d. So we see that ®|g, is an inverse of T4. Hence Y, is an isomorphism. [J

Let n € Z>(o be a non-negative integer. We want to use Theorem 3.12 to
prove that the morphisms of projective varieties II;: P(Vy) — P(Vye) is an
isomorphism. To do that, we first give an alternate description of the open
subset ¢y, (My,) of P(V,,).

Proposition 3.13. The open subset

7/}n(Mn) = {[f] € P(Vn)‘cn(f) a 0}

of P(V,,) consists of the classes [f] of all non-zero polynomials f € V,, such
that f(1,0) # 0.

Proof. We have c,(f) = f(1,0) for all f € V,,. O

Let [f] € P(V,,) be a point. Then the polynomial f € V,, is non-zero.
Therefore there exists a pair (g, o) of elements of K such that f(xg,yo) # 0.
We can use this fact to give an open cover of P(V;,) which consists of open
subset which are similar to ,,(M,).

3.14. Let (wg,y0) € K? be a non-zero vector. Consider the K-linear map

Kz,y] — K
f = f(zo,%0)

eval(xo Yo) *

The restriction of eval(,, ) to V; is an element of V., which is a subset
of P(V,,). So we see that the set of classes of non-zero polynomials f € V,,
such that f(zo,yo) = 0 is closed in P(V,,). So the subset

Un,(mo,yo) = {[f] S P(Vn)|f($(), yO) # O}
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of P(V},) is open. The polynomial on K? corresponding to the zero function
on K? is zero. So we see that

P(V,) = U Un,(ImyO)'
(z0,y0)€K2—{0}

3.15. Let

be an element of GL2(K'). Then we have

PN o d b
“\ec d ad—be \—-c a )’

Consider the map

by:V,, — V,
f = flax + by, cx + dy).

One can check that this map is K-linear and invertible and that the map

p: GLo(K) — GL(V,)
A — fA

is a homomorphism.
Since £, is a K-linear automorphism, we see that the map

O, 4t P(V,) — P(V,)
[f] = [ea(f)]

is an automorphism of P(V,,). Let (g, 0) € K? be a non-zero vector. Then
we see that

q)yz?{A(Un,(xo,yo)) = {f € Valf(azo + byo, czo + dyo) = 0} = Uy, (54,y0)AT-

Every non-zero element of K? is part of some basis of K2. So for all
(70,%0), (1,51) € K? non-zero, there exists a matrix A € GLy(K) such
that (xo,y0) AT = (x1,71). So we see that the action of GLo(K) on

{Un,(w0,50)| (0, v0) € K> —{0}}
is transitive.

3.16. Let (z0,10) € K2 be a non-zero vector and let
A= (7 %) e qryk)
" \e d 2
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be a matrix such that (1,0)A” = (g, yo). Then the automorphism

O, 4: P(Vy,)
/]

sends ¢y, (My,) = U, (1,0 to U,

— P(V,)
= [faz + by, cx + dy)]
(20,50) for all n € Z>p. Consider the diagram

Tq

M,
icbde,Aowde

Ude»(xmyo)

We have
(f°) (ax + by, cx + dy) = (f(ax + by, cx + dy))°

for all f € V4. So we see that the diagram commutes. Since ®g 4, Pge 4, Y
and 4. are isomorphisms and Y, is an isomorphism onto its image, we see
that Ilg restricts to an isomorphism from Uy (4, 4,) onto its image.

Theorem 3.17. The morphism of projective varieties IIg: P(Vy) — Ty is
an isomorphism.

Proof. First note that the map I1;: P(Vy) — Ty is bijective. Since we have
an open covers of P(Vg.) such that II; restricts to an isomorphism on each
member of the open cover, the inverse map is an morphism of projective
varieties. 0

3.3 Calculating the ideal corresponding to T

3.18. Let m,n € Z>( be non-negative integers such that m < n. Consider
the injective K-linear map V,,, — V,, sending f to fy" ™.
polynomial, so by Proposition 2.73 the map

This map is

Qi P(Vi) — P(Vp)
1 = Ly
is a morphism of projective varieties. Let f € V,,, be a k-monic polynomial

for some k € Z>¢. Then we see that ®,, ,([f]) is also k-monic. The map
®,, , is a bijection between the set P(V},) and the closed subset

{[f] € P(V,))|f € V,, k-monic for some k < m}

of P(V,,). We see that P(V},) is the disjoint union of the sets ®q (M),
Q1 (M),. .., Py n(M,). We also see that Ty is the disjoint union of the sets
D0.4¢(50); Pede(S1)s- - Pae,de(Sq). This allows us the prove the following
proposition.
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Proposition 3.19. The closure of S; in P(Vy,) is Ty.

Proof. The closed set Ty is the disjoint union of ®¢ 4¢(50), Pe,de(S1), - -,
D e de(Sq). Therefore the closed set Ty is the disjoint union of the closures
of @0 4e(50); Pe,ae(S1), - - - s Pie,de(Sq) in P(Vge). Since Ty is irreducible, this
means that Ty is the closure of ®;c 4.(5;) in P(Vge) for some i € {0,...,d}.
Note that ®;¢ 4¢(.5;) is contained in the closed subset ®;c 4o (P(Vic)) of P(Vge).
So the closure of ®;c 4.(S;) is also contained in ®;¢ 4.(P(Vie)). The element
[29¢] € P(Vge) is an element of T; which is not contained in ®; 4.(P(V;)) for
any j € {0,...,de — 1}. So we see that Tg is the closure of Sg = ®ge 4e(Sa)
in P(Vde)- O

We can use Grébner bases to compute generators for Iy = Ipgy,,)(Ta)
using that we know Iy, (Sq). We will use the notation and definitions from
chapter 9 of [Ke]. Let < be a monomial ordering on a polynomial ring with
variables z1,...,xy,.

Proposition 3.20. Let X be an affine variety inside A(K™) for some in-
teger n € Z>o and let [ = Ign)(X) be its corresponding prime ideal of
K[xy,...,z,]. Suppose that < is a total degree ordering and let G be a
Grobner basis of I relative to <. Then the homogeneous prime ideal of

K|z, ...,z,] corresponding to the closure of X in P(K"*!) is generated by
{hom(g)lg € G}
Proof. See Lemma 2.50 from [DP]. O

To make Grobner bases useful when working over the algebraically closed
field K, we have the following proposition.

Proposition 3.21. Let k be the prime field of K and let fi,..., f;, be
elements of k[x1,...,zy]. Then a Grébner basis of the ideal of k[z1,. .., zy]
generated by fi,..., fi, relative to =< is a Grobner basis of the ideal of
Kxy,...,xz,] generated by fi,..., fn, relative to <.

Proof. Let G be a Grobner basis of the ideal of k[z1,...,x,] generated
by fi,..., fm relative to <. Then the ideal of K{[z,...,z,] generated by
fi,---, fm is also generated by G. Since G satisfies Buchberger’s criterion,
it is a Grobner basis for the ideal of K|[z1,...,x,] it generates. O

By Proposition 3.11, we know the ideal of K]lcy,...,c4e] corresponding
to Sq. So using these two propositions, we can compute the homogeneous
ideal I of K|[co, . .., c4e) corresponding to Ty for (small) instances of d € Z>¢
and e € Z>1.

3.22. Again consider the polynomial map

powg: Vg — Vg

fo=
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whose image is CT,;. We can also view pow, as a morphism of affine varieties
A(Vy) — A(Vge). This gives us another way to compute Iy = Iy(v,.)(CTq).

Proposition 3.23. Let V,W be finite-dimensional vector space over K.
Let ®: A(V) — A(W) be a morphism of affine varieties. Let (vy,...,vy) be
a basis of V' and let (x1,...,2,) be its dual basis. Let (wi,...,w,) be a
basis of W and let (yi,...,¥ym) be its dual basis. Then ®* is a homomor-
phism of K-algebras Kly1,...,ym| — Klz1,...,z,]. Let I be the ideal of
Klzi,...,Zn, Y1, .-, Ym) generated by y1 — ®*(y1),. .., Ym — ®*(ym). Then
Inoy(im @) = I N K[y1, ..., Ym]-

Proof. Let (Id,®): A(V) — A(V) x A(W) be the morphism sending P €
A(V) to (P,®(P)). Then we have im(Id,®) = {(P,®(P))|P € A(V)}.
We see that im(Id, ®) is the affine variety corresponding to the ideal I of
Klxi,...,Zn, Y1, .-, Ym) generated by y1 — D*(y1),. .., Ym — D*(ym)-

Let f € Iyw)(im®) and @ € im(Id, ®). Then there exists a P € A(V)
such that @ = (P, ®(P)). We have f(Q) = f(®(P)) = 0. Therefore f € I
and hence f € INK([y1,...,Ym]. Let f € INK][y1,...,ym] andlet P € A(V).
Take @ = (P, ®(P)). Then we see that f(®(P)) = f(Q) = 0. Hence
fEIA(W)(lm(I)) So IA(W)(lm(I’):IﬁK[yl,,ym] O

Since C'Ty is the image of pow,, the previous proposition allows us to
write Iy as the intersection of a known ideal I with a polynomial ring in
fewer variables. This intersection is called an elimination ideal. See [Ke] for
how to calculate elimination ideals using Grobner bases.
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Chapter 4

Conjectures

In this chapter, let K be an algebraically closed field and let d € Z>( and
e € Z>1 be integers such that char(K) t e. Let

pow,: Vg = Vi
fo=
be the e-th power homogeneous polynomial map with image CT,;. Let
IIg: P(Vg) — P(Vge) be the e-th power morphism of projective varieties
with image T;. Let I; be the homogeneous ideal
Ip, ) (CTy) = Ipgy,,)(T4) = ker powy
of P (Vde)-

In this chapter, we state two conjectures; the second being a (possibly
not strictly) weakened version of the first. The first conjecture states that
the ideal I of P(Vg.) is generated by its degree d + 1 part. The second
conjecture states that I; contains no homogeneous polynomials of degree d.

We will motivate our first conjecture by proving that Ty is the zero set of
an ideal generated by homogeneous polynomials on Vg of degree d + 1 and
that this ideal and the ideal I; become equal when we dehomogenize with
respect to cqe if char(K) t (de)!. We will also show that if the second con-
jecture holds, then we know the Hilbert function of I;. Lastly we will show
that, in the case d = 1, the second conjecture implies the first conjecture
making these conjectures equivalent.

4.1 Another description of the projective variety
of e-th powers

Definition 4.1. Let

n
F=Y e
1=0
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be a polynomial in K[z]. Define the derivative of f to be the polynomial

n
= E iciz'
i=1

in K|[z].

4.2. Let fi, fo € C[z] be polynomials. Then we have (f1f2) = f{f2 + f1f5
Now suppose that f; and fo are non-zero. Then we have

(fife)  fife+ fifs  f1 1o

Afe A h o
in C(z). We see that the map

Clz] {0} — C(2)
f/
foe L
f

which sends a polynomial to its logarithmic derivative, sends products to
sums. Now consider the map

In(—)": C(2)* — C(z)
fo, fa—1tg

g fg

which sends a rational function to its logarithmic derivative. One can check
that In(—)" is a homomorphism of groups whose kernel equals C*.
Let g € K[z] be a non-zero polynomial of degree de. If g = f¢ for some
non-zero polynomial f € K|[z] of degree d, then we have
! ey ! pe—1 1
g () _ef'f f )
In(g) =+ = = =e— =cln(f).
(9) P 7o 7 (f)
If we have In(g)’ = eln(f)’ for some non-zero polynomial f € K|z], then
we have In(g)’ = In(f€¢)’ and therefore f = A\f¢ for some A € C*. So since
K is algebraically closed, we see that ¢ is an e-th power of a polynomial in
f € K|z] of degree d if and only if we have fg' —ef’g.

This proof can be generalized in the following way.

Theorem 4.3. Suppose that char(K) 1 (de)!. Let g € K|[z] be a non-zero
polynomial of degree at most de and let f € K|[z] be a non-zero polynomial
of degree at most d. Then the following are equivalent:

(a) we have g = Af€ for some \ € K*;

(b) the polynomial ¢'f — ef’g is zero;
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(¢c) the polynomial ¢'f — ef’g has degree lower than max(0,d — 1).

We will prove this theorem another way, which gives us a bit more infor-
mation about how to check whether a polynomial f satisfying these equiv-
alent conditions exists. We start with a lemma that should be compared to
Lemma 3.8.

4.4. Before we state the lemma, note that if f,g € R[z] are polynomials of
degree n and m where R is a commutative ring, then we have

n+m—1
gf—efg= Z Z (B — ea)bacs | 2"
k=0 0<a<n
0<B<m
a+pB=k+1

In particular, note that that if m = en, then the degree of ¢'f — ef’g is at
most n + en — 2, because

Z (B — ea)bacg = (en — en)bycen = 0.
0<a<n
0<pB<en
a+pB=n+en

Lemma 4.5. Let R be a commutative ring such that e, 1,...,d € R*, let
g € R|z] be a monic polynomial of degree de and let cy,...,cq € R be such

that

de—1 de

g=cy+c1z+- -+ Cge—1% + Cdez

(a) There is a unique monic polynomial f € R[z] of degree d such that the
degree of ¢'f — ef’g is lower than de — 1.

(b) Define the elements by, ...,b, € R recursively and in opposite order
by

|

/o . . N1/ )

bi - 7(d — 2)6 Zl((d -t *])6 *])bi—i-jcde—j

<

for i € {0,...,d — 1} and b, = 1. Then the unique polynomial f from
part (a) is equal to S°% b2,

Proof. Let f € R[z] be a monic polynomial of degree d and let by, ..., by be
elements of R such that f =by+b1z+---+bg_12%"1 +bgz?. Then we have

de+d—2
df—eflg= > | D (B—ea)bacs | ="
k=0 0<a<d
0<p<de
a+pB=k+1
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So we see that there exists a unique monic polynomial f € R[z] of degree d
such that the degree of ¢'f — ef’g is lower than de — 1 if and only if we can
solve the system of equations

Z (B—ea)bacg =0k e{de—1,...,de+d—2}

0<a<d
0<p<de
a+B=k+1

uniquely for by, ...,bg_1. Substituting £ 4+ 1 = de + ¢, we get the equations

> (B—ea)bacsg =0|i€{0,...,d—1}
0<a<d
0<B<de
a+pB=de+i
Note that if 0 < o < d, 0 < 8 < de and a + 8 = de + i, then we have

a € {i,...,d} and § =de+i— a. So we have

d
Z (5 - ea)ba% = Z((d - a)e +i— a)bacde-‘ri—a
0<a<d a=1
0<B<de
a+pB=de+i

for all i € {0,...,d — 1}. Substituting o =i + j, we get the equations

S

—1

((d—i—j)e—j)b¢+jcde_j =0/2 € {0,...,d—1}

I
o

J
Since e,d — i € R*, we can take the summand j = 0 to the other side and
divide by —(d — i)e for each equation. Since ¢4 = 1, this gives us

U

1 & o .
bi:_(d—i)ej 1((d—z—.7)6—])bz‘+jcde—j i€{0,...,d—1}

So if we know b;41,...,bg, then we can solve the i-th equation uniquely for
b;. Therefore we can solve uniquely for by, ..., bs_1, because we know that
bg = 1. We see from the last set of equations that f satisfies the equation
from part (b). O

Recall that char(K) { e. If we in addition assume that char(K) 1 d!, then
we can apply the lemma with R = K to see that for each monic polynomial
g € K|z] of degree de, there is a unique monic polynomial f € KJz] of
degree d such that the degree of ¢’ f —ef’g is lower than de — 1. By applying
the lemma with R = Klcp,...,cq] and g = Z;lio cjz!, we see that the
coefficients of f are polynomials in the coefficients of g.
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Lemma 4.6. Let R be a commutative ring such that e € R*, let g € R|z]
be a monic polynomial of degree de and let f € K[z] be the unique monic
polynomial of degree d from Lemma 3.8 such that the degree of g — f€ is
lower than de — d. Then the degree of ¢'f — ef’g is lower than de — 1.

Proof. Take h = g — f€. Then we have
g f—eflg=(f+n)f—ef (f*+h)=h'f—efh
Therefore
deg(g'f —ef'g) = deg(h f —ef’'h) < deg(f) +deg(h) —1 < de—1
since deg(h) < de — d and deg(f) = d. O

By the lemma, we see that the b; from Lemma 3.8 and the b} from Lemma
4.5 are in fact equal. As a consequence, the polynomials in the coefficients
of g that give the coefficients of f are the same in both lemmas.

Lemma 4.7. Suppose that char(K) 1 (de)!. Let g € KJz] be a monic
polynomial of degree de. Let f € K|[z] be the unique monic polynomial of
degree d such that the degree of h = g — f¢ is lower than de — d. Then
h = 0 if and only if ¢'f —ef’g = 0. If h # 0, then we have d > 0 and
deg(g'f —ef'g) = deg(h) +d — 1.

Proof. We have
g'f—ef'g=(f+n)f—ef (f+h)=hf—efh

Soif h =0, then ¢'f —ef'g =0.
Suppose that h # 0. Then we have

0 < deg(h) < de—d
and hence d > 0. We have
—de < deg(h) —de < —d <0

and char(K) 1 (de)!. So we see that deg(h) — de # 0 in K. We know that
deg(h'f —ef'h) < deg(h) +d — 1. Let ¢ € K* be the leading coefficient of
h. Then the coefficient of /' f — ef'h at zdes(+d=1 oquals

Adeg(h) — deX = A(deg(h) — de) # 0.

So we see that deg(g'f — ef’'g) = deg(h'f — ef'h) = deg(h) +d — 1. In
particular, we see that if h # 0, then ¢'f —ef’g # 0. O
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Proof of Theorem 4.3. Note that whether f¢—\g = 0 holds for some A € K*
and whether some coefficient of ¢’ f —ef’g is zero does not change if we scale
f or g by some element of K*. So we may assume that both f and g are
monic. We see that there exist a A € K* such that f¢ = Ag if and only if
f€ =g, because both f and g are monic.

=(b) Suppose that f¢ = g, then we have ¢'f —ef'g = 0.

=(c) Suppose that ¢'f —ef’'g = 0. Then the degree of ¢'f — ef’g is lower
than max(0,d — 1).

=(a) Suppose that ¢’ f —ef’g has degree lower than max(0,d—1). Note that
the coefficient of ¢’ f —ef’g at z4¢+4e8(/)=1 equals de—e deg(f). We have
de + deg(f) — 1 > d — 1, so we see that de = edeg(f) mod char(K).
So since char(K) { e, we have deg(f) = d mod char(K). Hence the
degree of f equals d, because 0 < deg(f) < d and char(K) t (de)!. So
by Lemmas 4.5 and 4.7, we see that f¢ = g. 0

4.8. Let n € Z>; and i € {1,...,n} be integers. Recall that the map

0
Ox;

K[z, .z = Kz, .o 2]

sending a polynomial in K[x1,...,z,] to its derivative with respect to x; is
the unique K-linear map sending 1 to O sending x; to 1, sending x; to 0 for
all j # i and sending fg to faxg +g for all f,g € Klz1,...,,)].

4.9. Let g € V. be a homogeneous polynomial of degree de and let f € V,
be a homogeneous polynomial of degree d. Then

of
ox

is either zero or a homogeneous polynomial of degree de + d — 1. Let bg be
the coefficient of f at z% and let cge be the coefficient of g at x%¢. Then
we see that the coefficient of f 6g and egg; 9 at xdetd=1 both equal debgcge.-
Hence the polynomial

ff—g

99 3f
9z oz
is divisible by .
Using the correspondence between elements of V;, and polynomials in

K|z] of degree at most n for integers n € Z>(, Theorem 4.3 has the following
corollary.

Corollary 4.10. Suppose that char(K) t (de)!. Let g € Vg, be a non-zero
polynomial. Then the following are equivalent:

(a) we have [g] € Ty;
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(b) there exists a non-zero f € Vj such that i (%f — eg—ig) =0;

(c) there exists a non-zero f € V; such that the coefficients of

1 (0g of
y (axf - 6mg>

xdfl defQ’ ] xde+d72

at are all zero.

Y <

Proof. This corollary is an analogue of Theorem 4.3. O

Remark 4.11. Proposition 3.1 of [AC2] also gives a similar alternate char-
acterisation of the subset Ty of P(Vy) which is similar to 4.10

4.2 The projective variety of e-th powers as the
zero set of an ideal generated by determinants

4.12. Consider the bilinear map

w: Vg xVge — Viepda—2
1 (g af
(fig) = y(@x —eaxg)

For every g € Ve, the bilinear map w gives us the K-linear map

Va — Vietrd—2
1 [/ dg af
1o (o)

This gives us the K-linear map
li: Vae — Hompg (Va, Vaerd—2)
1 (09g of
o )

Corollary 4.10 tells us that that a non-zero polynomial g € Vy, is contained
in CTy = cone(Ty) if and only if £;(g) has a non-trivial kernel.

4.13. The map ¢4 is K-linear and hence polynomial. The image of CTy
is contained in the subset of Homg (Vy, Vietq—2) consisting of all K-linear
maps Vg — Vjerq—o which have rank at most d. Denote this subset of
Hompg (Vy, Vgerd—2) by Lg. Recall from Proposition 2.48 that L, is the
affine variety inside A(Homg (Vy, Vietrd—2)) corresponding to the prime ideal
generated by

A (HomK (AT, AV g 9)" )
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where
Qq: HOHIK(Vd, Vde+d—2) — HomK(AdHVd, Ad+1Vde+d_2)

is the homogeneous polynomial map of degree d + 1 that sends a K-linear
map £: Vg — Vjerq_o to A%H1L,

4.14. The map
(I)d: CTd — Ld
1 (g af
> == =f—e==
o (175 (5 -ai)
is a restriction of the polynomial map ¢4 and therefore ®; is a morphism of
affine varieties. So we get a commutative diagram

G

P(Hompg (Vy, Vieta—2)) P(Vae)

| |

K[Lg] K|[CTY]

5

where the vertical maps are the projection maps. The kernel of the projec-
tion map on the left is the ideal generated by

ay (HomK(AdHVd, Ad+1Vde+d—2)X) :

Since the diagram commutes, we see that the image of this ideal under £
is contained in the kernel I; of the projection map on the right. Since ¢4
is injective, we know that ¢ is surjective and hence £ is also surjective.
Therefore the image of the ideal generated by

o (HomK (AT, ATV g 0)> )

under £} is an ideal of P(Vg.). Denote this ideal by Jg.
Conjecture 1. The ideal J; C I; of P(Vye) is equal to 1.

Remark 4.15. If Conjecture 1 holds, then the ideal 1; is generated by its
degree d + 1 part. Conjecture 5.1 of [AC2| also states that the ideal I
is generated by its degree d 4+ 1 part together with a statement similar to
Conjecture 1.

4.16. For each integer n € Z>q, choose (2", 2" 1y, ..., xy" ! y") as a basis
of V,,. Let n,m € Zx>q be integers. Then a K-linear map ¢: V,, — Vp,
corresponds with the m x n matrix (ag;)r; such that

(i) = 3 aga b
k=0
for all i € {0,...,n}.
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4.17. Let g € Vg be a polynomial and consider the K-linear map
bi(g): Va — Vde+d 2

Foos (G- eta).

Let i € {0,...,d} and j € {0,...,de} be integers. Take f = 2%y and
g = z% JyJ. Then we have

= ( f—e g ) = (ie_j)xdeerfifjflyiﬂfl'

So we see that if
g =coy™ + croy® Tt + -+ cge12% Ty + cgea®,

then we have
d 7 2 de+d i—j—1, i+j—1
gd E Cde— ] I Yy 7

for all i € {0,...,d}. So in this case, the matrix

—Cde—1 €Cde 0 cee e .. 0
—2¢4e—o (€ —1)Cge—1 2€eCqe 0
0
(d — 1)ecqe 0
: decge
—decy
0 —(d — 1)ecy
0 —(d —2)ecy
: 0
0 0 0 ... 0 —ecy 1

is the matrix corresponding to the K-linear map £4(g).

Let (co, ..., cqe) be the dual basis of (y%, zy®~1,... z% 1y, %) and let
M be (de+d—1) x (d+1) the matrix over P(Vy.) written above. Then we
see that by Corollary 4.10 a polynomial g € A(Vy) is an element of CTy if
and only if ¢ is contained in the zero set of the ideal J; of P(Vy.) generated
the determinants of the (d + 1) x (d + 1) submatrices of M.
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4.18. Note that if a polynomial g € V. is contained in the zero set of
the ideal J; of P(Vge) generated the determinants of the (d 4+ 1) x (d + 1)
submatrices of M that do not contain any of the bottom d — 1 rows, then ¢
is an element of C'Ty by condition (c) of Corollary 4.10.

Example 4.19. For d = 0 or e = 1, Conjecture 1 is trivially true. Using
the matrix above and one of the techniques from section 3.3, we can check
Conjecture 1 for instances of d > 0 and e > 1. We will assume in this
example that K = C. For d = 1 and e € {2,...,10}, for d = 2 and
ee{l,...,9}, ford =3 and e € {2,3,4} and for (d,e) = (4,2), we find that
the conjecture holds. In the cases where d > 1, we also find that J; and
Jq = Iz are not equal.

We have the ideals I, Jg and Jj; of P(Vg.) which have the same zero
set in A(Vg). So we have le C J; C I; and radical ideals of J; and
le are both equal to the prime ideal I;. From the example, we see that
the equality le = I; does not hold in general. It is however true that

the dehomogenisations of Iz, J; and J; with respect to ¢4 are equal if
char(K) 1 (de)!. This is what we are going to prove next.

4.20. Let A be a K-algebra and let NV be an n x m matrix over A where
n,m € Zxq are integers. Assume that n > m. Let V' be the vector subspace
of A spanned by the determinants of all m x m submatrices of N. Now
suppose that we multiply a row or column of N by a non-zero constant
A € K*. Then all determinants of submatrices of N that contain that row
or column get multiplied with A. So we see that the vector space V' does not
change. One can check that if we add a multiple of a row or column of N to
another row or column of N, then the vector space V also does not change.

4.21. Assume that char(K) 1 (de)!. Recall that the ideal J; is generated
by the determinants of the submatrices of maximal size of M that do not
contain any of the bottom d — 1 rows. We now want to consider the de-
homogenisation of J; with respect to cg.. This dehomogenisation is equal
to the ideal of K[My.| = P(kercg.) generated by the determinants of the
(d+1) x (d+ 1) submatrices of the matrix

—Cde—1 €Cde 0 0
—2¢de—2 (e —1)cde—1 2ecqe
0
decge
—decy (e+1—de)ey (2e+2—de)ca ... ... ... decg
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where we replace cge by 1. If we replace ¢4, by 1, we get a matrix of the
form

—Cde—1 e 0 0
—2Cge—2 ®Cge—1 2e
®Cde—1

0

de

®Cde—1

—decy o Y ecy

where we denote all elements of K also by e. Now we are going to apply
row and column operations to this matrix. Recall that this does not change
the vector subspace spanned by determinants of maximal submatrices of this
matrix. So it also does not change the ideal generated by these determinants.

We start by multiplying the k-th row by 1/k for all k € {1,...,de}, by
multiplying the first column by —1 and by multiplying the other columns
by 1/e. This gives us a matrix of the form

Cde—1 1 0 0
Cde—2 ®Cde—1 1
®Cde—1
0
1
®Cle—1
co oC| 1)) oCy

Next we add multiples of the first row to all rows below it in a way such
that the second column becomes (1,0,...,0)?. This gives us a matrix of the
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form

Cde—1 1 0 0
Cde—2 — fae—1 0 1 '
: D eCge1
0
1
®Cde—1
co — fo 0 eco ocy
where for each i € {0, ...,de—2} the polynomial f; € P(ker cg.) is a polyno-
mial in the variables ¢;41,...,cq.—1. We repeat this for the second till d-th
row to get a matrix of the form

Cde—1 10 ... ... 0

Cde—2 — Yde—2 0

Cco — 9o o ... ... ... 0

where for each i € {0,...,de — 2} the polynomial g; is a polynomial in the
variables ¢;11,...,c4e—1. Lastly, for the rows d + 1 till de + d — 1, we add a
multiple of the row to the rows below it to get a matrix of the form

Qo1 1 0 ... ... 0

Cde—2 — hde—? 0

co — hg o ... ... ... 0

where for each ¢ € {0,...,de — 2} the polynomial h; is a polynomial in the
variables cjge_d, . .., Cde—1-
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Now consider the determinants of the (d + 1) x (d + 1) submatrices of
this matrix. If such a submatrix does not contain the first d rows, then one
of its columns is zero and hence its determinant is zero. So the non-zero
determinants we get are up to a minus sign

{Cl' - hl|Z S {0, oo, de — d}}
Recall that this set of determinants is a subset of the prime ideal

(90, - -, Qde—d)

of P(ker cq4e) corresponding to the affine variety Sy of de-monic polynomials
g € Vg that are the e-th power of some d-monic polynomial in V. For each
i € {0,...,de — d}, the polynomial ¢; is is the difference of ¢; and some
polynomial h;-r in the variables cge_g, - - ., C4e—1. For each i € {0,...,de—d},

we see that h; — hj is contained in (qo, . .., qde—d) N K[Cde—ds - - - Cde—1] = 0.
Hence ¢; — h; = ¢; for all i € {0, ..., de — d}.

4.3 The Hilbert function of the ideals associated
to the projective varieties of e-th powers

Since pow, is a homogeneous polynomial map of degree e, we see that for
each 7 € Z>¢ we get a K-linear map

POW () Sym*(V¢) — Sym“ (V).

If Conjecture 1 holds, then I; is generated by homogeneous polynomials of
degree d + 1 and so the degree d part of I; must be zero. Recall that I is
the kernel of the homomorphism of K-algebras pow): P(Vg.) — P(Vy). So
we can weaken Conjecture 1 in the following way.

Conjecture 2. The map pow) (@ Symd(Vdi) — Symde(VdX) is injective.

4.22. Since pow}; is a homomorphism of K-algebras, we see that from Con-
jecture 2 easily follows that

POWy () Sym*(V¢) — Sym" (V)

is injective for all 7 < d. Recall that for an integer n € Z>( and a vector
space V over K of dimension m, the vector space Sym”™ (V') has dimension

n+m-—1
m—1

over K. So Sym‘(V,) has dimension

1+ de
de
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over K and Sym’ (V) has dimension

te+d
d
over K. Note that these two binomials are equal when ¢ = d. So if the

K-linear map pow} Sym?(V¢) — Sym?(V,)) is injective as Conjecture
2 states, then it is also surjective.

4.23. Let (co, ..., cqge) be the basis of V5 dual to (y%, zyde=1,... 29%) and
let (bo, ..., bq) be the basis of V;* dual to (% zyd=t ..., 2%). Let f € V; be
a polynomial and take g = f¢. Then we have

F=bo(fy? +br(Hzy™ + -+ ba(f)a?

and

de
9= > ()i () [ 2ty
k=0 | 0<i1,....ie<d
i1+ tie=k
So we see for k € {0,...,de} that
Y b, 00,
0<iy,....ie<d

i1+-+ie=k

is the polynomial on Vj associated to the polynomial function c;opow,. This
determines the map pow, 0k Vs — Sym®(V;*) and therefore it determines
the whole map pow);. Recall from 2.10 that we have

POWy (1) (1 © -+ © @x) = powy (4y(p1) © -+ © powy (1) (¢k)

for all k¥ € Z>1 and ¢1,...,¢1 € Vdi, because pow}; is the extension of
powy gy to P(Vge).

Theorem 4.24. Let k € Z>4 be an integer and suppose that the K-linear
map
POW (j : Sym* (VX)) — Sym"™® (V)

is surjective. Then the map
POW (1) SymFH (V) — Sym ke ()

is also surjective.
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Proof. Consider the commuting diagram

pOW;«k) ® powsm)

Symk(de) @V Symke(VdX) ® Sym* (V)

T

Sym* (V) Sym*+De(v)

*

POV, (k+1)

where the vertical maps come from the bilinear multiplication maps on
P(Vge) and P(Vy). Note that pow?, (k1) is surjective if £ is surjective.

We have the basis (bo, ..., bq) for V. This gives us a basis
(biy ©-- O b, [0< iy < -+ <y < d)

for Sym” (V). We order this basis by saying that b;, ©---©®b;, < bj; ®---©
bj, if (i1,...,in) # (j1,--.,jn) and we have ij, < ji where k is the smallest
integer such that iy # ji. We say that b;; © --- © b;, = bj; ©--- O b, if
biy ©---©@b;, <bj; ©®---Obj, or by ®---©b;, =bj ©®---©bj,. This gives
us a totally ordered basis for Sym" (V).

Let i € {0,...,de} and consider the element

powg(c;) = powy (1y(ci) = Z biy © -+ ©b;,
0<in,eie<d
11+ Fie=1
of Sym®(V;). Take q € {0,...,d} and r € {0,...,e—1} such that i = ge+r.
Then the <-maximal element of

{bil@”-Qbie i i, =

0<i1,...,5.<d }

is b7 ® bq®+’"1. In particular, for all i € {0,...,d} we see that

powjl,(l)@ie) — b
is a linear combination of basis elements of Sym®(V,) that are smaller than
bye.
2

We want to prove that £ is surjective. So it suffices to prove that every
element of the basis

(biy @+ @iy [0 iy <o - <dgyg)e < d)

of Sym(k+1)e(VdX) is contained in the image of . We will prove this using
induction on this totally ordered set.

Let 0 < 77 < --- < i(k+1)e < d and suppose that all basis elements
smaller than b;, ©® --- © bi(k t1ye are contained in the image of £. We have
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(k+1)e > (d+ 1)e. So we see that there must be some i € {0,...,d} such
that #{jli; =i} > e. We have b;; ©®---©b = bP° © t for some

U(kt1)e

te{bil@"'@bike|0§i1§--~§ike§d}.

Since POWy () 18 surjective, we have ¢ = powz’(k)(s) for some s € Symk(VdX).
So we have

bil (OEERNO) bi(k+l)e = <pOWZ’(1) (Cie) — bl@e> ® t + pOWZ’(l) (Cie) ® pOW;Z(k.)(S)
We know that pow (1)(cie) —bPe
of Sym®(V,*) that are smaller than by°. Therefore

is a linear combination of basis elements

(POWZ,u)(%) - b?) ot

is a linear combination of basis elements of Sym(k+1)e(VdX) that are smaller
than b Ot =1b;; © - ©b . We also know that

i(k+1)e
powy (1y(Cie) © Powg 1y (s) = (s @ cie).

So both are contained in the image of . Hence b;; ®---©b; (k4 1)e is contained
in the image of 4. O

Remark 4.25. For d = 2 and K = C, the surjectivity of the maps POWZ,(k)
for k > 2 also follows from Theorem 1.1 of [AC1], because the maps from
that theorem can be obtained as the composition of the maps pow27(k) with
Howe’s isomorphisms from Section 8.2.

Corollary 4.26. Assume that Conjecture 2 holds. Then the dimension of
the degree k part of I; equals zero for k£ < d and equals

(-5

Proof. If Conjecture 2 holds, then the map pow’c"l( ) is injective for all ¢ < d

i
and surjective for all ¢ > d. O

for k > d.

4.4 The relation between conjectures 1 and 2

The second conjecture is a weakened version of the first conjecture, but is
some cases it is not strictly weaker. If we prove Conjecture 2, we know the
Hilbert function of the ideal I;. So to prove or disprove the first conjecture,
it then suffices to compute the Hilbert function of the ideal J;. We will do
just that for d = 1 in this section. Assume that the characteristic of K does
not divide e!.
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Lemma 4.27. The dimension of the degree k part of J; equals zero for

k <1 and is at least
k
< “’) ~ (ke +1)

e

for k > 1.

Proof. The ideal Jj is generated by the determinants of the 2 x 2 submatrices
of the matrix

<—Ce1 —2Ce_2 o (=6 —eco>

ece (e—1)ce—1 ... 2co c1

and therefore the dimensions of the degree zero and one parts of the ideal
Jp are zero. Note that the degree k part of P(V,) equals

k+e
K
So it suffices to prove that for each k > 1 the degree k part of the K-algebra
P(V.)/J1 has dimension at most ie + 1.
Let k € Z>1 be an integer. Then the degree k part of P(V.)/J; is

spanned by ¢ - - - cg¢ for all (ag, ..., o) € Zejol such that ag+---+ae = 0.
Note that J; is generated by the elements

Z(] —€— 1)01'03;1 — ](Z —e— 1)61',16]‘

for all 1 < ¢ < j < e. Since char(K) t e!, we see that i, j, (i — e — 1)
and (j —e — 1) are non-zero for all 1 < i < j < e. So we see that for all
1 <i< j <e, there exists a A\ € K* such that c;cj_1 = Ac;_1¢; in P(Ve)/J1.
It follows that for all (o, ..., ), (Bo,..-,0) € Zg‘gl such that

Z hay, = Z hBh?
h=0 h=0

there exists a A € K* such that ¢ - - - c2* = )\cgo o in P(V,)/Jy. So the
dimension of the degree k part of P(V,.)/J; is bounded from above by the

size of
- ag,...,ae€Z>0

h—0 0 e —

Let ag,...,a € Z>q be integers such that ap + - - -+ a. = k. Then we have
e e
0< Zhah < eZah = ke
h=0 h=0

Hence the degree k part of P(V.)/J; has dimension at most ke 4 1. O
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Corollary 4.28. If Conjecture 2 holds for d = 1, then Conjecture 1 holds
for d = 1.

Proof. The result follows by comparing the dimensions of the degree i parts
of the ideals J; and I; for all integers i € Z>g. ]
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Chapter 5

Bimodules and commutants

In this chapter, let K be an algebraically closed field.

To use Schur-Weyl duality, we need the Double Commutant Theorem.
So in this chapter, we prove this theorem.

5.1 Modules

We will assume knowledge about modules over a ring and semisimple mod-
ules comparable to the first three paragraphs of chapter III and the first two
paragraphs of chapter XVII of [La]. Let A be a K-algebra.

5.1. Let V be an A-module. Then the composition of the homomorphism
of rings t: K — A coming from the K-algebra and the homomorphism of
rings A — Endz(V) is a homomorphism of rings K — Endz(V). This
homomorphism gives V' the structure of a vector space over K such that the
map

V -V

Vv = a-v

is K-linear for all a € A, because each element of the image of ¢ commutes
with every element of A.

Let V,W be A-modules and consider V' and W as vector spaces over K
using the induced structure from A. Let £: V — W be an A-linear map.
Then we have

LN -v) =L((N)-v) =L(A) - L(v) = X L(v)

for all A € K and v € V. Hence the map £: V — W is K-linear.
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Lemma 5.2 (Schur’s Lemma). Let V, W be simple A-modules. Then any
non-zero A-linear map V' — W is an isomorphism. The map

K — Endy(V)
A = Aidy

is an isomorphism of K-algebras.

Proof. Let £: V — W be a non-zero A-linear map. Then the image of /¢ is
a non-zero A-invariant subspace of W. So since W is simple, we see that /¢
is surjective. The kernel of ¢ is an A-invariant subspace of V which is not
equal to V. So since V is simple, we see that ¢ is injective. Hence ¢ is an
isomorphism. The map

K — Enda(V)
A > Aidy

is injective, because V' is not zero.

Let £: V — V be an A-linear endomorphism. Then ¢ is also a K-linear
map. Since K is algebraically closed, we know that ¢ has an eigenvalue
A € K. Note that £ — Aidy € Ends(V) is not an isomorphism. Hence
¢ — X\idy is zero. So every element of End4 (V') is of the form \idy for some
AeK. O

A=Pnm;

iel

Proposition 5.3. Let

be a decomposition of the A-module A into a sum of simple submodules.
Then every A-module is isomorphic to a direct sum of a family of members
of the family (M;)ier.

Proof. Let W be an A-module and let (w;);cs be a basis of W over K. The

the map
% @A - W
jeJ

(a); = > aj-w,

JjeJ
is a surjective homomorphism of A-modules. For all j € J and i € I, let
M;; be M;. Then we have

D1-DD s

jeJ jeJ iel
So we see that
W=D DuB)
jeJ i€l
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is a decomposition of W into submodules. Since the A-modules B;; are
simple, the A-modules ¢(B;;) are zero or simple. When ¢(B;;) is simple,
the map /|, , is an isomorphism of A-modules. So we see that W isomorphic
to a direct sum of a family of members of the family (M;);e;s. O

Corollary 5.4. If the ring A is semisimple, then each A-module is semisim-
ple and each simple A-module is isomorphic to a submodule of A.

Proof. Suppose that the ring A is semisimple. Then the A-module A has a
decomposition into simple submodules. So we see that every A-module is
semisimple by the previous theorem. The theorem also tells us that each
simple A-module is isomorphic to a submodule of A. O

For each positive integer n € Z~(, denote the K-algebra consisting of all
n X n matrices over K by M, (K).

Example 5.5. Let n € Z~g be a positive integer and let A be the K-
algebra M, (K). Then the vector space K" naturally has the structure of
an A-module. Let V be a non-zero submodule of K™ and let v € V be a
non-zero element. For each element w € K™, there exists a matrix M € A
such that Av = w. Hence V = K". So we see that the A-module K" is
simple.

Let j € {1,...,n} be an integer. Denote the subspace of M, (K) con-
sisting of all n x n matrices whose entries outside the j-th column are
zero by M,(K);. Then M,(K); is a submodule of M, (K). Then map
M,(K); — K" sending a matrix to its j-th column is an isomorphism of
A-modules. Therefore

A= My (K);
j=1

is a decomposition of the A-module A into simple submodules. We see that
the ring A is semisimple and that every simple A-modules is isomorphic to
K™

Example 5.6. Let ni,...,ns € Z~o be positive integers and let A be the
K-algebra
M, (K) x - x M, (K).

Let i € {1,...,s} be an integer. Then the homomorphism of rings

A — Endg (Mp,(K))
(Ml,...,MS) — (MHMlM)

gives My, (K) the structure of an A-module. Let ¢;: M,,(K) — A be the
homomorphism of A-modules sending a matrix M to the s-tuple

(0,...,0,M,0,...,0)
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where the matrix M is in the i-th place. Then we see that
A= P ud,,(K))
i=1

is a decomposition of the A-module A into submodules.
The homomorphism of rings

A — Endz(Kni)
(Ml,...,MS) — (’UF—)MZ‘U)

gives the abelian group K™ the structure of a simple A-module. For each
integer j € {1,...,n;}, the subspace M, (K); of M,,(K) is a submodule of
M,,(K). The map M,,(K); — K™ sending a matrix to its j-th column is
an isomorphism of A-modules. So we see that

s n,

A=PHEP K™

i=1 j=1

is a decomposition of A into a direct sum of simple A-modules. Hence
the ring A is semisimple and every simple A-module W there is an integer
i€ {1,...,s} such that W is isomorphic to the A-module K™ such that

(My,...,Ms)-v= Myv
for all (Mj,...,Ms) € Aand v e K™.

Remark 5.7. Let i,i’ € {1,..., s} be distinct integers. Then the A-modules
K™ and K™ constructed above are not isomorphic as A-modules, even
when n; = ny, because the actions of A on these abelian groups are different.

Theorem 5.8 (Artin-Wedderburn). If the K-algebra A is finite dimensional
over K, then the ring A is semisimple if and only if A is isomorphic to

My, (K) x - x M, (K)
as K-algebra for some positive integers ni,...,ns € Zsg.
Proof. The previous example show that the ring

My, (K) x - x M, (K)

is semisimple for all positive integers nq,...,ns € Z~g. For the other direc-
tion, see Proposition 5.2.6 of [Co]. O

Let I be an ideal of the K-algebra A and let 7: A — A/I be the projec-
tion map.
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5.9. Let V be an A/I-module. Then the composition A — Endz(V) of
the associated homomorphism of rings A/l — Endz (V') with 7 gives V' the
structure of an A-module such that a-v=0foralla el andv e V.

Let W be an A-module such that a-w = 0 for all a € I and w € W.
Then the homomorphism of rings A — Endz (W) factors through .

We see that the A/I-modules correspond one to one with the A-modules
such that I is contained in the kernel of the associated homomorphism of
rings. Let V,W be A/I-modules and let ¢: V' — W be a map. Then ¢ is
A/I-linear if and only if ¢ is A-linear. We see that the correspondence is a
functor.

Let C be the full subcategory of A-Mod consisting of all A-modules such
that I is contained in the kernel of the associated homomorphism of rings.

Theorem 5.10. The additive covariant functor A/I-Mod — C sending an
A/I-module V to V with its induced A-modules structure and sending an
A/I-linear map to itself is invertible.

Proof. This theorem is a reformulation of 5.9. O

Let V be an A/I-module. Then a subset W of V is A/I-invariant if
and only if it is A-invariant. So we see that V is a simple A/I-module if
and only if V' is a simple A-module. We also see that V' is a semisimple
A/I-module if and only if V' is a semisimple A-module. The gives us the
following corollary.

Corollary 5.11. Suppose that the ring A is semisimple. Then the ring A/I
is also semisimple.

Proof. Suppose that the ring A is semisimple. Then every A/I-module has
a decomposition as an A-module into a direct sum of a family of simple
A-modules. This decomposition is also a decomposition as an A/I-module
into a direct sum of a family of simple A/I-modules. O

5.2 Bimodules

Definition 5.12. Let M be an abelian group. Then we say that homo-
morphisms of rings n: R — Endz(M) and 0: S — Endz(M) commute if
n(r)o0B(s) =0(s)on(r) for all r € R and s € S.

Definition 5.13. Let R, S be rings. Define an (R, S)-bimodule to be an
abelian group M that comes with with a pair of commuting homomorphisms
of rings R — Endyz(M) and S — Endz(M).

Let M, N be (R, S)-bimodules. Then we call a map M — N an (R, S)-
linear map is it is both R-linear and S-linear.
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Remark 5.14. Similar to the category R-Mody, one can check that the
category (R, S)-biMod of (R, S)-bimodules is abelian.

Let A1, As be K-algebras.

Definition 5.15. Define (A;, As)-biMody to be the full subcategory of the
category (Ai, Az)-biMod consisting of all (A1, A2)-bimodules V' such that

the diagram
K Ay

]

Ay — Endz(V)

comimutes.

5.16. Let V be an (A;, Az)-bimodule. Then V is both an Aj-module and
an Ag-module. So V inherits the structure of a vector space over K from
both A; and Az. The (A1, A2)-bimodule V' is an object of (A1, A2)-biMod
precisely when these induced vector spaces structure are the same.

Suppose that V' is an object of (A1, A2)-biMod . Let n: Ay — Endz(V)
and 0: Ay — Endz(V) be the associated homomorphisms of rings. Then
n(a1) and 6(az) are both K-linear maps V' — V by 5.1 for all a; € A and
as € As. The map

A1><A2 — EDdK(V)
(a1,a2) = mn(ar)ob(az)

is K-bilinear. Note that the corresponding K-linear map

Al ®kx Ay — Endg(V)
a1 ®ay = 7(a1)ob(az)

is a homomorphism of K-algebras, because n and # commute. The com-
position A1 ®x As — Endz(V) of this map with the inclusion map from
Endg (V) to Endz(V) is a homomorphism of rings. This gives V' the struc-
ture of an (A; @k Az)-module.

Let W be an (A; ® x A2)-module. Then the homomorphisms of rings
A; — A; ®k As sending a1 to a1 ® 1 and Ay — A; ®x Ao sending as
to 1 ® ag induce commuting homomorphism of rings A; — Endz(W) and
As — Endz(W). This gives W the structure of an (Aj, Az)-bimodule.

We see that the objects of (A1, A2)-biMod correspond one to one with
the (As ®x Ag)-modules.

Let V,W be (A1 ® x Ag)-modules and let £: V' — W be a map. Then / is
(A] ®k Ag)-linear if and only if ¢ is (Aj, Ag)-linear. So the correspondence
between the objects of (A;, As)-biMod ;- and (A; ®x Az)-Mod is a functor.
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Theorem 5.17. The additive covariant functor
(Al (4578 Ag) -Mod — (Al, Ag) -biMOdK

sending an A; ® Ao-module V to V with its associated structure of an
(A1, Az)-bimodule and sending an (A; ® g Az)-linear map to itself is invert-
ible.

Proof. This theorem is a reformulation of 5.16. O

5.18. Let V be an A;-module and let W be an As-module. View V and W
as vector spaces over K. Then the map

Al x Ay — Endg(V @ W)
(a1,a2) — (v@wr (a1-v) R (az - w))

is K-bilinear. The corresponding K-linear map A; ®x Az — Endg (Vg W)
is a homomorphism of K-algebras. So the composition of this map with the
inclusion map

EndK(V QK W) — Endz(v QK W)

is a homomorphism of rings. This homomorphism gives V ® x W the struc-
ture of an (A; ®x Ag)-module.

5.19. Let V be an (A;, Az)-bimodule. The homomorphisms A; — Endz(V)
and Ay — Endz (V') associated to V' commute. So the map

Vv —» V

v o= ap-v
is Ao-linear for all a; € Ay and the map

V -V

Vo ag v
is Aj-linear for all as € As. The maps

n: Ay — Enda,(V)

a — (v—=ag-v)
and

0: Ay — Enda, (V)

az — (v ag-v)

are homomorphisms of K-algebras.
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Let W be an Aj-module. Then the map

A2 — EndZ (I‘IOIIIA1 (VV, V))
az — (L—6(ag)o¥)
is a homomorphism of rings. This gives Homy, (W, V) the structure of an

As-module. Let U be an As-module. Then Homy, (U, V') similarly gets the
structure of an A;-module using the map 7.

5.3 Commutants

Let V be a vector space over K.

Definition 5.20. Let S be a subset of Endg (V). Define the commu-
tant S’ of S to be the subset {¢ € Endg (V)| ol =/¢o/l for all £ € S} of
Endg (V).

Examples 5.21. Let V be the vector space K3 and identify the K-algebra
EndK(V) with Mg(K)

(i) Let T be the subalgebra M3(K) consisting of all multiples of the iden-
tity matrix. Then the commutant 7" of T equals M3(K). The com-
mutant 7" of T" equals T', because the multiples of the identity matrix
are the only matrices that commute with all matrices of M3 (K).

(ii) Let T be the subalgebra of M3(K) consisting of the matrices

o O >
o > O
T o o

for all A\, u € K. Then one can check that 7" consists of the matrices

b 0
d 0
0 e

S o

for all a,b,c,d,e € K. Since T C T’, we have (T") € T’'. One can
check that 7" = T.

(iii) Let T" be the subalgebra of M3(K) consisting of the matrices

0
A
0

o O >
T O O

77



for all A\, u € K. Then one can check that 7" consists of the matrices

O o Q
o O O

b
a
0

for all a,b,c € K. Since T C T’, we have (T") C T’. One can check
that 7" = T".

Let T be a subalgebra of Endg (V). Then V naturally has the structure
of a T-module. The abelian group V inherits the structure of a vector space
over K from T. Note that this vector space structure is the same as the
vector space structure that V already had. By 5.1, we know that any T-
linear endomorphism of V' is also K-linear. So we see that the commutant
T'" of T equals Endp(V). In particular, we see that 17" is a subalgebra
of Endg (V). So V also has the structure of a T"-module. By definition of
the commutant, we see that the homomorphisms of rings 7" — Endz (V') and
T" — Endgz(V) commute. This gives V the structure of a (T'®@x T")-module.

Theorem 5.22 (Double Commutant Theorem). Suppose that the vector
space V is finite dimensional over K and the ring T is semisimple. Then the
ring 7" is semisimple and 7" = T. There exists a complete family (W;);cs
of simple T-modules. For each i € J, the map

T/ — EndZ (HOIHT(WZ‘, V))
U — (Ll ol)

gives Homp(W;, V) the structure of a 7’-module. The family
(Homp (W3, V))ies
is a complete family of simple 7’-modules and

V = P W; @k Homp(W;, V)
e

is a decomposition of V' as a (T’ @k T")-module.

Proof. Since V is finite dimensional over K, we see that Endg (V) is finite
dimensional over K and therefore T is finite dimensional over K. So by the
Artin-Wedderburn Theorem, we know that

T2 My, (K)x-x M, (K)

as K-algebras for some positive integers ni,...,ns € Z~g. Let J be the set
{1,...,s} and for each integer i € J, let W; be the simple T-module K™
from Example 5.6. Then (W;);cs is a complete family of simple T-modules.
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Since the ring T is semisimple, we know that the T-module V is semisim-

ple. So we have
V= wr
e
for some integers e, ...,es € Z>o. If e; = 0 for some 7 € J, then we see that
the ideal
0x -+ x0XMp,(K)x0x---x0

of T is contained in the kernel of the homomorphism of rings 7" — Endyz (V).
So since this homomorphism is injective, we have e; > 0 for all i € J.
We have T" = Endp (V). So using Schur’s Lemma, we see that

T' = Endyp (EB WfBe") = H Endp (W) = H M., (K).

ieJ ieJ icJ

So by the Artin-Wedderburn Theorem, we see that 7" is semisimple. For
each integer ¢ € J, let Homy (W;, V') have the structure of a 7’-module as in
5.19. Then we have ¢/ - ¢ = {' o { for all ¢ € T and ¢ € Homp(W;, V). Using
Schur’s Lemma, we see that

Homy | Wi, W, | 2= Homg (W;, W) = K*.
jedJ
The identification of T" with [ [, . ; M, (K) and Hom7(W;, V') with K shows
that (Homq(W;,V))ics is a complete family of simple 7”-modules by Ex-

ample 5.6.
For each integer ¢ € J, the K-bilinear map

WZ'XHOHIT(W»L',V) - V
(v,0) = £(v)

gives us a K-linear map W; ® x Homp(W;, V) — V. Let this tensor product
have the structure of and (7T ® g T”)-module as in 5.18. Then one can check
that this K-linear map W; ® x Homp(W;, V) — V is also (T @k T")-linear.
Together these (T ® g T")-linear maps form a (T ®x T")-linear map

P w; @ Homp(W;, V) = V
ieJ
Using Schur’s Lemma, one can check that this map is an isomorphism of
vector spaces and hence an isomorphism of (7' @ g T”)-modules.
Note that
V = 5 Homg (W;, V) dime (W)
1eJ
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is a decomposition of V into simple T’-modules. So since dimg(W;) = n;
for all i € {1,..., s}, we see that 7" = Endy (V) is isomorphic to

T2 My, (K)x---x M, (K)
by Schur’s Lemma. Since T C T” we see that we must have T'=T". [

Corollary 5.23. Let Aj, A be K-algebras and let V be an object of
(A1, A2)-biMody. Suppose that V is finite dimensional over K, the K-
algebra As is semisimple and the homomorphisms of K-algebras n and 6
from 5.19 are surjective. Let (W;);cr be a complete family of simple As-
modules. Then (Homa, (W;, V));er is a family of Aj-modules, each member
of which is simple or zero, such that

V = P W; @ Homa,(W;, V)
el

is a decomposition of V' as (A; ®x Az)-module.

Proof. Let T be the subalgebra Endg, (V) = im() of Endg (V). The K-
linear endomorphisms V' — V sending v to as - v and sending v to 6(az) - v
are equal for all as € As. So we see that a map V — V is As-linear if
and only if it is T-linear. Therefore the commutant 7" = Endp (V) of T is
equal to End 4, (V). Note that T is a quotient of Ay, because 6 is surjective.
So T is semisimple since Ao is semisimple and by Theorem 5.10 the simple
T-modules correspond to a subset of the simple As-modules.

Let (W;);er be a complete family of simple As-modules. For each element
i € I, give Hom 4, (W;, V) the structure of an A;-module as in 5.19. Then
(Homa, (W5, V))ier is a family of Aj-modules, each member of which is
simple or zero, such that

V=W, @Homa,(W;, V)
el

is a decomposition of V' as (A; ® x Az)-module by the theorem. O]
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Chapter 6

Representations and
Schur-Weyl duality

In this chapter, let K be an algebraically closed field.

In this chapter, we define representations of a group, we show that the
vector spaces V,, for n € Z>( can be given the structure of a representa-
tion of GLy(K) such that the homomorphism of K-algebras pow} also is a
homomorphism of representations of GLo(K) for all integers d € Z>o and
e € Z>1 and we introduce Schur-Weyl duality.

6.1 Representations

Let G be a group.

Definition 6.1. A representation of GG is a vector space V over K that
comes with a homomorphism G — GL(V). Let V be a representation of G
and let p: G — GL(V) be the associated homomorphism. Then we denote
p(g)(v) by g-v for all g € G and v € V. We call the representation V finite
dimensional if the vector space V is finite dimensional over K.

Examples 6.2. Let V' be a vector space over K.

(i) The homomorphism G — GL(V) sending every element of G to idy
gives V the structure of a representation of G. We call this represen-
tation of G on V trivial.

(ii) The identity map GL(V) — GL(V) gives V the structure of a repre-
sentation of GL(V'). We call this representation the standard repre-
sentation of GL(V).

(iii) Let n € Z>o be a non-negative integer. Then the homomorphism

S, — GL(V®")
o (v1®"'®vn*_>va*1(1)®"'®Uo*1(n))
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from 2.7 gives V®" the structure of a representation of S,,.

Definition 6.3. Let V,W be representations of G. A homomorphism of
representations of G is a K-linear map ¢: V — W such that

Ug-v)=g-L(v)

for all g € G and v € V. We denote the vector space over K consisting of
all homomorphisms V' — W of representations by Homg(V, W). We denote
the K-algebra of endomorphisms V' — V of representation by Endg (V).

Example 6.4. Let V be a representation of G. Then Aidy: V — V is an
endomorphism of representation for each A € K.

Definition 6.5. Define G -Rep to be the category of representations of G.

6.6. Let H be a subgroup of G. For each representation V of GG, denote the

subspace
{veVl]g-(v)=vforallge H}

of V by V.
Let £: V — W be a homomorphism of representations of G. Then we
see that

g-(v) ={(g-v) =L(v)
for all v € VH and g € H. So we see that ¢ restricts to a K-linear map
v wh
This gives us a functor (—)7: G-Rep — Vect-.

Definition 6.7. Define the group ring of G to be the K-algebra K|[G] that
has G as a basis over K and where the product of g1 and g2 in K[G] is g192
for all ¢1,¢92 € G.

Remark 6.8. The group ring K[G] is a commutative K-algebra if and only
if the group G is abelian.

6.9. Let V be a representation of G. Then the K-linear map
K[G] — Endz(V)
g — pv(g)

is a homomorphism of rings. This homomorphism gives V' the structure of
a K[G]-module.

Let W be a K[G]-module. Then W inherits the structure of a vector
space over K from the K-algebra K|[G|. Recall from 5.1 that for all g € G
the map

w —- W
w — g-W
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is K-linear. The map

G — GLW)
g = (w—g-w)

is a homomorphism. This homomorphism gives W the structure of a repre-
sentation of G.

We see that the representations of GG correspond one to one with the
K[G]-modules. Let V,W be representations of G and let £: V' — W be a
map. Then ¢ is a homomorphism of representations if and only if £ is a
K|[G]-linear map. So the correspondence between representations of G and
K[G]-modules is a functor.

Theorem 6.10. The covariant functor G-Rep — K[G]|-Mod, sending a
representation V' of G to V with its associated structure of an K[G]-module
and sending a homomorphism ¢ to itself, is invertible.

Proof. This theorem is a reformulation of 6.9. O

Definition 6.11. Let V be a representation of G. We call a subspace W of
V' a G-invariant subspace if g-w € W for all g € G and w € W. The repre-
sentation V is called irreducible if V' has precisely two G-invariant subspaces.
The representation V is called completely reducible if it is isomorphic to a
direct sum of a family of irreducible representations of G.

6.12. By Theorem 6.10, the category G -Rep is the same as the category
K[G]-Mod. So all statements about the category K[G]-Mod can be trans-
lated to statements about the category G -Rep.

(i) The category G -Rep is abelian.

(ii) A homomorphism of representations of G which is both injective and
surjective is an isomorphism of representations.

(iii) Let V be arepresentation of G. Then a subspace W of V' is G-invariant
if and only if W is a K[G]-invariant subspace of the K[G]-module V.
So if V' is irreducible, then the G-invariant subspaces of V' are 0 and
V itself.

(iv) Schur’s Lemma: let V, W be irreducible representations of G. Then
any non-zero homomorphism ¢: V" — W of representation is an iso-
morphism. The map

K — Endg(V)
A = Midy

is an isomorphism of K-algebras.
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(v) A representation of G is completely reducible if and only if its corre-
sponding K [G]-module is semisimple.

Lemma 6.13. Let V be a representation of G. Then the following are
equivalent:

(i) the representation V' is a sum of simple submodules;
(ii) the representation V' is completely reducible;

(iii) for each G-invariant subspace W of V, there exists a G-invariant sub-
space U of V such that W U =V.

Proof. See paragraph 2 of chapter XVII of [La]. O

Theorem 6.14 (Maschke’s theorem). Suppose that G is a finite group
whose order is not divisible by the characteristic of K. Then any represen-
tation V of G is completely reducible.

Proof. Let V be a representation of G and let W be a G-invariant subspace
of V. Let m: V — V be a K-linear map such that 72 = 7 and im7 = W.
Then we have

d gemlgthev)y=h-Y (B9 - w () w) =h- > g-m(gtv)

geG geG geG

for all h € G and v € V and hence the K-linear map

TV = W

1 _
vo—= @Zg-ﬂ(g )
geG

is a homomorphism of representations of G. Since 7|y = idy and W is
G-invariant, we see that 7|y = idw. So T is surjective. We get a short
exact sequence

0 —ker®—V "W —0

of representations of G. The inclusion map W — V is a section of this
short exact sequence, so we see that V = W @ kerw. Now we see that the
representation V' is completely reducible by the previous lemma. O

Corollary 6.15. Suppose that G is a finite group whose order is not divis-
ible by the characteristic of K. Then the group ring K[G] is a semisimple
ring.

Proof. Suppose that G is a finite group whose order is not divisible by
the characteristic of K. Then the representation K[G] of G is completely
reducible. Therefore the K[G]-module K[G] is semisimple. O
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6.2 The dual functor of representations

Let G be a group.

6.16. Let V be a representation of G and let p: G — GL(V') be the associ-
ated homomorphism. Then the map

Vv — v
¢ = pop(g)!
is a K-linear isomorphism for all g € G. Consider the map
p G — GL(VX)
g = (p=eoplg)™).
Let g, h be elements of G. Then we have

p(9)(p (M) (p)) = p*(g)(poph) ) =poph) " op(g)~"
p(h))™" =pop(gh)~!

hs}

for all ¢ € V*. So we see that p* is a homomorphism. The homomor-
phism p* gives V* the structure of a representation of G. We call this
representation the dual representation of V.

6.17. Let V, W be representations of G and let £: V' — W be a homomor-
phism of representations. Then ¢ is also a K-linear map. One can check
that the dual map £*: W>* — V* sending an element ¢ € W* to polis a
homomorphism of representations. We call £* the dual homomorphism of £.

Note that ¢ is injective if and only if £* is surjective and £ is surjective
if and only if £* is injective, because £ is a K-linear map.

We get the additive contravariant functor (—)*: G -Rep — G -Rep send-
ing a representation of G to its dual and a homomorphism to its dual.

Definition 6.18. Define G-fRep to be the full subcategory of G-Rep con-
sisting of all finite-dimensional representations of G.

The dual of a finite-dimensional representation of GG is finite dimensional.
So we also get an additive contravariant functor (—)*: G-fRep — G -fRep
sending a representation of GG to its dual and a homomorphism to its dual.

Proposition 6.19. The additive contravariant functor

(—=)*: G-fRep — G -fRep

is an equivalence of categories.
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Proof. Recall from Proposition 1.18 that for each finite-dimensional vector
space V over K, we have the isomorphism ey : V' — V** gending an el-
ement v to the K-linear map (¢ — ¢(v)). Let V be a finite-dimensional
representation of G. Then one can check that ey is a homomorphism of
representations and hence an isomorphism of representations. So

{Evi V — VXX}V€|G-@|

is a natural isomorphism idg.trep = (—)* o (—)*. Hence the functor

(=)*: G-fRep — G-fRep is an equivalence of categories. O

6.3 Examples from previous chapters

Let G be a group. Let V,W be representations of G and let n € Z>1 be
an integer. In this section we will generalize some constructions for vector
spaces over K to the setting of representations of G.

6.20. The map

G — GL(VaW)
g = (ew(g-v)® (9 w))

is a homomorphism. This homomorphism gives V' ® W the structure of a
representation of G. We call V®W the tensor product of the representations
V and W.

6.21. The map

G — GL(V®)
g = (@ - Quarr(g-v1)@ (g vp))

is a homomorphism. This homomorphism gives V®" the structure of a rep-
resentation of G. We call V€™ the n-th tensor power of the representation V.
Let £: V — W be a homomorphism of representations. Then the map

o yen o e
MR- Quy = L(v1) @ ®L(vy)

is also a homomorphism of representations. So we get a functor
(—)®": G-Rep — G-Rep.
6.22. The subspace of V®" spanned by

Ul@"‘@”n_vo‘(l)®“'®UU(TL)
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for all vi,...,v, €V and o € S,, is a G-invariant subspace of V®". So the
representation structure on V®" induced by the representation V of G is
inherited by Sym"(V'). We call the representation Sym" (V') of G the n-th
symmetric power of the representation V.

Let ¢: V — W be a homomorphism of representations. Then the map

Sym"(£): Sym"(V) — Sym"(W)
VO Qup = (1) OOl (vn)

is also a homomorphism of representations. So we get a functor
Sym"(—): G-Rep — G-Rep.

6.23. The projection map njs: V& — Sym"(V') is homomorphism of rep-
resentations of G. The family 7" consisting of the projection maps 7y, over
all representations V of GG is a natural transformation.

If the characteristic of K does not divide n!, then the section

Uy Sym™(V) — Ve

of w{, from 2.7 is also a homomorphism of representations of G. The family
" consisting of the sections ¢{, over all representations V' of G is also a
natural transformation.

6.24. Recall that Sym(V) is the direct sum of Sym’(V') over all integers
i € Z>o. We define the representation Sym(V') of G to be the direct sum of
the representations Sym’(V') of G over all integers i € Z>o. We define the
representation P(V') of G to be Sym (V™).

6.25. The subspace of V®" spanned by
{vi®---@uylvr,...,v, € V,v; = v; for some i # j}

is a G-invariant subspace of V®™". So the representation structure of V®"
induced by the representation V' of G is inherited by its quotient A"V from
Definition 2.12. We call the representation A"V the n-th alternating power
of the representation V.

6.26. The map
G — GLMap(V,K))
g = (=@ flg™-v)

gives the K-algebra of maps V — K the structure of a representation of
G. One can check that the map P(V) — Map(V, K) from Proposition 2.18
sending a polynomial on V to its associated polynomial function on V is an
injective homomorphism of representations.
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Proposition 6.27. Let a: V' — W be a polynomial map such that a(g-v) =
g-a(v) for all g € G and v € V. Then the homomorphism of K-algebras

a*: P(W)— P(V)
is also a homomorphism of representations of G.

Proof. Let f € P(W) be a polynomial. Then we have g~ -a(v) = a(g~!-v)
for all g € G and v € V. Therefore we have

a*(g-f) = (we flg - w)oa
= (= flg" ()
= (v~ flalg™"-v)))
= g-a*(f)

for all g € G. Hence a* is a homomorphism of representations of G. O

6.28. The map

G — GL(Homg(V,W))
g = (U= (g-tg " v)))

is a homomorphism. This homomorphism gives Homg (V, W) the structure
of a representation of G. One can check that the maps from Lemma 2.30
are all homomorphisms of representations. Let £: V' — W be a map. Then
we see that ¢ is a homomorphism of representations if and only if ¢ is an
element of Hom g (V, W)€,

6.29. For a polynomial f € K|[xz,y] and a vector ({) € K[z, y]?, denote the
polynomial

flg(z,y), h(z,y)) € K[z,9]

by f(z). Let n € Z>o be a non-negative integer. Recall that V;, is the
subspace of K|[z,y| consisting of all homogeneous polynomial of degree n
together with the zero polynomial. View the elements of GLo(K') as matrices
over the ring K[z,y]. Then the map

GL2(K) — GL(V,)

R G CH))

is a homomorphism. This homomorphism gives V,, the structure of a repre-
sentation of GLo(K).

Let d € Z>¢ and e € Z>1 be integers.
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6.30. Note that the polynomial map

powg: Vg — Vg

fo=
sends f({) to (f¢)({) for all g,h € V. So for all A € GLa(K) and f € Vy
we see that A - powy(f) = powy(A - f). So by Proposition 6.27, the homo-

morphism of K-algebras pow): P(Vg.) = P(Vg) is also a homomorphism of
representations of GLa(K).

6.31. Let

ly: Vie — Hompg (Vy, Vaerd—2)

1 (0g of
o= (10 (G =5))

be the K-linear map from 4.12. Then a tedious direct computation shows
that for all A € GLy(K) and g € Vg, the equality

det(A) - L4(A-g) = A Lq(g)

holds. There is also an alternative proof using theory will will not use here:
every element of GLo(K) is the product of a diagonal matrix and an element
of SLo(K) and therefore is suffices to prove the equality for all matrices A
that are diagonal or an element of SLo(K). Proving the equality in the
case where A is a diagonal matrix is easy. Proving the equality in the
case where A is an element of SLy(K) can be done by proving that ¢; is a
homomorphism of representations of the Lie algebra sly(K). See section 8.1
for more information on Lie algebras.

6.32. Let r € Z>o be an integer. Then one can easily check that the
homogeneous polynomial map

a: Homg (V,W) — Hompg(A"V,A"W)
¢ — AV

of degree r from Proposition 2.33 sends g - ¢ to g - a(¥) for all g € G and
¢ € Homg (V,W). So by Proposition 6.27, the homomorphism of K-algebras
«* is also a homomorphism of representations of G.

6.4 Birepresentations

Let G1, G2 be groups.

Definition 6.33. Let V' be a vector space over K and let p;: G1 — GL(V)
and py: Gy — GL(V') homomorphisms. We say that p; and ps commute if

p1(g1) © p2(g2) = p2(g2) © p1(g1)
for all g1 € G1 and g9 € Gs.
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Definition 6.34. Define a (G, G2)-birepresentation to be a vector space V'
over K that comes with a pair of commuting homomorphisms G; — GL(V)
and G2 — GL(V).

Definition 6.35. Let V,W be (Gi,G2)-birepresentations. A homomor-
phism of birepresentations is a K-linear map ¢: V — W that is both a
homomorphism of representations of G; and a homomorphism of represen-
tations of Gs.

Definition 6.36. Let (G1,G2)-biRep be the category of (G, Ga)-birepre-
sentations.

6.37. Let V be a (G1, Ga2)-birepresentation. Then V' also has the structures
of a representation of G, a representation of Gy, a K[G1]-module and a
K[Gs]-module.

Since the homomorphisms G; — GL(V) and G2 — GL(V) commute,
the homomorphisms of rings K[G1] — Endz (V') and K[G2] — Endz (V) also
commute. So the (G1, G2)-birepresentation structure on V' induces the struc-
ture of a (K[G1], K[G2])-bimodule on the abelian group V. The birepresen-
tation V' is even an object of the full subcategory (K|[G1], K[G2])-biModj
of (K[G1], K[G2])-biMod, because the vector space structures on V' induces
by K[G1] and K[Gs] are both the same as the original vector space structure
onV.

Recall that for K-algebras Ai, As, we have a correspondence between
the objects of (A1, A2)-biMod and the (41 ®x Az)-modules.

Lemma 6.38. The K-linear map
K[Gl] QK K[Gg] — K[Gl X GQ]
G ®g2 = (91,92)
is an isomorphism of K-algebras.

By Lemma 6.38, we see that the corresponding statement for represen-
tations is a correspondence between (G1, G3)-birepresentation and represen-
tation of (Gl X Gz) Let i1: G1 = G1 X G9 and i5: G1 — G5 x G5 be the
inclusions maps.

6.39. Let V be a (G1, G2)-birepresentation. Then the map

G1 X G2 — GL(V)
(91,92) = (v=>g1-(92-v))

is a homomorphism. This homomorphism gives V' the structure of a repre-
sentation of G x Gs.
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Let W be a representation of G1 X Gs. The the maps
Gi1 — End(W)
g = (w=(g,1)- w)
and
G2 — End(W)
g = (w=(Lg)- w)

are commuting homomorphisms. These homomorphisms give W the struc-
ture of a (G, Ga)-birepresentation.

Let V,W be representations of G; x Go and let £: V — W be a map.
Then ¢ is a homomorphism of representations of G; x G if and only if £ is
a homomorphism of (G, G2)-birepresentations.

Theorem 6.40. The covariant functor
G1 x Go -Rep — (Gl, Gg) —biRep

sending a representation V' to V with its associated (G, G2)-birepresenta-
tion structure and sending a homomorphism £ to itself is invertible.

Proof. This is a reformulation of 6.39. 0

6.41. Let V be a representation of (G; and let W be a representation of Gs.
Then the map

G1><G2 — EndK(V®W)
(91,92) = (W@w— (g91-v)® (g2 w))

is a homomorphism. This homomorphism gives V' ® W the structure of a
representation of G7 X Ga.

6.42. Let V be a (G1, G2)-birepresentation. Then the associated homomor-
phisms G; — GL(V) and G2 — GL(V') commute. So the map

V -V
Vv o~ g1-U

is a homomorphism of representations of G for all g; € G1 and the map

V -V
(O e ¢ )

is a homomorphism of representations of GG; for all go € Go. The maps

p: Gi — Endg,(V)
g = (Vg
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and
0:Go — Ende, (V)
g2 — (v g2-v)

are homomorphisms.
Let W be a representation of Gy. Then the map

Gy — GL (Homg, (W,V))
g2 — (L po(g2)ol)

is a homomorphism. This homomorphism gives Homg, (W, V') the structure
of a representation of Gs. Let £: U — W be a homomorphism of represen-
tations of G;. Then we denote the homomorphism

Homg, (W, V) — Homg, (U, V)
U — (ot

of representations of Go by Homg, (¢, V). This gives us a functor

Homg, (—,V): G1-Rep — G2-Rep.
By switching the role of G; and G5, we similarly get a functor

HOIHGQ(—, V) : G2 —@ — G1 —@.
Example 6.43. Let U,V be representations of G; and let W be a repre-
sentation of Go. Then the map

Homg, (U,V)®W — Homg,(U,V @ W)
(@w — (u—L(u) @w)

is an isomorphism of representations of Go. Where Home, (U, V) @ W' is the
tensor product of the trivial representation Homg, (U, V) of Gy with W.

6.5 Schur-Weyl duality

Let V be a finite-dimensional vector space over K and let n € Z>( be a non-
negative integer. Recall from 6.2 that the identity map GL(V) — GL(V)
gives V' the structure of a representation of GL(V). The representation
structure on V gives the vector space V&™ the structure of a representation
of GL(V'). Also recall that the homomorphism

S, — GL(V®™)
o = (U1®"'®Un’_>Ug*1(1)®"'®va*1(n))

gives the vector space V®" the structure of a representation of S,,. Note
that homomorphisms GL(V) — GL(V®") and S,, — GL(V®") commute.
So V®™ has the structure of a (GL(V), S,,)-birepresentation.
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6.44. Since V®" is a representation of GL(V), it is also a K[GL(V')]-module.
Since V®" is a representation of Sy, it is also a K[S,]-module. The associ-
ated homomorphisms of rings commutes. Hence V®" has the structure of a
(K[GL(V)], K[Sp])-bimodule. We get the homomorphisms of K-algebras
n: K[GL(V)] — Endgg,(V®")
a — (t—a-t)

and

0: K[S,] — EndK[GL(V)](V®n)
X = (=Xt

Theorem 6.45 (Schur-Weyl duality). The homomorphisms 7 and 6 are
surjective.

Proof. See Theorem 1 of [Do|, which is the main theorem of [Do]. O
From now on, suppose that the characteristic of K does not divide n!.

6.46. By Maschke’s theorem, the K-algebra KI[S,] is semisimple. Let
(W;)ier be a complete family of simple K[S,,]-modules. By Corollary 5.23

yen o @ HomK[Sn] (Wi, V®n) QR W;
i€l

is a decomposition of the K[GL(V)] ® K[S,]-module V&".
The family (W;);er is also a complete family of irreducible representa-
tions of S,, and for each element i € I we have

Hom g, (Wi, V&™) = Homg, (W;, V™).

We see that
Ve = (B Homg, (W;, VE") @ W;
el
is a decomposition of the (GL(V'), S,,)-birepresentation V®".

6.47. Let ¢ be an element of I. Then the Schur-Weyl dual of the represen-
tation W; of S, is the representation Homg, (W;, V®") of GL(V). Note that
if Homg, (W;, V®") is non-zero, then

Wi = Homgy,y)(Homg, (W;, V"), Homg, (Wi, VE™) @ W;)
=~ Homgp,y)(Homg, (Wi, ey yen)

by Schur’s Lemma. So in this case, the Schur-Weyl dual of the representation
Homg, (W;, V&™) of GL(V) is isomorphic to the representation W; of S,,.
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Let J be the subset of I consisting of all 4 such that Homg, (W;, V®") is
non-zero. Then we see that every simple subrepresentation of the represen-
tation V" of GL(V) is isomorphic to precisely one member of the family
(Homg, (W;, V®™));c; and that every simple subrepresentation of the rep-

resentation V& of S, is isomorphic to precisely one member of the family
(Wi)ieg. The functors

Homg, (—, V®"): S, -Rep — GL(V) -Rep

and
HomGL(V) (—, V®n) : GL(V) —@ — Sn —@

induce a one-to-one correspondence between the isomorphism classes of di-
rect sums of members of (W;);es and isomorphism classes of direct sums of
members of (Homg, (W;, V¥™));cs. So we call these functors the Schur-Weyl
duality functors.

Examples 6.48.

(1) Let the vector space K have the structure of a trivial representation
of S,,. Then one can check that the map

Homg, (K,V®") — Sym"(V)
t = wy (1))

is an isomorphism of representations of GL(V').

(2) The homomorphism

S, — GL(K)

o +— sgn(o)-idg

gives the vector space K the structure of a representation of 5,,. One
can check that the map

Homg, (K,V®") — A"V
¢ — (1))

is an isomorphism of representations of GL(V') where w: V& — A"V
is the projection map.

(3) The homomorphism

S, — GL(K[S,])
o — (x+—ox)
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gives the group ring KIS,| the structure of a representation of S,,.
One can check that the map

Homg, (K[S,], V") — Vo
¢ — (1)
is an isomorphism of representations of GL(V').

Proposition 6.49. Let £: U — W be a homomorphism of representations
of Sy,. Then the following statements hold:

(i) if the map ¢ is surjective, then its Schur-Weyl dual Homg, (¢, V™) is
injective;

(i) if the map ¢ is injective, then its Schur-Weyl dual Homg, (¢, V®") is
surjective.

If the double Schur-Weyl dual of U is isomorphic to U and the double
Schur-Weyl dual of W is isomorphic to W. Then the following statements
also hold:

(iii) if the map Homg, (¢, V®") is surjective, then the map / is injective;
(iv) if the map Homg, (¢, V®™") is injective, then the map ¢ is surjective.
Proof. Recall that the map

Homg, (£, V®™): Homg, (W,V®") — Homg, (U, V&™)
0 — (ot

is the Schur-Weyl dual of £.

(i) Suppose that the map ¢ is surjective. Then we see that for all maps
O, ly: W — VO such that ¢4 o £ = {5 o { holds that ¢; = f5. Hence
the Schur-Weyl dual of ¢ is injective.

(ii) Suppose that ¢ is injective. Then we may use ¢ to identify U with a
subrepresentation of W in such a way that ¢ is the inclusion map. By
Lemma 6.13, we see that

W=UaqU

for some subrepresentation U’ of W. So any homomorphism of repre-
sentations of S, from U can be extended to a homomorphism from W
using the zero map from U’. So we see that the Schur-Weyl dual of £
is surjective.
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(iii)

Assume that the double Schur-Weyl duals of U and W are isomorphic
to U and W respectively. Suppose that the map Homg, (¢, V™) is
surjective. Since the representation U is completely reducible and the
double Schur-Weyl dual of U is isomorphic to U, we see that by 6.47 the
double Schur-Weyl dual of any subrepresentation U’ of U is isomorphic
to U’. So the Schur-Weyl dual of any non-zero subrepresentation of U
is non-zero.

Suppose that ker £ is non-zero. Then there exists a non-zero homomor-
phism of representations ker / — V®". By Lemma 6.13, this non-zero
homomorphism can be extended to a homomorphism of representa-
tions ¢T: U — V®". Since ker ¢ is not contained in ker T, we see that
¢t can not be an element of the image of the map Homg, (£, V™).
Contradiction, so ker ¢ is zero.

Assume that the double Schur-Weyl duals of U and W are isomorphic
to U and W respectively. Suppose that the map Homg, (¢, V®™) is
injective. Since the representation W is completely reducible, there
exists a subrepresentation W’ of W such that W = im /@ W'. Suppose
that W’ is non-zero. Then as in the previous part, we see that the
Schur-Weyl dual of W’ is non-zero. Let ¢: W' — V®" be a non-
zero homomorphism of representations and let ¢': W — V®™ be the
homomorphism of representations extending 7 by zero on im#. Then
¢ is a non-zero element of the kernel of Homg, (¢, V™). Contradiction,
soimfl =W. O

Proposition 6.50. Let ¢: U — W be a homomorphism of representations
of GL(V) and suppose that U and W are both completely reducible. Then
the following statements hold:

(i)

(i)

if the map £ is surjective, then its Schur-Weyl dual Homgr, v (4, yen)
is injective;

if the map £ is injective, then its Schur-Weyl dual Homgy,y (¢, V")
is surjective.

If in addition the double Schur-Weyl dual of U is isomorphic to U and
the double Schur-Weyl dual of W is isomorphic to W. Then the following
statements also hold:

(i)
(iv)

if the map Homgp, v (¥, V®n) is surjective, then the map £ is injective;

if the map Homgp, v (¥, V®n") is injective, then the map / is surjective.

Proof. This proposition is proven similarly to the previous proposition. [
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Chapter 7

Ikenmeyer’s method

In this chapter we will work over the the algebraically closed field C of
complex numbers. Fix an integer e € Z>; and a finite-dimensional vector
space U over C.

Ikenyemer proves in [Ik] that within a certain family of homomorphisms
V,xp of representations of Sy, over all a,b € Z>( the following statement
holds: if a,b € Z>( are integers such that a < b and ¥, ;1 is injective, then
W, «p is also injective. In this chapter, we will construct a similar family of
homomorphisms W; 4 of representations of Sy, over all i,d € Zx>q that is
Ikenmeyers family if e = 1. We will then prove that if i, d € Z>( are integers
such that i < d and ¥; 4_; is injective, then W; 4 is also injective. We will
also show that W ; and Wq o are injective and that for all ¢,d € Z>o such
that U; 4 is injective, the homomorphism

POWy () Sym‘(V¢) — Sym" (V)

is also injective. Combining these results, we then conclude that the second
conjecture holds for d = 2.

7.1 Preparations

In this section, we introduce some notation that we will use later in this
chapter. Let a,b,n € Z>( be integers.

7.1. The identity map GL(U) — GL(U) gives the vector space U the struc-
ture of a representation of GL(U). This representation structure induces
the structure of a representation of GL(U) on each vector space constructed
naturally from U.

For each vector space V over C, the homomorphism

S, — GL(V®")
o = (U1®"'®UnHUU*1(1)®"'®UU*1(n))
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gives the vector space V®" the structure of a representation of S,, and the
corresponding structure of a C[S,]-module. The homomorphism

S, — GL(C[S,))
o — (x+ox)

gives the vector space C[S,] the structure of a representation of S,,.

7.2. Let u11,...,u.p be elements of U. Then, to avoid confusion in the
notation, we denote the element (u;; ® - @uip) @+ @ (Ug1 @ -+ @ Uqp)
of (U®b)®a by

(U1 ® - ®urp) @ @ (Ua ® - ® Ugp)

and we denote the element (u11 @ --- O uip) © -+ O (Ug,1 © -+ @ Uqp) Of
Sym®(Sym®(U)) by

(U1 @ @ u1p) O+ O (Ug1 @+ © Ugp).

7.3. We will now construct some natural transformations that will be im-
portant later.

(i) For each representation V' of GL(U), the map

®Ka
unordi‘/Xb: <V®b> - Y®ab

a b a

QHvi; = & é)vm‘

i=1 j=1 i=1 j=1

is an isomorphism of representations of GL(U). The family unord®*®
consisting of the homomorphisms unord®*? over all representations V'
of GL(U) is a natural isomorphism ((—)®?)®¢ = (—)®ab,

(ii) For each representation V' of GL(U), the map

®Xa
transp?/Xb: <V®b) — (V®a)®b

a b b a

QH vy = Q) vis
is an isomorphism of representations of GL(U). The family transp®*®
consisting of the homomorphisms transp“l/Xb over all representations V
of GL(U) is a natural isomorphism ((—)®?)®¢ = ((—)®2)®b,
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(iii) For each representation V of GL(U), let ©¢*® be the homomorphism
of representations of GL(U) making the diagram

transp{ b

(V®b)®a (V®a)®b
‘5®bT J{“\b@a
Sym® (V¥°) Sym® (V)
Sym“(bl"/)T lSym%a)
Syme (Symb(V)) — 2+ Symb(Sym®(V)

commute. Then the family ©9%® consisting of the homomorphisms
@%,Xb over all representations V' of GL(U) is a natural transformation
Sym?(Sym®(—)) = Sym®(Sym?(—)) since it is obtained as the compo-
sition of natural transformations.

(iv) For each representation V' of GL(U), the map

P Ve Sym®(Sym®(V))
VIR @y = (V1@ @) O O (Vao1)p41 @+ © Vap)

is equal to the the homomorphisms of representations
b )
Sym?(7y,) o gy © (unord“l/x ) :

The family 7%*° consisting of the homomorphisms W{",Xb over all rep-

resentations V' of GL(U) is a natural transformation
(—)#% = Sym*(Sym’(-))
since it is obtained as the composition of natural transformations.
(v) For each representation V of GL(U), let
L“I/Xb: Sym?(Sym®(V)) — V&
be the injective homomorphism of representations of GL(U)
unord{*? 014, o Sym®(:y,).

Then the family :**® consisting of the homomorphisms L“‘/Xb over all
representations V' of GL(U) is a natural transformation

Sym*(Sym®(—)) = (—)#*

since it is obtained as the composition of natural transformations.
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(vi) Let d,i € Z>o be integers. For each representation V of GL(U), let
@%}d be the homomorphism of representations of GL(U) making the

diagram
V®die
iXde iexXd
by %
) / Pird \ )
Sym’(Sym®(V)) - Sym’(Sym?(V))

commute. Then the family ®*® consisting of the homomorphisms
@?/Xb over all representations V' of GL(U) is a natural transformation

Sym’(Sym™(—)) = Sym™(Sym’(-))
since it is obtained as the composition of natural transformations.

7.4. Denote the set of all functions r: {1,...,ab} — {1,...,a} such that
#r~1(i) = b for all integers i € {1,...,a} by Qqxp. Note that for all func-
tions r € Q,xp and permutations 7 € S, the function 7 o r is an element
of Qy«p. So we see that S, acts on Quxp by 7-7=7o0or for all o € S, and
r € Quxp. We call elements of €, that are in the same orbit of this ac-
tion equivalent. Denote the set of equivalence classes under this equivalence
relation by Q,xp/ ~. Denote the class of an element r € Q3 by [r].

Next note that for all functions r € ., and permutations o € Sg,
the function 7 o ¢! is an element of €. Also note that for all functions
r, 5 € Quxp, there exist a permutation o € Sy, such that 7 = soo~!. So we
see that Sy acts transitively on Qqxp by 0 -7 =roo~ ! for all ¢ € S, and
r € Quxp. The actions of Sy and S, on 2,4, commute. So we see that for
all permutations o € S, and equivalent functions r, s € £,xp, the functions
o-r and o - s are equivalent. So we see that o - [r] = [0 - r| for all 0 € Sy
and 7 € Quxp defines an action of Sy, on Qgxp/ ~.

Let rqxp € Qquxp be the function sending (i — 1)b + j to i for all integers
ie€{l,...,a}and j € {1,...,b}. Denote the stabilizer of the element [r,xp]
of Quxp/ ~ by Hyxp. Then we see that H,yp consists of all permutations

o € Sgp such that for each i € {1,...,a} we have
o{(i—=1)b+1,...;}) ={(G—-1b+1,...,5b}.
for some j € {1,...,a}.

Let V' be a representation of GL(U) and suppose that xi,...,z4 are
linearly independent elements of V. Then we see that the subset

{,U1®...®'Uab|’[)17...,'l)ab S {Q}l7...,ﬂfab}}

of V®% is linearly independent. Note that H,.;, equals the subset of S,
consisting of all permutations ¢ such that

W{‘/Xb(g‘(xl(g"‘@xab)):(‘Tl@”'@xb)Qu'Q(x(afl)b+1@"'@xab)-
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Let W be a representation of GL(U), then the section L%[fb of W{'j[,Xb is the
map

Sym*“ (Symb wW)) — W ®ab

a b
@@w(i_l)bﬂ — ; Z O-'(w1®”'®wab)~
#(Haxb)

=1 j=1 c€H xp

The image of 1% is exactly the subspace (W®)Haxs of [y &ab,

7.2 Relation to the previous chapters

In this section, let U be the vector space C?. Identify GL(U) with GLy(C)
using the standard basis (e;,ez) of U.

7.5. Denote the dual basis of the standard basis (e1, e2) of U by (x,y). Then
we see that U” is the vector space Vj. For each integer n € Z>, let V;, be
the representation of GLy(C) from 6.29. Then one can check that V; is the
representation U of GL(U) and that the map

Sym"(Vi) — V,
f1®"'®fn — flfn
is an isomorphism of representations of GL(U) for each integer n € Z>o.
Let d,i € Z>( be integers.

7.6. The representation V; of GL(U) equals U*. So the representation
U** of GL(U) equals V;*. Since the vector space U is finite dimensional
over C, the homomorphism of representations e: U — V{* of GL(U) from
the proof of Proposition 6.19 is an isomorphism. By applying the natural
transformation

o4 Sym’(Sym?(—)) = Sym™(Sym?(-))

to ey, we see that the diagram

, d ! : d
Sym' (Sym® (1)) Symi€(Sym?(UV))
Sym’ (Sym® (w))l ot lSymWSymd(sU))
Sym’ (Sym® (V;*)) ———> Sym®®(Sym?(V;*))

commutes. Since ¢ is an isomorphism, we know that Sym®(Sym?(e;;)) and
Sym®(Sym?(ey)) are isomorphisms too. So we see that @Zd is injective if
and only if ®

id
X
1

is injective.
V J
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7.7. Recall from 6.30 that the C-linear map

POWy ;) Sym‘(V}¢)) = Sym™(V,)))

is a homomorphism of representations of GL(U). Let (co,...,cq.) be the
dual basis of the basis (y%,zy®~!, ..., 2%) of Vg, let (bo,...,bq) be the
dual basis of the basis (y¢, zy?!,...,2%) of V; and let (ag,a1) be the dual

basis of the basis (y,x) of V;. By taking the composition of the dual of the
isomorphism from 7.5 with the isomorphism from Lemma 2.30(e), we get
the isomorphisms

lie: V) — Symde(le)

d
> (ke> @de @ a

bg: V) — Symd(le)

d
bk — (k) Qdk(Da

of representations of GL(U). For each integer k € {0,...,de}, we have

and

Sym*(€q)(powy, (1) (ck))

= Sym®({q) > b 00,

0<iy,...,ie<d
i1t tie=k
d i o d . o
e E . agd Zl@a?ll @@ . a(?d Ze@a?Ze
. . 11 le
0<i1,...,ie<d

i1+“'+ie:k

_ Ld de @de
= <I>VIX <<k @a
= o4 (1, .

B ONEEN)

The second to last equality can be seen to be true as follows: we have

de de
1,d @de _ _exd . de Gde—
A (R R (AT )]

Recall that Ldex (a5%7% @ a*) is the average of of o - (a$% % ® aP*) over all

0 € Sge. If we multlply this element of (V)% by ( ) then we get the sum
of 11®- - -®x4e over all £1®- - -@x 4. such that we have #{h|z, = ap} = de—k
and #{h|zy = a1} = k. Let 21®- - -®@z 4. be such that #{h|z;, = ao} = de—k
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and #{h|z, = a1} = k. For each integer j € {1,..., e}, let i; be the number
of a; among x(;_1)g41,-- -, Tja- Then we have

i y - y
ﬂ‘c;xxd(:nl R R Tge) = ( Ji—n @a?“) ©- O (ag’)d te @a?z‘5> )
1

The equality now follows from a counting argument.
For all integers ki, ..., k; € {0,...,de}, we have

Sym®(£a) (pow} iy (Chy © -+ © ci,))
= Symie(fd)(pOWd y(Cry) © -+ @ powy 1y(ck;))
= Syme (4a)(Powy (1) (%)) © -+ © Sym*({a)(powy (1 (ck;))

= 5 (laeler) © - © 5 (Lae(er,)
- (ede(c ) ® ®€de(ck )
= o5 % (Sym' (Cae) (cx, © -+ © cx,)).

Hence the diagram

ohd
Sym‘(Sym“ (V) —— Sym"*(Sym?(Vy))
Sym' (€4) T TSymie (£q)
i1 X POV ;) ie (17 %
Sym" (V) Sym" (V)

commutes.
Proposition 7.8. The following are equivalent:

e the homomorphism pow, ) is injective;

e the homomorphism @i’/dx is injective;
1

e the homomorphism @é}d is injective.
Proof. This proposition combines the results from 7.6 and 7.7. 0

7.9. Note that the maps @z}d depend on only the vector space U. Let
£: U — V be an injective C-linear map. Then we see that the diagram

) e )
Sym'(Sym (V")) C— Sym™(Sym*(V))
Symi(Symde(f))T Tsymie(symd(f))
) e )
Sym'(Sym®(U)) = Sym™(Sym*(U))

commutes and that the vertical maps are 1nJect1ve So we see that if the
map <I>V is injective, then so is the map <I> d
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7.3 Symmetric powers of symmetric powers
Let a,b € Z>( be integers and let

n: C[Ses] — Endz (V)
be the homomorphism of rings associated to the C[Sq]-module V®.

7.10. Let x be an element of the group ring C[Sg]. Then x induces the ho-
momorphism Sym?(Sym®(U)) — U® of representations of GL(U) making
the diagram

[ ®ab n(x) [ ®ab

o

Sym®(Sym®(U)

commute. Note that the C-linear map

Gaxb: C[Saw] — Homgr (Syma(Symb(U)),U®“b)
x = () o’
sends o - x to 0 - guxp(x) for all o € Sy and x € C[Sy]. So we see that ggxp
is a homomorphism of representations of Sg.
Note that the codomain of the map g,xp is the Schur-Weyl dual of the
representation Sym?®(Sym®(U)) of GL(U). Since L%Xb is injective and the
representation U®%® of GL(U) is completely decomposable, we see that

EndGL(U) (U®ab) — HomGL(U) (Syma(symb(U))7 U®ab>

axb
t = Loy

is a surjective homomorphism of representations of S,;. So using Theorem
6.45, we see that quxp is surjective. Therefore the Schur-Weyl dual of the
representation Sym?®(Sym®(U)) of GL(U) is the representation

(C[Sab]/ ker(QaXb)

of Sup. Recall that the image of L“UXI’ is fixed by the subgroup H,yxp of Sgp. So
we see that q,xp(0) = quxp(7) for all o,7 € Sy such that o Hywp = 7Hyxp.
Let K,xp be the subrepresentation of C[Sy,| generated by 1 — o for all
o € H,xp. Then one can check that K, is the Syp-invariant subspace

of C[Sy) and is contained in ker(g,xp)-

104



In the remainder of this section, assume that dimc(U) > a and let
(1,...,2m) be a basis of U over C.

7.11. The family
(U1 @ -+ @ ugpluut, ..y ugp € {x1,...,2Tm})
is a basis of U®. For each r € Qgxp, let u, be the element
1
] D L) ®  ® Trr(a))
" T€S,

of U®% . Note that for each 7 € Quxp, the element wu, is the average of
the elements z41) ® -+ ® T4(4p) over all al elements s € ;% that are the
equivalent to 7. Also note that these elements zy1) ® -+ ® 244 are all
elements of the basis

(U1 @ -+ @ ugplut, ..., ugy € {x1,...,Zm})

of U®%, So in particular, we see that the family (u,|[r] € Quxp/ ~) is
linearly independent.

7.12. Let r € Q. be a function. Then we have
1
Uor =01 D Trlrlo (1) ® @ Tr(p(o=t(ab))) = T Ur
" reS,

for all o € Sg,. So we see that the action of S, on €2, corresponds to the
action of Sy, on {u,|r € Quxp} induced by the action on U®®. Hence Sy,
acts transitively on {u,|r € Q,xp} and H,x; is the stabilizer of u,, , under
the action of Syp. Let ugxp be the element

8y, )= (310 @31) O (120 @) @+ O (1,0 -+ © )
of Sym®(Sym®(U)).

Proposition 7.13. Let x be an element of C[Sy;]. Then the following are
equivalent:

(i) the element x of C[Syp] is contained in the kernel of g, xp;
(ii) the element 1,y of U® is contained in the kernel of ggxp(X);
(iii) the element y of C[Sg] is contained in the subspace K,y of C[Sgp).

Proof. Tt is clear that (i) implies (ii) and we have already seen that (iii)
implies (i). For (ii) implies (iii), suppose that u,xp is contained in the kernel
of guxp(x). We have

anb(X)(uaXb) =X L?]Xb(uaxb) =X Upyyp-
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Write x = > g, ¢o - 0. Then we have

X ’ uraxb = z : : : Co ’ UT'Taxb'

Tesab/HaXb o€THaxp

Since the set

{UT‘raxb‘T € Sab/Haxb} = {UTHT] € anb/ N}

is linearly independent, we see that

Z ce =0

ceTH «p
for all 7 € Syp. Hence x is contained in K yp. ]
Corollary 7.14.

(i) The Schur-Weyl dual of the representation Sym®(Sym®(U)) of GL(U)
is the representation C[Sgp]/Kyxp of Sgp-

(ii) The Schur-Weyl dual of the representation C[Syp|/Kyxp of Sgp is the
representation Sym?(Sym®(U)) of GL(U).

Proof. Part (i) follows directly from the proposition. Part (ii) follows from
the fact that any subrepresentation of the representation U of GL(U) is
isomorphic to its double Schur-Weyl dual. ]

Remark 7.15. We will see later that part (ii) of this corollary also holds
without the restriction on the dimension of U over C.

Corollary 7.16. Let V be a subrepresentation of the representation U®%
of GL(U) and let ¢1,f5: Sym®(Sym®(U)) — V be homomorphisms of repre-
sentations. Then ¢; = ¢ if and only if £1(ugxp) = l2(uaxp)-

Proof. Note that both ¢; and /5 are also homomorphisms of representa-
tions of GL(U) from Sym®(Sym®(U)) to U®®. The map gqxp is surjective.
Therefore there exists a x € C[S,p] such that 1 — o = gaxp(X). So by the
proposition, we have ¢1 = l if and only if ¢1(ugxp) = l2(Uaxp)- d

Corollary 7.17. The representation Sym?®(Sym®(U)) of GL(U) is generated
by Uaxb-

Proof. Let V be the subrepresentation of the representation Sym®(Sym®(U))
of GL(U) generated by ugxp. Since the representation U®% of GL(U) is
completely decomposable, the representation Sym®(Sym®(U)) is completely
decomposable too. Therefore we have

Sym*(Sym®(U)) =V e W
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for some subrepresentation W of Sym®(Sym®(U)). Note that the zero homo-
morphism and the projection map VW — W are equal on u,xp. Hence the
map idy : W — W is the zero homomorphism by the previous corollary. [J

Let d,i € Z>( be integers.

7.18. Suppose that dimc(U) = m is at least i. We see that by Corollary
7.17 the homomorphism

oyt Sym' (Sym®(U)) — Sym™(Sym®(U))

of representations of GL(U) is completely determined by its value at w;xge-
Recall that the diagram

U®die
ixXde iexd
tu U
) / pird \ )
Sym'(Sym®(U)) - Sym"(Sym?(U))

commutes. We have u;xge = Oj_; x%de and

. 1 ‘
ixde(,, . _ = ®de
g (Uisde) = il E ®xa(k).
ogeS; k=1
So we see that

i 7
i d ~exd [ 1 @de | _ 1 jexd ®d
O (ixae) = m | 5 > Qg | =57 2 ™ (g@xa(;))
=1

og€S; k=1 o€ES;

.

1  (od \O AR d AR
:EZQ(I'S(IC)) = (fcg) :(x? @---@x?) .

O'ESZ' k=1 k=1

7.19. Suppose that dimc(U) = m is at least a. Note that @?]Xb is the
homomorphism of representations of GL(U) making the diagram

axb

(U®b)®a transpy; (U®a)®b
(unordf* by—1 T iunord?}m
[ ®ab [y ®ab
LaXbT iﬂ_bxa
U U
a b @aUxb b a
Sym*(Sym®(U)) Sym?(Sym*(U))

107



commute. The homomorphism @aUXb is completely determined by its value
at ugxp. If we follow the diagram clockwise from Sym?(Sym®(U)) to the
representation Sym®(Sym?(U)), we see that

a
Uaxh = @x?b
o Z ®xa()

o€S, i=1

1

oeS, i=1

1 b
— a Z ®aza(1)®--'®x0(a)

‘oeS, j=1

1 b
= > Qo) @ @ woa)

T 0€Sq j=1

1 b
— al Z @ng(l)@"'@a%(a)

0€Sy =1

So we have 8% (u,xp) = (1 ®@ - © 2,)®. Tt follows that for all elements
U 1,. .., Ugp € U, we have

9ot (é@um> _<;)a > @@ Ui .5

01,..-,04€Sy J=1 i=

because the homomorphism
Sym“(Symb(U)) —  Sym’(Sym®(U))
a 1 a
O@u - (}) P> olors
11] 01,..,0a€Sp j=1 1=
of representations of GL(U) also sends ugxp to (21 ® - - - @ 14)®°
7.20. Denote the homomorphism
O ! o &y’ - Sym'(Sym™(U)) — Sym®(Sym™ (1))

of representations of GL(U) by V; 4. Note that to prove the injectivity of
@;}d, it suffices to prove the injectivity of ¥; 5. The homomorphism V; 4 is
also completely determined by its value at u;xq4.. We have

. ®e
i,d _ od od
O (wiae) = (770 - © ap)
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So we see that .,
o
U q(tisge) = (27 @ @x)¢) 7"

One can check now that
i de 1 i d i je
0 (0®m) () £ 00 © ww
k=1 j=1 01,.,0i€84e j=1 k=1 h=(j—1)e+1

for all uy1,...,u;qc € U.

7.4 Proving injectivity for d =1 =2

We are mainly interested in the endomorphism W, 4 for integers d € Zxo,
because injectivity of ¥y 4 implies that the second conjecture holds for that d.
Note that the endomorphism of representations of GL(U)

Uyq: Sym®(U) — Sym®(U)

is just the identity map. So we see that the second conjecture holds for
d = 1. Recall that the first and second conjecture are equivalent for d = 1.
So we see that the first conjecture also holds for d = 1. Next we consider
the case d = 2. Let (z1,x2,...,xy) be a basis of U with m > 2.

7.21. The endomorphism of representations of GL(U)

V20 Sym*(Sym*(U)) — Sym*(Sym*(U))

is completely determined by the fact that it sends the element x?Qe ® x;@ze

to the element (z7° © 25°) ® (27° ® 25°). To prove that Wy 5 is injective,
it suffices to prove that there exists an endomorphism of representations of
GL(U)

Sym?*(Sym®*(U)) — Sym?*(Sym*(U))
which sends (27 ® 25¢) © (z¢ © 25¢) to 2% ©® 25%°. We know that for all
endomorphisms of representations of GL(U)

¢: Sym?(Sym?¢(U)) — Sym?(Sym?¢(U))

there exists an element y € C[Sy.] such that the diagram

[®de n(x) [ ®de

2X2e 2X2e
tu T lﬂU

Sym?*(Sym?**(U)) Sym?*(Sym?*(U))

commutes where n(x) is the map sending ¢ to x(t) for all t € U®%.
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7.22. For each integer i € {0,...,2¢e}, let 0; € Sy be the permutation that
sends k to de + 1 —k for all k € {1,...,i} U{de+ 1 —14,...,4e} and that
sends k to k for all k € {i+1,...,4e — i¢}. Then we have

9 9 . 2%e—i 2%e—i .
Ui-(u?e@)ué@e):ué@z@ui@e 1®ué®e z®u(1®z

for all i € {0,...,2e} and uj,ug € U. For each integer i € {0,...,2e}, let ¢;
be the homomorphism of representations of GL(U) making the diagram

U®46 Q(Ui) U®4e

2X2e 2X2e
Ly T iﬂU

Sym?*(Sym*(U7)) Sym?*(Sym?*(U))

£;

commute where o(0;) is the map sending t to o; - ¢ for all t € U®%€,
7.23. Note that o is the trivial permutation. So we have
lo (277 @ 25°) © (277 @ 25°)) = (27° @ 25°) © (27° @ 25°).
Consider the homomorphism ¢;. Note that
i (@7 @25%) © (27 @ 25°))

is the average over all u; ® -- - ® uge such that ug € {x1, 22} for all integers
ke{l,...,4e} and

#{k € {17 . .,2€}|Uk = 331} = #{k € {2€+ 17---,4€}|Uk = 1'1} =e,

#{k € {17 : .,2€}|Uk = -’EZ} = #{k S {2€+ 1,...,46}”U,k = ,CL‘Q} = e.

For each such u; ®- - -®uye, the homomorphism g(o7) exchanges the positions
of u1 and u4.. There are now two possibilities. The first is that uq and uy. are
equal. In this case, the homomorphism g(c7) does not change 13 ® - - - ® uge.
Denote the set of such u; ® - - - ® uge by d1,9. The second possibility is that
u1 and uge are different. In this case, the homomorphism g(o1) does change
U1 @ - -+ ® uge. Denote the set of such w1 ® - - ® uge by d1,1. Note that

b (2 © 089 © (aF° ©25°))
is equal to
1\2
(z) > e+ 3o (o)
) t€d1,0 t€d1,1
Note that 619 and &;1 both have size ((de)!)?/2. For all ¢ € 6; o, we have

T (1 1) = () = (57 © 05°) © (a7 © 5°).
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For all ¢t € 01,1, we have
7_(_[2]><26(0_1 . t) — (.17(1@6+1 ® l,g)efl) ® (x1©e 1 ® $(2®6+1)’
because one pair x1 and xo got switched. So we see that

b (05 025 © (5 ©.259))

equals

1
5 ((33?6 ® xé@e) ® (x(f)e ® xé@e) + ( ©@e+1 ® x2©e 1) ® (x?e 1 ® x%@e—kl)) )

7.24. Let ¢ € {0,...,2e} be an integer. We know that
(@7 @ 25) © (27 @ 25°))

is the average over all u; ® -+ ® uye such that uy € {1, 22} for all integers
ke{l,...,4e} and

#HEke{l,....2etup =21} =#{k € {2e+1,...  de}|lup =1} = ¢,

#{k € {17' . .,2€}|Uk = 332} = #{k’ S {2€+ 1,...,46}’uk = $2} =e.

For each such u; ®- - -®@uy,, the homomorphism p(0;) exchanges the positions
of uy and ugeq1-p for each k € {1,...,i}. For each j € {0,...,4}, let d;;
be the set of u; ® - -+ ® uye such that #{k € {1,...,i}|ug 7é Uger1—k} = J-
Then we see that each set d; ; has a strictly positlve size and we have

(a0 (i 0x5) = () S 3 e

§=0t€b; ;
For all integers j € {0,...,i} and elements ¢ € ¢; j, we have
QUXQe(Uz“t) (xleﬂ @1_@6 ]) o (3716 j @x©e+j)
because j pairs x1 and x5 got switched. So we see that
li (27 @ 25%) © (27 @ 25°))

equals

2
(26') 2#57] e+]© ©e—, j)®( @e— ]© Oe+J)'
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7.25. Now back to our problem. We want to prove that there exists a
X € C[S4] such that the homomorphism ¢ of representations of GL(U)
making the diagram

[ ®de n(x) [®de
L2 X2e T lﬂ,Z X 2e
U U
Sym?(Sym?(U)) ———— Sym?(Sym?(U))

commute, sends (z7° ® 25¢) ® (27 © 25¢) to 27%¢ ® x5*¢. We claim that x

can be chosen to be a linear combination

2e
§ Ao
i=0

of 0g,...,09.. By our previous computations, we see that this claim holds
if and only if the linear system
#00,0 #0010 -0 0 F02e-10  F020
0 #(5171 AO 0
1\ 0o : : Al
2e! : : : : o
Ao 1
: : #02e—1,2e—1 ‘
0 0 cee e 0 #0692

has a solution. This is indeed the case, because #d;; > 0 for all integers
0 <j <1< 2e Sowe see that Wy 5 is indeed injective. This also proves the
second conjecture for d = 2.

7.5 Ikenmeyer’s construction

For each integer n € Z>(, denote the set {1,‘. ..,n} by [n]. Let d,i € Z>g
be integers and let V' be the vector space C' ®Ce Let (eq,...,e;) be the
standard basis of C* and let (fy,..., f4) be the standard basis of C%.

7.26. Let L; be the group 5;. Then the homomorphism
€ eg(j) )
g
( fi =1
gives V the structure of a representation of L;. Let Ry be the group Sy.
Then the homomorphism

Ry — GL(V)

€; 0—>€j >
o~

(fj = fo(s)
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gives V the structure of a representation of R;. Note that the above homo-
morphisms commute. So V has the structure of a representation of L; x Ry.

Let n € Z>o be an integer and let o € Zizo and 3 € Z‘éo be vectors.

7.27. Denote the span of

Vi1y...,Un € {61,...,€i,f1,...,fd}
VI ® - Quy | F#{klvp =e€j} = o for all j €[]
#{k|vp = f;} = B; for all j € [d]

inside V®" by V@"). Note that the above set is invariant under the action
of S, on V™. So we see that V(‘i%) is an S,-invariant subspace of V®",
Therefore V(g”m has the structure of a subrepresentation of the representa-
tion VO™ of S,,.

7.28. Let H be a subgroup of L; X R;. Denote the subspace

n —
{te‘f(aﬂ)‘g-t—tforallgef[}

by Vg%f{ Since the homomorphisms

L; x Rd — GL (V®n)

and
S, — QL (V&)

commute, we see that Vg%{[ is an S,-invariant subspace of V®". Hence

‘@i’,’zf’

of Sj,.

has the structure of a subrepresentation of the representation V©"

For integers a,b € Z>¢, denote the vector (b,...,b) € Z%, by a x b.

®die
‘/(ixde,()

vl,...,vdiee{el,...,ei}
#{klvp =ej} =deforall je[i] |-

Example 7.29. The vector space ) is the span of the set

{Ul®~--®vdz‘e

Recall that ;4 is the set of all functions r: {1,...,die} — {1,...,i} such
that #r~1(j) = de for all j € [i]. Note that the set written above is equal to
the set {e,(1) ® -+ ® €,(gie) [T € Qixge}- Next note that this set of invariant
under the actions of L;, Ry and Sy;.. For each r € €;+4e, denote the element

1
Al D olr(1) @+ ® o(r(dic))
O'GLi
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of V®4€ by y,.. Then we see that V(?f;‘zg)l is the span of the linearly inde-

pendent elements {v,|[r] € Qix4e/ ~} and that we have o - v, = v,.,. for all
0 € Sgie and r € Qjwge. Let vy, be the element

1 %
v _ E 6®de
Tixde ~— ’L' o-(]g)
o€L; k=1

V®die,L¢

(ixde,0) of Sdie is generated

of V@€ Then we see that the representation
by the element vy,.

Proposition 7.30. The map

®die,L;
C: ClSuie/Kixde = Viivaoo)
X = X-vL
is an isomorphism of representations of Sg;e.

Proof. We already know that ¢ is surjective. Let y be an element of C[Sy;]
and write x = 3 g ¢, 0. Then we have

X UL = E E Co | Vrrssae-

T7€Sdic/Hixde \ETHixde
Since {Vrur, 4|7 € Sdie/Hixde} = {ur|[r] € Qixde/ ~} is linearly indepen-
dent, we see that
> a0

c€TH; » de

for all 7 € Sge. Hence x is contained in K ge. ]

Proposition 7.31. The map

dr,: Homg,,, (V®die7Li,U®die> —  Sym‘(Sym?(U))

(ixde,0)
0~ mrdee(v))
is an isomorphism of representations of GL(U).

Proof. Let
. ®dle>L’L ®d
C: Vigdeoy = U7

be a homomorphism of representations of Sg,.. Then we see that

5(g-0) = m;%(g-e(vL))
= g-m (o))
= g-0(0).
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for all g € GL(U), because W;’dee is a homomorphism of representations of
GL(U). Therefore ¢ is a homomorphism of representation of GL(U).

Consider the element £(vy,) of U®%€, For each permutation o € H;yqge,
we have

o-L(vy) =4€(o-v) = L(v),

because we have 0 - jxge = Tixde 10T all 0 € H;wg4.. SO we see that
(o) = 1 (mr e (Uvn)) = if *(5(0)).

Since v, generates the representation V(?Xd;eeg)l of Sgie, we see that the ho-
momorphism ¢ is completely determined by ¢(vr,). So L@Xde o4 is injective
and therefore 0 is injective.
Let ¢ be a element of Sym’(Sym?(U)). Then one can check that the
C-linear map
. ®die,Li Rdi
CViggeyy — U™
o 0D
is a homomorphism of representations of Sy, which sends vy, to LZXde(t). So
we see that § is also surjective and hence an isomorphism. O

7.32. Denote the inclusion homomorphism of representations
®die,L; ®die
Viixdeo) =V

by Llﬁd and denote the surjective homomorphism of representations

V®die N V®die7Li

(ixde,0)
that sends for all vy,...,vge € {e1,...,€i, f1,..., fa} the element
V1 Q-+ ® Vgie

to
1
Al Z o (V1 ® - @ Vaie)
o€l
. . . . id
if #{k|vy =ej} =de for all j € {1,...,i} and to zero otherwise by .

Rdie
Vv(O,dXie

V1, .. Vdie € {f1, -0 fa}
#{klvy = fj} =ieforall jed [~

Example 7.33. The vector space ) is the span of the set

{U1®-~®vdz‘e

Recall that Qe is the set of all functions r: {1,...,die} — {1,...,d} such
that #r~1(j) = ie for all j € [d]. Note that the set written above is equal to
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the set {f,(1) ® -+ @ fr(die)IT € Quxic}. Next note that this set of invariant
under the actions of L;, Ry and Sy;.. For each r € Q4y;e, denote the element

1
a D for)) @ ® fo(raie))

g€ERy

of V®di€ by w,. Then we see that V(%?iﬁ)d is the span of the linearly

independent elements {w,|[r] € Qgxie/ ~} and that we have o - w, = Wy,
for all o € Sge and r € Qgyie. Let wr be the element

1 d ie
Wryyie = 5 Z ®f§k)

" 0€Ry k=1

V®die,Rd

(0.dxie) Of Saie 1s generated

of V®de  Then we see that the representation
by the element wg.

Proposition 7.34. The map
®d )R
C[SdiE]/KdXie — ‘/(O’dliie)d
X = X-WR
is an isomorphism of representations of GL(U).

Proof. This proposition is proven similarly to Proposition 7.30. 0
Proposition 7.35. The map
or: Homg,,, (W%’iij’i]:)d, U®die> — Symd(Symie(U))
0 = me(wR))
is an isomorphism of representations of GL(U).
Proof. This proposition is proven similarly to Proposition 7.31. O

7.36. Denote the inclusion homomorphism of representations

®die,Rq Rdie
‘/(O,dxie) -V

by L%{d and denote the surjective homomorphism of representations

V(X)die N V®die,Rd

(0,dxie)
that sends for all vy,...,vge € {€1,...,€i, f1,..., fa} the element
V1 ® - & Vgie

to

1
'O'ERd

if #{klvy = f;} =ie for all j € {1,...,d} and to zero otherwise by Wﬁd.
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7.37. For all integers n € Z>g, j € {1,...,i} and k € {1,...,d}, denote
the C-linear map V' — V that sends e to fi if h = j and to zero otherwise
and that sends f, to zero for all h by ¢;; and denote the homomorphism of
representations of S,

V®die N V®die
n
VMR- Qu, Zvl®"’®¢j,k(vh)®"'®vn
h=1
by ©jk-

Proposition 7.38. For all j, jt € {1,...,i} and k, kT € {1,...,d}, the maps
@ik and ;i i commute.

Proof. We have

ik(@jt gt (V1@ RVgze)) = Z V1Q QP k(Vh) B ®@Pjt pt (Vpt )@ - -V gie

h£ht
for all v1,...,vg4;e € V. Since the right hand side is symmetric in the pairs
(j, k) and (47, kT), we see that ¢, x and ®jt gt commute. O

7.39. For all integers n € Z>g, j € {1,...,i} and k € {1,...,d}, denote
the C-linear map V' — V that sends f, to e; if h = k and to zero otherwise
and that sends ej to zero for all h by d)}ik and denote the homomorphism of
representations of S,

V®die N V®die

n
VR Ry o Y @R () ® - ® vy
h=1

by Sozk-

Proposition 7.40. For all j, jt € {1,...,i} and k, kT € {1,...,d}, the maps
¢ and <p;fT i commute.

Proof. This proposition is proven similarly to Proposition 7.38. O

7.41. Let (e7,..., e}, f,..., f;) be the dual basis of (e1,...,e;, f1,..., fa)
Then we see that for all integers j € {1,...,i} and k € {1,...,d}, the C-
linear map ¢;k: V> — V> sends e} to zero for all h and sends f; to e
if h = k and to zero otherwise. Let k1: V' — V* be the isomorphism of
vector spaces that sends e, to e; and fj, to f; for all h. Then we see that
the diagram

*
J.k

V—V

4k

b5k

kX



commutes for all j € {1,...,i} and k € {1,...,d}. Let n € Z>p be an
integer. Note that the C-linear map

Kp: VO (VO
® Vi > <® W, — H m(vk)(wk)>
k=1 k=1 k=1

is the composition of the isomorphism /@?" with the isomorphism for Lemma

2.30(d). So we see that k,, is an isomorphism as well. One can check that
the diagram

Vv en L Ven

(Vemyx 2 (vem):
commutes for all n € Z>g, j € {1,...,i} and k € {1,...,d}.

7.42. Consider the homomorphism of representations of Sg;,

e e . 1/®die Rdie
b, = $1,1° ©¥id: V(ixde,o) - V(O,d><ie)'

Let v be the element e?de - - '®el®de of V(?X‘lzfe 0)° Now consider the element
Rdie

(pf10- o] )(v) of Vi(0ude...de).dxe)” Each map ¢ ; replaces one of the
de entries e; at the start of v and we sum over all the possibilities. So we
see that

(Piao-opigd@ = Y (0- (/@ 0ff) e e "
0E€S4e

By repeating this, we see that (¢f; 0+ 0 ¢ )(v) is equal to
J
Q| D oo i) | oo
k=1 o€Sge

for all j € {1,...,4i}. So in particular, we see that

)

(pf100pfi)) =@ | D o (e e[

k=1 \o€S4
is an element of V(%flf%f)d' So since the element v generates the represen-
tation V(Q?defem of Sgie, we see that the map ‘pfil 0---0 gpid restricts to a
homomorphism

. ®die,L; Rdie,Rq
Vid: Vigegeo) = Vio.axie)
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of representation of Sg;.. One can similarly check that the homomorphism
— . 1/ di Rdi
lg = (‘PT,l)e 0---0 (%a‘k,d)e' ‘/(O,dl:ie) - V(iXZlee,O)
of representations of Sy, restricts to a homomorphism

* o, ®di€,Rd ®d7;6,L2'
Via: Vioaxiey — Viixdeo)

of representations of Sg,.. One can also check that the diagram

@die,Ry <V®die,Rd) X

(0,dxie) (0,dxie)
it l(wgd)x
®die ®die x
_
Vv(O,dXie) (‘/(O,dxie)>
" le;
®die ®die )~
Vv(ixde,(]) (‘/(ixde,0)>
ﬂ%’d J{(Li’d)x
Rdie,L; V®die7Li x
(ixde,0) (ixde,0)

commutes where the horizontal maps sends an element t € V&% to the
C-linear map kgje(t) restricted to the appropriate domain. FEach of the
horizontal maps is an isomorphism and the vertical maps have compositions
w;‘,d and LZJZd. So we see that @b;d is surjective if and only if 1); 4 is injective.

Consider the Schur-Weyl dual of the homomorphism 17 ; of representa-
tions of Sg;.. Using Propositions 7.31 and 7.35, we get a homomorphism

Sym'(Sym®(U)) — Sym?(Sym™(U))

of representations of GL(U).

Proposition 7.43. The homomorphism of representations of GL(U)
Sym'(Sym®(U)) — Sym?(Sym™(U))

is a non-zero multiple of ¥; 4.

Proof. We may assume that the dimension of U is at least i. Our goal is
the prove that the diagram

i AW, ie
Sym’(Sym?*(U)) . Sym?(Sym®™(U))

. A

: N\ Homs,, (v7 ,,U®%e) ; .
®die,L; 7redie die \"i,d ®die,Rq 1rodie
Homsdie (V(ixde,o)’ U Homsdie ‘/(07d><ie) ) U
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commutes for some A € C*. Tt suffices to show that the homomorphism

. ®die,L; ®die
C: Viixdeoy 7 U

of representations of Sy;. such that ¢(vy,) = Lffde(uixde) also satisfies

mie (LY g(wr))) = AW, g(Uixde)

for some A € C*. One can check that

d
Viatwr) = Q) | D o (@ @ef)

k=1 \0€S;e
Let H;Xw be the subgroup of Hgy;e consisting of all permutations o € Sg;.
such that

o({(j = Die+1,...,jie}) = {(j — Vie+1,..., jie}

for all j € {1,...,d}. Then we see that

d
Vi g(wr) = Z o -(®(e?e®---®el®e)>.

+
UeHdXie

So we have

d

T g (wr))) = #HY - (D (5°@ - @ e%) = #H] ;0 - Wi a(tixac).
k=1

O]

Corollary 7.44.

(i) If the homomorphism 1; 4 is injective, then the homomorphism ¥; 4 is
also injective.

(i) If the homomorphism ¥; 4 is injective and the dimension of U is at
least max(%, d), then the homomorphism v; 4 is also injective.

Proof. This corollary combines the results from the previous proposition,
7.42, Corollary 7.14 and Proposition 6.49. O
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7.6 Induction on d

Let d,© € Z>o be integers such that d > 1. For each integer n € Z>, denote
the set {1,...,n} by [n]. Our goal in this section is the prove the following
theorem.

Theorem 7.45. If the homomorphism 1); 41 is injective and ¢ < d—1, then
the homomorphism
. 1/ ®die,L; ®die,R
Vid: Viigdeoy = Viodxie)
is also injective.
To prove this theorem, we will imitate the proof of Ikenmeyer and split
;4 into two parts. Note that v; 4 is the restriction of

(pla00wig1)o(¥igo - 0pia)

®di€,Li
80 Viisdeo):

Lemma 7.46. Suppose that v; 4 is injective. Then the map

e e . 1/ Qdie,L; ®Rdie
¥1,1° ©¥Yid-1- V(ix(d_1)e,(o,...,o,z‘e)) — V(O,dxie)

is also injective.

Proof. Recall that V((?jé;il)e’ (0,....0si¢)) is the span of the linearly independent
set
Vly .-+ Udie € {517- . -aeiafd}
V1 ® - @ Vgie | #{k|vp = ¢ej} = (d — 1)e for all j € [i]
#{klop = fa} = ie

and W%‘gfie) is the span of the linearly independent set
| v vaie € {f1s- - fad
{vl © D Vdie #{klv, = fj} =deforall je[d] |~

We will first decompose these spaces in to a direct sum of subspaces in such
a way that the map ¢, 0---0¢pf,; | splits as well.
Let S be the set of subsets S of [die| of size ie. For each S € S, let
V((?fzsfl)e,(o,...,o,ie)), ¢ be the span of the linearly independent elements
U1, - -+ Udie € {ela"'ve’bfd}
V1 ® - Qugie | #{klvpk =€} =(d—1)eforall jei] »,
v = fgforall ke S

take

®die,L; . y,/®die,L; ®die
‘/(ix(d—l)e,(O,.‘.,O,ie)),S T ‘/(ix(d—l)e,(o,...,(),ie)) N ‘/(ix(d—l)e,(O,...,O,ie)),S
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and let ‘/((?Cél:ie) g be the span of the linearly independent elements

V1,5 Vdie € {f1s- -+, fa}
V1 ® - @ ugie | #{klvok = fj} =ieforall j € [d—1]
v = fqgforallk e S

Then we see that the following statements hold:

e We have
®die _ ®die
Viix(d=1)e,(0,...0,ie)) = @ Vi (d=1)e,(0,...0,i¢)),8"
Ses
e We have
®die,L; _ ®die,L;
Viix(d-1)e,(0,...0,ie)) = @ Vi (d=1)e,(0,...0,i¢)),S"
Ses
e We have
®die  __ ®die
Vv(O,dXie) - @ ‘/(O,dxie),S
Ses
e We have

e e die die
(301,1 -0 %,d_l) (V(?x(d—l)e,(O,...,O,ie)),S) < ‘/(%),dxie),s
for all S € S.
For each S € S, let

. ®d7:6,Li Rdie
s Vi (d-1)e,(0,...0,€)),8 ~ V(0.dxie), 8

C ®die,L;
be the restriction of 7 0---0¢7,; ; to ‘/v(ix(dfl)e,(o,...,o,ie)),

the lemma by proving that £g is injective for each S € S.

Let S be an element of S. Let W be the subspace of V spanned by
€1,.--,€i f1,--+, fa_1, i.e., what V would be if we lower d by one. Then we
see that the C-linear maps

g We will prove

®die ®(d—1)ie
Viix(d=1)e,(0,..0i¢),8 7 Wiix(a-1)e,0)

V1 @ @ Vdie ®Uk

kes
and
®die ®(d—1)ie
Vioaxier,s = Wio,(d=1)xie)
V1 & Q Vdje ®Uk
kes
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are isomorphisms. Visually, we just remove the tensor factor f;, which we
fixed in place before, from the notation. Now note that the diagram

V®die,Li Ls Rdie
(ix(d—1)e,(0,...,0,i€)),S (0,dxie),S

| |

®(d*1)i€,Li "Z)i,dfl ®(d71)ie
Wiix(a-1)e.0) Wio,(d—1)xie)

commutes. So since v¥; 41 is injective, we see that /g is injective for each
S € S. Hence

e e . 1/ ®Qdie,L; ®die
Y1109 °Pig-1" V(z'x(d_1)e,(o,...,o,ze)) = V(0,dxie)

is also injective. O

For the second part, we can use a part of Ikenmeyer’s proof directly. Let
C? have basis (e, f). For each integer n € Zsq, denote the C-linear map
C? — C? sending e to f and f to zero by ¢ and denote the C-linear map

((CQ)QZ)n N (CQ)®n

n
VR @Uy o Y @@ () ® - Doy
h=1

by .

Lemma 7.47 (Ikenmeyer). Let a,b € Z>( be integers be such that a > b.

Then the map
. ((2\Da+b 2\®a-+b
¢ (C)arin-1) = (C)(ap)
is injective.
Proof. See the map ( in the proof of Claim 5.1 of [Ik]. O
Lemma 7.48. If we have ¢ < d — 1, then the map

e e . 1/Qdie ®Rdie
$1,dC " °Pia: V(ixde,o) - V(ix(d—l)e,(o,..,,o,z'e))

is injective.
Proof. For all integers k € {1,...,i} and h € {0, ..., e}, denote the vector
(de,...,de,(d—1)e+h,(d—1)e,...,(d — 1)e) € ZL,

by vk, where the value (d — 1)e + h is in the k-th entry. We will prove the
lemme by proving that for all integers k € {1,...,i} and h € {1,...,e}, the
map

. Rdie

®di
SDk’d ‘/(’Yk,h7(0v~~~707(iik+1)67h)) - V "

(’Yk,hfl7(07'~~707(i7k+1)7h+1))

123



is injective.
Let k € {1,...,i} and h € {1,...,e} be integers. Note that the vector
space V(%g}“( 0,....0,(i—k+1)e—h)) is the span of the linearly independent set
V1, ..y Udie € {61,. . .,ei,fd}
#{alvg =€} =deforallbe {1,....k—1}
V1@ Qugie | #lalva =ex} = (d—1)e+h
#{alv, =ep} =(d—1eforallbe {k+1,...,i}
#lalva = fa} = (i~ k+ e —h

®die . . .
and V(% 1200 ikt )=t 1)) 1S the span of the linearly independent set

Ul?'--avdiee{ela"-aei7fd}
#{alvg =€} =deforallbe {1,...,k—1}

V1 Q- @ Vgie | #{alva =€} =(d—1)e+h—1
#{alv, =ep} =(d—1eforallbe {k+1,...,i}
#{alva = fat=(—-k+1le—h+1

Let S be the set of subsets S of [die] of size (d+i—k —1)e. For each element
S € S, let Qg be the set of functions r: S — {e1,...,e;} — {ex} such that
#r=Y(ej) =deif j < k and #r~1(e;) = (d—1)eif j > k. Now forall S € S
and r € Qg, denote the span of the linearly independent set

( U17'~'avdiee{ela"'vei)fd}

#{alv, =ep} =de forallbe {1,...,k—1}
#{alvg =ex} =(d—1e+h

#{alvy =ep} =(d—1)eforallbe {k+1,...,i}
#{alva = fa} = (i —k+1)e—h

vg =7(a) for all a € S

V1 & -+ @ Ve

by Vv(%zl‘:,(o,...,0,(ifk+1)efh)),S,r and denote the span of the linearly independent

set

Vly.ooy Ugie € {€1,.. ., €4 fa}

#{alv, = ey} =deforallbe {1,...,k—1}
#{alvg =€} =(d—1)e+h—1

#alvga =ep} =(d—1)eforallbe {k+1,...,i}
#{alva = fat=(—-k+1le—h+1

L vg =r(a) for all a € S

V1 ® -+ @ Vdie

7

by V(‘fsf (0 0,k 1)—ht1)),5,- LDen we see that the following statements
hold:

e We have
V®die @ @ ®dze
(’Yk,}u(ov ’ k+1 6 h ’Yk h7 N 7 k+1)€ h)) S

SeSreQls
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e We have

®die _ @ @ V®die
(’Yk,h—lu(()?701(Z_k+1)_h+1)) - (’Yk,h—l1(07'"707(i_k+1)_h+1))7S7T‘
SeSreQg

e For all S € § and r € g, we have

®die Rdie
Phd (Vm,h,<o,...,o,(i—k+1>efh>),S,r) V1.0, 0,k 1) B4 1)), S

For all S € S and r € Qg, let

. ®die ®Rdie
st Vi (0n0s(i—h 4 D)e—h)) S " Ve 1400y (i—h+1)—ho1)), S

be the restriction of ¢y, 4 to V(%;jie,(o,...,0,(i—k+1)e—h)),S,T' Then it suffices to

prove that /g, is injective for all S € § and r € Qg.
Let S € S and r € Qg be elements. Let W be the subspace of V' spanned
by er and f3. Then the C-linear maps

®die @(d+i—k—1)e
(enrs (0, 0,(i—k+1)e—h)),Sr 7 Wid=1)e+h (i—kt+1)e—h)

V1 Q- - QVgie ®va
a€S

and

®die Ly py®ldti—k—1)e
(Vk,h—1,(0,...,0,(i—k+1)—h+1)),5,r ((d=1)e+h—1,(i—k+1)e—h+1)

V1 & QVgje ®Ua
a€S

are isomorphisms and the diagram

V®die s, ®die
(V,1+(0,...,0,(i—k+1)e—h)),S,r (Ve,h—1,(0,...,0,(i—k+1)—h+1)),S,r

! !

®(d+i—k—1)e ¥ ®(d+i—k—1)e
W((d*l)&‘i’h,(i*k‘i’l)efh) W((d*1)6+h*1,(i7k+1)67h+1)

commutes. We have
(d-—1le+h—-1>@G—k+1)e—h+1,

because 1 <k, 1 < h and ¢ < d— 1. So by the previous lemma, we see that
¢ and fg, are injective. ]

Proof of Theorem 7.45. We see that by combining Lemma’s 7.46 and 7.48,
we get Theorem 7.45. 0
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Corollary 7.49. For all integers i,d € Z>( such that ¢ < 2, the map ¥, 4
is injective.

Proof. We know from Section 7.4 that the maps ¥y ; and W39 are injective
for all vector spaces U of dimension al least two. Therefore the maps 1 1
and 1 2 are injective by Corollary 7.44. So by Theorem 7.45, the map ; 4
is injective for all integers i,d € Z>( such that ¢ < 2. So the map V; 4 is
injective for all integers ¢,d € Z>o such that i < 2 by Corollary 7.44. O

Remark 7.50. Let i,d € Z>( be integers and consider the dual
LR Sym?(Sym®(U))* — Sym'(Sym?(U))*

of the C-linear map ¥; 4. By applying the isomorphism from Lemma 2.30(e)
repeatedly, we can identify the map \Ilixd with a map

Symd(Symie(UX)) — Symi(Symde(UX)).

Let k: U — U* be any isomorphism of vector spaces. Then one can check
that the diagram

Sym®(Sym™(U>)) Sym' (Sym“(U>))
Sym?(Sym*®(k)) T TSym" (Sym<¢(k))
d ie Pa,i i de
Sym®(Sym*(U)) Sym’(Sym“(U))

commutes. So we see that the map V; 4 is injective if and only if the map
VU, is surjective. So the previous corollary is equivalent to the statement
that for all integers i,d € Z>q such that i < 2, the map ¥, is surjective.
For i = 2, this is the statement of Theorem 1.1 from [AC1].
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Chapter 8

Other methods and things
left to do

There are still a lot of things to be done. First of all is of course proving or
disproving the conjectures. More concrete examples of things that we still
have not explored in this thesis are the following questions.

(i) We defined for each integer n € Zxq the vector space V;, as the homoge-
neous part of degree n of the graded K-algebra K|[z,y]. What changes
if we replace K|x,y] by K|x1,..., %] for some integer m € Z>37

(ii) Does the previous chapter generalize from the field C to algebraically
closed fields K with the property that char(K) does not divide n! for
some integer n € Zx>( chosen sufficiently high?

(iii) We know that the ideals J and I; become equal after dehomogenisa-
tion with respect to cge- So the ideal I; is equal to the homogenisation
of the dehomogenisation of J;. Can we somehow use this fact to prove
that the the ideals J; and I; are equal?

In this chapter, we list some more interesting ideas which might be of some
use to people working on this problem.

8.1 Lie algebras

In this section, we work over the field C. Each representation of GLg(C)
also naturally has the structure of a representation of SL2(C) and each
homomorphism of representations of GLy(C) is also a homomorphism of
representations of SLy(C). This allows us to consider all homomorphisms
of representations of GL2(C) we have seen in this thesis as homomorphisms
of representations of SLy(C). Representations of SLy(C) are closely related
to representations of the Lie algebra sla(C). It is well known that all finite-
dimensional representations of SLy(C) and sla(C) are completely reducible
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and that the representations from 7.5 give rise to a complete family of finite-
dimensional irreducible representations. See [Hu] for more information.

Example 8.1. As an example of why using this approach might be useful,
recall that in Corollary 7.49 we have proved that certain homomorphisms of
the form

Sym?(Sym® (V7)) — Sym?¢(Sym?(V1))
are injective where d € Z> and e € Z>1 are integers. It is well know that

the representation Sym?(Sym* (V7)) is isomorphic to

Lk/2]
@ Sym2k74h (Vl)

h=0

as representations of sly(C) for each k € Z>(. So using Schur’s Lemma, we
see that to check the injectivity of a homomorphism of the form

Sym?(Sym (V7)) — Sym?¢(Sym?(V;))
it suffices to check that for each h € {0,...,|k/2]|} some non-zero element
of the summand Sym?*~4"(V) is not sent to zero.

For more results obtained using this approach on problems the same or
similar to the ones we discussed in this thesis, see for example [AC1] and
[AC2].

8.2 Howe’s isomorphism

Let K be an algebraically closed field and let d € Z>¢ and e € Z>; be
integers. In this section, we generalize a construction of Roger Howe from
[Ho].

8.2. Consider the map
a: Vde — Vde
(fl?"'afe) = fl"'fe'

Let (co,...,cqe) be the dual basis of (y%, zyde=1 ... x%). For each integer
i€ {l,... e}, let m: Vi — Vy be the projection map on the i-th factor.
Let (bo,...,bq) be the dual basis of (y% zy?~', ..., 2%). For all integers
ie{l,...,e} and j € {0,...,d}, take b; ; = b; o m;. Then

(bijj|2' S {1,...,6’},j € {0,...,d})

is a basis of (V7)*. For each (f1,..., fe) € Vi, we have

de

a(fi, . fe) = > b ()b (fe) | @y,
k=0 \ 0<j1,...,je<e
ikt de=k
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So we see that for all k € {0,...,de}, the function ¢ o a: Vj — K is the
polynomial function on V7 associated to the polynomial

Y b O Obey,

0< 1, je<e
]1"1‘“"‘1‘]5:]{/'

on V7. So « is a homogeneous polynomial map of degree e.
By the fundamental theorem of algebra, we see that « is surjective. By
Proposition 2.40, the kernel of the homomorphism of K-algebras
a*: P(Vge) — P(VY)
D DI FA I LY

0<j1,mje<e
]1+"'+]e:k

equals the ideal of P(Vj.) corresponding to the image of a. So since « is
surjective, we see that a is injective, because Iy, )(A(Vge)) = 0.
The vector space P(Vy)®¢ is a K-algebras with the rule

(f1®"'®fe)‘(gl®"'®ge):(f191®“'®fege)

for all fi,..., fe,91,...,9c € P(Vg). For all integers i € {1,...,e} and poly-
nomials f € P(Vy), note that the function f o 7; is a polynomial function
on V7. We identify this polynomial function with its corresponding polyno-
mial. The group S acts on P(Vy)®¢ by permuting the tensor factors with
the homomorphism

Se — GL(P(Vy)®°)
o = (1O @fe forr)® @ fr1(e) -

The homomorphism S, — GL (P(V})) sending ¢ to the endomorphism of
K-algebras

P(Vi) — P(Vy)
bm‘ —> bgfl(i)d
gives us an action of S. on P(Vy).
Lemma 8.3. The map
0: P(V)®e — P(V§)
fiw-®@fe = (fiom)© O (feom)

is an isomorphism of K-algebras and an isomorphism of representations.
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Proof. The homomorphism of K-algebras P(Vy¢) — P(Vy)®® extending the
K-linear map

(Vi) = P(Va)™*
by — 1®---910hR1Q---®1
to P(Vy) is the inverse. O

8.4. Let h € Z>o be an integer. Then the map ¢ restricts to an injective
map

Se
/- (Symh(VdX)®e) N Symhe«Vde)X)Se'
The map o™ gives us an injective map

) Sym" (VX)) — Sym"((Vi§)*).

One can check that the image of of(*h) is contained in the image if ¢. It
follows that there exists a unique injective map

e

Symh(de) — (Symh(VdX )®e)

making the diagram

Sym"(V) (Sym" (V<))
\ lel
)
Sym"¢((Vg)x )

commute.

Suppose that the characteristic of K does not divide e!. Then we can
identify (Symh(VdX)®e)Se with Sym®(Sym” (V). This gives us an injective
map

Sym" (V) = Sym(Sym" (V).

h 4+ de
h
and the dimension of it codomain is
(6 + (1) - 1>
c .

Take d = 1. Then the map is an isomorphism. This is the statement of
5.4.1.1 of [Ho]. Therefore we call this isomorphism Howe’s isomorphism.

The dimension of its domain is
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8.3 More on polynomial maps

Let K be a field and let V, W be vector spaces over K.

8.5. Let a: V — W be a polynomial map and let v be an element of V.
Then the map V — V sending x to x + v is polynomial. Therefore the
composition

vV — W
r = alz+v)

is a polynomial map. The difference between polynomial maps is a polyno-
mial map. Hence the function

Nya: V. — W
x = flx+v)— f(x)
is also a polynomial map.

Let k € Zsg be an integer and let §: V — Sym® (V) be the map sending
v to v®. Then for all K-linear maps £: Sym”(V) — W, the map £ o § is
zero or a homogeneous polynomial map of degree k& by Proposition 2.32.

Theorem 8.6 (Cartan). Let £: Sym*(V) — W be a K-linear map and take
a = {o¢. Then for all vq,...,v, € V, the polynomial map A, --- A, a is
constant with value k! - £(v; ©® -+ - ©® vg).

Proof. See Theorem 6.3.1(ii) from [Cal. O

Corollary 8.7. Let k € Z>( be an integer such that char(K) { k. Then
the set {v®%|v € V'} spans Sym*(V).

Proof. We apply the theorem with ¢ the identity map. We see that for all

v1,...,0 €V, we have

1
Ul®"'®vk:g(

Using induction on k, one can check that

(A’Ul o 'Avk(s) (38) = Z (_1)k_#15 <ZL‘ + Z%)

IC{1,..k} iel

Ay, - Ay, 0) (0).

for all x € V. So we see that v1 ® --- ® vy is a linear combination of the

elements
ok
(Zv) IC{l,... k}

iel
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8.8. Let d,i € Z>( be integers, let V be a vector space over C and let @i}d
be the C-linear map from 7.3 making the diagram

V®di6

ixXde iexd
/ \

Sym'(Sym™(V)) Sym’(Sym?(V))

id
by

commute. We want to prove that @i}d is surjective for ¢ > d if the dimension
of V equals two. By the previous corollary, we know that Sym9 (V) is
spanned by {v®%|v € V}. If a subset S of a vector space W spans W, then
one can easily check that the set

{wP® o - O wP®wy, ..., w; € S}
spans Sym‘(W). So we see that Sym‘(Sym®(V')) is spanned by
(P @ vy, v €V}
Let vy, ...,v; be elements of V. Then we have
. 1 :
ixde(, ©de L. @dey _ — ®de
YO 0uY%) = i Z ®Ua(j)
O'ESi j=1
and hence
(P @ 0 v ™) = () 0 @ (P

v € V}, we know that Sym®*(Sym?(V))

Since Sym?(V) is spanned by {v®%
is spanned by
{U?dG--'Qvgd\vl,...,Uie eV}

and now we see that to prove that the map @%}d is surjective, it suffices to
prove that Sym®(Sym¢(V)) is spanned by

{(v?d)Ge [ORERNO (v?d)Qe\vl, v €V
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