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1 Inleiding

Machine learning is een deelgebied van de statistiek, waarbij voorspellen cen-
traal staat. In de huidige tijd is het maken van precieze voorspellingen op veel
verschillende vlakken erg belangrijk. In deze bachelorscriptie zal worden ge-
concentreerd op één specifiek geval, waarbij de kwaliteit van voorspellingen van
groot belang is.

Electricité de France, het grootste elektriciteitsbedrijf van Frankrijk, produceert
elke dag een hoeveelheid elektriciteit, gebaseerd op een voorspelling, die véor
middernacht is gemaakt, van hoeveel elektriciteit er de volgende dag nodig zal
zijn in het land. Wanneer er te veel elektriciteit geproduceerd wordt, gaat elek-
triciteit verloren, omdat dit lastig opgeslagen kan worden. Wanneer er te weinig
elektriciteit geproduceerd wordt, moet Electricité de France dit op het laatste
moment duur inkopen bij een buitenlandse partner of binnenlandse concurrent.
Voor efficiéntie is een nauwkeurige voorspelling dus noodzakelijk.

Het blijkt dat over het algemeen originele voorspellingen inconsistent zijn. In
deze scriptie bestuderen we een voorspelling voor het totale elektriciteitsverbruik
en voorspellingen voor het elektriciteitsverbruik van verschillende deelgroepen,
waarbij de deelgroepen bij elkaar opgeteld het totaal vormen. Inconsistentie
wil nu zeggen dat de voorspelling van het totaal niet overeenkomt met de som
van de voorspellingen van alle deelgroepen. We zullen gebruikmaken van een
methode, gebaseerd op speltheorie, om deze voorspellingen consistent te maken,
wat dus betekent dat het voorspelde totaal wel overeenkomt met de som van de
voorspelde deelgroepen.

Het consistent maken van schattingen wordt al jaren uitgebreid bestudeerd van-
wege de vele toepassingen. Al in 1942 stelde Stone dat het essentieel was dat het
totaalbedrag en de verschillende posten bij elkaar opgeteld overeenkwamen in
de nationale begroting van Engeland [4]. Ook Hyndman hield zich met consis-
tentie bezig. Toegepast op data over het Australische toerisme, moest volgens
hem het totaal aantal toeristen wel overeenkomen met de som van het aantal
toeristen per gebied [3].

Wanneer we met behulp van de originele, inconsistente voorspellingen nieuwe,
consistente voorspellingen maken, willen we dat hiermee nooit de kwaliteit ver-
slechtert. In eerste instantie meten we de voorspelkwaliteit met de kwadratische
Euclidische afstand. In stelling 1 tonen we aan dat hiervoor inderdaad zo’n voor-
spelling blijkt te bestaan, die voldoet aan dit criterium. Dit is gebaseerd op een
bestaand resultaat [5]. We willen echter ook voorspellingen in de vorm van kans-
verdelingen kunnen doen, aangezien hier in de praktijk vraag naar is. Daarvoor
moeten we de kwaliteit meten met een maat die geschikt is voor kansverdelin-
gen. De standaard maat hiervoor is de Kullback-Leibler divergentie, die we dan
ook zullen gebruiken.

Voor we de Kullback-Leibler divergentie kunnen toepassen op ons probleem,
moeten we eerst de kwadratische Euclidische afstand generaliseren naar de al-
gemene groep van kwaliteitsmaten, de Bregman divergenties, waarvan de kwa-
dratische afstand de bekendste is. We meten de kwaliteit van voorspellingen



met behulp van deze Bregman divergenties. Wat we eerder gesteld hebben over
een bestaande voorspelling voor de kwadratische afstand waarbij de kwaliteit
nooit verslechtert, generaliseren we in stelling 2 naar Bregman divergenties in
het algemeen. Dit is het eerste nieuwe resultaat.

Wanneer we de generalisatie hebben geformuleerd, kunnen we hiervandaan spe-
cialiseren naar één specifieke Bregman divergentie, in ons geval naar de Kullback-
Leibler divergentie. Dit resultaat zal geformuleerd worden in stelling 3.

In het volgende hoofdstuk zullen definities, zoals de consistentie en de kwaliteit
van voorspellingen, geintroduceerd worden. Op basis hiervan kan stelling 1
gepresenteerd worden, in de laatste paragraaf van dit hoofdstuk. In hoofdstuk 3
komen Bregman divergenties aan de orde. De definitie van deze verzameling van
kwaliteitsmaten en de generalisatie, stelling 2, kunnen we hierin terugvinden. In
het vierde hoofdstuk bekijken we deze stelling in geval van de Kullback-Leibler
divergentie, de divergentie die het verschil tussen twee kansverdelingen meet.
Het laatste hoofdstuk bestaat uit een samenvatting en een beschouwing van
mogelijk toekomstig onderzoek.

2 Een speltheoretisch optimale methode

Een speltheoretische methode voor dit probleem is praktisch, aangezien er dan
helemaal geen aannames hoeven worden gedaan. De eigenschappen van een
kansverdeling, zoals de variantie en covariantie, doen er niet toe; in ieder geval
kan deze methode worden toegepast. Hoe werkt deze speltheoretisch optimale
methode?

2.1 Voorspellingen

In ons geval van elektriciteitsverbruik van Electricité de France willen we twee
verschillende dingen voorspellen. Allereerst zijn we geinteresseerd in het
elektriciteitsverbruik per deelgroep. Een deelgroep kan gezien worden als elke
soort groep klanten die elektriciteit consumeren, zoals bijvoorbeeld een aantal
bedrijven met hetzelfde contract. Voor de eenvoud en zodat we het een naam
kunnen geven, gaan wij er in de rest van deze scriptie vanuit dat een deelgroep
op een bepaalde regio in Frankrijk slaat. Stel dat Frankrijk uit K regio’s bestaat,
willen wij het elektriciteitsverbruik in deze K regio’s voorspellen. Daarnaast zijn
we geinteresseerd in het totale elektriciteitsverbruik van deze regio’s. Hoeveel
elektriciteit zal er totaal morgen in Frankrijk nodig zijn?

2.2 Consistentie

Het totale daadwerkelijke elektriciteitsverbruik, Y;.;, en het elektriciteitsver-
bruik van de regio’s, Y1,Ys,..., Yk, zijn consistent. Dit wil zeggen dat het
totale verbruik inderdaad overeenkomt met de som van het gebruik van alle
regio’s. Er geldt:

Yioe =Y1+Yo+... +Yk.

Over het algemeen blijkt echter dat bij het voorspellen van elektriciteitsver-
bruik, het totale voorspelde verbruik, Y;,:, niet overeenkomt met de som van



het voorspelde gebruik van alle regio’s, Vi +Ys+ ...+ Yk. Het totale verbruik
kan namelijk beter voorspeld worden dan enkel de voorspellingen per regio bij
elkaar op te tellen. Hier zijn meerdere verklaringen voor.

Sowieso zijn er bepaalde factoren die we alleen kunnen meenemen bij het voor-
spellen van het elektriciteitsverbruik van heel Frankrijk. Stel even, in tegen-
stelling tot in de rest van deze scriptie, dat K het aantal verschillende groepen
klanten met een verschillend contract is. In de zomervakantie wordt over het
algemeen minder elektriciteit in het hele land gebruikt; dit beinvloedt de voor-
spelling van het totale verbruik. Per gebied in Frankrijk is bekend wanneer
daar zomervakantie is en dus wanneer daar waarschijnlijk minder elektriciteit
gebruikt zal worden, door bijvoorbeeld gesloten scholen en bedrijven of mensen
die op vakantie zijn. Dat gaat echter niet op voor alle uitzonderlijke klanten-
groepen met een verschillend contract. De klanten binnen zo’n klantengroep
zijn verspreid over het hele land. Er is dus geen periode gebaseerd op vakantie-
data, waarover we zouden kunnen zeggen dat er minder elektriciteit verbruikt
zal worden binnen deze klantengroep. Oftewel, er is geen dergelijke extra in-
formatie die we zouden kunnen gebruiken bij de afzonderlijke voorspellingen,

Ook is er een statistische verklaring. Tegenwoordig worden allerlei moderne
methodes toegepast, waarbij onzuivere schatters gebruikt worden, omdat deze
erg nauwkeurige schattingen produceren. Deze schatters verminderen de vari-
antie in hun voorspellingen op een manier die ervoor zorgt dat ze gemiddeld een
klein beetje naast de werkelijke waarde zitten, oftewel dat ze een klein beetje
onzuiver zijn. Voor de grootste nauwkeurigheid zal dus inconsistentie moeten

gelden: E[Y}] # E[Yz].

Als laatste zouden we ons kunnen voorstellen dat verschillende effecten bij
aparte regio’s, zoals een beetje meer dan gemiddeld verbruikte elektriciteit bij
de één en een beetje minder dan gemiddeld verbruikte elektriciteit bij de ander,
uitmiddelen bij het optellen ervan. Bij de voorspellingen kunnen we hier echter
geen rekening meehouden. Dit zou als derde verklaring van de inconsistentie
van Y = (Yl, el SA/K, Ytot) gezien kunnen worden.

Samenvattend hebben we in het geval van voorspellingen van elektriciteitsver-
bruik dus te maken met inconsistentie:

Vit V1 + Yo+ ...+ Yk.

Zoals men intuitief al zou denken, brengt inconsistentie problemen met zich
mee. Hoe moet de totaal voorspelde elektriciteit verdeeld worden, als deze
niet overeenkomt met de som van de voorspelde elektriciteit van alle regio’s?
Inconsistentie in voorspellingen wordt dan ook voor operationele redenen door
managers vaak niet aanvaard. Hier moet dus een oplossing voor worden gezocht.

2.3 Van inconsistentie naar consistentie

Voor de hand ligt misschien om gewoon de voorspellingen Yi,.. ‘Z?K bij elkaar
op te tellen en zo op een totale voorspelling te komen: Y; +...+Yg = Y. Dit



wordt de zogenaamde bottom-up methode genoemd. De voorspellingen zijn dan
wel consistent, maar er wordt iiberhaupt geen gebruik meer gemaakt van onze
kennis over de totale voorspelling. Extra kennis om de voorspellingen preciezer
te maken zou uiteraard niet weggegooid mogen worden. Immers, hoe beter de
voorspellingen zijn, hoe meer deze waard zijn voor Electricité de France.

Machine learners produceren inconsistente voorspellingen, terwijl managers con-
sistente voorspellingen eisen. Aangezien we onze inconsistente, vaak veel betere
voorspellingen wel willen gebruiken, zetten we deze om naar nieuwe, consistente
en daarmee bruikbare, voorspellingen. We beelden Y = (Yl, LYk, Ytot) af op
de nieuwe voorspellingen Y = (Yl, ., Yx, Y{got) waarvoor wel geldt

Yiet = Y14 ...+ Yk.

2.4 De kwaliteit van voorspellingen

Het verlies ten opzichte van het daadwerkelijke verbruik Y, en daarmee de
kwaliteit, van voorspellingen ¥ = (V1,..., Yk, Yiot) kunnen we bijvoorbeeld
meten met de kwadratische Euclidische afstand. Dit is de meest voorkomende
afstandsmaat in de statistiek en wordt dan ook gebruikt bij Electricité de France.
Er geldt:

K
(YY) =¥ =Y |P= 3 (i = Yi)? + (Fiot — Vi) (1)
k=1

Hoe kleiner de afstand tussen Y en Y is, des te kleiner het verschil hiertussen
en daarmee des te hoger de kwaliteit van de voorspellingen.

Nu we een afbeelding maken van Y naar Y willen we dat hierbij de voorspelkwa-
liteit nooit verslechtert. De consistente voorspellingen Y = (Yl, .., Yk, Ytot)
moeten voor elk verbruik Y minstens even goed zijn als de Voorspelhngen Y,
hierboven beschreven. Voor de kwaliteit van de consistente voorspellingen ?
geldt analoog aan (1): (Y, Y) =|| Y - Y |?= Zk LV = Y3)2 + (Yiot — Yior)?.
Het verschil tussen de voorspelkwaliteit van de nieuwe, consistente voorspel-
lingen en de originele, inconsistente voorspellingen is dus £(Y,Y) — 0Y,Y).
Aangezien we willen dat £(Y,Y) niet groter is, willen we dat £(Y,Y)—£(Y,Y)
niet positief is. Omdat het onbekend is wat Y zal zijn en we willen dat voor
elke Y geldt dat het bovenstaande verschil hoogstens nul is, moeten we reke-
ning houden met het ergste geval. Dit is de kleinste bovengrens, oftewel het
supremum van het verschil:

sup (L(Y,Y) — (Y, Y)),
Yes

waarbij S = {X € RE+1| Zszl Xy, = Xk41}, de verzameling van consistente
vectoren. Als het voor het ergste geval zelfs op gaat dat £(Y,Y) — (Y, Y) <0,

geldt dus voor alle gevallen, voor elk verbruik Y, dat voorspellingen Y niet
slechter zijn dan voorspellingen Y.

Y moet zo gekozen worden dat zelfs het grootste verschil in sup (/(Y,Y) —
Yes

((Y,Y)) nog negatief is. Het maximale verschil willen we dus minimaliseren.



Dit is een zogenaamd minimax optimalisatie probleem. De speltheoretisch op-
timale manier hiervoor is om de voorspellingen Y zo te kiezen dat deze het
minimum bereiken in

V= %neig @gg((e(Y,?) — Y, Y)). (2)

2.5 Speltheorie

We gebruiken een speltheoretisch optimale methode waarbij een verzameling van
inconsistente voorspellingen gebruikt wordt als input en als output een verza-
meling van consistente voorspellingen wordt geproduceerd, die ten minste even
goed zijn.

Voor de volgende stelling verwijzen we naar theorie 1 van [5]:

Stelling 1. Er bestaat de unieke projectie Y proj = arg min || Y =Y |2, waarbij
YeSs

V=~ || Yproj — Y |°<0,
en waar voor de speltheoretisch optimale voorspellingen geldt Y = ?pmj.

In deze uitdrukking impliceert V' < 0 dat deze nieuwe voorspellingen minstens
even goed zijn als de originele voorspellingen:

VY €8 : Y, Yproj) < UY,Y).
Deze stelling zal later in deze paragraaf worden bewezen.

Wij bekijken nu een spel tussen twee spelers, waarbij elke speler aan het eind
van het spel een score krijgt, die hij of zij zo groot mogelijk wil hebben. Dit
wordt ook wel de pay off genoemd. Bij het beschouwen van een zero-sum game
geldt dat in iedere eindsituatie de waarde van speler 1 tegenovergesteld is aan
de waarde van speler 2. Als we de pay offs voor speler 1 en 2 respectievelijk
u1 en ug noemen geldt dat de som hiervan gelijk is aan nul: uw; + us = 0. Dit
verklaart de naam zero-sum game. Voor ons probleem hebben we te maken met
de volgende situatie:

e Het betreft een zero-sum game;
e Beide spelers hebben één beurt;
e Mogelijke zetten voor spelers hangen niet af van wat de ander doet.

Speler 1 kiest een zet a € A en speler 2 kiest een zet b € B, waarbij A en
B respectievelijk de verzamelingen van alle mogelijke zetten voor speler 1 en
2 zijn. Omdat we een zero-sum game beschouwen, kunnen we beide pay offs
uitdrukken met behulp van een enkele functie f. Dit geeft pay off u; = f(a,b)
en up = —f(a,b) voor respectievelijk speler 1 en 2. Het uitgangspunt is dat
beide spelers hun pay off optimaliseren. Wanneer speler 1 eerst aan de beurt
is geldt dat zijn of haar pay off gelijk is aan r;leaj( {,%ig f(a,b). Als speler 2 eerst

aan de beurt is geldt dat de pay off van speler 1 gelijk is aan Jlf)nig max f(a,b).
€B ac



Voor de pay off van speler 2 geldt dus als speler 1 begint — majlc inlg f(a,b) en
€
1 ler 2 begint — b).
als speler 2 begin gélg max f(a,b)

De speler die als tweede gaat, is altijd in het voordeel, aangezien deze nu weet
welke zet de ander heeft gedaan. Wiskundig beschrijven we dit als volgt:

Lemma 1. Voor iedere functie f geldt sup inf f(a,b) < inf sup f(a,b).
acAbEB beB qcA

Bewijs. Voor willekeurige functie f geldt:
Yag,bo : f(ag,bp) < sup f(a,by).
acA
We nemen aan beide kanten het infimum over alle b:

Yag : 1nf f(ao,b) < inf sup f(a,b).
b€B qeA

Dan geldt ook:

lelelg blgf f(a,b) < b1£f Slelgf(a ,b).

O

Spelers kunnen volgens verschillende strategieén spelen. Een zadelpunt (a*, b*)
is een punt waarbij beide spelers een theoretisch optimale strategie volgen.

Definitie 1. Fen zadelpunt van f is een punt (a*,b*) waarvoor geldt:

Va: f(a,b") < f(a®, ") (3)
Vb f(a®,b) = f(a®,0%). (4)
Er geldt dat als één van de spelers volgens het zadelpunt speelt, de ander het
ook niet erg vindt om volgens het zadelpunt te spelen.
Lemma 2. Als er een zadelpunt (a*,b*) bestaat voor een functie f, geldt de

minimaz gelijkheid:

M = maj(ggg f(a,b) = irélgr;leax f(a,b), (5)

en geldt bovendien dat deze gelijkheid ook gelijk is aan de waarde van f op het
zadelpunt:
M = f(a",b"). (6)

Bewijs. Voor (a*,b*) een zadelpunt geldt:
fla*,b*) = maxf(a,b*) > minmax f(a,b),
acA

beB acA
* 1k <
fla*,b*) = irém fla*,b) r;leajcgrém f(a,b),

dus geldt:

< ") < <
irélglgleax fla,b) < f(a*,b%) gleai(gémf(a b) irélglgleaxf(a b),

waarbij de laatste ongelijkheid geldt wegens lemma 1. Hieruit volgt dat alle
<-tekens vervangen kunnen worden door gelijkheden en dit geeft ons (5) en
(6). O
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De basis voor het bewijs van stelling 1 is nu gelegd.

Bewijs stelling 1. Stel de minimax gelijkheid geldt voor de functie
YY) =Y -Y P Y-Y | (7)
waarbij Y vast, aangezien dit de oorspronkelijke voorspellingen zijn:

mmmaX(HY YP- | Y=Y [?)=maxmin(| Y=Y >~ | Y=Y |?)
YesY YeS¥es

Dit kunnen we herschrijven:

maxmm(l\ Y-YP | Y=Y ") =max(— | Y -Y |
YeS vy YeS

— _ — — Af‘.’ . 2
= glég(llY Y %) 1Y = Ypros ||

waarbij \?proj zoals in stelling 1.
Als dus nu geldt dat

V= min max(£(Y,Y) - £(Y,Y)) = glggglérsl((ﬂ(Y, Y) - 4Y,Y))

zijn we klaar, aangezien we hebben aangetoond dat

max min((((Y,Y) = 4Y,Y)) = — | ¥ = Yproj ||>< 0.
YeS Y~'€S

We gaan de stappen van de bovenstaande herschrijving vertalen naar zetten van
spelers. Speler 1 kiest om f te maximaliseren Y = Ypo5. Speler 2 kiest om
f te minimaliseren Y = Y. Uit de zet van speler 1, volgt de keuze voor de
zet van speler 2. Oftewel, Y = Ypl‘o_] geeft Y=Y= YproJ Stel er bestaat

een zadelpunt, dan verwachten we dus dat het (Y, Y) = (Y proj; Yproj) zal zijn.

Nu willen we controleren of (Y proJ7Ypmj) inderdaad een zadelpunt is. Als
(Yproj> Yproj) namelijk een zadelpunt is, geldt lemma 2 en geldt dus stelling 1.
We beschouwen de functie uit (7).

f(Yproj: Yproj) = — | ¥ = Yproj |12
f(Ypr0j>Y) :” Y - Ypmj ||2 - || Y - Yproj ||2

Omdat || Y — Yproj ||>> 0 geeft dit ons voorwaarde (4) van de definitie van een
zadelpunt:

v{ZES:Jt(anroJa )>f( proj» PPOJ)

Voor voorwaarde (3) van de definitie van een zadelpunt willen we laten zien dat
geldt: VY € S: £(Y, Yproj) < f(Yproj, Yproj), oftewel

I Ypro; = Y 7 = | Y =Y [P< — | ¥ = Yoy [ (8)

We bekijken hiervoor onze gegevens in figuur 1. Y en X?pmj liggen in het

vlak van consistente vectoren, S. Yproj hebben we gedefinieerd als Yproj =

argmin || Y — Y |?; dit is dus de loodrechte projectie van Y op 5. We
Yes
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Figuur 1: Illustratie van de stelling van Pythagoras.

hebben dus eigenlijk een driehoek met een rechte hoek. We noemen de afstand
tussen Y en Y]M0 i, de afstand tussen Ypm j en Y en de afstand tussen Y en Y
respectievelijk a, b en ¢. (8) kunnen we dan schrijven als:

a® — % < —b2.

Deze ongelijkheid volgt uit de stelling van Pythagoras, die stelt dat in een recht-

hoekige driehoek met rechthoekszijden a en b en schuine zijde ¢: a? + b% = ¢2.

Aan beide voorwaarden voor een zadelpunt wordt voldaan, dus (YproJ, Yoproj)
is een zadelpunt. Volgens lemma 2 geldt nu dat min max(f (Y, Y)— Y Y) =
YesY

max min(({(Y,Y) = £(Y,Y)) = = | Y = Yproj [|?< 0.
YeS¥es

O

3 Generalisatie naar Bregman divergenties

In paragraaf 2.4 wordt bij het meten van de kwaliteit van een voorspelling ge-
bruikgemaakt van de kwadratische Euclidische afstand. We zouden de kwaliteit
ook kunnen meten met behulp van een andere afstandsmaat. De kwadratische
FEuclidische afstand is de bekendste maat van de groep afstandsmaten genaamd
Bregman divergenties.

3.1 Definitie

Voordat Bregman divergenties gedefinieerd kunnen worden moeten we de Le-
gendre functies beschouwen. We noemen een functie f : A — R Legendre als
deze voldoet aan de volgende voorwaarden [1, section 11.2]:

1. A C R? is niet leeg en het inwendige van A, int(A), is convex;
2. f is strikt convex met continue eerste partiéle afgeleiden in heel int(A);

3. Als x1,29,... € A een rij is die naar een randpunt van 4 convergeert, dan
| Vf(zn) ||~ oo als n — oco.

De Bregman divergentie is de functie D : A x int(A) — R, voortgebracht door
een Legendre functie f : A — R, gedefinieerd door:

Dy(x,y) = f(x) = fly) — (x —y)Vf(y). 9)

12



De eerder behandelde Bregman divergentie, de kwadratische Euclidische af-
stand, wordt bijvoorbeeld voortgebracht door de Legendre functie, gedefinieerd
door f(z) =| x ||>= (z,z). Als we deze invullen in (9) krijgen we:

Di(x,y)=llz > =y I =(@=—-yV [y l*P=(x,z) = (y,y) — (& —y, V()
=(z,2)—(y.y)—(@w—y,2)=@@—-y.xz—y) =|lz—yl.

Dit geeft ons dus als functie voor de kwadratische afstand: D¢ (x,y) =|| z—y ||*.

Informeel meet (9) de afstand tussen een Legendre functie f en z'n raaklijn.
Aangezien f strikt convex is, is deze dus nooit negatief.

3.2 Generalisatie

We willen stelling 1 generaliseren naar een stelling die geldt voor alle Bregman
divergenties. ¢ beschouwen we nu niet meer als de kwadratische afstand, maar
als een Bregman divergentie in het algemeen. De uitdrukking voor V, (2),
beschouwen nu ook voor £ een Bregman divergentie. Hierbij generaliseren we
ook S naar een meer algemene verzameling 7.

Stelling 2. Laat ¢ een Bregman divergentie zijn, T C R% een gesloten en con-
vexe verzameling waarvoor ANT = (). Voor elke voorspelling Y e int(A) bestaat

de unieke projectie YpmJ = arg min E(Y Y) en geldt voor de waarde van V :
Yer

V = —(Ypro;; Y) <0,

waarbij voor de speltheoretisch optimale voorspellingen geldt dat Y = ?pmj.

Voor het bewijs van deze stelling kunnen we gebruikmaken van de onderstaande
twee lemma’s.

We citeren bij deze lemma 11.2 van [1]:

Lemma 3. Voor alle Legendre functies f : A — R, woor gesloten, convexe

verzamelingen T C R® zodanig dat TNA# 0 en wvoor alle Y € int(A), bestaat

de Bregman projectie van' Y op T, Yproj = arg min £(Y,Y), en is deze uniek.
Yer

Lemma 4 (Gegeneraliseerde ongelijkheid van Pythagoras). Laat f een Legendre

functie zign. Voor alle Y e int(A) en voor alle convere, gesloten verzamelingen

T CRY, waarbij TN A# 0, als Yproj = arg_min  D(X,Y), geldt:

XeTnA
VY € T:Ds(Y,Y) > Ds(Y, Yproj) + D (Yproj, Y).

Voor dit lemma en het bewijs hiervan refereren we naar lemma 11.3 van [1].

Bewijs stelling 2. T is per definitie een gesloten en convexe verzameling en er
geldt T' C R? zodat ANT # (. Wegens lemma 3 bestaat nu de projectie

Y proj = arg min £(Y,Y) en is deze unick.
Yer
Stel nu dat (5) geldt voor de functie

FOY,Y) =Y, Y) —4(Y,Y), (10)
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waarbij Y vast, aangezien dit de oorspronkelijke voorspellingen zijn:

min max(((Y,Y) — £(Y,Y)) = max glen;(f(Y, Y) - (Y, Y)).

Deze laatste uitdrukking kunnen we herschrijven:

. S ooy () B N

glgglelg(ﬁ(Yﬁ) —UY,Y)) = max(—((Y,Y))

) - ~ . (0
= —{{néI%E(Y,Y) = —l(Yproj, Y) < 0,

waarbij Y~'proj zoals in stelling 2.
(%) geldt aangezien £(Y,Y) van de vorm f(Y)—f(Y)—(Y-=Y)Vf(Y) is, waar-
voor vanwege convexiteit gold dat dit nooit negatief kan worden, maar wel 0
kan worden. Voor minimalisatie kiezen we Y z6 dat oY, Y) gelijk aan 0 wordt,
namelijk Y =Y. Ook (o) geldt wegens ditzelfde argument: £(Y proj, ¥) > 0.

We gaan weer de stappen van bovenstaande omschrijving vertalen naar zetten
van de spelers. Speler 1 kiest om (10) te maximaliseren Y = Yp,05. Speler 2

kiest voor minimalisatie Y =Y. Uit de zet van speler 1, volgt de keuze voor de
zet van speler 2. Oftewel, uit Y = YpmJ volgt Y=Y= YpmJ Stel er bestaat
een zadelpunt, dan verwachten we dus dat het (Y, Y) = (Y proj; Yproj) zal zijn.

We gaan controleren of dit een zadelpunt is. Voldoet (Yproj> Yproj) aan voor-
waarden (3) en (4)? Als (Yproj, Yproj) namelijk een zadelpunt is, geldt lemma
2 en geldt dus stelling 2.

We beschouwen de functie uit (10).

f(Yproja Yproj) = _e(Ypro 7Y)
f(Ypr0j7Y) = E( prOJvY) E(YprOJvY)

Aangezien /(Y proj, Y) van de vorm (9) is, waarvoor gold dat het niet negatief
kan zijn vanwege convexiteit, geldt:

V?ET:JC(?NOM )>f( proj» ~pr0.i)-

Aan voorwaarde (4) wordt dus voldaan. Nu vragen we ons nog af of ook aan
voorwaarde (3) wordt voldaan. Hiervoor zou moeten gelden:

vY €T : f(Y;?proj) < f(?proja?proj)v

oftewel: _ ) _ A
Y, Yproj) —Y,Y) < —l(Yproj; Y). (11)

Voor deze voorwaarde kunnen we gebruikmaken van lemma 4. Voor T gold dat
deze gesloten en convex is en deze hadden we zo gekozen dat TN A # (). Volgens
lemma 4 geldt nu:

VY € T:4(Y,Y) > UY, Yproj) + {(Yproj; Y).

Hieruit volgt de benodigde voorwaarde (11).
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Aan beide voorwaarden voor het zadelpunt wordt voldaan, dus (?pmj, Yoproj)
is een zadelpunt. Volgens lemma 2 geldt nu dat

min max(¢(Y, Y) — (Y, Y)) = max min(((Y, Y) - ((Y,Y))

= (¥ proj, ¥) < 0.
O

Voor alle Bregman divergenties geldt dus dat kwaliteit van de nieuwe, consis-
tente voorspellingen altijd minstens even hoog is als de kwaliteit van de oor-
spronkelijke, inconsistente voorspellingen.

3.3 Voorbeeld kwadratische Euclidische afstand
We zullen laten zien dat uit stelling 2 inderdaad stelling 1 volgt.

Kies A = R? en neem T gelijk aan de verzameling van consistente vectoren,
dus T = S, zodat ANS # (). We hoeven nu alleen nog aan te tonen dat
S inderdaad gesloten en convex is. Hiervoor zullen we eerst geslotenheid en
convexiteit definiéren.

Definitie 2. Een verzameling X C R? heet gesloten als voor elke rij (1,)3%, C
X die convergeert naar x € R? geldt dat x € X.

Definitie 3. Een verzameling X C R% heet convex als voor alle z,y € X en
voor alle t € [0,1] geldt dat tz + (1 —t)y € X.

We zullen allereerst laten zien dat S gesloten is.
Laat
(x(k));‘?:o (zq " » Lo )a-~ k(k)) cs

convergeren in R naar = (21,...,24). Voor elke k geldt:

Dan geldt dat x4 = hm xfik) = hm Zj_ll xl(k) = Zf:_ll klim 2®) = Zlel Zi,
—00

dus z € S. S is een gesloten verzamehng

Dan zullen we nog laten zien dat S ook convex is.
We nemen twee elementen uit S: (x1,...,24q), (Y1,...,yq) € S. Dan geldt voor
alle t € [0,1]:

to (@1, @a) + (L =8) - (y1,- - pa) = (tor + (L= Oyr, .o twa + (1 = t)ya)

: (217"'7'211)7

en

d—1

d—1 d—1
Zzl —Z te; + (1 —t)y;) :tZaﬁi—l—(l—t)Zyiztﬂcd—i—(l—t)yd:zd,
1=1 =1

i=1
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omdat z,y € S, dus z € S. S is dus ook een convexe verzameling.

Dit is een voorbeeld van hoe het bewijs van stelling 2 inderdaad toegespitst kan
worden voor het bewijs van de stelling voor een specifieke Bregman divergentie,
in dit geval de kwadratische FEuclidische afstand.

4 Toepassing op Kullback-Leibler divergentie

Nu we weten dat de methode voor alle Bregman divergenties werkt, kunnen we
naar de toepassing van een andere Bregman divergentie in het bijzonder kijken.
We richten ons in dit hoofdstuk op de Kullback-Leibler divergentie.

4.1 Definitie

De Kullback-Leibler divergentie is interessant om ons op te focussen, aange-
zien deze het verschil meet tussen twee kansverdelingen. De Kullback-Leibler
divergentie tussen kansverdelingen p en q wordt gedefinieerd door:

d
pi
= Zpi log, —. (12)
i=1 4

Als p een discrete kansverdeling is, met Z?:l p; = 1, p; > 0, is de negatieve

entropie f(p) = Z?Zl p; log, p; de voortbrengende, convexe functie. Voor de
afleiding van (12) bekijken we eerst de gradiént van f op q:

In g;
Z% log, g; = Z% 11’122
In g; 1 d 1
— ? .. qi — .
Vit =3 (o ) =32 (o )

i=1

d
= Z(IOgQ i +logye).

i=1

Dus voor de bijbehorende Bregman divergentie geldt dan, door (9) in te vullen:

szlogzpz qulogzqz Z(ﬁquf(q)

i=1

= va log, p; — Z qilogy qi — Z( — ¢;)(logy g; + log, e)

=1

= sz Ing —logy € Z ~¢)
= Zpi log, %,
i=1 g

waarbij de laatste term wegvalt aangezien Z?Zl(pi —¢)=1-1=0.
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4.2 Toepassing

Nu we de Kullback-Leibler divergentie willen gebruiken, zullen we als input
kansverdelingen nodig hebben. Zowel de originele, inconsistente voorspellingen
Y als de nieuwe, consistente voorspellingen Y én het daadwerkelijke gebruik
Y zullen we in termen van kansverdelingen moeten beschrijven. De kansver-
delingen van de originele en nieuwe voorspellingen noemen we respectievelijk p
en p. Y is echter een vector van data, geen kansverdeling. Willen we gebruik
kunnen maken van de Kullback-Leibler divergentie, zullen we Y dus moeten
transformeren naar een kansverdeling, zeg pY¥. Dit doen we door de kansver-
deling te nemen die kans 1 heeft op de uitkomst Y en kans 0 heeft op iedere
andere uitkomst.

Aangezien £ alleen gedefinieerd is voor eindige dimensies zijn we voor de Kullback-
Leibler divergentie dus beperkt tot eindig dimensionale vectoren en daarmee
tot eindig dimensionale kansverdelingen. Daarom definiéren we allereerst de
onderliggende verzameling ) als een eindige verzameling van vectoren. Het is
bijvoorbeeld voldoende als alle y € ) in hetzelfde aantal decimalen geschreven
kunnen worden; dit is een realistische eis als we bedenken dat bijvoorbeeld op
computers ook alles in hetzelfde aantal bits beschreven moet kunnen worden.
Vervolgens definiéren we A als de verzameling van alle kansverdelingen p op ),
oftewel A = {p|p; > 0, Zle p; = 1}. Omdat {pY} niet convex is kiezen we de
kleinste convexe set die {pY } bevat. We nemen T = {p|p(S) = 1}, oftewel T
gelijk aan alle kansverdelingen waarvoor geldt dat de kans op een consistente
vector gelijk aan 1 is.

Ons oorspronkelijke probleem gaat over kansverdelingen en data. Hier zouden
we graag iets over willen zeggen door middel van een stelling. Omdat we hier
stelling 2 niet direct voor kunnen gebruiken, gaan we dit probleem van boven
begrenzen door een probleem waar we wel stelling 2 op kunnen toepassen. Als
we namelijk voor een bovengrens hebben aangetoond dat hij nooit een positieve
waarde kan aannemen, geldt dat ook voor het daadwerkelijke probleem.

Uit de toepassing van stelling 2 op de gebruikte bovengrens volgt een mogelijke
goede projectie, Pproj = arg I}li;l Dy (p, D), waar we dan ook gebruik van zullen
pe ’

maken in de volgende stelling.

Stelling 3. Laat Dy de Kullback-Leibler divergentie zijn, laat A = {p|p; >
O,Zlepi =1} en T = {p|p(S) = 1}. Voor elke voorspelling p € int(A)
bestaat de unieke projectie Pproj = arg I}li;l D¢(p, D) en voor de waarde van

pPE

1 1
J— Y =~ ) — Y A = Y — uy—
U= glg}sc(Df(p ,Pproj) — Ds(P™, D)) max (log2 Boror(Y) log, ﬁ(Y))

geldt:
U< _Df(f)projv f’) <0.

Voorbeeld 3 uit [2] geeft ons dat Pproj(Y) = P(Y]S).

Voor het bewijs van stelling 3 maken we gebruik van het feit dat 7' = {p|p(S) =
1} gesloten en convex is. Dit zal allereerst worden aangetoond.
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Lemma 5. T is een gesloten verzameling.

Bewijs. Laat (pr)72, € T convergeren naar p. Dan geldt:

p(S) = lim py(S) = lim 1 =1,

k—o0
dus p(S) €T. O
Lemma 6. T is een convexe verzameling.

Bewijs. Neem p,q € T en t € [0, 1]. Dan geldt:
(tp+ (1 —-1)a)(S) =tp(S) + (1 —t)q(S) =t+1-t=1,
dustp+ (1 —t)qeT. O

Bewijs stelling 3. We passen stelling 2 toe op de Kullback-Leibler divergentie
op kansverdelingen p,p € T, waarbij T = {p|p(S) = 1}. In dit geval geldt voor
(2):
U’ = mi D p)— D p
minmax Dy(p, p) — D¢ (p, D),

en uit stelling 2 volgt nu voor de waarde van U’:
U' = _Df(f’projvf)) <0.

Aangezien T alle pY,Y € S bevat, plus de convexe combinaties hiervan, geldt
{pY|Y € S} C T. Hieruit volgt dat U < U’. Conclusie: U < U’ < 0. O

In het geval van de Kullback-Leibler blijkt dus inderdaad ook dat de kwaliteit
van de nieuwe, consistente voorspellingen altijd minstens even hoog is als bij de
oorspronkelijke voorspellingen.

5 Samenvatting en toekomstig onderzoek

5.1 Samenvatting

In deze scriptie hebben we ons beziggehouden met het maken van bruikbare,
nauwkeurige voorspellingen voor elektriciteitsverbruik. Allereerst is verklaard
wanneer een voorspelling in de praktijk bruikbaar is, namelijk wanneer deze
consistent is. In eerste instantie hebben we de kwadratische afstand als af-
standsmaat voor de kwaliteit van de voorspellingen gebruikt. Bij het omzetten
van inconsistente naar consistente voorspellingen mocht de kwaliteit nooit ver-
slechteren. Daarom moest het verlies tussen het daadwerkelijke gebruik en de
nieuwe, consistente voorspelling altijd kleiner zijn dan het verlies tussen het
daadwerkelijke gebruik en de originele voorspelling. Hiervoor hebben we een
speltheoretische optimale methode uiteengezet.

In stelling 1 hebben we, gebaseerd op theorie 1 van [5], laten zien dat voor
de specifieke Bregman divergentie, de kwadratische Euclidische afstand, een
unieke projectie voor de voorspelling bestaat, die ons verzekert dat de kwa-
liteit van deze nieuwe, consistente voorspelling nooit verslechtert. Vervolgens
hebben we deze stelling gegeneraliseerd naar de algemene stelling 2, waarin we
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hebben aangetoond dat dit argument voor alle Bregman divergenties opgaat.
Tot slot is hiervandaan gespecialiseerd naar één specifieke Bregman divergen-
tie, de Kullback-Leibler divergentie. In stelling 3 bewijzen we dat voor deze
divergentie, die het verschil tussen twee kansverdelingen meet, ook zo’n unieke
projectie bestaat, waarmee de kwaliteit van de nieuwe, consistente voorspelling
altijd minstens even goed is als de kwaliteit van de originele. Terwijl het bewijs
van stelling 2 analoog was aan het bewijs van stelling 1, was het bewijs van stel-
ling 3 van een andere structuur. Hierbij konden we de algemene stelling 2 niet
toepassen op ons oorspronkelijke probleem en hebben daarom een bovengrens
gebruikt waarop dit wel mogelijk was.

5.2 Toekomstig onderzoek

Ondanks stelling 2 en stelling 3 als nieuwe resultaten, valt er nog veel te onder-
zoeken. In paragraaf 4.2 beperken we ons bijvoorbeeld tot ) als eindige verza-
meling van vectoren, wat uitgebreid kan worden naar een onderzoek betreffende
Y als continue verzameling van vectoren. Ook hiervoor, wanneer kansen vervan-
gen worden door kansdichtheden, is de verwachting dat er een unieke projectie
zal bestaan, die het gewenste resultaat zal leveren.

In dezelfde paragraaf stellen we, op basis van een bovengrens van U, iets over
de waarde van U. Een aanvulling hierop zou een daadwerkelijke uitschrijving,
zoals bijvoorbeeld in paragraaf 2.5 wordt gedaan, van U zijn, om hier direct een
exacte uitdrukking voor te vinden.

Naast de Kullback-Leibler divergentie, is er nog een aantal Bregman divergen-
ties dat interessant is om op in te zoomen. Als uitbreiding van deze scriptie
zou verder bijvoorbeeld nog naar de veelgebruikte Itakura-Saito divergentie, de
Bregman divergentie die het verschil tussen twee spectra meet, gekeken kunnen
worden.
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