A.M. van Eden

Breaking NormalHedge

Bachelor Thesis

Thesis Supervisor: Prof. Dr. P. D. Griinwald

Date of Bachelorexamination: 14th August 2014

Mathematisch Instituut, Universiteit Leiden

Abstract

In the past few years there has been a great development in the field of sequential
prediction. Starting with the simple, yet often effective, Follow-The-Leader
strategy, numerous different strategies have been conceived. The most prevalent
algorithm being used to realize these strategies is Hedge. This algorithm’s
performance crucially depends on a parameter called the learning rate.

Based on the work of Cesa-Bianchi, Mansour and Stoltz, a better Hedge algorithm
named AdaHedge has been developed by Griinwald, De Rooij, Van Erven and
Koolen that has great worst-case performance bounds. It sets the learning rate
parameter dynamically without using the doubling trick. This means that it
looks at the previous results to make the next prediction.

At around the same time, a new, completely different type of algorithm, named
NormalHedge, has been devised in San Diego. NormalHedge is parameter free.
This algorithm, by Freund, Chaudhuri and Hsu, completely skips the learning
rate complication.

In some simple examples it has been shown that NormalHedge has similar if
not better performances than all traditional Hedge strategies. In this paper
AdaHedge and some similar other Hedge Algorithms are compared to NormalHedge.
First we will do this through examples given by Griinwald et al. that we will
reproduce. Next an extensive and elaborate data sequence is created. This
complicated experiment will give new insights in the strengths and weaknesses
of the algorithms.

Contents

1 Introduction 5
2 Framework 5
3 Algorithms 6
3.1 Follow-The-Leader 7
3.2 SafeHedge 7
3.3 Dynamic Learning rate 0. 8
3.4 A combination: FlipFlop 8
3.5 NormalHedge 9
4 Experiment Reproduction 9
4.1 Experiment 1 & 2: Best and worst-case for FTL 10

4.2 Experiment 3 & 4: Weights do not and do concentrate for AdaHedge 11

5 Complex experiment 11
5.1 Experiment 1o oo 12
5.2 Experiment 2 L 12
5.3 Experiment 3 L 13
54 Conclusion 13

6 Matlab code 21

7 Bibliography 24

1 Introduction

In this paper we look at the decision-theoretic online learning (DTOL) framework.
This is a variant of the problem of prediction with expert advice introduced be
Vovk [2]. The goal here is to sequentially predict a sequence of data.

We follow up on the work published by Freund and Schapire [1] who first
introduced the Hedge setting. This was improved by Griinwald et al.[3] with
the development of the AdaHedge and FlipFlop Algorithms. These algorithms
were seen as the most effective in providing good results for both favorable and
unfavorable data sequences. However, recently, a new type of algorithm has
been developed, NormalHedge, which does not make use of the learning rate
parameter like the Hedge algorithms.

Until now, all the cases tested with NormalHedge gave better performances than
AdaHedge. Our goal is to find and test a complex situation where NormalHedge
is expected to perform poorly in comparison to AdaHedge. Preferably this case
would have AdaHedge perform well but this is not a necessity. More simply put,
we want to find a data sequence where AdaHedge works well and NormalHedge
doesn’t and thus "break” NormalHedge.

First, an overview of the Hedge setting is given and explained. Then the most
common Hedge algorithms and the new NormalHedge algorithm are described.
Next, we try to reproduce the simple examples shown by Griinwald et al. [?] to
check make sure the matlab implementations are correct. Finally, we introduce
a complicated situation where the algorithms will be strained and then discuss
the results.

2 Framework

In the Hedge setting, the person using the algorithm, which we shall call ” Learner”,
must each round ¢t = 1,2,...,7T make a prediction of the outcome in the next
round. The Learner does this by referencing a set of K forecasters we call
"Experts”. The reader should note that the forecasters being named experts
says nothing about their actual accuracy.

At each time, ¢, the Learner has access to a set of predictions made by these
experts. To make his own forecast, the Learner assigns a nonnegative weight
wy to each expert prediction. In addition, the sum of the weights should
equal to one. For the sake of convenience, the weights are put in vector form,
Wy = (wt,l, W2y, wt,K).

The reader may think of the weights as determining the importance allocated
to an expert’s opinion. It is possible, for example, to put all your weight on one
expert or to spread it out evenly over all experts. We will come back to this
later.

After a prediction is made, the ”environment” reveals the true value. Each
expert then incurs a loss. The losses are also put together in a vector, I; =

(lea,le2, -, Lk). These losses all have values between 0 and 1.

The Learner’s loss is the dot product h; = w;-l;. This is intuitively correct as the
prediction incurred has a certain weight attached to the forecast of each expert.
Therefore the loss incurred by each expert is also part of the loss incurred by the
Learner, the proportion depending on the weight given. Because we look at how
well an algorithm does over a period it makes sense to look at the cumulative
losses. We denote these with a capital letter: L, = Iy + --- 4+ l; 1 is the
cumulative loss of expert k and H; = hy + - - - + hs is the cumulative loss of the
Learner. The regret is how we denote the performance of the Learner and the
goal is to have a regret that is a small as possible:

R, =H,— L} with L} = mkin Ly g,

What the regret signifies is the difference between the loss of the Learner and
the best expert so far. This is the expert that has the smallest cumulative loss
Ly = bk

It is possible that the regret function decreases. In other words, the function
is not monotonically increasing. A decrease at time t symbolizes the Learner
performing better than the best expert so far.

3 Algorithms

The most common solution to the DTOL problem are Hedge algorithms. These
are algorithms that all are dependent on one parameter: the learning rate 7.
How this rate is set has been the recent focus of most mathematicians working
in this field. The most basic strategy is described in Figure 1. Here the learning
rate is a constant.

Algorithm 1 Hedge(n)
Lip + 0,¥i {cumulative loss}

initialize w; 1, Vi {weight distribution, Z:’ ywip =1}
fori=1,2,... do

Each action ¢ incurs a loss [,

Liy+— Liey + 1y {expert loss}

Wi =My € it

Pitsl # f:‘:ﬂ,llﬁ {update probability distribution}
end for

Figure 1: Pseudo-code for the Hedge algorithm [7]

3.1 Follow-The-Leader

A simple strategy with a constant 7 is Follow-The-Leader (FTL). In FTL, all the
weight is given to the best expert so far (or spread evenly if there are multiple
experts with the same smallest loss). To implement FTL in the Hedge algorithm,
the learning rate must be set to infinity. In the code, that is equivalent to setting
n to a very large number.

FTL is a intuitive strategy as one could expect that the best expert so far has
good odds of remaining so the next round as well. In addition this strategy
has been used and proven its worth in certain Financial applications. However,
very quickly, it is realized that FTL being a good option is very often not the
case. This especially when the data is antagonistic. When this is the case, the
regret of FTL kan even become linear following the line y = %t. This is worst
result the Learner could possibly have and is thus the worst-case regret bound
for FTL. We will illustrate this more in section 4.

3.2 SafeHedge

In response to this new challenge, methods for finding the value for n that give
good regret bounds for all data sequences, thus being ”safe”, are devised. One
of these methods that is safe is fittingly called SafeHedge. Here a learning rate
is devised to optimize for the worst-case regret bound found by Cesa-Bianchi
and Lugosi (section 3.7) [5].

WK T
Vg>0: R=-—2 10
n 8

What Cesa-Bianchi and Lugosi found, is that when using the equation above
to find 7 the lower bound of the worst-case regret is O(v/T In K). This means
that if the algorithm performs the worst it can it wil be following the line VT
in the long run. The algorithm works ”well”, or has good results, for a certain
data sequence when the regret is substantially lower than the worst-case regret
bound. This definition of an algorithm’s performance will be used in the whole
paper.

What we can see is that SafeHedge needs information before the algorithm
actually starts. This includes the length of the loss sequence T and the number
of experts K. This prior needed knowledge makes it a less flexible alternative as
this is not always available. Without these values, the learning rate cannot be
found and the algorithm cannot be executed.

The SafeHedge algorithm does work well for "hard” data sequences, sequences
that are similar to the worst-case. For ”easier” data however, this bound is too
weak. This results in a high regret when a low one is easily attainable.

What we may conclude is that setting the learning rate to a constant does
not always give a good performance. On the contrary, for many data sequences,
Hedge with constant 1 perform poorly. To solve this problem, dynamic methods
of setting 1 have been developed.

3.3 Dynamic Learning rate

There are numerous different strategies for setting the learning rate dynamically.

One such strategy has been developed by Cesa-Bianchi, Mansour and Stoltz [8]
(CBMS from now on). They did this by adjusting the learning rate each round
based on the previous observations. So now, not only the length of the data
sequence up till now is important, but also what all the actual losses of the
experts are. How this is different from SafeHedge is that prior information like
the length of the sequence T is not needed to make the prediction. With this
technique, the CBMS algorithm was developed which is the groundwork for the
next algorithm we will be looking at.

The CBMS algorithm was a big step in improving the Hedge algorithm. It
gave good regret bounds for worst-case data. However in the past few years a
refinement of this algorithm has been developed by Griinwald et al [3]. This new
algorithm, AdaHedge, improves on the bounds by a factor 2. While not being a
enormous improvement, this is reason enough to work with AdaHedge instead of
the CBMS algorithm. Another improvement is that it exploits easy sequences
of losses more aggressively thus performing better in these cases. What this
means is that the actual regret difference may be larger than the factor 2 regret
bound difference. The actual lower worst-case regret bound of AdaHedge is also
O(VTIn K). This means that it will not perform worse than SafeHedge in the
worst-case. It is possible that SafeHedge performs better than AdaHedge but
the results will always be below the lower bound. Griinwald et al. [3] found that
AdaHedge works well when the weights concentrate fast to one expert which
often happens when the data is easy or not very adversarial. On the other hand,
AdaHedge works poorly when the

How AdaHedge is implemented in code is described in section 6.

3.4 A combination: FlipFlop

The last algorithm that is going to be experimented with from the Hedge family
is the FlipFlop algorithm also by Griinwald et al [3]. This algorithm uses both
the FTL strategy and the AdaHedge strategy. Every round FlipFlop looks at
the data and makes a decision if it should use the one strategy or the other.
It does this by carefully alternating between both algorithms and then looking
which one gives a preferable result. This technique keeps the worst-case regret
bound of AdaHedge up to a constant factor and its regret is also still bounded
by the regret of FTL multiplied by a constant. This mean that the lower bound
regret for the worst-case is also O(vT In K). What this also means is that this
method will not, for each and every data sequence, produce the very best results
but it does guarantee good results for all data sequences. This makes it a more
robust algorithm. How this algorithm is implemented is shown in section 6.

3.5 NormalHedge

As mentioned before, a new solution to the DTOL problem has recently been
developed by Chaudhuri et al [4]. This methode uses the same framework as
Hedge but is parameter free. Similarly though to AdaHedge it uses the previous
data to tune itself. This new strategy was inspired by the difficulties the basic
Hedge algorithm has when there is a great amount of experts. In Figure 2 the
pseudo code of the NormalHedge algorithm is given. One can see that the code
starts off in a similar fashion but changes drastically when it gets to the regret.
Also there is no Learning rate parameter in the code.

A 7weakness” of NormalHedge is that it is not intuitive why the algorithm
works. There a few proofs given in the paper by Chaudhurri et al. [4]. What
they show is that NormalHedge has the same lower regret bound as SafeHedge,
AdaHedge and FlipFlop. However, they do not really explain how the method
was devised. This is why it is so interesting to test and compare NormalHedge
with AdaHedge and FlipFlop which are the top alternatives. Nobody knows
what will exactly happen.

Initially: Set R; o =0, p;,1 = 1/N for each i.
Fort=1,2,...

1. Each action ¢ incurs loss £; ;.

Learner incurs loss £4 ; = Z:’zl Piikiy.
Update cumulative regrets: R; , = R; ;1 + ({44 — £;) for each i.

Find c; > 0 satisfying & 3017 ; exp (((Bytsl) = .

ol

2ey

5. Update distribution for round ¢ + 1: p; 411 [R;:]-‘ exp ({[R’ﬁ;l*ﬁ) for each 1.

Figure 2: Summary of the NormalHedge algorithm [4]

4 Experiment Reproduction

To start the tests off, the experiments of Griinwald et al. are going to be
replicated. If the results are the same, we have a good confirmation that
our matlab code is correct. This is important because, even though we have
the code for AdaHedge, FTL and FlipFlop, we only have the pseudo-code for
NormalHedge and no code for the creation of the data sequences.

There are four experiments, which each show the strengths and weaknesses of
the the algorithms. In all four the situations there are two experts and the data
sequence of losses is T' = 1000 long. These data sequences consist of an artificial
initial loss vector Iy followed by vectors Iz, ...,z which are (0 1) or (1 0). The
way that the next vector is chosen each round is by looking at the cumulative

loss difference of the two experts L1 ; — Lo ;. We then set a goal f(t)and chose
the subsequent vector that brings the cumulative loss difference the closest to
that goal. We plot the regret versus the time for the following algorithms:

1. Hedge with constant n =1
2. Hedge with nn = oo (Follow-The-Leader)

3. SafeHedge

4. AdaHedge

5. FlipFlop with parameters ¢ = 2.37 and o = 1.243 as in [4]
6

. NormalHedge

4.1 Experiment 1 & 2: Best and worst-case for FTL

The first experiment that is going to be reproduced is the worst-case for FTL.

Here we start of with /; = (3 0) and f(t) = 0. This gives us the following loss

sequence:
01 0 1 ...
101 0 ...
We see that the results are the same in our test as in the original. FTL performs
poorly as each round there is a different Leader. This results in an increase of
1 in the regret every two rounds. All the other algorithms also have the same
results. One slight difference is the the original plots have a smoother lines.

The probable reason for this is that the authors repeated the process a number
of times and plotted them on top of each other or took the average.

Ol

The second experiment is the best case for FTL. Here we start of with Iy =(0)
and f(t) = 0 This gives us the following loss sequence:

1 1.0 1 0 ...

<00101...> (1)
The reason this is the best case for FTL is that the leader never changes.
FTL puts all its weight on the leader and that is always correct except in
the first round when the weights are equally distributed. As we can see here,
all the algorithms seem to perform like they should. The only exception is
NormalHedge. In the original version it seems to oscillate between 0 and 1.
After manually calculating what the values should be of the regret it seems like
the original is mistaken. The reason for this is unclear. The only explanation we
have is that the authors wanted to make clear that the FTL and FlipFlop lines
are underneath the NormalHedge line and thus artificially made NormalHedge
oscillate.

10

4.2 Experiment 3 & 4: Weights do not and do concentrate
for AdaHedge

The last two experiments have [; = (0 1) with f(t) = t%*4 and I; = (0 1) with
f(t) = t%6 respectively. These are situations where AdaHedge works very well
in the one and works very poorly in the other.

The data sequences created are too long to show but in the first situation the
first expert has accumulated 508 loss, while the second expert has only 492. In
the second and final experiment the gap is larger with the first expert having
loss 532 and the second 468.

There are two things that are noticeable. The first is that the Hedge algorithms
seem to work perfectly. This is not very surprising as our code is based on
Griinwalds [3] but it is reassuring to see.

The second is that the NormalHedge line plot is giving slight different results. In
both cases they do become constant but the value where they become constant
and after how many steps that happens is a bit off.

5 Complex experiment

This final experiment, is similar to one described by L. Jansen [6], has been
devised to try and make NormalHedge perform poorly in comparison to AdaHedge
or FlipFlop. The loss data is made up as follows:

Let y© = (y1,...,yr), be a random sample drawn ii.d.from a Bernoulli(4)
distribution, with y; € {0,1}. These values in y” are the correct values each
expert k € K will have to predict. Each round however, is either an easy
round or a hard round. This is decided each round by a random draw from a
Bernoulli(y) distribution.

In an easy round, every expert makes a correct prediction so everybody’s loss
is zero. In a hard round every expert has probability A\; of making a correct
decision. If the expert makes an incorrect prediction the loss is 1, the prediction
is considered completely wrong.

In our experiment we have two types of experts. There is one "good” expert
and there are K —1 ”"bad” experts. The good expert has a higher probability of
making the proper prediction in a "hard” situation. To make the good expert
even better we make a prior distribution 7(K) of the experts. In all experiments
we will have 7(1) = 0.5 and n(2) =#(3) =--- = Q(Kilfl)

What this does is that the prediction of the good expert is given more weight.
Say we have K experts, in the program, the results of the good expert are
multiplied by (K-1). This results in there being (K-1) identical good experts
and (K-1) bad experts.

What we want to achieve with this construction is that in theory there should
be one clear best expert. But because we are going to work with such large
amounts of experts, it is very likely that some bad experts will for short periods

11

of time perform better. This will result that relatively high weights are put on
bad choices.

It will also cause there to be quite a few leader changes during the first part of
the run. As seen in the first experiment in the previous section, NormalHedge
does not perform very well in that case.

5.1 Experiment 1

In this first experiment we have chosen v = 0.7, Ay =0.5and Ay =--- = A\ =
0.4. We also set T' = 1000 and K = 1000. This means that there are 1000
experts and that the Learner is going to predict for a 1000 rounds.

What we can see in Figure 9 is that NormalHedge and AdaHedge seem to
perform almost exactly the same way. This is very surprising as we expected
NormalHedge to perform poorly. We do not have an explanation for this
phenomenon. At the start, the two algorithms differ a bit but they quickly
converge. These two algorithms do both use previous data to make their
prediction but how they do this is quite different as shown in the previous
section.

What does look as expected is the data sequence. We can see that at the
start there are a lot of switches between best experts which makes the regret
of the algorithms increase rapidly. After a while, the good expert becomes so
dominant though, that it is by far the best expert and never loses its top spot.
This translates itself into the constant line of almost all the algorithms. The
only one that doesn’t even out until the very end is SafeHedge but that is exactly
how SafeHedge is expected to behave.

We also see that FlipFlop performs badly. This is due to the fact that, of all
the algorithms, FTL performs the worst , so when FlipFlop switches to FTL for
a very short time, this increases its regret by a relativly high amount.

5.2 Experiment 2

For the second experiment, the values are: v = 0.7, Ay = 0.4 and Ay = --- =
Ar = 0.6. So now we have that the good expert is worse than the bad experts
but the distribution stays the same.

What we see is that FTL performs atrociously in comparison to the other
algorithms. AdaHedge and NormalHedge perform exactly the same again so
we cannot comment on one being better than the other. What we do see is that
Hedge with a Learning rate of 1 performs surprisingly well. This could mean
that the learning rate used by AdaHedge is also always around 1. By chance,
n = 1 turns out to be a could choice. One can understand that testing for all
constant Learning rates is not an efficient tactic though and that a dynamic
strategy is still preferable.

12

5.3 Experiment 3

In the last experiment we wanted to see what a change in the v would result in.
We kept the value of the second experiment for the lambdas and we changed
the value for gamma to 0.9. What we expect is that there will be less leader
changes as in 90% of the cases, all the experts will be correct due to the rounds
being easy.

When looking at the plot we see that as expected there are fewer leader changes
which make it a good data sequence for FTL. We see that that algorithm
performs the best. We also note that the overal regret is much higher than
in the previous examples. This could be due to the fact that there are less
leader changes, the algorithms have less opportunities to perform better than
the best expert so far.

Lastly, we see that this is the first data sequence where FlipFlop performs better
than NormalHedge and AdaHedge (slightly). This, like in the first experiment,
is attributed to its ability to use the FTL strategy. We could see this data
sequence as a relatively easy one, which also explains why SafeHedge performs
the worst of all. The 1 used is too pessimistic and strict.

5.4 Conclusion

Sadly the goal of this paper has not been achieved. We did not find clear
weaknesses in the NormalHedge algorithm in comparison to AdaHedge and
FlipFlop. We were not able to break it. There are two reasons why this could
be the case.

First, the code used for the NormalHedge algorithm could be flawed. In the
simple experiments we saw that our results for that algorithm did not always
match Grinwald et al’s. In the case of the second experiment we are fairly
convinced that our results are correct but in the last two we do not know which
one is right. A comparison of the codes would be useful or the code written by
the creators of NormalHedge could be requested.

The second is that NormalHedge just is a good alternative to AdaHedge and
FlipFlop and that in most cases it will perform well. In all the cases we tried,
which are numerous, NormalHedge and AdaHedge performed almost exactly
the same. This is the more positive outlook.

Having said this, we cannot conclude that the Algorithm will do well in ”all”
cases. There are still numerous types of problems that can be tested and there
is definitely room for further research and experimentation.

What did come out of this experiment is that we found a situation that, by
changing just three values, can create data sequences that show the strengths
and weaknesses of all the algorithms. They display the key properties of the
algorithms. For example the fact that SafeHedge regret still increases while the
others are constant or that FTL regret never decreases. Lastly, these sequences
illustrate nicely the workings of FlipFlop and its dependence on AdaHedge and

13

FTL. This can give us a better understanding of its workings and could help to
improve it.

14

a0
FTL;'I Hedge eta=1

o

’l ! MermalHedge

| / FlipFlop
20 H‘ / R

155 H‘ / o T AdaHedoe

]
m-f) I Sale Hedge

5 _.; __,.—-"'J-__ Vanaui: ME

o — L 1 1 1 1 L 1)
o 100 200 300 400 500 G600 700 Boo 300 1000

30

a5l Hedge eta=1

a0t

Hormal Hedge

FlipFlop

AdaHedge

SafeHedge

| | | 1 | | |
1] 100 200 300 400 =00 600 700 ann q00 1000

tirme

Figure 3: Comparison between Griinwald’s (top) and reproduced experiment
(bottom) for FTL worst-case

15

30 .
Hedge ala=1
251
201
B
gor AdaHedge
Sale Hedge
10
5k Variation MW
NormalHedge, FlipFlop, FTL
o
o 100 200 o0 400 500 G600 700 ao0 500 1000
lime
50—
45 hedge eta=1
40+
inrE
30 -
g sl
z
20+
15 AdaHedge
wlk SafeHedge
S
FTL, FlipFlop, NormalHedgs
i 100 200 300 400 500 00 700 s00 an0 1000
tirme

Figure 4: Comparison between Griinwald’s (top) and reproduced experiment
(bottom) for FTL best case

16

151
AdaHedge
Sate Hedge
101
Wariation MW
B
g
sk
Hedge eta=1
— NormaHedge
FlipFlop, FTL
D 1 | 1 1 1 L L 1 |]
0 100 200 300 400 500 &00 700 800 800 1000
time
15
AdaHedge
SafeHedge
n -
©
=]
z
L
Hedge eta=1
Mormal Hedge, FTL, FlipFlop
| | | | | | | | | |
UD 100 200 300 400 s00 GO0 Too s00 00 1000
tirre

Figure 5: Comparison between Griinwald’s (top) and reproduced experiment
(bottom) for AdaHedge worst-case

17

15
Wariation MW
Safe Hedge
10
T
g
sk
NormalHedge, AdaHedge, Hedge eta=1
_'mJ FlipFlop, FTL
0 | 1 1 N I 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 200 1000
time
15
Safe Hedge
10
s
o
z
S
AdaHedge, Hedge eta=1
FTL, FlipFlop, Morma Hedge
]]]]]]]]]
DU 100 200 300 400 500 00 00 §00 a00
time

Figure 6: Comparison between Griinwald’s (top) and reproduced experiment
(bottom) for AdaHedge best case

18

35

1]

25

regret

50

45

40

AdaHedge
—FTL
—FlipFlop

Hedge eta=1
— SafeHedge
MommalHedge

AdaHedge
—FTL
— FlipFlop
Hedge eta=1
— JafeHedge
MormalHedge

|
400

|
500
Firrne

T

|
600

|
ron

|
ann

|
a00 1000

Figure 7: Plot of experiment 1 of all algorithms using the complex data sequence

0

| 1
100 200

1
3nn

1
san
Lirme

19

1
600

|
T00

|
G500

1 |
a00 1o0o

Figure 8: Plot of experiment 2 of all algorithms using the complex data sequence

[i11]

50

40

reqgret
(2]
=

20

AdaHedge
—FTL
—FlipFlop

Hedge eta=1
— SafeHedge

MommalHedge

|
100

1 I 1 I I 1 I 1
200 300 400 500 G600 o0] a00
tirre

Figure 9: Plot of experiment 3 of all algorithms using the complex data sequence

20

1oon

6 Matlab code

Here is an overview of all the matlab code used to produce the results shown in
the previous two sections.

AdaHedge and constant 1 code

This AdaHedge algorithm uses the same principle as the basic Hedge code in
Figure 1 but has a much more complicated code to find 7. This is partially done
with the miz code described on the right of the Figure. To transform this into
a constant learning rate algorithm one just needs to change the learning rate in
the code to the desired value. For FTL, for example, you have to change n to
an extremely large number (preferably the programable equivalent of infinity).

¥ Returns the losses of AdaHedge. ¥ Returns the posterior weights and mix loss
1(t,k}) is the loss of expert k at time & # for learning rate eta and cumulative loss
funetion h = adahedge(1) % vecter L, aveiding numerical instability.
[T, K1 = size(l); function [w, M] = mix{eta, L)
h = nan(T,1); mn = min(L);
L = zeros(l,K); if (eta == Inf) ¥ Limit behaviour: FTL
Dalta = 0; W = L==mn;
elsea
for t = 1:T W = expl-eta .* (L-mn));
eta = log(X)/Delta; and
[w, ﬂpz'év] = mix{eta, L); s = gum(w);
h(t) = % = 1(x,:)%; ve=wu/ &
L=1L=+1(t,:); M =mn - 103(5;’15—::5&1&} yieta;
[=, M] = mix(eta, L); end

end

delta = max(0, h{t)-(M-Mprev));
¥ max clips pnumeric Jensen viclation
Delta = Delta + delta;

end

Figure 10: Matlab code for the AdaHedge algorithm [3]

FlipFlop code
This code is similar to that of AdaHedge. It uses the same miz code described
in Figure 10 and in bold are the new elements.

21

¥ Returns the losses of FlipFlop
¥ 1¢t,k) is the loss of expert k at time &; phi > 1 and alpha > 0 are parameters

function h = flipflep(l, alpha, phi)
[T, K1 = sizel(l);
h = nan(T,1);
L = zeros(l,K);

Delta = [0 0];
scale = [phi/falpha alphal;
regime = 1; X I=FTL, Z=4H

for t = 1:T
if regime==1, eta = Inf; else eta = log(K)/Delta(2); end
[w, Mprev] = mix{eta, LJ};
hit) = w = 1(t,:)*;
L=L4%1(t,:);
[~, M] = mix{eta, L);
delta = max(0, h{t)-(M-Mprev));
Delta{regime) = Delta(regime) + delta;
if Delta({regime) > scale(regime) * Delta(3-regime)

regime = 3-regime;

and

end

end

Figure 11: Matlab code for theFlipFlop algorithm [3]

NormalHedge

% This code returns the NormalHedge losses
function LA = normalhedge(1)

[T, N] = size(1);

R = nan(T+1,N);

R(1,:) = 0;

W = nan(T+1,N);

W(1l,:) = 1/N;

LA = nan(T,1);

for t = 1:1:T
LA(t) = sum(W(t,:).%1(t,:));% Loss learner
R(t+1,:) =R(t,:) + (LA(t) — 1(t,:));
R1 = R;
R1(R1<0) = 0 ;% Al negative R values become 0
ct = find2 (R1(t+1,:),N);

W(t+1,:) = (RI(t+1,:)./ct).xexp(R1(t+1,:).72./(2%ct)); %
tot = sum(W(t+1,:));
W(t+1,:) =W(t+1,:)/tot; % normalisation

end% for
end% function

22

% Binary Search for ct
function ct = find2 (R,N)

cmin = 0;

cmax = 1000000;
ctest = 0;

LHS = 0;

while abs(cmax — cmin) > 10°—4 % error interval

ctest = (cmintcmax) / 2;
LHS = (1/N)xsum(exp ((R."2/(2*ctest))));

if LHS < exp(1)

cmax = ctest;
else

cmin = ctest;
end

end% while

ct = ctest;
end% function

23

7

Bibliography

References

1]

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55:119139, 1997.

V.Vovk. A game of prediction with expert advice. Journal of Computer and
System Sciences, 56(2):153173, 1998.

S. de Rooij and T. van Erven and P.D. Grnwald and W. Koolen. Follow
the Leader if You Can, Hedge if You Must. Journal of Machine Learning
Research 15, pages 1281-1316, April 2014.

K. Chaudhuri, Y.Freund, and D. Hsu. A parameter-free hedging algorithm.
In Advances in Neural Information Processing Systems 22 (NIPS 2009),
pages 297305, 2009.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning and Games. Cambridge
University Press, 2006.

L. Jansen. Master Thesis: Robust Bayesian inference under model
misspecification. Mathematical Institute Leiden, July 2013

A. Biaggi. Combining the normal hedge algorithm with weighted trees for
predicting binary sequences. UC San Diego: b6700116, 2010

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds
for prediction with expert advice. Machine Learning, 66(2/3):321352, 2007.

24

