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Introductie

Deze scriptie gaat over tetraëders waarvan alle zes de zijden en de inhoud ratio-
nale getallen zijn. Deze tetraëders heten rationale tetraëders. Laat V de inhoud
zijn van de tetraëder met lengtes van de zijden a, b, c, d, e en f met de eigenschap
dat de zijden in ieder paar (a, d), (b, c) en (c, f) tegenover elkaar liggen en dat de
zijden a, b en c een driehoek vormen. Dan geldt de volgende vergelijking voor de
inhoud [2, p. 2] :

(12V )2 = (a2 + d2)(−a2d2 + b2c2 + c2f2) +
(b2 + e2)(a2d2 − b2c2 + c2f2) +
(c2 + f2)(a2d2 + b2c2 − c2f2)−
a2b2c2 − a2c2f2 − b2d2f2 − c2d2e2.

Een tetraëder.
Andersom, als de rationale oplossingen van deze vergelijking aan een aantal ongeli-
jkheden voldoen dan corresponderen deze oplossingen ook met de zijden van ratio-
nale tetraëders. Deze vergelijking bepaalt een algebräısch oppervlak in de gewogen
projectieve ruimte PQ(1, 1, 1, 1, 1, 1, 3) met coördinaten a, b, c, d, e, f en V en als we
a = 1 nemen dan bepaalt de vergelijking een algebräısch oppervlak in de gewone
6-dimensionale ruimte. De rationale oplossingen worden dan geschaald en opnieuw
corresponderen de rationale tetraëders (op schaling na) met punten op dit opper-
vlak waarvan alle coördinaten rationaal zijn en aan bepaalde ongelijkheden voldoen.

Gezien het grote aantal variabelen in de vergelijking van V is het lastig om
rationale tetraëders te bestuderen. Buchholz [2, 3, p. 3 ] heeft een classificatie
gemaakt van rationale tetraëders waarbij in iedere klasse bepaalde zijden even lang
zijn. Een groot deel van deze klassen is bestudeerd door Catherine Chisholm in
haar master scriptie [3]. Het simplste voorbeeld is het geval a = b = c = d = e = f .
Uit de vergelijking boven volgt dat (12V )2 = 2a6 en dus

(
12V
a3

)2
= 2 als a 6= 0.

Maar 2 is geen kwadraat van een rationaal getal dus er zijn geen rationale tetraëders
waarvan alle zijden even groot zijn en ongelijk zijn aan 0. Door rationale tetraëders
op deze manier te klassificeren kunnen we spreken van n-parameter tetraëders: de
familie tetraëders waarin iedere tetraëder hoogstens n zijden heeft die verschillende
lengtes hebben. Het voorbeeld met a = b = c = d = e = f is een 1-parameter
geval. Bekijk de tabel [1, Introduction, p. 3] op de volgende pagina:
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Tabel 1. aantal rationale oplossingen bij 3-parameter tetraëders

Geval Beschrijving Aantal rationale oplossingen
1 a = b = c = d 0
2 a = c = d = f ∞
3 a = b = c, d = e 0
4 a = d = f, b = c 0
5 a = d = f, b = e ∞
6 a = d, b = e, c = f ∞
7 a = e, b = f, c = d 0
8 a = b, d = e = f ∞
9 a = d, b = f, c = e ∞
10 a = e, b = c, d = f 0

Hierop de verschillende gevallen zijn te zien behorende bij de 3-parameter tetraëders.
We gaan in deze scriptie geval VI met a = d, b = f en c = e verder onderzoeken.
Voor dit geval heeft Buchholz [2, p. 7] bewezen dat er oneindig veel rationale
oplossingen zijn maar er is niet bewezen of de rationale punten Zariski dicht liggen
op het bijbehorende algebräısch oppervlak. Wij gaan in deze scriptie dit bewijzen.

Deze scriptie bevat drie hoofdstukken. Hoofdstuk I staan de topologische defini-
ties en stellingen (met bewijzen) die we nodig hebben. De definities en stellingen
hier zijn in het algemeen geformuleerd en wij hebben bijna elk lemma en elke
stelling voorzien van een bewijs. In Hoofdstuk II komt de benodigde algebräısche
meetkunde kennis aanbod. Anders dan in Hoofdstuk I hebben we vooral naar
bronnen verwezen. We hebben ook voorbeelden uitgebreid uitgewerkt om de lezer
een vertrouwd gevoel met de materie van dit hoofdstuk te geven. In hoofdstuk III
monden de eerste twee hoofdstukken uit. We formuleren en bewijzen een stelling
die zegt dat de rationale punten Zariski dicht liggen op het algebräısche oppervlak
behorend bij geval VI.

Ik ben heel veel dank verschuldigd aan mijn begeleider Dr. Ronald van Luijk
voor zijn intensieve begeleiding en zijn heldere uitleg. Ik wil hem ook bedanken
voor zijn zeer opbouwende commentaren en verbeteringen met betrekking tot mijn
scriptie en mijn voordrachten.
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1. Topologische begrippen en stellingen

In dit hoofdstuk gaan we topologische begrippen definieren die we later in deze
scriptie expliciet of impliciet gaan gebruiken.

Definitie 1. Een topologische ruimte X heet irreducibel als X niet leeg is en niet
te schrijven is als vereniging X = X1 ∪ X2 van echte gesloten deelverzamelingen
van X.

Definitie 2. Zij X een topologische ruimte. De (Krull) dimensie van X (notatie:
dimX) is het supremum van de lengtes van ketens (X0 ( X1 ( ... ( Xn ⊂ X
, n geheel ) van lengte n van irreducibele gesloten deelverzamelingen van X. Dit
supremum kan oneindig zijn en we definieren dim ∅ := −∞.

Opmerking De dimensie van een gesloten deelverzameling X̃ van X is de dimensie
van X̃ als topologische ruimte met de gëınduceerde topologie.

Lemma 3. Een topologische ruimte X is irreducibel dan en slechts dan als voor
iedere twee open deelverzamelingen U, V ⊂ X geldt U ∩ V 6= ∅.
Bewijs Als X geen echte open deelverzamelingen bevat dan bevat X ook geen
echte gesloten deelverzamelingen en en de beweringen zijn equivalent.
Stel X is irreducibel en U ∩ V = ∅ door complementen te nemen krijgen we
U c ∪ V c = X. Voor U en V echte deelverzamelingen van X met U c ∪ V c = X
volgt dat X niet irreducibel is . Dit is in tegespraak met onze veronderstelling.
Stel nu dat U ∩ V 6= ∅ dan geldt U c ∪ V c 6= X ook voor echte gesloten deelverza-
melingen U c en V c van X en dus is X irreducibel. �
.

Definitie 4. Zij X een topologische ruimte. Een deelverzameling Y van X heet
een irreducibele component van X als:

(1) Y irreducibel en gesloten is, én
(2) Als Z ⊂ X irreducibel en gesloten is en Y ⊂ Z dan geldt Z = Y .

Lemma 5. Zij X een topologische ruimte. Laat A ⊂ X een niet-lege deelruimte
zijn. Dan zijn de volgende beweringen equivalent:

(1) A is irreducibel.
(2) Laten U, V ⊂ X twee open verzamelingen zijn met U ∩A 6= ∅ en V ∩A 6= ∅.

Dan geldt U ∩ V ∩A 6= ∅.
Bewijs (⇒) : Stel dat A irreducibel is en U∩V ∩A = ∅. Dan geldt U c∪V c∪Ac =
X. Dus A = A ∩ X = A ∩ (U c ∪ V c ∪ Ac) = (A ∩ U c) ∪ (A ∩ V c) ∪ (A ∩ Ac) =
(A ∩ U c) ∪ (A ∩ V c) ∪ ∅ = A ∩ U c) ∪ (A ∩ V c). De verzamelingen V c en U c zijn
gesloten in X dus (A∩U c) en (A∩V c) zijn twee gesloten deelverzamelingen van A
die A als vereninig hebben. Dit is in tegespraak met de aanname dat A irreducibel
is. Dus inderdaad geldt U ∩ V ∩A 6= ∅.
(⇐) : Stel voor iedere twee open verzamelingen met U ∩A 6= ∅ en V ∩A 6= ∅ geldt
U ∩ V ∩A 6= ∅. Dan geldt (U ∩A) ∩ (V ∩A) = U ∩ V ∩A 6= ∅. De verzamelingen
U ∩ A en V ∩ A zijn open en hun doorsnijding is niet leeg. Volgens lemma 3 is A
irreducibel. �

Uit deze stelling kan men direct het volgende bewijzen:

Lemma 6. Zij X een irreducibele topologische ruimte. Zij Y ⊂ X een niet-lege
open verzameling. Dan geldt Y = X.
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Lemma 7. Zij X een topologische ruimte. Dan geldt:
(1) Iedere irrudcibele deelverzameling van X is bevat in een irreducibele com-

ponent.
(2) X is de vereniging van zijn irreducibele componenten.

Bewijs Zij (Ai)i∈I een familie irreducibele deelverzamelingen van X. Dan is
(Ai)i∈I totaal geordend m.b.v de inclusie ordening. Definieer A :=

⋃
i∈I Ai. Laat

U, V ⊂ X twee open verzamelingen in X zijn met A ∩ U 6= ∅ en A ∩ V 6= ∅. De
familie (Ai)i∈I is totaal geordend dus er is een k ∈ I met U ∩Ak 6= ∅ en V ∩Ak 6= ∅.
Omdat Ak irreducibel is, volgt uit lemma 5 dat U ∩ V ∩ Ak 6= ∅. Nu volgt (1) uit
het lemma van Zorn. De bewering (2) volgt uit het feit dat iedere {x} ⊂ X met
x ∈ X irreducibel is. �

Definitie 8. Een topologische ruimte X heet noethers indien voor iedere dalende
keten Y1 ⊇ Y2 ⊇ ... van gesloten deelverzamelingen van X een geheel getal r bestaat
met Yj = Yr voor j ≥ r.
Propositie 9. Zij X een noetherse topologische ruimte. Dan is iedere niet-lege
gesloten deelverzameling Y van X te schrijven als een eindige vereniging Y =
Y1 ∪ Y2 ∪ ... ∪ Yr van irreducibele gesloten deelverzamelingen Y1, Y2, ..., Yr. Als we
bovendien eisen dat Yi * Yj voor i 6= j (i, j ∈ {1, ..., r}) dan zijn Y1, ..., Yr uniek
bepaald en iedere Yi (voor i = 1, ..., r) is een irreducibele component van Y .

Bewijs Voor de bewijzen van de existentie en de uniciteit hebben we [5, I.1,
Propositie 5] geraadpleegd.

Zij Γ de verzameling van niet lege gesloten deelverzamelingen van X die niet
geschreven kunnen worden als een eindige vereniging van irreducibele gesloten
deelverzamelingen van X. Neem aan dat Γ niet leeg is. Omdat X noethers is,
heeft Γ een minimaal element Y . Er volgt dan dat Y niet irreducibel is en dus
Y = Y1 ∪ Y2 met Yi een gesloten deelverzameling van Y en Yi 6= Y voor i = 1, 2.
Omdat Y minimaal gekozen was, geldt nu dat Y1 en Y2 beide geschreven kunnen
worden als een eindige vereniging van irreducibele gesloten deelverzamelingen van
X dus Y is ook te schrijven als een eindige vereniging van irreducibele gesloten
deelverzamelingen van X. Dit is in tegenspraak met onze aanname. We conclud-
eren dat iedere niet lege gesloten deelverzameling Y van X geschreven kan worden
als Y =

⋃
i=1,...r Yi met Y1, ..., Yr irreducibel en gesloten en m ∈ Z≥1. Door een aan-

tal van deze deelverzamelingen weg te laten (indien mogelijk) kunnen we aannemen
dat Yi ! Yj als i 6= j.
Zij Y ⊂ X een gesloten deelverzameling. Schrijf Y =

⋃
i=1,...,r Yi met Y1, ..., Yr

irreducibel en gesloten en r ∈ Z≥1. Stel Z =
⋃
j=1,...,s Zj met Z1, ..., Zs irreducibel

gesloten en s ∈ Z≥1. We laten zien dat de representatie uniek is (op volgorde van
de deelverzamelingen na).
Er geldt Y1 = Y1 ∩ Y = Y1 ∩

⋃
j=1,...,s Zj =

⋃
j=1,...,s(Y1 ∩ Zj). Aangezien Y1

irreducibel is, geldt nu Y1 ⊂ Zj voor zekere j in {1, 2, ..., s}. Neem aan z.d.v.a dat
j = 1. Er geldt op dezelfde manier dat Z1 ⊂ Yi voor zeker i in {1, 2, ..., r}. Maar
dan volgt dat Y1 ⊂ Z1 ⊂ Yj en dus j = 1. We concluderen dat Y1 = Z1. Definieer
M := Y \Y1 dan geldt M =

⋃
i=2,...,r Yi =

⋃
j=2,...,s Zj . Door hetzelfde proces te

herhalen concluderen we dat Yi uniek zijn.
We laten zien dat voor alle i ∈ {1, ..., r} geldt dat Yi een irreducibele component
is van X. Volgens definitie 4 hoeven we nu alleen de tweede eis na te gaan. Het is
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voldoende om dit te bewijzen voor i = 1 (voor andere i gaat het bewijs op dezelfde
manier).
Zij Z ⊂ Y gesloten en irreducibel. Stel dat Y1 ⊂ Z. Er geldt Z = Y ∩ Z =
(Y1 ∪Y2 ∪ ..∪Yr)∩Z = (Y1 ∩Z)∪ (Y2 ∩Z)∪ ...∪ (Yr ∩Z). Maar Z was irreducibel
dus er is een i ∈ {1, 2, ..., r} met Z ⊂ Yi. Dit geeft Y1 ⊂ Z ⊂ Yi. We hebben geeist
dat Yi # Yj als i 6= j dus er moet gelden i = 1 en dus Z = Y1. Dus Y1 is een
irreducibele gesloten component. �

Lemma 10. Zij X een topologische ruimte. Stel dat Y een irreducibele deelruimte
is van X. Dan is Y irreducibel.

Bewijs Laat Y ⊂ X een irreducibele deelruimte zijn. Stel dat Y = V ∪W met V
en W twee gesloten deelverzamelingen van Y . Dan geldt Y = Y ∩ Y = (V ∩ Y ) ∪
(W ∩ Y ). Omdat Y irreducibel is, geldt V ∩ Y = Y of W ∩ Y = Y . Zonder verlies
van algemeenheid mogen we aan nemen dat V ∩Y = Y . Dus Y ⊂ V en dus Y ⊂ V .
We concluderen dat Y irreducibel is. �

Lemma 11. Zij X een topologische ruimte. Zij Y een deelruimte van X. Stel dat
Z een deelverzameling van Y is. Dan geldt Z

Y
= Y ∩ ZX .

Bewijs Neem X, Y en Z zoals in het lemma.
”⊂”: Merk op dat Z

X
gesloten is in X. Dus Y ∩ ZX is gesloten in Y . Omdat Z

Y

de kleinste gesloten verzameling in Y is die Z bevat, geldt nu dat Z
Y ⊂ Y ∩ ZX .

”⊃”: De verzameling Z
Y

is gesloten in Y . Dus Z
Y

= Y ∩W met W een gesloten
deelverzameling van X. Er geldt Z

X ⊂W dus Z
X ∩ Y ⊂ Y ∩W = Z

Y
.

We concluderen dat Z
Y

= Y ∩ ZX . �

Gevolg 12. Zij X een topologische ruimte. Zij Y gesloten deelruimte van X. Stel
dat Z een deelverzameling van Y is. Dan geldt Z

Y
= Z

X
.

Bewijs Uit lemma 11 volgt dat Z
Y

= Y ∩ZX . Het is dus voldoende om te bewijzen
dat Y ∩ ZX = Z

X
.:

”⊂”: Triviaal.
”⊃”: Er geldt Z ⊂ Y en Y is gesloten dus Z

X ⊂ Y en dus Z
X ⊂ ZX ∩ Y .

Hieruit volgt dat Y ∩ ZX = Z
X

en volgens lemma 11 geldt nu Z
Y

= Z
X

. �

Om een verband te kunnen leggen tussen de dimensie van X en zijn irreducibele
componenten (deze zijn maximaal t.o.v van de inclusie ordening van verzamelingen)
hebben we het keuzeaxioma nodig. Uit dit axioma volgt het lemma van Zorn:

Lemma 13. Zij een A partieel geordende verzameling. Als iedere keten in A een
bovengrens heeft, heeft A een maximaal element in A.

Bewijs Zie [6, I.1, Stelling 8.1]. �

Lemma 14. Zij X een topologische ruimte en laat Y ⊂ X een deelruimte zijn.
Dan geldt:

(1) dimY ≤ dimX.
(2) dimX is het supremum van de dimensies van de irreducibele componenten

van X.
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Bewijs
Indien X = ∅ dan zijn de beweringen waar. We nemen aan in de rest van het

bewijs dat X 6= ∅.
(1) We laten zien dat voor iedere keten Y0 ( Y1 ( Y2 ( ... ( Yn ( met n ∈ Z≥1) van
irreducibele gesloten deelverzamelingen in Y dat Y0

X ( Y1
X ( Y2

X ( ... ( Yn
X

een keten is van irreducibele gesloten deelverzamelingen in X.
Stel we hebben Y1 ( Y2 twee irreducibele gesloten deelverzamelingen in Y . Dan
is Y1

X ( Y2
X

een keten van gesloten deelverzamelingen in X. Merk op dat de
inclusie inderdaad strikt is: Indien Y1

X
= Y2

X
dan geldt volgens het gevolg 12

Y1 = Y1
Y

= Y ∩ Y1
X

= Y ∩ Y2
X

= Y2
Y

= Y2. Tegenspraak. Uit lemma 2.3 volgt
dat Y1

X
en Y2

X
irreducibel zijn.

Indien n = 0 dan is Y0
X

irreducibel en gesloten in X.
Indien n ≥ 2 dan kunnen we bij iedere schakel Yi ( Yi+1 in de keten Y1 (
Y2 ( ... ( Yn een schakel Yi

X ( Yi+1
X

maken en we krijgen dus een keten
Y1
X ( Y2

X ( ... ( Yn
X

van irreducibele gesloten deelverzamelingen in X van
lengte minstens n.

(2) Zij W de collectie van irreducibele componenten van X. Uit lemma 14.1 volgt
dat voor alle V ∈W geldt dimV ≤ dimX. De ongelijkheid geldt voor de dimensie
van iedere irreducibele component en dus ook voor het supremum van de dimensies.
Nu laten we zien dat dimX ≤ supV ∈W dimV . Uit lemma 7 volgt uit dat W niet
leeg is. Iedere eindige keten van irreducibele gesloten deelverzamelingen in X is
bevat in een element van W . Dus het supremum van de lengtes van zulke ketens
in X is ten hoogste het supremum dimensies van de irreducibele componenten van
X dus dimX ≤ supV ∈W dimV . �

Lemma 15. Zij X een irreducibele topologische ruimte met dimX <∞. Stel dat
Y ⊂ X een gesloten verzameling is met dimY = dimX. Dan geldt Y = X.

Bewijs Volgens propositie 9 kunnen we schrijven Y = Y1 ∪Y2...∪Yn met n ∈ Z≥1

het aantal irreducibele componenten Yi van Y . Volgens lemma 14.2 geldt dat
dimX = dimY = maxi∈{1,...,n} dimYi. Er is dus een j ∈ {1, ..., n} met dimX =
dimYj .
Uit gevolg 12 volgt dat Yj

Z
= Yj

Y
= Yj (want Y is gesloten in X). Dus Yj is ges-

loten en irreducibel in X. Merk op dat Yj een irreducibele component van X is. Als
dit niet het geval was dan zou er een irreducibele en gesloten Z ⊂ X bestaan met
Yj ( Z ⊂ X. Omdat # dimX < ∞ zou dan gelden dat dimYj < dimX. Omdat
X irreducibel is, moet nu gelden Yj = X. Uit X = Yj ⊂ Y ⊂ X volgt dat Y = X. �

Lemma 16. Zij X een noetherse topologische ruimte met dimX < ∞. Stel dat
Y ⊂ X een irreducibele gesloten verzameling is met dimY = dimX. Dan is Y een
irreducibele component van X.

Bewijs Uit propositie 9 volgt X = X1 ∪X2...∪Xm met m het aantal irreducibele
componenten Xi van X. Dus Y = X ∩ Y = ∪(Xi ∩ Y ). Omdat Y irreducibel en
gesloten is, is er een j ∈ {1, ...,m} met Y ⊆ Xj ⊂ X. Dit geeft samen met lemma
14.1 dat dimY ≤ dimXj ≤ dimX dus dimY = dim Xj . Aangezien Y gesloten is
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in Xj en Xj irreducibel is, volgt nu uit lemma 15 dat Y = Xj . �

Lemma 17. Zij X een noetherse topologische ruimte met dimX = 0. Dan is
iedere gesloten verzameling {x} met x ∈ X een irreducibele component van X.

Bewijs Laat x een gesloten punt in X zijn. We weten dat x irreducibel is en dat
dim{x} = 0. We moeten laten zien dat voor iedere irreducibele gesloten deelverza-
meling A met {x} ⊂ A ⊂ X dat {x} = A. Stel dat {x} ( A ⊂ X. Dan geldt
dim{x} < dimA ≤ dimX. Dus dimX ≥ 1. Tegenspraak. Dus {x} = A en hieruit
volgt dat {x} een irreducibel component is van X. �

Propositie 18. Stel C is een irreducibele noetherse topologische ruimte met dimC =
1. Laat T ⊂ C een verzameling zijn van gesloten punten in X met #T =∞. Dan
geldt T = C.

Bewijs Er geldt T ⊂ C dus volgens lemma 14.1 geldt dimT ≤ dimC. Aangezien
T 6= ∅ geldt nu dat dimT = 0 of dimT = 1. Stel dat dimT = 0. Volgens lemma
17 zijn de punten irreducibele componenten van T . Dus T bevat oneindig veel irre-
ducibele componenten. Maar C is noethers dus dit is in tegenspraak met propositie
9. Dus dimT = 1. Volgens lemma 15 geldt nu dat T = C. �

Nu zijn we in staat om de volgende stelling te bewijzen.

Stelling 19. Zij X een irreducibele noetherse topologische ruimte van dimensie 2.
Zij S ⊂ X een deelverzameling van gesloten punten. Stel C ⊂ X is een oneindige
verzameling van irreducibele gesloten deelverzamelingen van X van dimensie 1 zo-
danig dat voor iedere C ∈ C geldt #(C ∩ S) =∞. Dan ligt S dicht in X.

Bewijs Zij C ∈ C een irreducibele gesloten deelverzameling van X. Beschouw de
volgende gesloten verzameling A := C ∩ S. Uit propositie 18 met T = C ∩ S volgt
dat A = C.
Er geldt voor alle C ∈ C dat C = C ∩ S ⊂ S. Dus voor de verzameling Y :=
∪C∈CC ∩ S geldt ∪C∈CC = Y ⊂ S. Voor dimY zijn er twee mogelijkheden:
dimY = 1 of dimY = 2.
Stel dat dimY = 1: Ieder element C ∈ C is een irreducibele gesloten deelverza-
melingen van Y met dimC = dimY . Uit lemma 16 volgt dat ieder element in
C een irreducibele component is van Y . Dus C bevat oneindig veel irreducibele
componenten van Y . Maar Y is een gesloten deelverzameling van de noetherse en
eindig dimensionale topologische ruimte X. Dit is in tegenspraak met stelling 9.
We concluderen dat dimY = 2. Uit lemma 15 volgt nu dat Y = X. We laten zien
dat Y = X dus X = Y ⊂ S = S ⊂ X dus S = X en dus S ligt dicht in X. �

Stelling 20. Zij X een topologische ruimte. Stel A ⊂ X is een deelruimte met
A = X. Stel B ⊂ A met B

A
= A. Dan geldt B

X
= X.

Bewijs Volgens lemma 11 geldt B
A

= B
X ∩A. Dus A = B

X ∩A. Ofwel A ⊂ BX .

Dus X = A ⊂ BX
X

= B
X ⊂ X. Dus B

X
= X. �
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2. Parametrisatie

Notaties en afspraken:
Deze notaties zijn geldig voor de rest van de scriptie.

K: een perfect lichaam (iedere algebräısche uitbreiding over K is separabel).
K: een vaste algebräısche afsluiting van K.
An
K

: de affiene n-dimensionale ruimte over K (notatie An).
Pn
K

: de projectieve n-dimensionale ruimte over K (notatie Pn).

2.1. De affiene ruimte.

Definitie 21. Een deelverzameling Y van An heet een algebräısche verzameling in-
dien er een verzameling T ⊂ K[x1, ..., xn] bestaat met Y = {P ∈ An| voor alle f in T :
f(P ) = 0}(we schrijven dan Y = Z(T )). We zeggen dat een algebräısche verzamel-
ing Y gedefinieerd is over K als er een verzameling T ⊂ K[x1, ..., xn] bestaat met
Y = {P ∈ An| voor alle f in T : f(P ) = 0}.

Opmerking
(1) De algebräısche verzamelingen zijn de gesloten verzamelingen in de Zariski

topologie [5, I.1, p. 2]. In dit artikel wordt An voorzien van de Zariski
topologie.

(2) Er geldt Y = Z(T ) dan en slechts dan als Y = Z((T )) met (T ) het
ideaal in K[x1, ..., xn] voortgebracht door de elementen in T . Merk op
dat K[x1, ..., xn] een commutatieve ring die noethers is (een commutatieve
ring R is noethers als voor ieder ideaal I ⊂ R er eindig veel elementen
f1, ..., fn ∈ R bestaan met I = (f1, ..., fm)). Dus we kunnen schrijven Y =
Z(T ) = Z((T )) = Z((f1, ..., fm)) = Z(f1, ..., fm) voor zekere f1, ..., fm ∈
K[x1, ..., xn].

In de rest van de scriptie nemen we iedere keer een eindige verzameling voor T .

Definitie 22. Een affiene variëteit is een irreducibele algebräısche verzameling in
An met daarop de gëınduceerde topologie. Een open deelverzameling van een affiene
variëteit heet een quasi-affiene variëteit.

Definitie 23. Een affiene kromme C over K is een affiene variëteit over K van
dimensie 1.

Lemma 24. Een affiene variëteit Y in An heeft dimensie n − 1 dan en slechts
dan als er een niet constant irreducibel polynoom f ∈ K[x1, ..., xn] bestaat met
Y = {P ∈ An|f(P ) = 0}.

Bewijs Zie [5, I.1 Propositie 13]. �
Dankzij dit lemma kunnen we spreken van de graad van een affiene kromme over

K in A2. Deze is gelijk aan de graad van het polynoom dat de affiene kromme
definieert.

Definitie 25. Een affiene kegelsnede C over K in A2 is een affiene kromme over
K van graad 2.

Definitie 26. Een affiene variëteit Y ⊂ An over K gedefinieerd door polynomen
f1, ..., ft ∈ K[x1, ..., xn] heet Y glad in een punt P = (a1, ..., an) ∈ Y als de rank van
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de matrix ‖ ( ∂fi

∂xj
)((a1, ..., an))i=1,...,t;j=1,...,n ‖ gelijk is aan n− r met r de dimensie

van Y . Een affiene variëteit Y over K heet glad indien Y glad is in ieder punt P
in Y .

Opmerking Zie [4, 8, opmerkingen 3.2]:
(1) Zij g een polynoom in xi met i ∈ {1, ..., n}. Men kan dg

dxi
abstract definieren

en de gebruikelijke differentieregels voor polynomen gebruiken, bijvoorbeeld
d
dxx

n = nxn−1. Merk op dat in het geval van karateristiek p geldt d
dxx

p =
pxp−1 = 0.

(2) De definitie van een gladde kromme in A2 hangt niet af van de eindige
verzameling voortbrengers van (T ).

2.2. De projectieve ruimte.

Analoog aan de affiene n-dimensionale ruimte kunnen we de begrippen algebräısche
verzamelingen en kromme ook voor de projectieve n-dimensionale ruimte introduc-
eren.

Definitie 27. Een deelverzameling Y van Pn heet een algebräısche verzameling
indien er een verzameling T van homogene elementen van K[x0, ..., xn] bestaat met
Y = {P ∈ Pn| voor alle f in T : f(P ) = 0}. We zeggen dat een algebräısche verza-
meling Y gedefinieerd is over K als er een verzameling T van homogene elementen
van K[x0, ..., xn] bestaat met Y = {P ∈ Pn| voor alle f in T : f(P ) = 0}.

Opmerking
(1) Ook hier zijn de algebräısche verzamelingen de gesloten verzamelingen in

de Zariski topologie [5, I.2, p. 10]. In de rest van de scriptie wordt Pn
voorzien van de Zariski topologie.

(2) Analoog aan de affiene ruimte An kunnen we voor iedere algebräısche verza-
meling Y = Z(T ) ⊂ Pn aannemen dat de verzameling T eindig is.

Definitie 28. Een projectieve variëteit is een irreducibele algebräısche verzameling
in Pn met daarop de gëınduceerde topologie. Een open deelverzameling van een
projectieve variëteit heet een quasi-projectieve variëteit.

Zonder bewijs geven we dit lemma:

Lemma 29. [5, I.2 Probleem 8] Een projectieve variëteit Y in Pn heeft dimensie
n − 1 dan en slechts dan als er een niet constant irreducibel homogeen polynoom
f ∈ K[x0, ..., xn] bestaat met Y = {P ∈ Pn|f(P ) = 0}.

Definitie 30. Een projectieve kromme C over K is een projectieve variëteit over
K van dimensie 1.

Met behulp van lemma 29 kunnen we definieren wat de graad is van een pro-
jectieve kromme C over K. Deze is de graad van het homogene polynoom in het
lemma dat C definieert.

Definitie 31. Een projectieve kegelsnede C over K is een projectieve kromme in
P2 over K van graad 2.

Definitie 32. Een projectieve variëteit Y ⊂ Pn over K gedefinieerd door homogene
polynomen f1, ..., ft ∈ K[x0, ..., xn] heet Y glad in een punt P = (a0 : ... : an) ∈ Y
als de rang van de matrix ‖ ( ∂fi

∂xj
)((a0, ..., an))i=1,...,t;j=1,...,n ‖ gelijk is aan n − r
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met r de dimensie van Y . Een projectieve variëteit Y over K heet glad indien Y
glad is in ieder punt P in Y .

Opmerking
(1) Zie opmerking 2.1.
(2) De definitie van een gladde kromme hangt niet af van de gekozen homogene

coördinaten van P en de gekozen eindige verzameling voortbrengers van
(T ).

Schrijf H0 := {P ∈ Pn|x0 = 0} en U0 := Pn −H0. Dan is U0 open. We kunnen An
identificeren met U0 via het volgende homeomorfisme [5, I.2, Propositie 2]

φ0 : U0 → An

(a0 : a1 : ... : an) 7→
(
a1

a0
,
a2

a0
, ...,

an
a0

)
.

Merk op dat φ0 welgedefinieerd is.

Definitie 33. Zij Y ⊂ An een affiene variëteit over K. We noemen φ−1
0 (Y ) ⊂ Pn

de projectieve afsluiting van Y in Pn (notatie Y ).

Opmerking Indien C een affiene kromme is over K gegeven door een poly-
noom f(x1, x2, ..., xn) ∈ K[x1, x2, ..., xn] dan wordt de projectieve afsluiting van C
gegeven door een homogeen polynoom F (X0, X1, ..., Xn) verkregen door f(x1, x2, ..., xn)
homogeen te maken: er geldt F (X0, X1, ..., Xn) = Xe

0f
(
X1
X0
, ..., Xn

X0

)
met e de graad

van f . Merk op dat de afsluiting van een irreducibele var̈ıeteit ook irreducibel is
en dus is F (x, y, z) ook irreducibel.

2.3. Morfismen.

Definitie 34. Zij Y ⊂ An een quasi-affiene variëteit. Een functie f : Y → K heet
regulier in een punt P ∈ Y als aan de twee voorwaarden is voldaan:

(1) Er bestaat een open omgeving U met P ∈ U ⊂ Y .
(2) Er bestaan twee polynomen g, h ∈ K[x1, ..., xn] zodanig dat h(u) 6= 0 voor

alle u ∈ U en f = g
h op U .

We zeggen dat f regulier is op Y indien f regulier is in ieder punt in Y .

Analoog is er een definitie voor reguliere functies voor quasi-projectieve variëteiten.

Definitie 35. Zij Y ⊂ Pn een quasi-projectieve variëteit. Een functie f : Y → K
heet regulier in een punt P ∈ Y als aan de twee voorwaarden is voldaan:

(1) Er bestaat een open omgeving U met P ∈ U ⊂ Y .
(2) Er bestaan twee homogene polynomen g, h ∈ K[x0, ..., xn] van dezelfde graad

zodanig dat h(u) 6= 0 voor alle u ∈ U en f = g
h op U 1.

We zeggen dat f regulier is op Y indien f regulier is in ieder punt in Y .

Lemma 36. Indien we A1
K

voorzien van de Zariski topologie en K identificeren
met A1

K
dan is iedere reguliere functie continu.

Bewijs Zie [5, I.3, Lemma 1]. �

Definitie 37. Een variëteit over K is een affiene, quasi-affiene, projectieve of
quasi-projectieve variëteit.

1 Merk op dat g
h

welgedefinieerd zolang h 6= 0.
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Definitie 38. Zijn X en Y twee variëteiten. Een morfisme φ : X → Y is een
continue afbeelding zodanig dat voor iedere open deelverzameling V ⊂ Y en voor
iedere reguliere functie f : V → K de functie f ◦ φ : φ−1(V )→ K regulier is.

Definitie 39. Een morfisme φ : X → Y is een isomorfisme als er een morfisme
ψ : Y → X bestaat met ψ ◦ φ = idX en φ ◦ ψ = idY . Indien er een isomorfisme
bestaat tussen twee variëteiten X en Y dan heten X en Y isomorf.

Met het volgende lemma kunnen we met gemak nagaan of een afbeelding tussen
twee variëteiten een morfisme is.

Lemma 40. Zij X een variëteit en laat Y ⊂ An een affiene variëteit zijn. Een
afbeelding ψ : X → Y is een morfisme dan en slechts dan als xi ◦ ψ een reguliere
afbeelding op X is voor iedere i ∈ {1, ..., n} waarbij x1, ..., xn de coördinatenfuncties
zijn op An.

Bewijs Zie [5, I.3, Lemma 6]. �

Lemma 41. Zijn X en Y twee variëteiten. Laat φ en ψ twee morfismen zijn van X
naar Y . Stel dat er een niet lege open verzameling U ⊂ X bestaat met φ|U = ψ|U .
Dan geldt φ = ψ.

Bewijs Zie [5, I.4, Lemma 1]. �

Definitie 42. Zijn X en Y twee variëteiten. Een rationale afbeelding φ : X 99K
Y is een equivalentierelatieklasse van paren 〈U, φU 〉 waarbij U een niet lege open
deelverzameling van X en φU een morfisme is van U naar Y . Twee paren 〈U, φU 〉
en 〈V, ψV 〉 zijn equivalent als φU = ψV op U ∩ V .

Opmerking Uit lemma 41 volgt dat de genoemde relatie in de definitie inderdaad
een equivalentierelatie is.

Definitie 43. Een birationale afbeelding φ : X 99K Y is een rationale afbeelding
waarvoor een rationale afbeelding ψ : Y 99K X bestaat met ψ ◦ φ = idX en φ ◦ψ =
idY . Indien er een birationale afbeelding bestaat tussen twee variëteiten X en Y
dan heten X en Y birationaal (equivalent).

Stelling 44. Zijn X en Y twee variëteiten. Dan zijn de volgende beweringen
equivalent

(1) X en Y zijn birationaal.
(2) Er zijn open deelverzamelingen U ⊂ X en V ⊂ Y die isomorf zijn.

Bewijs Zie [5, I.4, Corollary 5]. �

Definitie 45. Laat Mn(K) de verzameling van de n×n-matrices met coëfficiënten
in K zijn. We noemen twee n × n-matrices A,B ∈ Mn(K) gelijkvormig indien er
een inverteerbare matrix P ∈Mn(K) bestaat met B = PTAP .

Lemma 46. Zij V een eindige dimensie ruimte over een lichaam K van karakter-
istiek ongelijk aan 2. Iedere symmetrische matrix A ∈ Mn(K) is gelijkvormig met
een diagonale matrix in Mn(K).

Bewijs Zie [7, I.8, Theorem 19]. �

Lemma 47. Zij C : aX2 + bY 2 + cZ2 + dXY + eY Z + fXZ = 0 een projectieve
kromme in P2 over K met karakteristiek K ongelijk aan 2. Dan is C isomorf met
een projectieve kromme C∗ over K gedefinieerd door de vergelijking αX2

1 + βY 2
1 +

γZ2
1 = 0 voor zekere α, β, γ ∈ K.
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Bewijs We kunnen de vergelijking van C als volgt schrijven:

(
X Y Z

)
M

 X
Y
Z

 = 0 met M :=

 a d
2

f
2

d
2 b e

2
f
2

e
2 c

 .

De matrix M ∈ M3(K) is symmetrisch en K heeft karakterisitek ongelijk aan
2. Volgens lemma 45 zijn er een diagonale matrix D ∈ M3(K) en een matrix
P ∈M3(K) met M = PTDP . We schrijven:

met D :=

 α 0 0
0 β 0
0 0 γ

 voor zekere α, β en γ in K.

en  X1

Y1

Z1

 = P

 X
Y
Z


Dan geldt

0 =
(
X Y Z

)
M

 X
Y
Z

 =
(
X1 Y1 Z1

)
D

 X1

Y1

Z1

 = αX2
1 + βY 2

1 + γZ2
1

Noteer voor een element (a0, a1, a2) ∈ K3 \ (0, 0, 0) de equivalentieklasse (a0 :
a1 : a2) met [(a0, a1, a2)]. De afbeelding

φ : P2 → P2

[(a0, a1, a2)]→ [P (a0, a1, a2)T ]
is welgedefinieerd en inverteerbaar (lineaire transformatie en P is inverteerbaar) en
definieert dus een isomorfisme. �

Stelling 48. Zij C ⊂ P2 een projectieve algebräısche verzameling over een lichaam
K van karakteristiek ongelijk aan 2 die gedefinieerd wordt door de vergelijking
aX2 + bY 2 + cZ2 = 0 met a, b, c ∈ K en (a, b, c) 6= (0, 0, 0). Dan zijn de vol-
gende beweringen equivalent:

(1) C is een kegelsnede over K.
(2) a, b, c 6= 0.
(3) C is glad.

Bewijs
((1) ⇒ (2)): Merk op dat C graad 2 heeft. Stel C is een kegelsnede over K en
c = 0 (de gevallen a = 0 of b = 0 gaan analoog). Dan wordt C gedefinieerd door
aX2 + bY 2 = 0. Het polynoom aX2 + bY 2 ∈ K[X,Y, Z] is niet irreducibel in
K[X,Y, Z]. Dit is in tegenspraak met de definitie van een kromme (en dus met de
definitie van een kegelsnede) over K . Dus a, b, c 6= 0.

((2) ⇒ (1)): Stel a, b, c 6= 0. Neem het affiene deel CZ van C door Z op 1 te
schalen. Dan wordt CZ gedefinieerd door de vergelijking ax2 + by2 + c = 0 met
x = X

Z en y = Y
Z . Omdat a 6= 0 kunnen we f := x2 + b

ay
2 + c

a als polynoom dat
CZ definieert. We laten zien dat dit polynoom irreducibel is in K[x, y]. We weten
uit algebra dat K[x, y] isomorf is met K[y][x]. In deze laatste polynomenring is f
irreducibel alleen als b

ay
2 + c

a een kwadraat is in K[y] dus alleen als b
ay

2 + c
a een
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dubbel nulpunt heeft. Het lichaam K heeft karakteristiek ongelijk aan 2 en f heeft
geen gemeenschappelijke nulpunt met ∂f

∂x = 2 bay. We concluderen dat f irreducibel
is in K[y][x] en dus ook in K[x, y]. Dus CZ is irreducibel. Omdat C de afsluiting is
van CZ , volgt uit lemma dat C ook irreducibel is. Omdat aX2 + bY 2 + cZ2 graad
2 heeft is C een kegelsnede over K.

((2) ⇒ (3)): Stel a, b, c 6= 0. We moeten laten zien het stelsel vergelijkingen
∂(aX2+bY 2+cZ2)

∂X (P ) = 0
∂(aX2+bY 2+cZ2)

∂Y (P ) = 0
∂(aX2+bY 2+cZ2)

∂Z (P ) = 0

geen oplossingen heeft in C. Dit stelstel vergelijkingen geeft:

(2)

 2ax0 = 0
2by0 = 0
2cz0 = 0.

Omdat karakteristiek van K ongelijk is aan 2 en a, b, c 6= 0 heeft dit stelstel als
enige oplossing x0 = y0 = z0 = 0. Maar P ∈ P2 dus (x0, y0, z0) 6= (0, 0, 0) en dus
heeft het stelsel vergelijkingen geen oplossingen. We concluderen dat C glad is.

((3)⇒ (2)): Stel C is glad dan geldt (2ax0, 2by0, 2cz0) 6= (0, 0, 0) voor alle (x0 : y0 :
z0) ∈ C. Stel b = 0 (het geval a = 0 gaat op dezelfde manier) en neem y0 ∈ K\0
willekeurig. Dan ligt het punt (0 : y0 : 0) in C en er geldt (2 ·a ·0, 2 ·0 ·y0, 2 · c ·0) =
(0, 0, 0) dus C is niet glad in P . Tegenspraak. Dus er moet gelden a, b, c 6= 0. �

Gevolg 49. Iedere affiene kegelsnede C ⊂ A2 over een lichaam K van karakteristiek
ongelijk aan 2 is birationaal equivalent met een kegelsnede over K gedefinieerd door
de vergelijking ax2 + by2 + c = 0 voor zekere a, b, c ∈ K.

Bewijs Beschouw de projectieve afsluiting D van C. Omdat D een kegelsnede
is, wordt D gedefinieerd door een homogeen polynoom in K[X,Y, Z] van graad 2.
Omdat C irreducibel is, is zijn afsluiting D ook irreducibel en dus een kegelsnede.
Volgens stelling 47 is D isomorf met een kegelsnede D∗ gedefinieerd door de vergeli-
jking aX2+bY 2+cZ2 = 0 voor zekere a, b, c ∈ K. Neem het affiene deel D∗Z van D∗

door Z op 1 te schalen. Dan krijgen we een affiene kegelsnede over K gedefinieerd
door de vergelijking ax2 + by2 + c = 0. Deze is inderdaad birationaal equivalent
met C. �

2.4. Parametriseren.

Definitie 50. Een affiene kromme C ⊂ An over K heet rationaal (of parametriseer-
baar) over K als er rationale functies χ1(t), χ2(t), ..., χn(t) ∈ K(t) bestaan zodanig
dat het volgende geldt:

(1) Voor bijna alle (m.a.w. op eindig veel na) t0 ∈ K is χi(t0) welgedefinieerd
voor alle i ∈ {1, 2, ..., n} en het punt (χ1(t0), χ2(t0), ..., χn(t0)) ligt op C.

(2) Voor bijna alle punten (x1, x2, ..., xn) ∈ C is er een unieke t0 ∈ K zodanig
dat (x1, x2, ..., xn) = (χ1(t0), χ2(t0), ..., χn(t0)).

In dit geval heet (χ1(t), χ2(t), ..., χn(t)) een affiene (rationale) parametrisatie van
C.
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Definitie 51. Een projectieve kromme C ⊂ Pn over K heet rationaal (of parametriseer-
baar) over K als er polynomen χ0(t), χ1(t), ..., χn(t) ∈ K[t] bestaan met ggd(χ0(t), χ1(t)
, ..., χn(t)) = 1 zodanig dat het volgende geldt:

(1) Voor bijna alle t0 ∈ K ligt het punt (χ0(t0) : χ1(t0) : ... : χn(t0)) op C.
(2) Voor bijna alle punten (x0 : x1 : ... : xn) ∈ C is er een unieke t0 ∈ K

zodanig dat (x0 : x1 : ... : xn) = (χ0(t0) : χ2(t0) : ... : χn(t0)).
In dit geval heet (χ0(t) : χ1(t) : ... : χn(t)) een projectieve (rationale) parametrisatie
van C.

Opmerking
(1) In beide definities 50 en 51 zijn de krommen parametriseerbaar indien er

een birationale afbeelding bestaat van A1 naar de desbetreffende krommen.
(2) Indien er polynomen χ0(t), χ1(t), ..., χn(t) ∈ K[t] bestaan die voldoen aan

voorwaarde (1) in definitie 51 dan kunnen we zonder verlies van algemeen-
heid aannemen dat ze zelfs voor alle t0 ∈ K aan de eerste eis van definitie
51 voldoen. Zie [5, I.6, Propositie 8].

In de volgende stelling leggen we een verband tussen de parametrisaties van pro-
jectieve krommen over K en die van hun affiene delen.

Gevolg 52. Zij K een lichaam van karakterstiek ongelijk aan 2. Laat C ∈ A2

een affiene var̈ıteit over K zijn die gedefinieerd door een polynoom f in K[x, y] van
graad 2 . Dan is C glad dan en slechts dan als de projectieve afsluiting C∗ glad is.

Stelling 53. Zij C ⊂ A2 een affiene kromme over K en C∗ de bijbehorende pro-
jectieve afsluiting. Dan is C rationaal dan en slechts dan als C∗ rationaal is.

Bewijs Laat (χ1(t), χ2(t), χ3(t)) een parametrisatie van C∗ zijn. Merk op dat C∗

niet oneindig veel punten in het oneindige kan hebben dus we kunnen aannemen dat
χ3(t) 6= 0. Aangezien χ3(t) = 0 eindig veel oplossingen heeft in K is

(
χ1(t)
χ3(t)

, χ2(t)
χ3(t)

)
een parametrisatie van C. Andersom, iedere rationale parametrisatie van C kan
uitgebreid worden tot een parametrisatie van C∗ door de z-coördinaat op 1 te
schalen en de tellers te vermenigvuldigen met het kleinste gemene veelvoud van de
noemers zodat de noemers verdwijnen. �

Met behulp van stelling 53 is het mogelijk om te kiezen tussen het parametriseren
van een rationale projectieve kromme C of juist een affien deel ervan en daaruit een
parametrisatie voor C te vinden. Dit laten we zien aan de hand van het volgende
voorbeeld:

Voorbeeld 54. We nemen de kegelsnede

(1) C : X2 + Y 2 = Z2 ⊂ P2
C

gedefinieerd over Q. We schalen Z op 1 en beschouwen het affiene deele CZ :
x2 + y2 = 1 dat hoort bij Z 6= 0. Gegeven het rationale punt (−1, 0) op CZ bekijken
we een familie lijnen y = t(x+ 1) door (−1, 0) die geparametriseerd wordt door de
richtingscoeffic̈ıent t ∈ Q. Voor bijna alle t ∈ Q snijdt deze lijn CZ in een ander
rationaal punt. We krijgen dus een (oneindige) familie van rationale punten.
Subsitueren van y = t(x+ 1) in vergelijking C geeft

1 = x2 + t2(x+ 1)2 = (1 + t2)x2 + 2t2x+ t2.
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dus

(2) x2 +
2t2

t2 + 1
x =

−t2 + 1
t2 + 1

.

Deze vergelijking kunnen we herleiden tot een vergelijking van de vorm

x2 +Ax+B = 0

met A,B ∈ K. In K[x] kunnen we x2 +Ax+B ontbinden als (x− α)(x− β) met
α, β ∈ K. Er geldt dan x2 +Ax+ b = (x−α)(x− β) = x2 − (α+ β)x+αβ. In het
bijzonder geldt A = −(α+ β). Deze methode passen we toe op vergelijking 2:

Omdat (−1, 0) op Cz ligt, is x = −1 een oplossing van deze vergelijking. dus

(3) − 1 + x1 = − 2t2

t2 + 1
waarbij x1 de x-coördinaat van het tweede snijpunt. We krijgen

x1 = 1− 2t2

t2 + 1
=

1− t2

t2 + 1
.

Indien we deze waarde van x1 in de vergelijking y1 = t(x1 + 1) invullen dan krijgen
we

y1 =
2t

t2 + 1
.

Dit is de y-coördinaat van het tweede snijpunt. Een affiene rationale parametrisatie
van CZ kan dus worden gegeven door

(χ1(t), χ2(t)) =
(
−t2 + 1
t2 + 1

,
2t

t2 + 1

)
.

Een projectieve rationale parametrisatie voor C is dan

(−t2 + 1 : 2t : t2 + 1).

Merk op dat er geen t0 ∈ Q bestaat waarvoor geldt (χ1(t0), χ2(t0)) = (−1, 0). De
kromme CZ heeft in het punt (−1, 0) een oneindige richtingscoefficïıent.

Voorbeeld 55. Beschouw

(4) C : y2 = −5b2 +
15
2
b− 41

16
⊂ A2(b, y)

de vergelijking van een affiene kegelsnede gedefinieerd over Q. Gegeven het punt
( 7
12 ,

1
3 ) ∈ C willen we een rationale parametrisatie voor C vinden. We bekijken de

familie van lijnen y− 1
3 = t(b− 7

12 ) die door het punt ( 7
12 ,

1
3 ) gaan. Voor bijna alle

t ∈ Q kunnen we het tweede snijpunt vinden door eerst b te vinden en dan y. Er
geldt y = 1

3 + t(b− 7
12 ). Deze subsitueren in vergelijking 4 geeft:(

1
3

+ t(b− 7
12

)
)2

= −5b2 +
15
2
b− 41

16
.

We lossen deze vergelijking op voor b (bijvoorbeeld met de hand of met een comput-
erprogramma) en vinden:

b =
7
12

of b =
7t2 − 8t+ 55

12(t2 + 5)
.
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De tweede waarde van b is wat we zoeken. Deze waarde subsitueren we in vergeli-
jking y = 1

3 + t(b− 7
12 ) en krijgen

y =
−t2 + 5t+ 5

3(t2 + 5)
.

Een affiene rationale parametrisatie voor C is

(5) (χ1(t), χ2(t)) =
(

7t2 − 8t+ 55
12(t2 + 5)

,
−t2 + 5t+ 5

3(t2 + 5)

)
.

Je kunt nagaan dat er geen t0 ∈ C bestaat waarvoor geldt (χ1(t0), χ2(t0)) =
(

7
12 ,

1
3

)
.

De hierboven genoemde voorbeelden laten zien dat parametriseren een goed
gereedschap kan zijn bij het vinden van rationale punten op kegelsneden. Bij de
kegelsneden van voorbeelden 54 en 55 is het ons gelukt om oneindig veel rationale
punten te vinden uitgaand van één rationaal punt. Merk op dat beide kegelsneden
een rationaal punt bevatten. De volgende stelling generaliseert dit:

Stelling 56. Elke kegelsnede C ⊂ P2 over een lichaam K van karakteristiek ongelijk
aan 2 met een K-rationaal punt is parametriseerbaar.

Bewijs Volgens lemma 47 mogen we aannemen dat C gedefinieerd wordt door de
vergelijking aX2 + bY 2 + cZ2 = 0 voor zekere a, b, c,∈ K met abc 6= 0. Laat
P = (X0 : Y0 : Z0) ∈ C een K-rationaal punt zijn. We kunnen zonder verlies van
algemeenheid aannemen dat Z0 6= 0. Bekijk het affiene deel CZ ⊂ A2 verkregen
door Z op 1 te schalen. De kromme CZ heeft de vergelijking ax2 + by2 + c = 0
met x = X

Z en y = Y
Z als affiene coördinaten. Het punt P correspondeert met een

punt p = (x0, y0) ∈ CZ waarbij x0 = X0
Z0

en y0 = Y0
Z0

. Beschouw de familie lijnen
L : y = t(x− x0) + y0 door p. Voor ieder punt (x, y) ∈ L ∩ CZ geldt:{

y − t(x− x0)− y0 = 0
ax2 + b(t(x− x0) + y0)2 + c = 0.

Het uitwerken van de tweede vergelijking geeft

gt(x) := A(t)x2 +B(t)x+ C(t) = 0.

met A(t) = a + bt2,B(t) = −2b(x0t
2 − y0t) en C(t) een polynomiale uitdrukking

in t van hoogstens graad 2 . Volgens stelling 48 is a ongelijk aan 0. Dus A(t) is
een polynoom van gaad 2 en heeft dus hoogstens twee nulpunten. Voor bijna alle
t ∈ K en bijna x0 ∈ K geldt:

gt(x) = 0⇔ A(t)x2 +B(t)x+ C(t) = 0⇔ x2 +
B(t)
A(t)

x+
C(t)
A(t)

= 0.

We weten dat x0 een oplossing is van gt(x) = 0 dus we kunnen schrijven

x2 +
B(t)
A(t)

x+
C(t)
A(t)

= (x− x0)(x− xt) ∈ K[x]

met xt ∈ K de tweede oplossing van gt(x) = 0. Er geldt (x − x0)(x − xt) =
x2 − (x0 + xt)x + x0xt. Hieruit volgt −(x0 + xt) = B(t)

A(t) dus xt = −x0 − B(t)
A(t) . Er

geldt x0 ∈ K en als t0 ∈ K geen nulpunt is van A(t) dan geldt B(t0)
A(t0)

∈ K en dus
xt0 ∈ K. Voor bijna ieder punt (xt, yt) ∈ L ∩ CZ geldt

yt = t(xt − x0) + y0 = t

(
−x0 −

B(t)
A(t)

− x0

)
+ y0 = t

(
−2x0 −

B(t)
A(t)

)
+ y0.
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We laten zien dat B(t)
A(t) geen constante rationale functie is. Er geldt

B(t)
A(t)

=
−2b(x0t

2 − y0t)
a+ b2

=
−2b(x0t− y0)t

a+ bt2
.

B(t) is constant alleen als (x0, y0) = (0, 0). Maar dan geldt ax2
0 +by2

0 +c = c = 0
en dit is in tegenspraak met de aanname dat abc 6= 0. Dus x0 6= 0 of y0 6= 0. In
beide gevallen heeft de teller in deze breuk heeft een factor t. Omdat a 6= 0 heeft
de noemer deze factor niet. Dus B(t)

A(t) is niet consant.
We concluderen dat voor bijna alle punten (x, y) ∈ CZ er een t ∈ K bestaat met

(x, y) =
(
x0 −

B(t)
A(t)

,−2x0 −
B(t)
A(t)

)
.(6)

Men kan laten zien voor iedere (x, y) ∈ CZ dat de bijbehorende t in vergelijking 6
uniek is. We krijgen een parametrisatie

χ : A1 99K CZ

t 99K

(
x0 −

B(t)
A(t)

,−2x0 −
B(t)
A(t)

)
.

Volgens stelling 53 is C ook parametriseerbaar. �
Zonder bewijs geven we het volgende gevolg:

Gevolg 57. Zij C een (projectieve resp. affiene) kegelsnede over een lichaam K
van karakteristiek ongelijk aan 2 met een K-rationaal punt. Als D een (projectieve
resp. affiene) kegelsnede is over K die isomorf is met C dan is D parametriseerbaar.

3. De rationale punten bij het geval VI

In dit onderdeel gaan we de kennis uit hoofdstukken 1 en 2 toepassen op een
specifiek geval. Het doel van dit onderdeel is te laten zien dat de rationale nulpunten
dicht liggen op het algebräısche oppervlak over K = Q behorende bij het geval VI.

Definitie 58. Een rationale tetraëder is een tetraëder waarvan de zijden en de
inhoud rationaal zijn.

Een rationale tetraëder met de resp. inhoud a, b, c, d, e, f en V voldoet vergelijking
(1) en een aantal ongelijkheden. We vergeten de ongelijkheden en letten alleen op
vergelijking (1). Merk op dat deze vergelijking een algebräısch oppervlak definieert
in de gewogen projectieve ruimte PK(1, 1, 1, 1, 1, 1, 3) met coördinaten a, b, c, d, e, f
en V . Deze ruimte is gedefinieerd als volgt:

Definitie 59. De gewogen projectieve ruimte PK(d0, d1, ..., dn) met coördinaten
x0, ..., xn is de quoẗıent verzameling K

n+1 \ {(0, ..., 0)} onder de equivalentierelatie
gegeven door (a0, ..., an) ∼ (λd0a0, ..., λ

dnan) met λ ∈ K, λ 6= 0.

3.1. Het geval VI.
Indien a = d, b = e, c = f en als we y := 12V schrijven dan krijgen we voor de

tetraëder de volgende vergelijking:

S : y2 = a2(2a2(b2 + c2 − a2)− (b− c)2(b+ c)2)(7)

die een algebräısch oppervlak S definieert in PK(1, 1, 1, 3) met a, b, c, y als coördinaten.
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3.2. Het affiene deel.
Neem de verzameling punten op S met a 6= 0. Dit geeft een affien deel Sa van

het algebräısch oppervlak S en na schaling krijgen we de volgende vergelijking:

Sa : y2
1 = 2(b21 + c21 − 1)− (b1 − c1)2(b1 + c1)2(8)

met b1 = b
a , c1 = c

a , y1 = y
a3 de affiene coördinaten in A3.

Stelling 60. De affiene algebräısche verzameling gedefinieerd door Sa is een affiene
variëteit.

Bewijs We laten zien dat f := y2
1 − 2(b21 + c21− 1) + (b1− c1)2(b1 + c1)2 irreducibel

is in K[b1, c1, y1]. De polynomenringen K[b1, c1, y1] = K[b1, c1][y1] zijn isomorf
dus het is voldoende om te laten zien dat f irreducibel is in K[b1, c1][y1]. In deze
polynomenring is f irreducibel dan en slechts dan als G(b1, c1) := 2(b21 + c21 − 1)−
(b1− c1)2(b1 + c1)2 een wortel heeft in K[b1, c1]. We laten zien dat dit niet kan. De
polynomenringen K[b1, c1] en K[b1][c1] zijn isomorf. Het is dus voldoende om te
laten zien dat G(b1, c1) (gezien als een polynoom met variabele c1) geen kwadraat
is in K[b1][c1]. Stel dat het een kwadraat is in K[b1][c1] dan is het ook een kwadraat
indien we b1 = c1 kiezen. We krijgen G(b1, c1) = 2(2c21− 1) en dit is geen kwadraat
in K[c1]. We concluderen dat G(b1, c1) geen kwadraat is in K[b1, c1] en dat f dus
irreducibel is. �

Beschouw nu het volgende morfisme:

σ : Sa → A1

(b1, c1, y1) 7→ b1 + c1

We krijgen de volgende stelling:

Stelling 61. Voor bijna alle λ ∈ Q is de vezel σ−1(λ) isomorf met een affiene
kegelsnede over Q in A2 gegeven door:

y2
1 = 4(1− λ2)b21 − 4(1− λ3)b1 − λ4 + 2λ2 − 2

Bewijs Neem λ ∈ Q. Dan geldt σ−1(λ) = {(b1, c1, y1) ∈ Sa|b1 + c1 = λ}. Dus
σ−1(λ) = {(b1, c1, y1) ∈ A3 |y2

1 = 2(b21 + c21 − 1)− (b1 − c1)2(b1 + c1)2, b1 + c1 = λ}.
Subsitueren en uitwerken geven:

y2
1 = 2(b21 + (λ− b1)2 − 1)− (2b1 − λ)2λ2

= 2b21 + 2λ2 + 2b21 − 4λb1 − 2− 4b21λ
2 + 4b1λ3 − λ4

= 4(1− λ2)b21 − 4(1− λ3)b1 − λ4 + 2λ2 − 2. �

Voor bijna alle λ ∈ Q is de vergelijking y2
1 = 4(1−λ2)b21−4(1−λ3)b1−λ4 +2λ2−2

een vergelijking van affiene kegelsnede2 Dλ over Q in A2 gegeven door:{
b1 + c1 = λ

4(1− λ2)b21 − 4(1− λ3)b1 − λ4 + 2λ2 − 2 = 0.

2y21 − 4(1− λ2)b21 + 4(1− λ3)b1 + λ4 + 2λ2 + 2 heeft graad 2 en men kan laten zien dat deze

irreducibel is door de vergelijking te herschrijven tot y2 + b(λ)x2 + C(λ) en laten zien dat voor
bijna alle λ ∈ Q irreducibel is.
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De afbeelding
π : σ−1(λ)→ Dλ

(b1, c1, y1)→ (b1, y1)

definieert een isomorfisme met als inverse:

ρ : Dλ → σ−1(λ)

(b1, y1)→ (b1, λ− b1, y1)

3.3. Oneindig veel rationale punten en kegelsneden.
Volgens stelling 60 is Sa irreducibel. We gaan de stelling 19 gebruiken om te laten
zien dat de rationale punten Zariski dicht liggen in Sa. Uit stelling 20 volgt dan dat
de rationale punten ook dicht liggen op S en dat is precies wat we willen bewijzen.

De wiskundige Buchholz heeft al een punt gevonden op S namelijk het punt met
coördinaten (a, b, c, y) = (12, 7, 11, 576). Dit punt correspondeert met het punt
A := (b1, c1, y1) = ( 7

12 ,
11
12 ,

1
3 ) op Sa. Omdat σ(A) = 3

2 geldt volgens stelling 61 dat
de vezel

C 3
2

: y2
1 = −5b21 +

15
2
b1 −

41
16

boven λ = 3
2 isomorf is met de kegelsnede D 3

2
over Q gegeven door y2

1 = −5b21 +
15
2 b1 −

41
16 . Deze kegelsnede is parametriseerbaar want dit is precies de kegelsnede

uit voorbeeld 55. Als parametrisatie hebben we gevonden:

P1 : A1 99K D 3
2

t 99K

(
7t2 − 8t+ 55

12(t2 + 5)
,
t2 − 5t− 5
3(t2 + 5)

)
.

Aangezien deze kegel een rationaal punt bevat en isomorf is met C 3
2

volgt nu uit
gevolg 57 dat C 3

2
oneindig veel rationale punten bevat.

We definieren nu een ander morfisme:

τ : Sa → A1

(b1, c1, y1)→ b1 − c1

en we bekijken de verzamelingM := τ(C 3
2
(Q)). Voor ieder t ∈ Q is

(
7t2−8t+55
12(t2+5) ,

t2−5t−5
3(t2+5)

)
een element van C 3

2
(Q). Definieer

µt := τ

((
7t2 − 8t+ 55

12(t2 + 5)
,
t2 − 5t− 5
3(t2 + 5)

))
.

Dan geldt

µt =
7t2 − 8t+ 55

12(t2 + 5)
− t2 − 5t− 5

3(t2 + 5)
=

3t2 + 12t− 35
12(t2 + 5)

.

De verzameling C 3
2
(Q) van Q-rationale punten op C 3

2
is oneindig en er zijn hoog-

stens punten in C 3
2
(Q) die hetzelfde beeld hebben onder τ . Dus de verzameling M

is oneindig. Analoog aan de vezel σ−1(λ) is voor bijna alle µ ∈M de vezel τ−1(µ)
isomorf met een kegelsnede over Q.
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Voor µt = b1 − c1 gelden c1 = b1 − µt en b1 + c1 = 2b1 − µt. Subsitueren van
deze uitdrukkingen in de vergelijking van Sa geeft ons de vergelijking3 van een
kegelsnede Eµt ⊂ A2 over Q met een rationaal punt erop en waarmee τ−1(µt)
isomorf is. Namelijk:

y2
1 = 4(1− µ2

t )b
2
1 − 4(1− µ3

t )b1 − µ4
t + 2µ2

t − 2.

Volgens gevolg 57 is deze kegelsnede parametriseerbaar.

3.4. Samenvatting en conclusie.
We hebben laten zien dat de vezel C 3

2
isomorf is met een kegelsnedeD 3

2
over Q die

een rationaal punt bevat. Deze kegelsnede is volgens gevolg 57 parametriseerbaar
en bevat in het bijzonder oneindig veel rationale punten. Met ieder punt in C 3

2
(Q)

hebben we een kegelsnede over Q geassocieerd door de de afbeelding τ te beperken
tot C 3

2
(Q) en dan de vezels boven ieder element in M = τ(C 3

2
(Q)) te beschouwen.

Voor bijna alle µ ∈ M = τ(C 3
2
(Q)) zijn deze (oneindig veel verschillende) vezels

isomorf met kegelsneden Eµt
over Q met een rationaal punt op ieder van deze vezels.

Volgens gevolg 57 zijn deze vezels ook parametriseerbaar. In het bijzonder bevatten
Eµt oneindig veel rationale punten. Zie figuur:

We voldoen nu aan alle voorwaarden van de topologische stelling 19 met:
X: Het affiene deel Sa van S met de gëınduceerde topologie. Deze is irreducibel
volgens 60.
S: de verzameling Q-rationale punten op Sa.
C: een oneindige deelverzameling vezels van τ−1(M) := {τ−1(µ)|, µ ∈ M}. Merk
op dat voor slechts eindig veel µ ∈M de vezel τ−1(µ) niet irreducibel is.

We concluderen dat de Q-rationale punten dicht liggen op Sa. Het affiene deel Sa
is een open deel van S en omdat S irreducibel is, ligt volgens lemma 6 Sa dicht in
S. Er volgt uit stelling 20 dat C(Q) dicht ligt in S.

3We krijgen precies dezelfde vergelijking als die van Dλ. Dit volgt uit het feit dat de kwadraten
b21, c

2
1, (b1 + c1)2 en (b1 − c1)2 in de vergelijking van Sa zorgen voor dezelfde kegelsneden leiden.
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