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INTRODUCTIE

Deze scriptie gaat over tetraéders waarvan alle zes de zijden en de inhoud ratio-
nale getallen zijn. Deze tetraéders heten rationale tetraéders. Laat V de inhoud
zijn van de tetraéder met lengtes van de zijden a,b,c,d,e en f met de eigenschap
dat de zijden in ieder paar (a,d), (b,c) en (c, f) tegenover elkaar liggen en dat de
zijden a,b en ¢ een driehoek vormen. Dan geldt de volgende vergelijking voor de
inhoud [2, p. 2] :

(12V)? = (a® +d*)(—a?d* + b*c? + A2 f?) +
(0% + e?)(a?d® — b2 + A2 f?) +
(2 + £2)(a2d® + b2 — 2 f?) —

2b2 2 Cl2 2f2 b2d2f2 —02d262.

Een tetraéder.

Andersom, als de rationale oplossingen van deze vergelijking aan een aantal ongeli-
jkheden voldoen dan corresponderen deze oplossingen ook met de zijden van ratio-
nale tetraéders. Deze vergelijking bepaalt een algebraisch oppervlak in de gewogen
projectieve ruimte Pg(1,1,1,1,1,1,3) met codrdinaten a,b, ¢, d, e, f en V en als we
a = 1 nemen dan bepaalt de vergelijking een algebraisch oppervlak in de gewone
6-dimensionale ruimte. De rationale oplossingen worden dan geschaald en opnieuw
corresponderen de rationale tetraéders (op schaling na) met punten op dit opper-
vlak waarvan alle codrdinaten rationaal zijn en aan bepaalde ongelijkheden voldoen.

Gezien het grote aantal variabelen in de vergelijking van V is het lastig om
rationale tetragéders te bestuderen. Buchholz [2, 3, p. 3 | heeft een classificatie
gemaakt van rationale tetraéders waarbij in iedere klasse bepaalde zijden even lang
zijn. Een groot deel van deze klassen is bestudeerd door Catherine Chisholm in
haar master scriptie [3]. Het simplste voorbeeld is het gevala =b=c=d=e = f.

Uit de vergelijking boven volgt dat (12V)? = 2a% en dus (13—3‘/)2 =2alsa #0.
Maar 2 is geen kwadraat van een rationaal getal dus er zijn geen rationale tetraéders
waarvan alle zijden even groot zijn en ongelijk zijn aan 0. Door rationale tetraéders
op deze manier te klassificeren kunnen we spreken van n-parameter tetraéders: de
familie tetraéders waarin iedere tetraéder hoogstens n zijden heeft die verschillende
lengtes hebben. Het voorbeeld met a = b = ¢ =d = e = f is een 1-parameter

geval. Bekijk de tabel [1, Introduction, p. 3] op de volgende pagina:



TABEL 1. aantal rationale oplossingen bij 3-parameter tetraéders

Geval Beschrijving Aantal rationale oplossingen
1 a=b=c=d 0
2 a=c=d=f %
3 a=b=cd=ce 0
4 a=d=fb=c 0
5 a=d=fb=e 00
6 a=d,b=e,c=f 00
7 a=eb=fc=d 0
8 a=bd=e=f 00
9 a=d,b=f,c=e 00
10 a=eb=c,d=f 0

Hierop de verschillende gevallen zijn te zien behorende bij de 3-parameter tetraéders.
We gaan in deze scriptie geval VI met a = d, b = f en ¢ = e verder onderzoeken.
Voor dit geval heeft Buchholz [2, p. 7] bewezen dat er oneindig veel rationale
oplossingen zijn maar er is niet bewezen of de rationale punten Zariski dicht liggen
op het bijbehorende algebraisch oppervlak. Wij gaan in deze scriptie dit bewijzen.

Deze scriptie bevat drie hoofdstukken. Hoofdstuk I staan de topologische defini-
ties en stellingen (met bewijzen) die we nodig hebben. De definities en stellingen
hier zijn in het algemeen geformuleerd en wij hebben bijna elk lemma en elke
stelling voorzien van een bewijs. In Hoofdstuk IT komt de benodigde algebraische
meetkunde kennis aanbod. Anders dan in Hoofdstuk I hebben we vooral naar
bronnen verwezen. We hebben ook voorbeelden uitgebreid uitgewerkt om de lezer
een vertrouwd gevoel met de materie van dit hoofdstuk te geven. In hoofdstuk IIT
monden de eerste twee hoofdstukken uit. We formuleren en bewijzen een stelling
die zegt dat de rationale punten Zariski dicht liggen op het algebraische oppervlak
behorend bij geval VI.

Ik ben heel veel dank verschuldigd aan mijn begeleider Dr. Ronald van Luijk
voor zijn intensieve begeleiding en zijn heldere uitleg. Ik wil hem ook bedanken
voor zijn zeer opbouwende commentaren en verbeteringen met betrekking tot mijn
scriptie en mijn voordrachten.



1. TOPOLOGISCHE BEGRIPPEN EN STELLINGEN

In dit hoofdstuk gaan we topologische begrippen definieren die we later in deze
scriptie expliciet of impliciet gaan gebruiken.

Definitie 1. Fen topologische ruimte X heet irreducibel als X niet leeg is en niet
te schrijven is als vereniging X = X7 U Xy van echte gesloten deelverzamelingen
van X.

Definitie 2. Zij X een topologische ruimte. De (Krull) dimensie van X (notatie:
dim X ) is het supremum van de lengtes van ketens (Xo € X1 € ... € X, € X
, n geheel ) van lengte n van irreducibele gesloten deelverzamelingen van X. Dit
supremum kan oneindig zijn en we definieren dim () := —oo.

Opmerking De dimensie van een gesloten deelverzameling X van X is de dimensie
van X als topologische ruimte met de geinduceerde topologie.

Lemma 3. Fen topologische ruimte X is irreducibel dan en slechts dan als voor
iedere twee open deelverzamelingen U,V C X geldt UNV # ().

Bewijs Als X geen echte open deelverzamelingen bevat dan bevat X ook geen
echte gesloten deelverzamelingen en en de beweringen zijn equivalent.

Stel X is irreducibel en U NV = § door complementen te nemen krijgen we
UcuVe = X. Voor U en V echte deelverzamelingen van X met U°U V® = X
volgt dat X niet irreducibel is . Dit is in tegespraak met onze veronderstelling.
Stel nu dat U NV # () dan geldt U¢ U V¢ # X ook voor echte gesloten deelverza-
melingen U en V¢ van X en dus is X irreducibel. [J

Definitie 4. Zij X een topologische ruimte. Een deelverzameling Y van X heet
een irreducibele component van X als:

(1) Y irreducibel en gesloten is, én
(2) Als Z C X irreducibel en gesloten is en' Y C Z dan geldt Z =Y .

Lemma 5. Zij X een topologische ruimte. Laat A C X een niet-lege deelruimte
ziyn. Dan zign de volgende beweringen equivalent:

(1) A is irreducibel.
(2) Laten U,V C X twee open verzamelingen zijn met UNA #£ @ en VNA# ).
Dan geldt UNV N A# 0.

Bewijs (=) : Stel dat A irreducibel is en UNVNA = (). Dan geldt UCUV UA® =
X.Dus A=ANX =ANUUVCUAY) = (ANUYU(ANV)U (AN A®) =
(ANUSYUANVYOUD = ANTU) U (ANTVe). De verzamelingen V¢ en U° zijn
gesloten in X dus (ANU®) en (ANV*) zijn twee gesloten deelverzamelingen van A
die A als vereninig hebben. Dit is in tegespraak met de aanname dat A irreducibel
is. Dus inderdaad geldt UNV N A # 0.

(<) : Stel voor iedere twee open verzamelingen met U N A # () en V N A # () geldt
UNVNA#QP. Dan geldt (UNA)N(VNA) =UNVNAGH#D. De verzamelingen
UNAen VN A zijn open en hun doorsnijding is niet leeg. Volgens lemma 3 is A
irreducibel. O

Uit deze stelling kan men direct het volgende bewijzen:

Lemma 6. Zij X een irreducibele topologische ruimte. Zij Y C X een niet-lege
open verzameling. Dan geldt Y = X.



Lemma 7. Zij X een topologische ruimte. Dan geldt:

(1) Iedere irrudcibele deelverzameling van X is bevat in een irreducibele com-
ponent.
(2) X is de vereniging van zijn irreducibele componenten.

Bewijs Zij (A;)ics een familie irreducibele deelverzamelingen van X. Dan is
(Ai)ier totaal geordend m.b.v de inclusie ordening. Definieer A := J;.; A;. Laat
U,V C X twee open verzamelingen in X zijn met ANU # @ en ANV # . De
familie (A;);cr is totaal geordend dus er is een k € I met UN Ay, # 0 en VN Ay # 0.
Omdat Ay, irreducibel is, volgt uit lemma 5 dat U NV N Ay # 0. Nu volgt (1) uit
het lemma van Zorn. De bewering (2) volgt uit het feit dat iedere {z} C X met
z € X irreducibel is. O

Definitie 8. Een topologische ruimte X heet noethers indien voor iedere dalende
keten Y1 2 Ys D ... van gesloten deelverzamelingen van X een geheel getal v bestaat
met Y; =Y, voor j > r.

Propositie 9. Zij X een noetherse topologische ruimte. Dan is iedere niet-lege
gesloten deelverzameling Y wvan X te schrijuven als een eindige vereniging ¥ =
Y1 UY5, U...UY, van irreducibele gesloten deelverzamelingen Y1,Ys,...,Y,.. Als we
bovendien eisen dat Y; € Y; voor i # j (i,j € {1,...,r}) dan zijn Y1,....Y, uniek
bepaald en iedere Y; (voor i =1,...,1) is een irreducibele component van'Y .

Bewijs Voor de bewijzen van de existentie en de uniciteit hebben we [5, 1.1,
Propositie 5] geraadpleegd.

Zij T' de verzameling van niet lege gesloten deelverzamelingen van X die niet
geschreven kunnen worden als een eindige vereniging van irreducibele gesloten
deelverzamelingen van X. Neem aan dat I' niet leeg is. Omdat X noethers is,
heeft I' een minimaal element Y. Er volgt dan dat Y niet irreducibel is en dus
Y = Y7 UY5 met Y; een gesloten deelverzameling van Y en Y; # Y voor i = 1,2.
Omdat Y minimaal gekozen was, geldt nu dat Y; en Y5 beide geschreven kunnen
worden als een eindige vereniging van irreducibele gesloten deelverzamelingen van
X dus Y is ook te schrijven als een eindige vereniging van irreducibele gesloten
deelverzamelingen van X. Dit is in tegenspraak met onze aanname. We conclud-
eren dat iedere niet lege gesloten deelverzameling Y van X geschreven kan worden
alsY = Ui:l,...r Y; met Y7, ..., Y, irreducibel en gesloten en m € Z>;. Door een aan-
tal van deze deelverzamelingen weg te laten (indien mogelijk) kunnen we aannemen
dat Y; 2 Yj als i # j.

Zij Y C X een gesloten deelverzameling. Schrijf ¥ = Ui:l,...,ryi met Y7,...,Y,
irreducibel en gesloten en r € Z>;. Stel Z = szl _____ <4 met Zy, ..., Zs irreducibel
gesloten en s € Z>;. We laten zien dat de represent’atie uniek is (op volgorde van
de deelverzamelingen na).

Er geldt Y = Y1 NnNY =Y N szl,ws Z; = Uj:L__ﬁ(Yl N Z;). Aangezien Y;
irreducibel is, geldt nu Y7 C Z; voor zekere j in {1,2,...,s}. Neem aan z.d.v.a dat
j = 1. Er geldt op dezelfde manier dat Z; C Y; voor zeker ¢ in {1,2,...,7}. Maar
dan volgt dat Y7 C Z; C Y} en dus j = 1. We concluderen dat Y7 = Z;. Definieer
M = Y\Y; dan geldt M = Uizo..»Yi = Uj—a ,Z;. Door hetzelfde proces te
herhalen concluderen we dat Y; uniek zijn.

We laten zien dat voor alle i € {1,...,7} geldt dat Y; een irreducibele component
is van X. Volgens definitie 4 hoeven we nu alleen de tweede eis na te gaan. Het is
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voldoende om dit te bewijzen voor ¢ = 1 (voor andere i gaat het bewijs op dezelfde
manier).

Zij Z C Y gesloten en irreducibel. Stel dat Y7 € Z. Er geldt 7 =Y NZ =
UYL U..UY,)NZ=MnN2)U(YonZ)U..U(Y,.NZ). Maar Z was irreducibel
dus eriseen i € {1,2,...,7} met Z CY;. Dit geeft Y1 C Z C Y;. We hebben geeist
dat Y; 2 Y; als i # j dus er moet gelden i = 1 en dus Z = Y;. Dus Y] is een
irreducibele gesloten component. [

Lemma 10. Zij X een topologische ruimte. Stel dat'Y een irreducibele deelruimte
is van X. Dan is Y irreducibel.

Bewijs Laat Y C X een irreducibele deelruimte zijn. Stel dat Y =VUW met V
en W twee gesloten deelverzamelingen van Y. Dan geldt Y =Y NY =(VNY)U
(WNY). Omdat Y irreducibel is, geldt VNY =Y of WNY =Y. Zonder verlies

van algemeenheid mogen we aan nemen dat VNY =Y. DusY C VendusY C V.
We concluderen dat Y irreducibel is. O

Lemma 11. Zij X een topologische ruimte. Zij Y een deelruimte van X. Stel dat
Z een deelverzameling van Y is. Dan geldt Z" =vnzZ~.

Bewijs Neem X, Y en Z zoals in het lemma.

7C”: Merk op dat A gesloten is in X. Dus Y N 7% is gesloten in Y. Omdat Al
de kleinste gesloten verzameling in Y is die Z bevat, geldt nu dat Al cYn A
”D”: De verzameling ART gesloten in Y. Dus Z" =Y N'W met W een gesloten
deelverzameling van X. Er geldt Z X cwWdsZ nycynw=2".

We concluderen dat Z =y N AN

Gevolg 12. Zij X een topologische ruimte. Zij Y gesloten deelruimte van X. Stel
dat Z een deelverzameling van Y is. Dan geldt z' =7

Bewijs Uit lemma 11 volgt dat Z" =vnZ~. Het is dus voldoende om te bewijzen
dat Y NZ~ =7
7C”: Triviaal.
7D7: Er geldt Z C Y en Y is gesloten dus A CY en dus A C Z5ny.
Hieruit volgt dat Y N Z¥ =7  en volgens lemma 11 geldt nu Z'=7". 0O

Om een verband te kunnen leggen tussen de dimensie van X en zijn irreducibele
componenten (deze zijn maximaal t.0.v van de inclusie ordening van verzamelingen)
hebben we het keuzeaxioma nodig. Uit dit axioma volgt het lemma van Zorn:

Lemma 13. Zij een A partieel geordende verzameling. Als iedere keten in A een
bovengrens heeft, heeft A een maximaal element in A.

Bewijs Zie [0, 1.1, Stelling 8.1]. O
Lemma 14. Zij X een topologische ruimte en laat Y C X een deelruimte zijn.
Dan geldt:

(1) dimY < dim X.

(2) dim X is het supremum van de dimensies van de irreducibele componenten
van X.



Bewijs

Indien X = @ dan zijn de beweringen waar. We nemen aan in de rest van het
bewijs dat X # 0.
(1) We laten zien dat voor iedere keten Yo C Y1 C Y2 C ... C Y, (met n € Z>1) van

X _ X _ =X X
irreducibele gesloten deelverzamelingen in Y dat ¥y, C Y, CYy C ... CY,
een keten is van irreducibele gesloten deelverzamelingen in X.

Stel we hebben Y; C Y5 twee irreducibele gesloten deelverzamelingen in Y. Dan

is ?1X - ?gX een keten van gesloten deelverzamelingen in X. Merk op dat de
inclusie inderdaad strikt is: Indien Y; = Y5 dan geldt volgens het gevolg 12
Y, = Yly =YnN 71X =YnN EX = 72Y = Y5. Tegenspraak. Uit lemma 2.3 volgt
dat 71X en EX irreducibel zijn.

Indien n = 0 dan is 70X irreducibel en gesloten in X.
Indien n > 2 dan kunnen we bij iedere schakel Y; C

- =

Yiy1 in de keten Y7 C
Yo € ... € Y, een schakel YiX - mx maken en we krijgen dus een keten
?1X - EX C ... C TnX van irreducibele gesloten deelverzamelingen in X van
lengte minstens n.

(2) Zij W de collectie van irreducibele componenten van X. Uit lemma 14.1 volgt
dat voor alle V € W geldt dim V' < dim X. De ongelijkheid geldt voor de dimensie
van iedere irreducibele component en dus ook voor het supremum van de dimensies.
Nu laten we zien dat dim X < supy oy dim V. Uit lemma 7 volgt uit dat W niet
leeg is. ledere eindige keten van irreducibele gesloten deelverzamelingen in X is
bevat in een element van W. Dus het supremum van de lengtes van zulke ketens
in X is ten hoogste het supremum dimensies van de irreducibele componenten van
X dus dim X < supy ey dimV. O

Lemma 15. Zij X een irreducibele topologische ruimte met dim X < oco. Stel dat
Y C X een gesloten verzameling is met dimY = dim X. Dan geldt Y = X.

Bewijs Volgens propositie 9 kunnen we schrijven Y =Y, UY5...UY,, met n € Z>;
het aantal irreducibele componenten Y; van Y. Volgens lemma 14.2 geldt dat
dim X = dimY = max;eqy,... ) dimY;. Eris dus een j € {1,...,n} met dim X =
dimY;.

Uit gevolg 12 volgt dat sz = ij =Y, (want Y is gesloten in X). Dus Y is ges-
loten en irreducibel in X. Merk op dat Y} een irreducibele component van X is. Als
dit niet het geval was dan zou er een irreducibele en gesloten Z C X bestaan met
Y; € Z C X. Omdat #dim X < oo zou dan gelden dat dimY; < dim X. Omdat

=

X irreducibel is, moet nugelden Y; = X. Uit X =Y; CY C X volgtdatY = X. O

Lemma 16. Zij X een noetherse topologische ruimte met dim X < oo. Stel dat
Y C X een irreducibele gesloten verzameling is met dimY = dim X. Dan is Y een
irreducibele component van X.

Bewijs Uit propositie 9 volgt X = X7 U X5...U X,,, met m het aantal irreducibele
componenten X; van X. Dus Y = X NY = U(X; NY). Omdat Y irreducibel en
gesloten is, is er een j € {1,...,m} met ¥ C X; C X. Dit geeft samen met lemma
14.1 dat dimY < dim X; < dim X dus dimY = dim X;. Aangezien Y gesloten is
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in X; en X; irreducibel is, volgt nu uit lemma 15 dat ¥ = X;. O

Lemma 17. Zij X een noetherse topologische ruimte met dim X = 0. Dan is
iedere gesloten verzameling {x} met x € X een irreducibele component van X .

Bewijs Laat x een gesloten punt in X zijn. We weten dat x irreducibel is en dat
dim{z} = 0. We moeten laten zien dat voor iedere irreducibele gesloten deelverza-
meling A met {z} C A C X dat {z} = A. Stel dat {z} € A C X. Dan geldt
dim{z} < dim A < dim X. Dus dim X > 1. Tegenspraak. Dus {z} = A en hieruit
volgt dat {z} een irreducibel component is van X. O

Propositie 18. Stel C' is een irreducibele noetherse topologische ruimte met dim C' =
1. Laat T C C een verzameling zijn van gesloten punten in X met #1T = co. Dan

geldt T = C.

Bewijs Er geldt 7 C C dus volgens lemma 14.1 geldt dimT < dim C. Aangezien
T # 0 geldt nu dat dim7T = 0 of dim7T = 1. Stel dat dim7T = 0. Volgens lemma
17 zijn de punten irreducibele componenten van T. Dus T bevat oneindig veel irre-
ducibele componenten. Maar C'is noethers dus dit is in tegenspraak met propositie
9. Dus dim7T = 1. Volgens lemma 15 geldt nu dat T = C. O

Nu zijn we in staat om de volgende stelling te bewijzen.

Stelling 19. Zij X een irreducibele noetherse topologische ruimte van dimensie 2.
Zig S C X een deelverzameling van gesloten punten. Stel C C X is een oneindige
verzameling van irreducibele gesloten deelverzamelingen van X van dimensie 1 zo-
danig dat voor iedere C € C geldt #(C' N S) = co. Dan ligt S dicht in X.

Bewijs Zij C € C een irreducibele gesloten deelverzameling van X. Beschouw de
volgende gesloten verzameling A := C'N S. Uit propositie 18 met T'= C' N S volgt
dat A=C.

Er geldt voor alle C € C dat C = CNS C S. Dus voor de verzameling Y :=
UcecC NS geldt UgeeC = Y € S. Voor dimY zijn er twee mogelijkheden:
dimY =1 of dimY = 2.

Stel dat dimY = 1: Ieder element C' € C is een irreducibele gesloten deelverza-
melingen van Y met dimC = dimY. Uit lemma 16 volgt dat ieder element in
C een irreducibele component is van Y. Dus C bevat oneindig veel irreducibele
componenten van Y. Maar Y is een gesloten deelverzameling van de noetherse en
eindig dimensionale topologische ruimte X. Dit is in tegenspraak met stelling 9.
We concluderen dat dimY = 2. Uit lemma 15 volgt nu dat Y = X. We laten zien

datY =X dus X =Y C §=5C X dus S = X en dus S ligt dicht in X. O

Stelling 20. Zij X een topologische ruimte. Stel A C X is een deelruimte met
A=X. Stel BC Amet B = A. Dan geldt B = X.

Bewijs Volgens lemma 11 geldt B =B" NA. Dus A = B NA. Ofwel A C B
DisX=AcB' =B  cX.DusB =X.0O



2. PARAMETRISATIE

Notaties en afspraken:
Deze notaties zijn geldig voor de rest van de scriptie.

K: een perfect lichaam (iedere algebraische uitbreiding over K is separabel).
K een vaste algebraische afsluiting van K.
AZ: de affiene n-dimensionale ruimte over K (notatie A™).

P%: de projectieve n-dimensionale ruimte over K (notatie P").

2.1. De affiene ruimte.

Definitie 21. Een deelverzameling Y van A™ heet een algebraische verzameling in-
dien er een verzameling T C K|[x1, ..., z,] bestaat metY = {P € A™| voor alle f in T :
f(P) =0} (we schrijven dan'Y = Z(T)). We zeggen dat een algebraische verzamel-
ing Y gedefinieerd is over K als er een verzameling T C K[z, ...,x,] bestaat met
Y ={P € A" voor alle f inT : f(P) = 0}.

Opmerking
(1) De algebraische verzamelingen zijn de gesloten verzamelingen in de Zariski
topologie [5, I.1, p. 2]. In dit artikel wordt A™ voorzien van de Zariski
topologie.

(2) Er geldt Y = Z(T) dan en slechts dan als Y = Z((T)) met (T) het
ideaal in K|[ry,...,z,] voortgebracht door de elementen in T. Merk op
dat K[z1,...,2,] een commutatieve ring die noethers is (een commutatieve
ring R is noethers als voor ieder ideaal I C R er eindig veel elementen
fis-s fn € R bestaan met I = (f1,..., f;n)). Dus we kunnen schrijven Y =
Z(T) = Z((1)) = Z((f1,-, fm)) = Z(f1, ., fm) voor zekere f1,..., fm €

Klx1,...,xy).
In de rest van de scriptie nemen we iedere keer een eindige verzameling voor T'.

Definitie 22. Fen affiene variéteit is een irreducibele algebraische verzameling in
A™ met daarop de geinduceerde topologie. Een open deelverzameling van een affiene
variéteit heet een quasi-affiene variéteit.

Definitie 23. Fen affiene kromme C over K is een affiene variéteit over K van
dimensie 1.

Lemma 24. Een affiene variéteit Y in A" heeft dimensie n — 1 dan en slechts
dan als er een niet constant irreducibel polynoom f € Klxy,...,x,]| bestaat met

Y ={P € A"|f(P) = 0}.
Bewijs Zie [5, 1.1 Propositie 13]. O
Dankzij dit lemma kunnen we spreken van de graad van een affiene kromme over

K in A% Deze is gelijk aan de graad van het polynoom dat de affiene kromme
definieert.

Definitie 25. Een affiene kegelsnede C' over K in A2 is een affiene kromme over
K wvan graad 2.

Definitie 26. FEen affiene variéteit Y C A™ over K gedefinieerd door polynomen
fis e ft € K[x1, ...y 2] heet Y glad in een punt P = (aq,...,a,) €Y als de rank van
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de matriz || (gfj Y((@1, - an))i=1,..t5=1,...n || gelijk is aan n—r met r de dimensie
van Y. Een affiene variéteit Y over K heet glad indien Y glad is in ieder punt P
mY.

Opmerking Zie [4, 8, opmerkingen 3.2]:
(1) Zij g een polynoom in z; met i € {1,...,n}. Men kan dd—a?i abstract definieren
en de gebruikelijke differentieregels voor polynomen gebruiken, bijvoorbeeld
%x" = na"~!. Merk op dat in het geval van karateristiek p geldt %xp =
pxP~t = 0.
(2) De definitie van een gladde kromme in A? hangt niet af van de eindige
verzameling voortbrengers van (7).

2.2. De projectieve ruimte.

Analoog aan de affiene n-dimensionale ruimte kunnen we de begrippen algebraische
verzamelingen en kromme ook voor de projectieve n-dimensionale ruimte introduc-
eren.

Definitie 27. Fen deelverzameling Y wvan P™ heet een algebraische verzameling
indien er een verzameling T van homogene elementen van K|xg, ..., t,,| bestaat met
Y ={P € P"| voor alle f inT : f(P) =0}. We zeggen dat een algebraische verza-
meling Y gedefinieerd is over K als er een verzameling T' van homogene elementen
van Klzg,...,xy,] bestaat met Y = {P € P"| voor alle f in T : f(P) = 0}.

Opmerking
(1) Ook hier zijn de algebraische verzamelingen de gesloten verzamelingen in
de Zariski topologie [5, 1.2, p. 10]. In de rest van de scriptie wordt P™
voorzien van de Zariski topologie.
(2) Analoog aan de affiene ruimte A™ kunnen we voor iedere algebraische verza-
meling Y = Z(T') C P" aannemen dat de verzameling T eindig is.

Definitie 28. FEen projectieve variéteit is een irreducibele algebraische verzameling
in P™ met daarop de geinduceerde topologie. FEen open deelverzameling van een
projectieve variéteit heet een quasi-projectieve variéteit.

Zonder bewijs geven we dit lemma:

Lemma 29. [5, 1.2 Probleem 8] Een projectieve variéteit Y in P™ heeft dimensie
n — 1 dan en slechts dan als er een niet constant irreducibel homogeen polynoom
f € Klzg, ..., ] bestaat met Y = {P € P"|f(P) = 0}.

Definitie 30. Een projectieve kromme C over K is een projectieve variéteit over
K wvan dimensie 1.

Met behulp van lemma 29 kunnen we definieren wat de graad is van een pro-
jectieve kromme C' over K. Deze is de graad van het homogene polynoom in het
lemma dat C' definieert.

Definitie 31. Fen projectieve kegelsnede C' over K is een projectieve kromme in
P? over K van graad 2.

Definitie 32. Een projectieve variéteit Y C P™ over K gedefinieerd door homogene

polynomen fi,..., fy € K|[xo,...,x,] heet Y glad in een punt P = (ag : ... : ay) €Y

als de rang van de matriz || (gi?)((ag, s @n))i=1,.. tij=1,..n || geligk is aan n —r
J
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met r de dimensie van Y. Fen projectieve variéteit Y over K heet glad indien Y
glad is in ieder punt P in'Y .

Opmerking
(1) Zie opmerking 2.1.
(2) De definitie van een gladde kromme hangt niet af van de gekozen homogene
coordinaten van P en de gekozen eindige verzameling voortbrengers van
().
Schrijf Hy := {P € P"|xg = 0} en Uy := P"™ — Hy. Dan is Uy open. We kunnen A"
identificeren met Uy via het volgende homeomorfisme [5, 1.2, Propositie 2]

¢0 : Uo — A"
ap a2 Qn
(ag:ay:..:ap)——,—,...,— .
ap Qo aop

Merk op dat ¢y welgedefinieerd is.

Definitie 33. Zij Y C A" een affiene variéteit over K. We noemen ¢y *(Y) C P?
de projectieve afsluiting van'Y in P* (notatie Y ).

Opmerking Indien C' een affiene kromme is over K gegeven door een poly-
noom f(x1,xa,...,x,) € K[21,2Za,...,2,] dan wordt de projectieve afsluiting van C

gegeven door een homogeen polynoom F(Xg, X1, ..., X,,) verkregen door f(x1,z2, ..., Zp)
homogeen te maken: er geldt F(Xo, X1, ..., X,,) = X§f (%, e %) met e de graad
van f. Merk op dat de afsluiting van een irreducibele varieteit ook irreducibel is

en dus is F(z,y, z) ook irreducibel.

2.3. Morfismen.
Definitie 34. Zij Y C A" een quasi-affiene variéteit. Een functie f : Y — K heet

requlier in een punt P € Y als aan de twee voorwaarden is voldaan:

(1) Er bestaat een open omgeving U met P € U CY.
(2) Er bestaan twee polynomen g, h € Klx1, ...,xy] zodanig dat h(u) # 0 voor
allewe U en f=1 opU.

We zeggen dat f requlier is op Y indien f requlier is in ieder punt in Y.
Analoog is er een definitie voor reguliere functies voor quasi-projectieve variéteiten.

Definitie 35. Zij Y C P" een quasi-projectieve variéteit. Een functie f:Y — K
heet regulier in een punt P € Y als aan de twee voorwaarden is voldaan:

(1) Er bestaat een open omgeving U met P € U CY.
(2) Er bestaan twee homogene polynomen g, h € K|z, ..., x,] van dezelfde graad
zodanig dat h(u) # 0 voor allew e U en f =4 op U .

We zeggen dat f regulier is op Y indien f requlier is in ieder punt in Y.

Lemma 36. Indien we Alf voorzien van de Zariski topologie en K identificeren
met Alf dan is iedere reguliere functie continu.

Bewijs Zie [5, 1.3, Lemma 1]. O

Definitie 37. Fen variéteit over K is een affiene, quasi-affiene, projectieve of
quasi-projectieve variéteit.

1 Merk op dat % welgedefinieerd zolang h # 0.
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Definitie 38. Zijn X en Y twee variéteiten. FEen morfisme ¢ : X — Y is een
continue afbeelding zodanig dat voor iedere open deelverzameling V. C Y en voor
iedere reguliere functie f : 'V — K de functie fo¢: ¢~ (V) — K requlier is.

Definitie 39. Een morfisme ¢ : X — Y is een isomorfisme als er een morfisme
¥ Y — X bestaat met Y o ¢p = idx en ¢ o = idy. Indien er een isomorfisme
bestaat tussen twee variéteiten X en'Y dan heten X en'Y isomorf.

Met het volgende lemma kunnen we met gemak nagaan of een afbeelding tussen
twee variéteiten een morfisme is.

Lemma 40. Zij X een variéteit en laat Y C A" een affiene variéteit zijn. Fen
afbeelding v : X — Y is een morfisme dan en slechts dan als x; o ¢ een reguliere
afbeelding op X 1is voor iedere i € {1,...,n} waarbij x1, ..., x, de coérdinatenfuncties
zign op A™.

Bewijs Zie [5, 1.3, Lemma 6]. O

Lemma 41. Zijn X enY twee variéteiten. Laat ¢ en 1 twee morfismen zijn van X
naar Y. Stel dat er een niet lege open verzameling U C X bestaat met ¢y = Y|y
Dan geldt ¢ = 1.

Bewijs Zie [5, 1.4, Lemma 1]. O

Definitie 42. Zijn X en Y twee variéteiten. Fen rationale afbeelding ¢ : X --»
Y is een equivalentierelatieklasse van paren (U, ¢y) waarbij U een niet lege open
deelverzameling van X en ¢y een morfisme is van U naar'Y. Twee paren (U, ¢y)
en (V,¥v) zign equivalent als ¢y = vy op UNV.

Opmerking Uit lemma 41 volgt dat de genoemde relatie in de definitie inderdaad
een equivalentierelatie is.

Definitie 43. Een birationale afbeelding ¢ : X --+Y is een rationale afbeelding
waarvoor een rationale afbeelding v : Y --+ X bestaat met o =1idx en porp =
idy . Indien er een birationale afbeelding bestaat tussen twee variéteiten X en Y
dan heten X en'Y birationaal (equivalent).

Stelling 44. Zijn X en Y twee variéteiten. Dan zign de volgende beweringen
equivalent

(1) X enY zijn birationaal.
(2) Er zign open deelverzamelingen U C X en V CY die isomorf zijn.

Bewijs Zie [5, 1.4, Corollary 5]. O

Definitie 45. Laat M,,(K) de verzameling van de n X n-matrices met coéfficiénten
in K zign. We noemen twee n X n-matrices A, B € M, (K) gelijkvormig indien er
een inverteerbare matriz P € M, (K) bestaat met B = PTAP.

Lemma 46. Ziy V' een eindige dimensie ruimte over een lichaam K van karakter-
istiek ongelijk aan 2. Iedere symmetrische matric A € M, (K) is gelijkvormig met
een diagonale matriz in M, (K).

Bewijs Zie [7, 1.8, Theorem 19]. O

Lemma 47. Zij C: aX?+bY2+cZ?4+dXY +eYZ+ fXZ =0 een projectieve
kromme in P? over K met karakteristiek K ongelijk aan 2. Dan is C isomorf met
een projectieve kromme C* over K gedefinieerd door de vergelijking aX? + BY?2 +
vZ? = 0 voor zekere o, 3,7y € K.
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Bewijs We kunnen de vergelijking van C' als volgt schrijven:

X B
(XYZ)M| Y |=0metM:= [ ¢ b ¢
z fs e

De matrix M € M3(K) is symmetrisch en K heeft karakterisitek ongelijk aan
2. Volgens lemma 45 zijn er een diagonale matrix D € M;3(K) en een matrix
P € M3(K) met M = P'DP. We schrijven:

a 0 0
met D := 0 8 0 voor zekere «, 3 en v in K.
0 0 v
en
X, X
Y: =P| Y
7 Z
Dan geldt
X X4
0= (XYZ)M|Y | =(Xi17Z )D[ 1 = aX?+ Y2 +~23
Z Z

Noteer voor een element (ag,a;,az) € K2\ (0,0,0) de equivalentieklasse (ag :
ay : az) met [(ag, a1, az)]. De afbeelding

¢: P? — P2

T
[(ag, a1, a2)] — [P(ag, a1, az2)" ]
is welgedefinieerd en inverteerbaar (lineaire transformatie en P is inverteerbaar) en
definieert dus een isomorfisme. [J

Stelling 48. Zij C C P? een projectieve algebraische verzameling over een lichaam
K wvan karakteristick ongelijk aan 2 die gedefinieerd wordt door de vergelijking
aX? +bY? + cZ%? = 0 met a,b,c € K en (a,b,c) # (0,0,0). Dan zijn de vol-
gende beweringen equivalent:

(1) C is een kegelsnede over K.

1)
(2) a,b,c#0.

(3) C is glad.
Bewijs
((1) = (2)): Merk op dat C graad 2 heeft. Stel C' is een kegelsnede over K en
¢ =0 (de gevallen a = 0 of b = 0 gaan analoog). Dan wordt C' gedefinieerd door
aX? +bY? = 0. Het polynoom aX? + bY? € K[X,Y,Z] is niet irreducibel in
K[X,Y,Z]. Dit is in tegenspraak met de definitie van een kromme (en dus met de
definitie van een kegelsnede) over K . Dus a,b, ¢ # 0.

((2) = (1)): Stel a,b,c # 0. Neem het affiene deel Cz van C door Z op 1 te
schalen. Dan wordt C gedefinieerd door de vergelijking az? + by? + ¢ = 0 met
T = % en y = % Omdat a # 0 kunnen we f := z2 + gyg + gjls polynoom dat
Cz definieert. We laten zien dat dit polynoom irreducibel is in K[z,y]. We weten
uit algebra dat K|z, y| isomorf is met K[y|[z]. In deze laatste polynomenring is f

irreducibel alleen als ng + < een kwadraat is in K[y dus alleen als Syz + < een
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dubbel nulpunt heeft. Het lichaam K heeft karakteristiek ongelijk aan 2 en f heeft
geen gemeenschappelijke nulpunt met % = 23@/. We concluderen dat f irreducibel
is in K[y][z] en dus ook in K[z,y]. Dus Cy is irreducibel. Omdat C' de afsluiting is
van Cyz, volgt uit lemma dat C' ook irreducibel is. Omdat aX? + bY?2 + cZ? graad

2 heeft is C' een kegelsnede over K.

((2) = (3)): Stel a,b,c # 0. We moeten laten zien het stelsel vergelijkingen

8(aX2+é?71}//2+622) =0
e ——=(P) = 0

A(aX?4bY%+cZ?) P)
X
A(aX24bY % +cZ?) (P)

geen oplossingen heeft in C. Dit stelstel vergelijkingen geeft:

2axg = 0
(2) § 2byo = O
2czg = 0.

Omdat karakteristiek van K ongelijk is aan 2 en a,b,c # 0 heeft dit stelstel als
enige oplossing ¥op = yo = 29 = 0. Maar P € P? dus (zo, yo, 20) # (0,0,0) en dus
heeft het stelsel vergelijkingen geen oplossingen. We concluderen dat C glad is.

((3) = (2)): Stel C is glad dan geldt (2axg, 2byo, 2¢z0) # (0,0, 0) voor alle (zo : yo :
z0) € C. Stel b =0 (het geval a = 0 gaat op dezelfde manier) en neem yo € K\0
willekeurig. Dan ligt het punt (0: yo : 0) in C en er geldt (2-a-0,2-0-yp,2-¢-0) =
(0,0,0) dus C is niet glad in P. Tegenspraak. Dus er moet gelden a,b,c # 0. O

Gevolg 49. Iedere affiene kegelsnede C C A% over een lichaam K van karakteristiek
ongelijk aan 2 is birationaal equivalent met een kegelsnede over K gedefinieerd door
de vergelijking ax® + by? + ¢ = 0 voor zekere a,b,c € K.

Bewijs Beschouw de projectieve afsluiting D van C. Omdat D een kegelsnede
is, wordt D gedefinieerd door een homogeen polynoom in K[X,Y, Z] van graad 2.
Omdat C irreducibel is, is zijn afsluiting D ook irreducibel en dus een kegelsnede.
Volgens stelling 47 is D isomorf met een kegelsnede D* gedefinieerd door de vergeli-
jking aX2+bY2+cZ? = 0 voor zekere a, b, c € K. Neem het affiene deel D}, van D*
door Z op 1 te schalen. Dan krijgen we een affiene kegelsnede over K gedefinieerd
door de vergelijking az? 4+ by? + ¢ = 0. Deze is inderdaad birationaal equivalent
met C. [

2.4. Parametriseren.

Definitie 50. Fen affiene kromme C C A™ over K heet rationaal (of parametriseer-
baar) over K als er rationale functies x1(t), x2(t), ..., xn(t) € K(t) bestaan zodanig
dat het volgende geldt:

(1) Voor bijna alle (m.a.w. op eindig veel na) tg € K is xi(to) welgedefinieerd
voor alle i € {1,2,...,n} en het punt (x1(to), x2(to), .-, Xn(to)) ligt op C.

(2) Voor bijna alle punten (1, xs,...,1,) € C is er een unieke ty € K zodanig
dat (z1,22,....2) = (x1(to), x2(t0); -, Xn(t0))-

In dit geval heet (x1(t), x2(t),..., xn(t)) een affiene (rationale) parametrisatie van
C.
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Definitie 51. Fen projectieve kromme C C P™ over K heet rationaal (of parametriseer-
baar) over K als er polynomen xo(t), x1(t), ..., xn(t) € K[t] bestaan met ggd(xo(t), x1(t)
sy Xn(t)) = 1 zodanig dat het volgende geldt:

(1) Voor bijna alle ty € K ligt het punt (xo(to) : x1(to) : - : Xn(to)) op C.

(2) Voor bijna alle punten (xo : o1 : ... : @) € C is er een unieke tyg € K
zodanig dat (xo : @1 : ... 2 xy) = (xo(to) : x2(to) : - : Xn(t0))-
In dit geval heet (xo(t) : x1(¢t) : ... : xn(t)) een projectieve (rationale) parametrisatie
van C.
Opmerking

(1) In beide definities 50 en 51 zijn de krommen parametriseerbaar indien er
een birationale afbeelding bestaat van A! naar de desbetreffende krommen.

(2) Indien er polynomen xo(t), x1(t), ..., xn(t) € K[t] bestaan die voldoen aan
voorwaarde (1) in definitie 51 dan kunnen we zonder verlies van algemeen-
heid aannemen dat ze zelfs voor alle t; € K aan de eerste eis van definitie
51 voldoen. Zie [5, 1.6, Propositie 8.

In de volgende stelling leggen we een verband tussen de parametrisaties van pro-
jectieve krommen over K en die van hun affiene delen.

Gevolg 52. Zij K een lichaam van karakterstiek ongelijk aan 2. Laat C € A?
een affiene variteit over K zijn die gedefinieerd door een polynoom f in Klx,y] van
graad 2 . Dan is C glad dan en slechts dan als de projectieve afsluiting C* glad is.

Stelling 53. Zij C C A? een affiene kromme over K en C* de bijbehorende pro-
jectieve afsluiting. Dan is C' rationaal dan en slechts dan als C* rationaal is.

Bewijs Laat (x1(t), x2(t), x3(t)) een parametrisatie van C* zijn. Merk op dat C*
niet oneindig veel punten in het oneindige kan hebben dus we kunnen aannemen dat

x3(t) # 0. Aangezien y3(t) = 0 eindig veel oplossingen heeft in K is (%Ettg’ %8;)

een parametrisatie van C. Andersom, iedere rationale parametrisatie van C kan
uitgebreid worden tot een parametrisatie van C* door de z-cotrdinaat op 1 te
schalen en de tellers te vermenigvuldigen met het kleinste gemene veelvoud van de
noemers zodat de noemers verdwijnen. [J

Met behulp van stelling 53 is het mogelijk om te kiezen tussen het parametriseren
van een rationale projectieve kromme C' of juist een affien deel ervan en daaruit een
parametrisatie voor C' te vinden. Dit laten we zien aan de hand van het volgende
voorbeeld:

Voorbeeld 54. We nemen de kegelsnede
(1) C: X24Y?2=2%CP2

gedefinieerd over Q. We schalen Z op 1 en beschouwen het affiene deele Cy :
22 +y? =1 dat hoort bij Z # 0. Gegeven het rationale punt (—1,0) op Cyz bekijken
we een familie lijnen y = t(x + 1) door (—1,0) die geparametriseerd wordt door de
richtingscoefficient t € Q. Voor bijna alle t € Q snijdt deze lijn Cz in een ander
rationaal punt. We krijgen dus een (oneindige) familie van rationale punten.
Subsitueren van y = t(x + 1) in vergeligking C geeft

=2 +t3(x+1)% = (1 +t*)2? 4 2622 + 2.
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dus

202 241
2+1° " 241
Deze vergeligking kunnen we herleiden tot een vergelijking van de vorm

> +Az+B=0

met A,B € K. In K[z] kunnen we 2% + Az + B ontbinden als (z — a)(x — 3) met
a,B3€ K. Ergeldt dan 2> + Ax+b= (x —a)(x — 8) = 22 — (a+ B)z + af. In het
bijzonder geldt A = —(a + ). Deze methode passen we toe op vergelijking 2:

(2) 2+

Omdat (—1,0) op C, ligt, is © = —1 een oplossing van deze vergelijking. dus

2t?
3 -1 - _
3) = TE
waarbij x1 de x-codrdinaat van het tweede snijpunt. We krijgen
2t? 1—¢2
Tl = =

1———=——.
2+1 241
Indien we deze waarde van x1 in de vergelijking y1 = t(x1 + 1) invullen dan krijgen

we
2t

IEZEE
Dit is de y-coordinaat van het tweede snijpunt. Een affiene rationale parametrisatie
van Cz kan dus worden gegeven door

—t*+1 2t )

), x2(t) = | —=, 5—
R =
Een projectieve rationale parametrisatie voor C is dan

(—t2+1:2t: 82 +1).

Y1

Merk op dat er geen ty € Q bestaat waarvoor geldt (x1(to), x2(to)) = (—1,0). De
kromme Cyz heeft in het punt (—1,0) een oneindige richtingscoefficiient.

Voorbeeld 55. Beschouw
15 41

de vergelijking van een affiene kegelsnede gedefinieerd over Q. Gegeven het punt

(%, %) € C willen we een rationale parametrisatie voor C vinden. We bekijken de
amilie van lijnen y — & = t(b— ) die door het punt (5, L) gaan. Voor bijna alle
3 12 12:3) 9

t € Q kunnen we het tweede snijpunt vinden door eerst b te vinden en dan y. Er

geldt y = % +t(b— 1—72) Deze subsitueren in vergelijking / geeft:

1 7\’ , 15 41
<3+t(b—12)> = 50"+ b — .

We lossen deze vergelijking op voor b (bijvoorbeeld met de hand of met een comput-
erprogramma) en vinden:
7t — 8t + 55

7
b=15 /0= 12(12 + 5)

12
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De tweede waarde van b is wat we zoeken. Deze waarde subsitueren we in vergeli-
jking y = % +t(b— 1—72) en krijgen
_ —t*+5t+5

YT T3 1 h)
FEen affiene rationale parametrisatie voor C' is

2 2

6 R R )
Je kunt nagaan dat er geen to € C bestaat waarvoor geldt (x1(to), x2(to)) = (1—72, %)

De hierboven genoemde voorbeelden laten zien dat parametriseren een goed
gereedschap kan zijn bij het vinden van rationale punten op kegelsneden. Bij de
kegelsneden van voorbeelden 54 en 55 is het ons gelukt om oneindig veel rationale
punten te vinden uitgaand van één rationaal punt. Merk op dat beide kegelsneden
een rationaal punt bevatten. De volgende stelling generaliseert dit:

Stelling 56. Elke kegelsnede C C P? over een lichaam K van karakteristiek ongelijk
aan 2 met een K-rationaal punt is parametriseerbaar.

Bewijs Volgens lemma 47 mogen we aannemen dat C' gedefinieerd wordt door de
vergelijking a X2 + bY?2 + ¢Z? = 0 voor zekere a,b,c,€ K met abc # 0. Laat
P = (Xy:Yy: Zy) € C een K-rationaal punt zijn. We kunnen zonder verlies van
algemeenheid aannemen dat Zy # 0. Bekijk het affiene deel C; C A? verkregen
door Z op 1 te schalen. De kromme C7z heeft de vergelijking az? + by? + ¢ = 0

met x = % en y = % als affiene coordinaten. Het punt P correspondeert met een
punt p = (zo,y0) € Cz waarbij xg = )Z%) en yg = )Z/—g Beschouw de familie lijnen

L: y=t(x—xp)+ yo door p. Voor ieder punt (z,y) € L N Cyz geldt:
{y—t(a:—xo>—yo =0
az? + b(t(z — x0) + yo)? +c = 0.
Het uitwerken van de tweede vergelijking geeft
gi(x) := A(t)z*> + B(t)xz + C(t) = 0.

met A(t) = a + bt?,B(t) = —2b(xot? — yot) en C(t) een polynomiale uitdrukking
in ¢ van hoogstens graad 2 . Volgens stelling 48 is a ongelijk aan 0. Dus A(¢) is
een polynoom van gaad 2 en heeft dus hoogstens twee nulpunten. Voor bijna alle
t € K en bijna 2o € K geldt:

B@) | C)
_ 2 _ 2 _
gi(z) =0 A(t)z"+ B(t)z+ C(t) =0 < 2 + A(t)x + A
We weten dat zy een oplossing is van g;(x) = 0 dus we kunnen schrijven
Bt C(t —=
x2+A§t;x+AEt; =(x—x0)(x — ) € Kx]

met z; € K de tweede oplossing van g;(r) = 0. Er geldt (z — xo)(z — z;) =
22 — (20 + 24)x + oz, Hieruit volgt —(zg + x4) = % dus z; = —x9 — %. Er
geldt zg € K en als tg € K geen nulpunt is van A(t) dan geldt f‘gz; € K en dus

xt, € K. Voor bijna ieder punt (z,y:) € L N Cyz geldt

ytt(xtﬂﬂo)erOt(zO]ngxo) +y0t<2xoﬁgg) + Yo-
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We laten zien dat % geen constante rationale functie is. Er geldt

B(t)  —2b(xot* —yot)  —2b(xot — yo)t

At) a+b? a + bt?
B(t) is constant alleen als (z9,0) = (0,0). Maar dan geldt ax? +bys +c=c=0
en dit is in tegenspraak met de aanname dat abc # 0. Dus zg # 0 of yo # 0. In
beide gevallen heeft de teller in deze breuk heeft een factor t. Omdat a # 0 heeft

de noemer deze factor niet. Dus % is niet consant.

We concluderen dat voor bijna alle punten (x,7) € Cz er een t € K bestaat met

_ B(t) B(t)
(6) (z,y) = (xo — m7 —2x0 — A(t)) )

Men kan laten zien voor iedere (z,y) € Cz dat de bijbehorende ¢ in vergelijking 6
uniek is. We krijgen een parametrisatie

X At -— CZ
B(1) B(1)
t--» (mo - m,—%:o - A(t)) .

Volgens stelling 53 is C' ook parametriseerbaar. [
Zonder bewijs geven we het volgende gevolg:

Gevolg 57. Zij C een (projectieve resp. affiene) kegelsnede over een lichaam K
van karakteristiek ongelijk aan 2 met een K-rationaal punt. Als D een (projectieve
resp. affiene) kegelsnede is over K die isomorf is met C dan is D parametriseerbaar.

3. DE RATIONALE PUNTEN BI1J HET GEVAL VI

In dit onderdeel gaan we de kennis uit hoofdstukken 1 en 2 toepassen op een
specifiek geval. Het doel van dit onderdeel is te laten zien dat de rationale nulpunten
dicht liggen op het algebraische oppervlak over K = Q behorende bij het geval VI.

Definitie 58. Fen rationale tetraéder is een tetraéder waarvan de zijden en de
inhoud rationaal zijn.

Een rationale tetraéder met de resp. inhoud a,b,¢,d, e, f en V voldoet vergelijking
(1) en een aantal ongelijkheden. We vergeten de ongelijkheden en letten alleen op
vergelijking (1). Merk op dat deze vergelijking een algebraisch oppervlak definieert
in de gewogen projectieve ruimte Pg(1,1,1,1,1,1,3) met codrdinaten a,b, ¢, d, e, f
en V. Deze ruimte is gedefinieerd als volgt:

Definitie 59. De gewogen projectieve ruimte Py (dg,dy, ..., d,) met coérdinaten
Xy ooy Ty 18 de quotient verzameling I \{(0,...,0)} onder de equivalentierelatie
gegeven door (ag, ..., an) ~ (A%ag, ..., \4a,) met X € K, A\ # 0.

3.1. Het geval VI.
Indien a = d,b = e,c = f en als we y := 12V schrijven dan krijgen we voor de
tetraéder de volgende vergelijking:

(7) Syt = a*(2d%(b* +* —a?) — (b—c)*(b+¢c)?)

die een algebraisch oppervlak S definieert in Px (1, 1,1, 3) met a, b, ¢, y als coérdinaten.
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3.2. Het affiene deel.
Neem de verzameling punten op S met a # 0. Dit geeft een affien deel S, van
het algebraisch oppervlak S en na schaling krijgen we de volgende vergelijking:

(8) Sa: yi =200 +cf —1) = (b — 1)’ (b1 + 1)?

met by = £, ¢; = <, y; = % de affiene codrdinaten in A3,
a’ a’ a

Stelling 60. De affiene algebraische verzameling gedefinieerd door S, is een affiene
variétest.

Bewijs We laten zien dat f := y? —2(bf 4+ ¢ — 1) + (b1 — c1)*(b1 + ¢1)? irreducibel
is in Kby, c1,y1]. De polynomenringen K[b1,c1,vy1] = Klb1,c1]ly1] zijn isomorf
dus het is voldoende om te laten zien dat f irreducibel is in K[by,c1][y1]. In deze
polynomenring is f irreducibel dan en slechts dan als G (by,c1) := 2(b? + ¢ — 1) —
(b1 —¢1)?(b1 +c1)? een wortel heeft in Kby, c;]. We laten zien dat dit niet kan. De
polynomenringen K|[by,c1] en K|[b1][c1] zijn isomorf. Het is dus voldoende om te
laten zien dat G(bi1,c1) (gezien als een polynoom met variabele ¢1) geen kwadraat
is in K[by][e1]. Stel dat het een kwadraat is in K[b1][c1] dan is het ook een kwadraat
indien we by = ¢; kiezen. We krijgen G (b1, c1) = 2(2¢2 — 1) en dit is geen kwadraat
in K[c1]. We concluderen dat G(by,c1) geen kwadraat is in K[b1,c;] en dat f dus
irreducibel is. O

Beschouw nu het volgende morfisme:

o: S, — Al
(brsc1, 1) = b+
We krijgen de volgende stelling:

Stelling 61. Voor bijna alle X € Q is de vezel c=1(\) isomorf met een affiene
kegelsnede over Q in A% gegeven door:

P o= 41— A)bT —4(1 = A)by — AT+ 2272 -2

Bewijs Neem A\ € Q. Dan geldt 0=1(\) = {(b1,c1,y1) € Salbr +c1 = A}. Dus
o A) = {(br,c1,m1) € A% Jyi = 2(0F + ¢ — 1) — (b1 — 1) (bi +c1)?, b1 + 1 = A}
Subsitueren en uitwerken geven:

yi = 2007+ (A —b1)* — 1) — (201 — A)*N?
= 207 +2)\% £ 2b7 —4Aby — 2 — 4bINT £ 4b 23— \?
41 =X —4(1 = M)b — X+ 202 —2. 0

Voor bijna alle A € Q is de vergelijking y? = 4(1—A2)b? —4(1—A3)by — A\* +2)%2 -2
een vergelijking van affiene kegelsnede? Dy over Q in A% gegeven door:

b1 +c = A
A1 = A2)b2 —4(1 = A3)by — M +2X2 -2 =0.

ny —4(1 = A2)b2 + 4(1 — A3)by + A* + 202 + 2 heeft graad 2 en men kan laten zien dat deze
irreducibel is door de vergelijking te herschrijven tot y2 + b(\)x2 4+ C()\) en laten zien dat voor
bijna alle A € Q irreducibel is.
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De afbeelding
7 o Y(\) — Dy

(b1, c1,91) — (b1, 1)
definieert een isomorfisme met als inverse:

p: Dy — o (N
(b1,y1) = (b1, A —b1,91)

3.3. Oneindig veel rationale punten en kegelsneden.

Volgens stelling 60 is S, irreducibel. We gaan de stelling 19 gebruiken om te laten
zien dat de rationale punten Zariski dicht liggen in S,. Uit stelling 20 volgt dan dat
de rationale punten ook dicht liggen op S en dat is precies wat we willen bewijzen.

De wiskundige Buchholz heeft al een punt gevonden op S namelijk het punt met
codrdinaten (a,b,c,y) = (12,7,11,576). Dit punt correspondeert met het punt
A:=(b1,c1,y1) = (1—72, }—2, %) op S,. Omdat o(A) = % geldt volgens stelling 61 dat
de vezel

15 41
2 — B2 i
Cy iyt = =50+ b — I
boven A = 2 isomorf is met de kegelsnede D sover Q gegeven door y? = —bb3 +

1—25171 — %. Deze kegelsnede is parametriseerbaar want dit is precies de kegelsnede
uit voorbeeld 55. Als parametrisatie hebben we gevonden:

P A -5 D%

. (7t2—8t+55 t2—5t—5)
12(82+5) 7 3(t2+5) )
Aangezien deze kegel een rationaal punt bevat en isomorf is met C% volgt nu uit
gevolg 57 dat C 3 oneindig veel rationale punten bevat.
We definieren nu een ander morfisme:

7:8, — Al
(bi,e1,91) = b1 — 1

en we bekijken de verzameling M :=7(C3(Q)). Voor iedert € Qs (752(_3?55)57 t;(;f’frgf)

cen element van C'z (Q). Definieer
7t — 8t +55 t2 — 5t —5
/”Lt = 7- 2 ) 2 N
122 +5) ' 3(2+5)

Tt —8t455 t°—5t—5 3t 4+12t—35
12(2+5) 3(2+5)  12(t2+5)
De verzameling C 3 (Q) van Q-rationale punten op C 3 is oneindig en er zijn hoog-
stens punten in C'z (Q) die hetzelfde beeld hebben onder 7. Dus de verzameling M

Dan geldt

Ht =

is oneindig. Analoog aan de vezel o~ 1()\) is voor bijna alle u € M de vezel 771 (1)
isomorf met een kegelsnede over Q.
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Voor puy = by — c¢; gelden ¢; = by — py en by + ¢ = 2by — py. Subsitueren van
deze uitdrukkingen in de vergelijking van S, geeft ons de vergelijking® van een
kegelsnede E,, C A% over Q met een rationaal punt erop en waarmee 7 '(u;)
isomorf is. Namelijk:

yi = 4(1 = p)by — 4(1 = )by — i + 2p7 — 2.
Volgens gevolg 57 is deze kegelsnede parametriseerbaar.

3.4. Samenvatting en conclusie.

We hebben laten zien dat de vezel C 3 isomorf is met een kegelsnede D 3 over Q die
een rationaal punt bevat. Deze kegelsnede is volgens gevolg 57 parametriseerbaar
en bevat in het bijzonder oneindig veel rationale punten. Met ieder punt in C 3 (Q)
hebben we een kegelsnede over Q geassocieerd door de de afbeelding 7 te beperken
tot C's(Q) en dan de vezels boven ieder element in M = 7(C's (Q)) te beschouwen.
Voor bijna alle p € M = 7(C3(Q)) zijn deze (oneindig veel verschillende) vezels
isomorf met kegelsneden E,,, over Q met een rationaal punt op ieder van deze vezels.
Volgens gevolg 57 zijn deze vezels ook parametriseerbaar. In het bijzonder bevatten
E,,, oneindig veel rationale punten. Zie figuur:

pofC---- -

Q(x) — lijn Y

& Q(\) - lijn

We voldoen nu aan alle voorwaarden van de topologische stelling 19 met:
X: Het affiene deel S, van S met de geinduceerde topologie. Deze is irreducibel
volgens 60.
S: de verzameling Q-rationale punten op Sj,.
C: een oneindige deelverzameling vezels van 77 1(M) := {r='(u)|, p € M}. Merk
op dat voor slechts eindig veel i € M de vezel 771 () niet irreducibel is.

We concluderen dat de Q-rationale punten dicht liggen op S,. Het affiene deel S,
is een open deel van S en omdat S irreducibel is, ligt volgens lemma 6 S, dicht in
S. Er volgt uit stelling 20 dat C(Q) dicht ligt in S.

3SWe krijgen precies dezelfde vergelijking als die van D). Dit volgt uit het feit dat de kwadraten
b%, c%, (b1 + 01)2 en (b1 — 01)2 in de vergelijking van S, zorgen voor dezelfde kegelsneden leiden.
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