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1 Inleiding

Zij K een lichaam. Een kegelsnede over K is de nulpuntenverzameling in P2(K) van een kwadratische
vorm f ∈ K[X,Y, Z] ongelijk aan 0. We kijken in deze scriptie naar de diagonaalvorm in drie variabelen
f = aX2 + bY 2 + cZ2 met a, b, c ∈ K, en beschouwen de lichamen K = Q, K = F (t) voor een lichaam
F en het lichaam van p-adische getallen K = Qp.

Centraal in de scriptie staan lokaal-globaalprincipes, stellingen die de oplosbaarheid van een kwadra-
tische vorm reduceren tot de oplosbaarheid van die vorm modulo (machten van) priemidealen. We
zijn gëınteresseerd in nulpunten van f in P2(K). We willen bepalen of er een niet-triviale (ongelijk
aan 0) oplossing bestaat, en zo ja, die oplossingen vinden.

In hoofdstuk 2 introduceren we de p-adische getallen, om het lokaal-globaalprincipe voor kegelsneden
over Q te kunnen behandelen. In hoofdstuk 3 behandelen we het lokaal-globaalprincipe voor kegel-
sneden over rationale functielichamen en presenteren we een algoritme om dit soort kegelsneden op te
lossen. Het algoritme is door de auteur van deze scriptie gëımplementeerd in SageMath (zie hoofdstuk
4), en kent al implementaties in Maple en Magma van Van Hoeij en Cremona [1].
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2 Kegelsneden over p-adische getallen

2.1 Inleiding

In 1897 bedacht Kurt Hensel de p-adische getallen, met als doel de technieken van machtreeksen naar
de getaltheorie te brengen. Een p-adisch geheel getal, voor een zeker priemgetal p, definieerde hij als
een formele som

∞∑
i=0

aip
i,

met ai ∈ Z zodat 0 ≤ ai < p. Het bleek dat de verzameling van deze “getallen” een ring vormde.

Het nut van Hensels getallen werd pas echt duidelijk toen Helmut Hasse in 1923 het door Minkowski
bedachte lokaal-globaalprincipe in p-adische getallen formuleerde, waardoor de theorie aanzienlijk
overzichtelijker werd. Zie Schwermer [3] voor een historisch overzicht.

In dit hoofdstuk bewijzen we een aantal belangrijke stellingen over p-adische getallen, en sluiten af
met twee formuleringen van het lokaal-globaalprincipe voor kegelsneden over Q.

2.2 p-adische getallen

Definitie 2.1. Zij I een partieel geordende verzameling en (Ai)i∈I een familie ringen. Laat
fi,j : Aj → Ai homomorfismen zijn voor alle i ≤ j ∈ I zodat

fi,i = idAi , (1)

fi,k = fi,j ◦ fj,k voor alle i ≤ j ≤ k. (2)

Dan is de inverse limiet van het inverse systeem ((Ai)i∈I , (fi,j)i≤j∈I) de verzameling

lim←−
i∈I

Ai = {~a ∈
∏
i∈I

Ai : ai = fi,j(aj) voor alle i ≤ j ∈ I}.

Ter verduidelijking van de definitie kunnen we een invers systeem met I = Z≥0 als volgt noteren:

A0
f0,1←−− A1

f1,2←−− A2 ←− . . .

De inverse limiet is met coëfficiëntsgewijze optelling en vermenigvuldiging een deelring van de pro-
ductring

∏
i∈I Ai: omdat fi,j homomorfismen zijn, is de inverse limiet gesloten onder optelling en

vermenigvuldiging, en zitten de eenheidselementen voor de optelling en vermenigvuldiging in de in-
verse limiet. Als x ∈ lim←−

i∈I
Ai, dan geldt −x ∈ lim←−

i∈I
Ai.

Definitie 2.2. De ring van p-adische getallen is

Zp = lim←−
n∈Z≥0

(Z/pnZ),

waarbij fi,j (als in definitie 2.1) het natuurlijke homomorfisme van Z/pjZ naar Z/piZ is.

Propositie 2.3. Een element x ∈ Zp is deelbaar door pn als en slechts als xn = 0.

Bewijs. Als x deelbaar is door pn, dan geldt vanzelfsprekend xn = 0 ∈ Z/pnZ. Voor de andere
implicatie, stel xn = 0. Dan geldt xi = 0 voor alle i ≤ n. Stel nu dat xi niet deelbaar is door pn voor
een zekere i > n. Dan is xn ≡ xi (mod pn) niet 0; tegenspraak, dus xi is deelbaar door pn voor alle
i ≥ 0. Zij nu αi ∈ Z voor alle i ≥ 0 zodat pnαi ≡ xi+n (mod pi+n), en zij x′i := (αi mod pi) ∈ Z/piZ.
Dan geldt pnx′i = xi ∈ Z/piZ. Dus x′ := (x′i)i∈Z≥0

is de gezochte deler als x′ ∈ Zp. Voor 0 ≤ j ≤ i

geldt pnαj ≡ xj+n ≡ xi+n ≡ pnαi (mod pj+n), dus x′i ≡ αi ≡ αj ≡ x′j (mod pj). Er volgt dat x′ ∈ Zp,
dus x is deelbaar door pn.
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We verkrijgen een isomorfisme Zp/p
nZp → Z/pnZ gedefiniëerd door x + pnZp 7→ xn. We schrijven

daarom xn = (x mod pn) voor de n’de coördinaat van x ∈ Zp.

Er is een inclusie Z ⊂ Zp door z ∈ Z te identificeren met xn = (z mod pn). Bijvoorbeeld: −2 ∈ Z is
(−2,−2, . . .) = (0, 1, 7, 25, . . .) ∈ Z3.

Propositie 2.4. Er geldt:

(a) Een element x ∈ Zp is een eenheid als en slechts als x niet deelbaar door p is.

(b) Elke x ∈ Zp met x 6= 0 kan uniek geschreven worden als x = pnu, met u ∈ Z∗p en n ∈ Z≥0.

Bewijs. Zij x ∈ Zp niet deelbaar door p. Dan is xn niet deel baar door p, dus geldt gcd(xn, p
n) = 1, dus

xn heeft een inverse x−1n ∈ Z/pnZ. Omdat inversen uniek zijn geldt x−1n−1 ≡ x−1n mod pn−1. Wegens

de coëfficiëntsgewijze operaties op Zp volgt dat (x−10 , x−11 , . . .) ∈ Zp de inverse van x is.

Voor de andere implicatie: als p een deler van x is, dan geldt x1 = 0 ∈ Z/pZ, en dus is x1 niet
inverteerbaar. Er volgt dat x niet inverteerbaar is.

Voor (b), zij n ∈ Z≥0 zodat xn = 0 en xn+1 6= 0. Dan is x deelbaar door pn en niet door hogere
machten van p, dus zij u ∈ Zp zodat x = pnu. Dan is u niet deelbaar door p, en wegens (a) is u een
eenheid. Schrijven we x = pmv met m < n en v ∈ Zp, dan is v deelbaar door p, dus wegens (a) geen
eenheid. Als voor v ∈ Z∗p geldt dat pnu = pnv, dan geldt voor alle i ≥ 0 dat pnu ≡ pnv (mod pi+n),
dus u ≡ v (mod pi). Er volgt dat de schrijfwijze x = pnu met u ∈ Z∗p en n ∈ Z≥0 uniek is.

Zij x, y ∈ Zp \ {0}. Dan geldt voor zekere u, v ∈ Z∗p, m,n ∈ Z dat xy = pn+muv, en vervolgens dat
pn+muv 6≡ 0 (mod pn+m+1), want uv is niet deelbaar door p. Er volgt xy 6= 0, dus Zp is een domein.

Definitie 2.5. Schrijf x ∈ Zp \ {0} als x = pnu voor een zekere u ∈ Z∗p en n ∈ Z≥0. Dan heet het
getal n de p-adische valuatie van x, genoteerd als vp(x). We spreken af dat vp(0) =∞.

Er geldt vp(xy) = vp(x) + vp(y) en vp(x+ y) ≥ min(vp(x), vp(y)).

Definitie 2.6. De p-adische absolute waarde is gedefinieerd als |x|p = p−vp(x), en de p-adische afstand
als dp(x, y) = |x− y|p. We spreken af dat |0|p = 0.

Voor het gemak noteren we |·| zonder index p als uit de context duidelijk is in welke p-adische ring
we zitten. Voor x, y, z ∈ Zp geldt |x − x| = 0, |x − y| = |y − x|, |x − z| = |(x − y) + (y − z)| ≤
max{|x− y|, |y − z|} ≤ |x− y|+ |y − z| en |x| = 0 impliceert x = 0. Dus Zp is een metrische ruimte.

Definitie 2.7. Het lichaam Qp van p-adische getallen is het quotiëntenlichaam van Zp.

Een element x ∈ Q∗p is te schrijven als x = pnu met u ∈ Z∗p en n ∈ Z. De p-adische valuatie op Qp is
op dezelfde manier gedefinieerd als op Zp: vp(x) := n.

De p-adische absolute waarde is natuurlijk ook gedefinieerd op Z ⊂ Zp en Q ⊂ Qp. In het algemeen
definiëren we een absolute waarde op Q als een multiplicatieve functie |·| : Q → R≥0 waarvoor de
de afstandsfunctie d(x, y) = |x − y| een metriek op Q is. Alexander Ostrowski bewees in 1916 dat
alle absolute waardes op Q equivalent zijn aan een p-adische absolute waarde, de Euclidische absolute
waarde of de triviale absolute waarde (gedefinieerd door |x| = 0 als x = 0 en |x| = 1 als x 6= 0).
Hierbij betekent equivalent dat de verzamelingen Cauchy-rijtjes voor beide metrieken dezelfde zijn.
Zie Koblitz [2, p. 3] voor een bewijs.

Een gebruikelijke constructie van de p-adische getallen wordt verkregen door Zp en Qp te definiëren als
de topologische vervollediging van (Z, |·|p) respectievelijk (Q, |·|p). Wegens de stelling van Ostrowski
zijn R en de p-adische lichamen Qp alle mogelijke vervolledigingen van Q. De constructie van de
p-adische getallen als vervollediging laten we niet zien, maar we laten wel zien dat Zp volgens onze
definitie inderdaad een volledige metrische ruimte is.
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Propositie 2.8. De ring Zp met de metriek van de p-adische absolute waarde is een volledige metrische
ruimte.

Bewijs. We bewijzen dat iedere Cauchyrij in Zp een limiet heeft. Zij (xn)n∈Z≥0
een Cauchyrij in Zp.

Let op: een p-adisch element xn in het rijtje is óók een rijtje, met termen in quotiëntringen van Z.
De Cauchy-eigenschap impliceert dat er voor alle k ∈ N een Nk ∈ N is zodat voor alle n > Nk geldt
dat vp(xn − xNk

) ≥ k, ofwel dat (xn mod pi) = (xNk
mod pi) voor alle i ≤ k. We definiëren de limiet

y ∈ Zp door
yk = (xNk

mod pk) voor k ≥ 0.

Dat wil zeggen, de k’de term van de limiet y is gelijk aan de k’de term van de Nk’de term uit
de Cauchyrij. Wegens het voorafgaande geldt voor alle i, k ∈ N met i < k dat yi = (xNi mod
pi) = (xNk

mod pi) = (yk mod pi), dus y zit in Zp. Voor k ∈ N willekeurig groot en n ≥ Nk geldt
vp(y − xn) ≥ k, dus y is de limiet.

We kunnen p-adische getallen opschrijven als Cauchyreeksen. Neem bijvoorbeeld y = 1 + 2 · 3 + 2 ·
32 + 2 · 33 + . . . ∈ Z3. Er geldt 2 · 3 + . . .+ 2 · 3n ≡ −3 (mod 3n+1), dus de limiet is y = −2.

2.3 Lemma van Hensel

Het Lemma van Hensel is een belangrijke stelling in de theorie van p-adische getallen, die ons in staat
stelt nulpunten te vinden van p-adische polynomen. In deze paragraaf bewijzen we het Lemma van
Hensel en passen we het toe op een klasse van kegelsneden.

Propositie 2.9 (Taylor voor p-adische polynomen). Laat f ∈ Zp[X], x, y, z ∈ Zp en n ∈ Z≥0 zijn
zodat y = x+ pnz. Dan is er een a ∈ Zp zodat

f(y) = f(x) + pnzf ′(x) + p2na.

Bewijs. De term van graad i ∈ Z≥0 van f met coëfficiënt ai ∈ Zp, geëvalueerd in y, is gelijk aan

[f ]i(y) = ai(x+ pnz)i = aix
i + iaix

i−1pnz + . . .+ aip
inzi (3)

= [f ]i(x) + pn[f ]′i−1(x)z + . . .+ aip
inzi. (4)

Vanaf de derde term van vergelijking (4) bevat elke term een factor p2n, dus de gezochte a bestaat.

De volgende bewijzen zijn gebaseerd op Serre [4].

Lemma 2.10. Laat f ∈ Zp[X] en x ∈ Zp, n, k ∈ Z≥0 zijn zodat f(x) ≡ 0 (mod pn) en k = vp(f
′(x)),

en stel 0 ≤ 2k < n. Dan is er een y ∈ Zp zodat

f(y) ≡ 0 (mod p2n−2k), vp(f
′(y)) = k en y ≡ x (mod pn−k).

Bewijs. We schrijven y = x+pn−kz en zoeken z ∈ Zp zodat de andere congruentie en gelijkheid gelden.
Propositie 2.9 (Taylor) geeft voor een zekere a ∈ Zp,

f(y) = f(x) + pn−kzf ′(x) + p2n−2ka. (5)

Wegens de aanname f(x) ≡ 0 (mod pn) geldt f(x) = pnb met b ∈ Zp, en wegens de definitie k =
vp(f

′(x)) geldt f ′(x) = pkc met c ∈ Z∗p. We kunnen vergelijking (5) nu herschrijven naar

f(y) = pn(b+ zc) + p2n−2ka.

Als we z zo kiezen dat
b+ zc ≡ 0 (mod pn−2k),
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dan geldt f(y) ≡ 0 (mod p2n−2k). Taylor toepassen op f ′(y) geeft

f ′(y) = f ′(x) + pn−kzf ′′(x) + p2n−2ka′ ≡ f ′(x) ≡ pkc (mod pn−k).

Er geldt n− k > k, dus we hebben vp(f
′(y)) = k.

Het bewijs van lemma 2.10 geeft een methode om gegeven een oplossing in Z/pZ een oplossing in de
p-adische getallen te vinden. Dit noemen we Henselverheffing (Engels: Hensel lifting). De methode is
analoog aan de methode van Newton voor het vinden van nulpunten in de reële getallen: de berekening
van z komt neer op z = − f(x)

f ′(x) . Een iteratie komt steeds dichter bij een nulpunt te liggen volgens de
p-adische metriek. De volgende stelling van Hensel geeft aan wanneer het proces convergeert.

Stelling 2.11 (Lemma van Hensel). Zij f ∈ Zp[X1, . . . , Xm], x ∈ (Zp)
m, n, k, j ∈ Z zodat 1 ≤ j ≤ m

en k = vp(
∂f
∂Xj

(x)). Stel dat

0 ≤ 2k < n en f(x) ≡ 0 (mod pn).

Dan is er een y ∈ (Zp)
m met f(y) = 0 en y ≡ x (mod pn−k).

Bewijs. We bewijzen de stelling door een Cauchyrij te maken waarbij opeenvolgende elementen worden
verkregen door lemma 2.10 toe te passen. Stel eerst m = 1. Door lemma 2.10 toe te passen op
x0 := x ∈ Zp krijgen we x1 ∈ Zp zodat opnieuw aan de voorwaarden voldaan wordt:

x1 ≡ x0 (mod pn−k), f(x1) ≡ 0 (mod pn+1) en vp(f
′(x1)) = k.

In het algemeen geldt dat als xn ∈ Zp voldoet aan de voorwaarden, dat xn+1 verkregen met lemma 2.10
voldoet aan de voorwaarden. We construeren op deze manier een rijtje (xq)q∈Z≥0

met

xq+1 ≡ xq (mod pn+q−k), f(xq) ≡ 0 (mod pn+q).

Dit is een Cauchy-rijtje, want voor q, r ∈ Z met q < r geldt |xq−xr| ≤ pk−n−q. Voor de limiet y geldt
f(y) ≡ 0 mod pn voor alle n ∈ N, dus f(y) = 0, en y ≡ x (mod pn−k).

Voor m > 1, noteer x = (xi) ∈ (Zp)
m en zij f∗ ∈ Zp[Xj ] het polynoom verkregen door Xi voor alle

i 6= j te vervangen door xi. Nu kan het geval m = 1 worden toegepast op f∗ en xj . (Dit geeft dat er
een yj ≡ xj (mod pn−k) is zodat f∗(yj) = 0.) Nemen we yi = xi voor i 6= j, dan volgt dat y = (yj) de
gewenste oplossing is.

Het Lemma van Hensel maakt het mogelijk om het bestaan van nulpunten van p-adische polynomen
te bepalen zonder die te berekenen. Dit is onder andere nuttig omdat er – zoals we in het volgende
hoofdstuk zullen zien – een relatie bestaat tussen het bestaan van p-adische oplossingen en het bestaan
van oplossingen in Z en Q. Het volgende gevolg maakt het Lemma van Hensel makkelijk toepasbaar
op het onderwerp van deze scriptie.

Gevolg 2.12. Zij f = aX2 + bY 2 + cZ2 ∈ Z[X,Y, Z] en p ∈ Z een oneven priem zodat p - abc. Dan
heeft f een niet-triviaal nulpunt in Z3

p.

Bewijs. We bewijzen eerst dat f een niet-triviaal nulpunt heeft in (Z/pZ)3 en gebruiken vervolgens
het Lemma van Hensel. Zij S1 = {a + by2 ∈ Z/pZ : 0 ≤ y ≤ p−1

2 }. Laat y1, y2 ∈ Z/pZ, zodat y1
en y2 niet beide 0 zijn en 0 ≤ y1, y2 ≤ p−1

2 geldt. Stel a + by21 = a + by22. Dan geldt y21 = y22, want
b 6≡ 0 (mod p) wegens p - abc. Dus (y1 + y2)(y1 − y2) = y21 − y22 = 0. Er geldt y1 + y2 6= 0, want
0 < y1 + y2 ≤ p − 1, dus y1 = y2. Het aantal elementen van S1 is dus p+1

2 , en met hetzelfde bewijs

geldt dat #S2 = #{−cy2 ∈ Z/pZ : 0 ≤ y ≤ p−1
2 } = p+1

2 . Dus #S1 + #S2 = p+ 1 > #Z/pZ. Dus S1
en S2 hebben een gemeenschappelijk element a + by2 = −cz2 met x, y ∈ Z/pZ. Er volgt dat (1, y, z)
een nulpunt is van f in (Z/pZ)3.

Er geldt ∂f
∂X (1, y, z) ≡ 2a 6≡ 0 (mod p), want p - 2a. Stelling 2.11 geeft dat f een nulpunt (x, y, z) ∈ Z3

p

heeft met x ≡ 1 mod p, dus f heeft een niet-triviaal nulpunt.

6



In het geval dat p een deler is van een van de coëfficiënten, zeg p | a, geldt f ≡ by2 + cz2 (mod p).
Neem aan dat p geen deler is van bc. In een geschikte uitbreiding van Z/pZ factoriseert f dan als
f = b(y +

√
− c

bz)(y −
√
− c

bz). In het bewijs van propositie 2.15 zullen we zien dat er in dit geval
alleen een niet-triviale oplossing in Z3

p bestaat als − c
b een kwadraat is in Z/pZ.

2.4 Lokaal-globaalprincipe

We beschouwen in dit hoofdstuk de kwadratische vorm f = aX2 + bY 2 + cZ2 ∈ Z[X,Y, Z], waarbij a,
b en c paarsgewijs copriem en kwadraatvrij (niet deelbaar door een kwadraat) zijn, en in het bijzonder
de kegelsnede over Q

f = aX2 + bY 2 + cZ2 = 0. (6)

Merk op dat voor een willekeurige kwadratische vorm g ∈ Z[X,Y, Z] de oplosbaarheid van de ver-
gelijking g = 0 equivalent is met de oplosbaarheid van een vergelijking die aan onze eisen voldoet,
door te schalen en te substitueren. Ook kegelsneden in Q[X,Y, Z] kunnen op deze manier worden
teruggebracht naar kegelsneden in Z[X,Y, Z].

Als (x, y, z) ∈ Q3
p \ Z3

p een oplossing van vergelijking (6) is en n = −min{vp(x), vp(y), vp(z)}, dan is
(pnx, pny, pnz) ∈ Z3

p ook een oplossing, dus we kunnen het probleem van het vinden van een oplossing
van f in Q3

p reduceren tot het vinden van een oplossing in Z3
p.

We bekijken nu een belangrijk resultaat van Helmut Hasse uit 1923, bekend als de stelling van Hasse-
Minkowski of het lokaal-globaalprincipe. De stelling zegt dat het bestaan van een niet-triviale oplossing
van f in een getallenlichaam K equivalent is met het bestaan van lokale oplossingen – het bestaan
van een niet-triviale oplossing in de vervollediging van K voor elke absolute waarde op K. Wegens de
stelling van Ostrowski betekent dit in het geval van K = Q dat f een niet-triviale oplossing in R3 en
alle p-adische lichamen Q3

p heeft.

De stelling van Hasse komt overeen met een resultaat van Minkowski uit 1890 dat vrij technisch is. Met
behulp van de door Hensel bedachte p-adische getallen kwam Hasse met een makkelijk hanteerbare
variant. In 1785 is een equivalente vorm van deze stelling al bewezen door Legendre. Zie Schwermer
[3] voor een historisch overzicht.

Stelling 2.13 (Hasse-Minkowski). Vergelijking (6) heeft een niet-triviale oplossing in Q3 als en slechts
als vergelijking (6) een niet-triviale oplossing heeft in R3 en Q3

p voor alle priemen p ∈ Z>0.

Stelling 2.14 (Legendre). Vergelijking (6) heeft een niet-triviale oplossing in Q3 als en slechts als
vergelijking (6) een niet-triviale oplossing heeft in R3 en de volgende congruenties oplosbaar zijn:

x2 ≡ −bc (mod |a|), x2 ≡ −ca (mod |b|), x2 ≡ −ab (mod |c|).

We bewijzen de stellingen niet, maar laten wel een gedeeltelijk bewijs zien van de equivalentie.

Propositie 2.15. De volgende uitspraken zijn equivalent:

1. Vergelijking (6) heeft een niet-triviaal nulpunt in Z3
p voor alle oneven priemen p ∈ Z>0.

2. De volgende congruenties zijn oplosbaar:

X2 ≡ −bc (mod |a|), X2 ≡ −ca (mod |b|), X2 ≡ −ab (mod |c|).

Bewijs. We beginnen met de implicatie 1 ⇒ 2. Kies voor alle oneven priemen p | a een niet-triviaal
nulpunt 0 6= (xp, yp, zp) ∈ Z3

p. We bewijzen dat −bc een kwadraat is in Z/pZ. Stel zonder verlies van
algemeenheid k = vp(zp) ≤ vp(yp). We maken als volgt een nieuwe oplossing (x′p, y

′
p, z
′
p) met p - z′p.

Omdat f(xp, yp, zp) ≡ ax2p ≡ 0 (mod p2k) geldt p2k | ax2p. Er geldt dat a kwadraatvrij is, dus pk is een
deler van xp. Nu geldt dat (

xp

pk
,
yp
pk
,
zp
pk

) een nulpunt van f is in Z3
p; stel zonder verlies van algemeenheid

dat k = 0.
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Er geldt f(xp, yp, zp) ≡ by2p + cz2p ≡ 0 (mod p) en z2p 6≡ 0 (mod p). We kunnen dus door z2p delen

en krijgen −bc ≡ b2y2p
z2p
≡
(
by
zp

)2
(mod p). Dus −bc is een kwadraat in Z/pZ. In Z/2Z is alles een

kwadraat. Er volgt dat −bc een kwadraat is in Z/p1Z× . . .×Z/pnZ, waarbij p1, . . . , pn de priemdelers
van a zijn. De Chinese reststelling geeft dat −bc een kwadraat is in Z/aZ. De andere twee congruenties
volgen uit de symmetrie van f .

Voor 2⇒ 1 hoeven we alleen de gevallen p | abc te bekijken, want voor p - abc heeft f wegens gevolg 2.12
altijd een nulpunt. Stel zonder verlies van algemeenheid p | a. Zij x ∈ Z zodat x2 ≡ −bc (mod p).
Dan geldt f(0, c, x) ≡ 0 (mod p) en ∂f

∂Y (0, c, x) ≡ 2bc 6≡ 0 (mod p). Stelling 2.11 (Hensel) geeft dat f
een nulpunt in Zp heeft.

De implicatie naar rechts van stelling 2.13 is triviaal, omdat Q in Qp en R bevat is. Propositie 2.15
bewijst dus ook de implicatie naar rechts van stelling 2.14. Zie Serre [4] voor de andere implicatie.
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3 Kegelsneden over functielichamen

3.1 Inleiding

Voor F een lichaam met karakteristiek ongelijk aan 2, een functielichaam K = F (t) en coëfficiënten
a, b, c ∈ K∗, beschouwen we de kegelsnede over F (t)

aX2 + bY 2 + cZ2 = 0. (1)

We willen weten wanneer deze vergelijking een niet-triviale oplossing heeft, en een oplossing vinden
als die bestaat.

We behandelen een variant van het lokaal-globaalprincipe voor kegelsneden over functielichamen. De
hoofdstelling (stelling 3.2) lijkt op stelling 2.14, en het bewijs (dat we nu wel laten zien) gaat op
een vergelijkbare manier. In plaats van de eis dat de kegelsnede een oplossing over R heeft eisen
we nu dat een andere kegelsnede, waarvan de coëfficiënten gelijk zijn aan de kopcoëfficiënten van de
oorspronkelijke kegelsnede, een oplossing heeft. In plaats van oplossingen over p-adische uitbreidingen
te bekijken, bekijken we nu oplossingen over “gewone” eindige lichaamsuitbreidingen van F . Het is
met behulp van de theorie van valuaties (zoals de p-adische valuatie in het vorige hoofdstuk) mogelijk
om inzicht te verkrijgen in de overeenkomsten tussen de situatie in dit hoofdstuk en die in het vorige
hoofdstuk, maar we gaan hier niet verder op in.

In de volgende paragraaf introduceren we het oplosbaarheidscertificaat en bewijzen we dat dit altijd
bestaat als vergelijking (1) een niet-triviale oplossing heeft. In paragraaf 3.3 bewijzen we de omgekeerde
implicatie, door een algoritme van Van Hoeij en Cremona [1] te presenteren dat op basis van een
oplosbaarheidscertificaat een oplossing geeft.

We laten nu zien dat elke kegelsnede als in vergelijking (1) is om te zetten naar een kegelsnede die
aan de volgende kenmerken voldoet, op zo’n manier dat (a) de nieuwe vergelijking een niet-triviaal
nulpunt heeft als en alleen als de oude dat heeft, en (b) we met een nulpunt van de nieuwe vergelijking
gemakkelijk een nulpunt van de oude vergelijking kunnen vinden.

1. a, b, c ∈ F [t].

2. gcd(a, b) = gcd(b, c) = gcd(c, a) = 1.

3. a, b, en c zijn kwadraatvrij: niet deelbaar door een kwadraat d2 met d ∈ F [t] en deg(d) > 0.

In de stellingen en het algoritme in dit hoofdstuk gaan we uit van coëfficiënten die aan deze eisen
voldoen. Het omzetten van een kegelsnede gaat als volgt. Voor eis 1: door te vermenigvuldigen met
de noemers zorgen we dat a, b, c ∈ F [t]; de nulpunten van (1) blijven dan onveranderd.

Voor eis 2, deel a, b en c door gcd(a, b, c). Zij g = gcd(a, b). Als deg(g) > 0, vervang a, b, c dan met
a/g, b/g, cg. Als (x, y, z) ∈ K3 nu een oplossing is van de nieuwe vergelijking, dan is (x, y, gz) een
oplossing van de oude vergelijking. Doe de analoge bewerking voor gcd(b, c) en gcd(c, a). Herhaal dit
totdat eis 2 geldt. Dit kan in een eindig aantal stappen, want in elke stap wordt de graad van abc
kleiner.

Voor eis 3: als a, b of c deelbaar is door een kwadraat d2, dan vervangen we a door a/d2. Als
(x, y, z) ∈ K3 een oplossing is van de nieuwe vergelijking, dan is (x/d2, y, z) een oplossing van de
oude vergelijking. Omdat aan eis 2 al voldaan is geldt nadat a, b en c kwadraatvrij zijn dat ook abc
kwadraatvrij is.

De bewijzen en algoritmes in dit hoofdstuk zijn gebaseerd op Van Hoeij en Cremona [1].
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3.2 Het oplosbaarheidscertificaat

We schrijven Sa voor de verzameling monische irreducibele elementen p ∈ F [t] die a delen. Schrijf
verder

Lp = F [t]/(p).

Laat fa, fb, fc ∈ F [t][u] de polynomen

fa = bu2 + c, fb = cu2 + a, fc = au2 + b

zijn. Voor f ∈ F [t][u] schrijven we (f mod p) ∈ Lp[u] voor het polynoom met coëfficiënten (van f)
modulo p.

Verder noteren we da, db, dc voor de graden van a, b, c en la, lb, lc voor de kopcoëfficiënten van a, b, c.

We presenteren eerst een vereenvoudigde versie van het algoritme van Van Hoeij en Cremona [1], met
het volgende gevalsonderscheid:

geval :=

{
0, als da ≡ db ≡ dc (mod 2)

1, anders.

Het gevalsonderscheid is niet noodzakelijk maar maakt het makkelijker om een oplossing te vinden
als geval = 1. Aan het eind van paragraaf 3.3 wijzigen we dit gevalsonderscheid zodat meer situaties
onder het algoritmisch makkelijke geval vallen, waarmee we het algoritme van Van Hoeij en Cremona
[1] krijgen.

Definitie 3.1. Een oplosbaarheidscertificaat van vergelijking (1) is een lijst met:

• Voor alle p ∈ Sa een nulpunt van (fa mod p) in Lp.

• Voor alle p ∈ Sb een nulpunt van (fb mod p) in Lp.

• Voor alle p ∈ Sc een nulpunt van (fc mod p) in Lp.

• Als geval = 0: een niet-triviale oplossing in F 3 of oplosbaarheidscertificaat van de vergelijking

lax
2 + lby

2 + lcz
2 = 0. (2)

Stelling 3.2. Vergelijking (1) heeft een niet-triviale oplossing als en alleen als er een oplosbaarheids-
certificaat bestaat.

Als geval = 0 moeten we een oplossing vinden van vergelijking (2), een kegelsnede over F in plaats van
F [t]. In het geval dat F weer een functielichaam is kunnen we ons algoritme opnieuw uitvoeren, en is
het algoritme dus recursief. Zoniet, dan zijn we aangewezen op andere algoritmes om een oplossing te
vinden. Voor F = Q bestaan er algoritmes die gebaseerd zijn op stelling 2.14. Als F = Fq kunnen we
een oplossing vinden door een eindig aantal mogelijkheden te proberen (maar er bestaat een algoritme
dat sneller is).

We bewijzen de implicatie naar rechts van stelling 3.2. Zie de volgende paragraaf voor de rest van het
bewijs.

Lemma 3.3. Als vergelijking (1) een niet-triviale oplossing (x, y, z) ∈ K3 heeft, dan heeft ver-
gelijking (2) een niet-triviale oplossing in F 3.

Bewijs. Zij (x, y, z) zo’n oplossing en d het maximum van de graden van ax2, by2 en cz2. Deze polyno-
men hebben ofwel alle dezelfde graad d, of twee hebben graad d en de derde een strikt kleinere graad.
In het eerste geval vormen de kopcoëfficiënten van x, y, z een oplossing van vergelijking (2). In het
tweede geval, stel zonder verlies van algemeenheid dat deg(ax2) < d. Dan is (0, ly, lz) een oplossing
van vergelijking (2), waarbij ly en lz de kopcoëfficiënten van y en z zijn.
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Lemma 3.4. Stel dat vergelijking (1) een niet-triviale oplossing (x, y, z) ∈ K3 heeft. Dan bestaat er
een oplosbaarheidscertificaat.

Bewijs. Door de oplossing te schalen kunnen we aannemen dat x, y, z ∈ F [t] en gcd(x, y, z) = 1 geldt.
Zij p ∈ Sa. Er geldt nu 0 = ax2 + by2 + cz2 ≡ by2 + cz2 (mod p). Noteer ȳ = (y mod p) ∈ Lp. Omdat
b en c niet deelbaar zijn door p, zijn ȳ en z̄ beide 0 of beide ongelijk aan 0. Als ze allebei 0 zijn, dan
geldt p2 | by2 + cz2 = −ax2. Omdat a kwadraatvrij is geldt dan p | x, maar dat is in tegenspraak met
gcd(x, y, z) = 1. Dus ȳ en z̄ zijn ongelijk aan 0, en ȳ/z̄ is een oplossing van fa mod p. Op dezelfde
manier vinden we nulpunten van fb en fc modulo de priemdelers van b respectievelijk c. Als geval = 0,
dan is de vierde benodigdheid bewezen door lemma 3.3. Er volgt dat er een oplosbaarheidscertificaat
bestaat.

3.3 Nulpunt vinden

We bewijzen stelling 3.2 door een algoritme te presenteren dat gegeven een oplosbaarheidscertificaat
een oplossing van vergelijking (1) geeft. Dit bewijst tevens dat we van een willekeurige kegelsnede over
F (t) de oplosbaarheid kunnen bepalen en de oplossing kunnen vinden, als we het volgende kunnen:

• factoriseren in F [t];

• van elementen in Lp bepalen of het kwadraten zijn en zo ja, een wortel trekken;

• van kegelsneden over F bepalen of ze een oplossing hebbben en zo ja, een oplossing vinden.

Algoritme VindPunt
Invoer: a, b, c ∈ K∗ die voldoen aan de eisen 1, 2 en 3 uit de inleiding, en een oplosbaarheidscertificaat.
Uitvoer: Een niet-triviale oplossing (x, y, z) ∈ K van vergelijking (1).

1. Laat da, db, dc de graden van a, b, c zijn.

2. Laat Sa,Sb,Sc de verzamelingen met dezelfde naam uit het oplosbaarheidscertificaat zijn.

3. Als da ≡ db ≡ dc (mod 2), laat geval = 0, en anders geval = 1.

4. Als geval = 0, laat la, lb, lc ∈ F de kopcoëfficiënten van a, b, c zijn, en laat (lx, ly, lz) de oplossing
van vergelijking (2) zijn, afkomstig uit het oplosbaarheidscertificaat.

5. Laat A =

⌈
db + dc

2

⌉
− geval, B =

⌈
dc + da

2

⌉
− geval, C =

⌈
da + db

2

⌉
− geval.

6. Zij V = {(x, y, z) ∈ F [t]3 : deg(x) ≤ A, deg(y) ≤ B, deg(z) ≤ C}. Dit is een vectorruimte over
F van dimensie A + B + C + 3. Voor p ∈ Sa ∪ Sb ∪ Sc =: S, zij α een nulpunt van fa mod p,
fb mod p respectievelijk fc mod p. Zij φp : V −→ Lp gegeven door

(x, y, z) 7−→


y − αz mod p, als p ∈ Sa,
z − αx mod p, als p ∈ Sb,
x− αy mod p, als p ∈ Sc.

Zij verder, voor geval 0, L∞ = F 3 en definieer φ∞ : V ⊕ F → F 3 door

φ∞(x, y, z, w) = (xA − lxw, yB − lyw, zC − lzw),

waarbij xA, yB en zC de A’de, B’de respectievelijk C’de coëfficiënt van x, y en z zijn. Laatφ : V −→
(⊕

p∈S Lp

)
, (x, y, z) 7−→ (φp(x, y, z))p∈S , als geval = 1,

φ : V ⊕ F −→
(⊕

p∈S∪{∞} Lp

)
, (x, y, z, w) 7−→ (φp(x, y, z, w))p∈S∪{∞}, als geval = 0.

11



Dit zijn lineaire afbeeldingen, want Lp is een vectorruimte van dimensie deg(p) en de quotiënt-
afbeelding F [t]→ Lp is lineair.

7. Bereken de kern van φ en kies een niet-triviaal element.

Bewijs van de correctheid van Algoritme VindPunt. We bewijzen dat het algoritme met een geldige
invoer altijd een oplossing geeft. We laten eerst zien dat een element uit de kern van φ inderdaad een
nulpunt is van f = aX2 + bY 2 +cZ2, door een bovengrens te vinden voor de graad en te laten zien dat
f geëvalueerd in dat nulpunt deelbaar is door een polynoom van hogere graad. Vervolgens laten we
zien dat kerφ 6= 0, omdat de dimensie van het domein van φ in alle gevallen groter is dan de dimensie
van het codomein.

Voor p ∈ Sa, α een nulpunt van fa mod p, en een element (x, y, z) ∈ kerφ geldt y ≡ αz (mod p),
dus f(x, y, z) ≡ ax2 + (bα2 + c)z2 ≡ 0 (mod p). Op dezelfde manier is f(x, y, z) deelbaar door alle
p ∈ Sa ∪ Sb ∪ Sc, en omdat abc kwadraatvrij is, is f deelbaar door s :=

∏
(Sa ∪ Sb ∪ Sc) = abc.

Zij D = deg(abc). Stel eerst geval = 1, en stel zonder verlies van algemeenheid dat db ≡ dc (mod 2).
Dan geldt

deg(f(x, y, z)) ≤ max{da + 2A, db + 2B, dc + 2C}
= max{da + db + dc − 2, da + db + dc − 1, da + db + dc − 1}
= D − 1,

maar f(x, y, z) is deelbaar door een polynoom van graad deg(s) = D, dus f(x, y, z) = 0. Als geval = 0,
dan geldt deg(f(x, y, z)) ≤ D = da + 2A = db + 2B = dc + 2C. De coëfficiënt van tD is wegens
φ∞(x, y, z, w) = 0 en vergelijking (2) gelijk aan w2(lal

2
x + lbl

2
y + lcl

2
c ) = 0, dus deg(f(x, y, z)) ≤ D − 1.

Ook in dit geval is f(x, y, z) deelbaar door een polynoom van hogere graad, dus f(x, y, z) = 0.

We moeten nu nog laten zien dat het de dimensie van het domein van φ groter is dan de dimensie
van het codomein. Als geval = 0, dan geldt A + B + C = D en de dimensie van het domein is
A + B + C + 3 + 1 = D + 4. Voor p ∈ Sa ∪ Sb ∪ Sc van graad d heeft Lp dimensie d en F 3 heeft
dimensie 3, dus de dimensie van het codomein is D + 3. Als geval = 1 geldt A+B + C = D − 2. De
dimensie van het domein is A+B + C + 3 = D + 1 en de dimensie van het codomein is D.

Er volgt dat kerφ 6= 0. In geval 0 is verder nodig dat kerφ 6= {0} ⊕ F , en dit is duidelijk omdat
φ∞(0, 0, 0, 1) 6= 0. We concluderen dat het algoritme in alle gevallen een niet-triviale oplossing van
vergelijking (1) vindt.

Bewijs van stelling 3.2. De implicatie naar rechts is bewezen met lemma 3.4, en de andere implicatie
met het bewijs van Algoritme VindPunt.

Het blijkt dat er meerdere situaties zijn waarin we het simpelere geval kunnen toepassen, dat wil
zeggen, waarin we vergelijking (2) niet hoeven op te lossen. Om het algoritme te verbeteren wijzigen
we het gevalsonderscheid als volgt, waarmee we het algoritme van Van Hoeij en Cremona [1] krijgen.

geval :=

{
0, als da ≡ db ≡ dc (mod 2) en abc heeft geen nulpunt in F ;

1, anders.

Als abc een nulpunt in F heeft en da ≡ db ≡ dc (mod 2), dan verwijderen we voor het uitvoeren van
het algoritme één element van graad 1 uit Sa,Sb of Sc in het oplosbaarheidscertificaat.

We volgen de notatie van bewijs van Algoritme VindPunt en laten zien dat het algoritme nog steeds
een oplossing geeft. Er geldt nu deg(s) = D − 1, maar voor een element (x, y, z) ∈ kerφ geldt
deg(f(x, y, z)) ≤ D− 2. Om te laten zien dat kerφ 6= 0: er geldt nu A+B+C = D− 3. De dimensie
van het domein is deg(S) + dimF (F ) = D − 1 + 1 = D en de dimensie van het codomein is D − 1.

Laat Algoritme VindPunt* het Algoritme VindPunt zijn waarbij we in de laatste stap uit een basis
van kerφ ⊂ V ⊕ F een maximale verzameling linear onafhankelijke oplossingen in V als uitvoer
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geven, in plaats van een enkele oplossing. De volgende propositie laat zien dat we alle oplossingen
tot een bepaalde graad kunnen vinden als we Algoritme VindPunt* uitvoeren voor alle mogelijke
oplosbaarheidscertificaten.

Propositie 3.5. Zij (x, y, z) ∈ F (t) een niet-triviale oplossing van vergelijking (1) zodat deg(x) ≤ A,
deg(y) ≤ B en deg(z) ≤ C, met A,B,C zoals in Algoritme VindPunt. Dan bestaat er een oplos-
baarheidscertificaat waarvoor (x, y, z) een lineaire combinatie is van oplossingen in de uitvoer van
Algoritme VindPunt*.

Bewijs. Zij (x, y, z) ∈ F (t) een niet-triviale oplossing van vergelijking (1) zodat deg(x) ≤ A, deg(y) ≤
B en deg(z) ≤ C. De bewijzen van lemma 3.3 en lemma 3.4 geven een methode om een oplosbaar-
heidscertificaat te vinden, met nulpunten (yz mod p) ∈ Lp van fa mod p voor alle p ∈ Sa, vergelijk-
bare nulpunten voor Sb en Sc. Zie het bewijs van lemma 3.3 voor de constructie van een oplossing
(lx, ly, lz) ∈ F van vergelijking (2), als geval = 0. We laten zien dat (x, y, z) ∈ kerφ, met φ zoals
in Algoritme VindPunt en als invoer het bovengenoemde oplosbaarheidscertificaat, en dit bewijst de
propositie.

Voor p ∈ Sa en φp als in Algoritme VindPunt geldt φp(x, y, z) = (y − y
z · z mod p) = 0, dus geldt

(x, y, z) ∈ kerφp voor alle p ∈ Sa ∪ Sb ∪ Sc. Dus als geval = 1 geldt (x, y, z) ∈ kerφ. Als geval = 0
moeten we nog bewijzen dat (x, y, z, w) ∈ kerφ∞ voor een w ∈ F . Stel eerst deg(x) < A, deg(y) < B
en deg(z) < C. Dan geldt φ∞(x, y, z, 0) = (0, 0, 0). Stel nu dat een van de graden van x, y, z maximaal
is (van graad A, B respectievelijk C), en stel zonder verlies van algemeenheid deg(x) = A.

Zij d het maximum van de graden van ax2, by2 en cz2, zoals in lemma 3.3. Stel dat deze polynomen alle
dezelfde graad hebben. Uit deg(ax2) = deg(by2) volgt da+db+dc = db+2·deg(y), dus deg(y) = B. Met
hetzelfde argument volgt deg(z) = C, dus φ∞(x, y, z, 1) = (0, 0, 0). Stel nu dat een van de polynomen
strikt lagere graad heeft. Er geldt deg(ax2) = da+db+dc is groter gelijk aan deg(by2) en deg(cz2), dus
stel zonder verlies van algemeenheid deg(by2) < d. Nu geldt deg(ax2) = deg(cz2), dus deg(z) = C.
Verder geldt ly = 0 (zie het bewijs van lemma 3.3). Er volgt dat φ∞(x, y, z, 1) = (0, 0, 0).
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4 Implementatie en voorbeelden

Het algoritme zoals in deze scriptie beschreven (inclusief de verbetering aan het eind van paragraaf 3.3)
is door de auteur gëımlementeerd in SageMath. Het algoritme zal in de standaardfunctionaliteit
van SageMath worden opgenomen, en is reeds beschikbaar voor ontwikkelaars op http://trac.
sagemath.org/ticket/6881. Van Hoeij en Cremona [1] hebben een implementatie geschreven
voor Maple en Magma.

De implementatie kan gebruikt worden om kegelsneden over Q(t) op te lossen:

sage: K.<t> = FractionField(PolynomialRing(QQ, 't'))
sage: C = Conic(K, [tˆ2-2, 2*tˆ3, -2*tˆ3-13*tˆ2-2*t+18])
sage: C.has_rational_point(point=True)
(True, (-3 : (t + 1)/t : 1))

Het is ook mogelijk om kegelsneden over polynoomringen over eindige lichamen en eindige lichaams-
uitbreidingen van Q op te lossen:

sage: R.<t> = FiniteField(23)[]
sage: C = Conic([2, tˆ2+1, tˆ2+5])
sage: C.has_rational_point(point = True)
(True, (5*t : 8 : 1))
sage: F.<i> = QuadraticField(-1)
sage: R.<t> = F[]
sage: C = Conic([1, i*t, -tˆ2+4])
sage: C.has_rational_point(point = True)
...
(True, (-t - 2*i : -2*i : 1))

Het is nog niet mogelijk om kegelsneden over F (t) op te lossen waarbij F weer een functielichaam is,
omdat SageMath geen wortels kan trekken in eindige uitbreidingen van functielichamen.

Het is ook mogelijk om direct Algoritme VindPunt uit te voeren, met behulp van de functie
find point(supports, roots, case, solution). Dit is handig omdat verschillende oplos-
baarheidscertificaten verschillende punten kunnen geven, en we wegens propositie 3.5 alle oplossingen
tot een bepaalde graad kunnen vinden door alle oplosbaarheidscertificaten te proberen. Zie het vol-
gende voorbeeld:

sage: K.<t> = PolynomialRing(QQ, 't')
sage: C = Conic(K, [tˆ2-2, 2*t, -2*tˆ3-13*tˆ2-2*t+18])
sage: supp = [[tˆ2 - 2], [t], [tˆ3 + 13/2*tˆ2 + t - 9]]
sage: tbar1 = QQ.extension(supp[0][0], 'tbar').gens()[0]
sage: tbar2 = QQ.extension(supp[1][0], 'tbar').gens()[0]
sage: tbar3 = QQ.extension(supp[2][0], 'tbar').gens()[0]
sage: roots = [[tbar1 + 1], [1/3*tbar2ˆ0], [2/3*tbar3ˆ2 + 11/3*tbar3 - 3]]
sage: C.find_point(supp, roots, 1)
(3 : t + 1 : 1)
sage: roots = [[-tbar1 - 1], [-1/3*tbar2ˆ0], [-2/3*tbar3ˆ2 - 11/3*tbar3 + 3]]
sage: C.find_point(supp, roots, 1)
(3 : -t - 1 : 1)
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