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1 Inleiding

Zij K een lichaam. Een kegelsnede over K is de nulpuntenverzameling in P?(K) van een kwadratische
vorm f € K[X,Y, Z] ongelijk aan 0. We kijken in deze scriptie naar de diagonaalvorm in drie variabelen
f=aX?+bY?+cZ% met a,b,c € K, en beschouwen de lichamen K = Q, K = F(t) voor een lichaam
F' en het lichaam van p-adische getallen K = Q,,.

Centraal in de scriptie staan lokaal-globaalprincipes, stellingen die de oplosbaarheid van een kwadra-
tische vorm reduceren tot de oplosbaarheid van die vorm modulo (machten van) priemidealen. We
zijn geinteresseerd in nulpunten van f in P?(K). We willen bepalen of er een niet-triviale (ongelijk
aan 0) oplossing bestaat, en zo ja, die oplossingen vinden.

In hoofdstuk 2 introduceren we de p-adische getallen, om het lokaal-globaalprincipe voor kegelsneden
over Q te kunnen behandelen. In hoofdstuk 3 behandelen we het lokaal-globaalprincipe voor kegel-
sneden over rationale functielichamen en presenteren we een algoritme om dit soort kegelsneden op te
lossen. Het algoritme is door de auteur van deze scriptie geimplementeerd in SageMath (zie hoofdstuk
4), en kent al implementaties in Maple en Magma van Van Hoeij en Cremona .



2 Kegelsneden over p-adische getallen

2.1 Inleiding

In 1897 bedacht Kurt Hensel de p-adische getallen, met als doel de technieken van machtreeksen naar
de getaltheorie te brengen. Een p-adisch geheel getal, voor een zeker priemgetal p, definieerde hij als
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met a; € Z zodat 0 < a; < p. Het bleek dat de verzameling van deze “getallen” een ring vormde.

een formele som

Het nut van Hensels getallen werd pas echt duidelijk toen Helmut Hasse in 1923 het door Minkowski
bedachte lokaal-globaalprincipe in p-adische getallen formuleerde, waardoor de theorie aanzienlijk
overzichtelijker werd. Zie Schwermer [3] voor een historisch overzicht.

In dit hoofdstuk bewijzen we een aantal belangrijke stellingen over p-adische getallen, en sluiten af
met twee formuleringen van het lokaal-globaalprincipe voor kegelsneden over Q.

2.2 p-adische getallen

Definitie 2.1. Zij I een partieel geordende verzameling en (A;);cr een familie ringen. Laat
fij + A; = A; homomorfismen zijn voor alle ¢ < j € I zodat

fi,i = idAia (1)
Jix = fijo fik voor alle ¢ < j < k. (2)

Dan is de inverse limiet van het inverse systeem ((4;)icr, (fij)i<jer) de verzameling

%iL?Ai ={de HAi :a; = fij(a;) voor alle i < j € I}.
€ i€l

=

Ter verduidelijking van de definitie kunnen we een invers systeem met I = Zx als volgt noteren:

A0£A1£A2<—...

De inverse limiet is met coéfficiéntsgewijze optelling en vermenigvuldiging een deelring van de pro-
ductring [[;c; Ai: omdat f; ; homomorfismen zijn, is de inverse limiet gesloten onder optelling en
vermenigvuldiging, en zitten de eenheidselementen voor de optelling en vermenigvuldiging in de in-
verse limiet. Als z € P%IAZ‘, dan geldt —x € LL?AZ

1€ 1€

Definitie 2.2. De ring van p-adische getallen is

Z, = lim (Z/p"D),

TLGZEO
waarbij f;; (als in definitie het natuurlijke homomorfisme van Z/p’Z naar Z/p'Z is.

Propositie 2.3. Een element x € Zj, is deelbaar door p" als en slechts als x,, = 0.

Bewigs. Als x deelbaar is door p", dan geldt vanzelfsprekend z, = 0 € Z/p"Z. Voor de andere
implicatie, stel z,, = 0. Dan geldt x; = 0 voor alle ¢ < n. Stel nu dat x; niet deelbaar is door p™ voor
een zekere i > n. Dan is z, = x; (mod p™) niet 0; tegenspraak, dus x; is deelbaar door p™ voor alle
i > 0. Zij nu oy € Z voor alle i > 0 zodat p"a; = x4, (mod pi™™), en zij z := (a; mod p) € Z/p'Z.
Dan geldt p"z; = z; € Z/p'Z. Dus 2’ := (2})iecz-, is de gezochte deler als 2’ € Z,. Voor 0 < j <
geldt paj = Ty = Tipn = pay (mod P!, dus al = = = x; (mod p?). Er volgt dat 2’ € Z,,
dus z is deelbaar door p”. O



We verkrijgen een isomorfisme Z,/p"Z, — Z/p"Z gedefiniéerd door x + p"Z, — x,. We schrijven
daarom x, = (z mod p") voor de n’de codrdinaat van x € Z,,.

Er is een inclusie Z C Z, door z € Z te identificeren met z,, = (¢ mod p"). Bijvoorbeeld: —2 € Z is
(—2,-2,...)=(0,1,7,25,...) € Zs.

Propositie 2.4. Er geldt:
(a) Een element x € Zj is een eenheid als en slechts als x niet deelbaar door p is.

(b) Elke x € Z, met x # 0 kan uniek geschreven worden als x = p™u, met u € Z; en n € Zxo.

Bewijs. Zij x € Zjy niet deelbaar door p. Dan is x,, niet deel baar door p, dus geldt ged(zy,, p"™) = 1, dus
z,, heeft een inverse z,! € Z/p"Z. Omdat inversen uniek zijn geldt a:r_lil = 7, mod p"~!. Wegens
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de coéfliciéntsgewijze operaties op Z, volgt dat (z ,ml_l, ...) € Zy de inverse van z is.

Voor de andere implicatie: als p een deler van z is, dan geldt 1 = 0 € Z/pZ, en dus is x; niet
inverteerbaar. Er volgt dat z niet inverteerbaar is.

Voor (b), zij n € Z>¢ zodat x, = 0 en z,41 # 0. Dan is « deelbaar door p" en niet door hogere
machten van p, dus zij u € Z, zodat x = p"u. Dan is u niet deelbaar door p, en wegens (a) is u een
eenheid. Schrijven we = p™v met m < n en v € Z,, dan is v deelbaar door p, dus wegens (a) geen
eenheid. Als voor v € Zy, geldt dat p"u = p"v, dan geldt voor alle ¢ > 0 dat p"u = p"v (mod p**t"™),
dus u = v (mod p*). Er volgt dat de schrijfwijze x = p"u met u € Z en n € Zx( uniek is. O

Zij z,y € Zp \ {0}. Dan geldt voor zekere u,v € Z;, m,n € Z dat zy = p" ™My, en vervolgens dat
p"TMuw 2 0 (mod p" ™), want uv is niet deelbaar door p. Er volgt zy # 0, dus Z,, is een domein.

Definitie 2.5. Schrijf z € Z, \ {0} als # = p"u voor een zekere u € Z; en n € Z>o. Dan heet het
getal n de p-adische valuatie van x, genoteerd als v,(x). We spreken af dat v,(0) = oo.

Er geldt vy(zy) = vp(x) + vp(y) en vp(x + y) > min(vy(x), vp(y)).

Definitie 2.6. De p-adische absolute waarde is gedefinieerd als |z|, = p~ @) en de p-adische afstand
als dp(z,y) = | — y|p. We spreken af dat |0[, = 0.

Voor het gemak noteren we |-| zonder index p als uit de context duidelijk is in welke p-adische ring
we zitten. Voor z,y,z € Zy geldt |z —z| =0, [z —y| =ly—2z|, [z — 2| =|[(x —y) + (y — 2)| <
max{|z —y|,ly — 2|} < |z —y|+ |y — 2| en |z| = 0 impliceert x = 0. Dus Z, is een metrische ruimte.

Definitie 2.7. Het lichaam Q, van p-adische getallen is het quotiéntenlichaam van Z,,.

Een element = € Q) is te schrijven als x = p"u met u € Z, en n € Z. De p-adische valuatie op Q) is
op dezelfde manier gedefinieerd als op Zy: v,(x) :=n.

De p-adische absolute waarde is natuurlijk ook gedefinieerd op Z C Z, en Q C Q,. In het algemeen
definiéren we een absolute waarde op Q als een multiplicatieve functie |-| : Q@ — R>¢ waarvoor de
de afstandsfunctie d(z,y) = |x — y| een metriek op Q is. Alexander Ostrowski bewees in 1916 dat
alle absolute waardes op QQ equivalent zijn aan een p-adische absolute waarde, de Euclidische absolute
waarde of de triviale absolute waarde (gedefinieerd door |z| = 0 als = 0 en |z| = 1 als x # 0).
Hierbij betekent equivalent dat de verzamelingen Cauchy-rijtjes voor beide metrieken dezelfde zijn.
Zie Koblitz |2, p. 3] voor een bewijs.

Een gebruikelijke constructie van de p-adische getallen wordt verkregen door Z, en Q, te definiéren als
de topologische vervollediging van (Z, |-|,) respectievelijk (Q, |-|,). Wegens de stelling van Ostrowski
zijn R en de p-adische lichamen Q, alle mogelijke vervolledigingen van Q. De constructie van de
p-adische getallen als vervollediging laten we niet zien, maar we laten wel zien dat Z, volgens onze
definitie inderdaad een volledige metrische ruimte is.



Propositie 2.8. De ring Z, met de metriek van de p-adische absolute waarde is een volledige metrische
rurmie.

Bewijs. We bewijzen dat iedere Cauchyrij in Z, een limiet heeft. Zij (2, )nez., een Cauchyrij in Z,.
Let op: een p-adisch element z,, in het rijtje is 66k een rijtje, met termen in quotiéntringen van Z.
De Cauchy-eigenschap impliceert dat er voor alle k € N een N € N is zodat voor alle n > N geldt
dat v,(xy, — zN,) > k, ofwel dat (z,, mod p') = (zn, mod p') voor alle i < k. We definiéren de limiet
y € Zy door

yr = (2, mod p¥) voor k > 0.

Dat wil zeggen, de k’de term van de limiet y is gelijk aan de k’de term van de Np’de term uit
de Cauchyrij. Wegens het voorafgaande geldt voor alle i,k € N met i < k dat y; = (zn, mod
p') = (zn, mod p') = (yx mod p'), dus y zit in Z,. Voor k € N willekeurig groot en n > Ny, geldt
vp(y — xy) > k, dus y is de limiet. O

We kunnen p-adische getallen opschrijven als Cauchyreeksen. Neem bijvoorbeeld y =142 -3+ 2-
324233 4+...€Z3 BErgeldt 2-3+...+2-3"= -3 (mod 3"*!), dus de limiet is y = —2.

2.3 Lemma van Hensel

Het Lemma van Hensel is een belangrijke stelling in de theorie van p-adische getallen, die ons in staat
stelt nulpunten te vinden van p-adische polynomen. In deze paragraaf bewijzen we het Lemma van
Hensel en passen we het toe op een klasse van kegelsneden.

Propositie 2.9 (Taylor voor p-adische polynomen). Laat f € Z,[X], z,y,z € Z, en n € ZL>o zijn
zodat y = x + p"z. Dan is er een a € Zy zodat

fy) = f(@) +p"2f'(x) + p™a.

Bewigs. De term van graad i € Z>¢ van f met coéfficiént a; € Zj, geévalueerd in y, is gelijk aan
[fli(y) = ai(z +p"2)" = aiz’ +ia’'p"z + ... + agp™ 2’ 3)
= [fli(@) +p"[flia(@)z + ... + aip™2". (4)
Vanaf de derde term van vergelijking bevat elke term een factor p?”, dus de gezochte a bestaat. [

De volgende bewijzen zijn gebaseerd op Serre [4].

Lemma 2.10. Laat f € Z,[X] en x € Zyp, n,k € Z>o zign zodat f(x) =0 (mod p") en k = vy(f'(x)),
en stel 0 < 2k <n. Dan is er een y € 7, zodat

fly) =0 (mod p2n_2k), vp(f'(y)) =k en y==z (mod p”_k).

Bewijs. We schrijven y = 2+ p" ¥z en zoeken z € Z,, zodat de andere congruentie en gelijkheid gelden.

Propositie (Taylor) geeft voor een zekere a € Z,,

fy) = f(@) +p" 2 f (z) + p*Fa. (5)

Wegens de aanname f(z) = 0 (mod p") geldt f(z) = p™b met b € Z,, en wegens de definitie k =
v (f!(7)) geldt f'(x) = pFec met c € Z;. We kunnen vergelijking nu herschrijven naar

fly) =p" (b + zc) +p*" " a.

Als we z zo kiezen dat
b+zc=0 (mod PRy,



dan geldt f(y) =0 (mod p?>"~2F). Taylor toepassen op f’(y) geeft
F'y) = f'(@) +p" F2f" (@) +p*%a = f/(z) = pfe (mod p"F).

Er geldt n — k > k, dus we hebben v,(f'(y)) = k. O

Het bewijs van lemma geeft een methode om gegeven een oplossing in Z/pZ een oplossing in de
p-adische getallen te vinden. Dit noemen we Henselverheffing (Engels: Hensel lifting). De methode is
analoog aan de methode van Newton voor het vinden van nulpunten in de reéle getallen: de berekening
van z komt neer op z = — Jf/((%. Een iteratie komt steeds dichter bij een nulpunt te liggen volgens de

p-adische metriek. De volgende stelling van Hensel geeft aan wanneer het proces convergeert.

Stelling 2.11 (Lemma van Hensel). Zij f € Z,[X1,..., Xu], x € (Zp)™, n, k, j € Z zodat 1 < j <m
en k = vp(aa—){j(:v)). Stel dat

0<2k<n en f(z)=0 (modp").

Dan is er eeny € (Zp)™ met f(y) =0 en y = (mod p"~*).

Bewijs. We bewijzen de stelling door een Cauchyrij te maken waarbij opeenvolgende elementen worden
verkregen door lemma toe te passen. Stel eerst m = 1. Door lemma toe te passen op
xo 1= x € Zy krijgen we x1 € Zj, zodat opnieuw aan de voorwaarden voldaan wordt:

zi=ag (modp"*), flz1)=0 (modp"™™) en wy(f(z1)) = k.

In het algemeen geldt dat als z,, € Z, voldoet aan de voorwaarden, dat z,41 verkregen met lemma
voldoet aan de voorwaarden. We construeren op deze manier een rijtje (wq)qEZZo met

Tg+1 =2¢ (mod ptaTh, f(zg) =0 (mod p"*1).

Dit is een Cauchy-rijtje, want voor ¢,r € Z met ¢ < r geldt |z, —z,| < pF~"4. Voor de limiet y geldt
f(y) =0 mod p" voor alle n € N, dus f(y) =0, en y = 2 (mod p"~*).

Voor m > 1, noteer x = (x;) € (Zy)™ en zij f* € Zy[X;] het polynoom verkregen door X; voor alle
i # j te vervangen door x;. Nu kan het geval m = 1 worden toegepast op f* en z;. (Dit geeft dat er
een y; = z; (mod p" %) is zodat f*(y;) = 0.) Nemen we y; = z; voor i # j, dan volgt dat y = (y;) de
gewenste oplossing is. O

Het Lemma van Hensel maakt het mogelijk om het bestaan van nulpunten van p-adische polynomen
te bepalen zonder die te berekenen. Dit is onder andere nuttig omdat er — zoals we in het volgende
hoofdstuk zullen zien — een relatie bestaat tussen het bestaan van p-adische oplossingen en het bestaan
van oplossingen in Z en Q. Het volgende gevolg maakt het Lemma van Hensel makkelijk toepasbaar
op het onderwerp van deze scriptie.

Gevolg 2.12. Zij f = aX? +bY? +cZ%? € Z|X,Y, Z] en p € Z een oneven priem zodat p { abc. Dan
heeft f een niet-triviaal nulpunt in Z;’).

Bewijs. We bewijzen eerst dat f een niet-triviaal nulpunt heeft in (Z/pZ)> en gebruiken vervolgens
het Lemma van Hensel. Zij S1 = {a +by?> € Z/pZ : 0 < y < %} Laat y1,y2 € Z/pZ, zodat y,
en yo niet beide 0 zijn en 0 < y1,y2 < % geldt. Stel a + by? = a + by2. Dan geldt y? = y3, want
b # 0 (mod p) wegens p { abe. Dus (y1 + y2)(y1 — y2) = ¥2 — y3 = 0. Er geldt y; + y2 # 0, want
0 <y +ys <p-—1,dus y; = yo. Het aantal elementen van Sy is dus %, en met hetzelfde bewijs
geldt dat #Sy = #{—cy? € Z/pZ : 0 < y < %} = %. Dus #S1 + #S2 =p+ 1 > #Z/pZ. Dus S;
en S hebben een gemeenschappelijk element a + by? = —cz? met x,y € Z/pZ. Er volgt dat (1,v, 2)
een nulpunt is van f in (Z/pZ)3.

Er geldt g—g;(l, y,2) =2a %0 (mod p), want p t 2a. Stelling geeft dat f een nulpunt (z,y, z) € Zg
heeft met x = 1 mod p, dus f heeft een niet-triviaal nulpunt. O



In het geval dat p een deler is van een van de coéfficiénten, zeg p | a, geldt f = by? + cz? (mod p).
Neem aan dat p geen deler is van be. In een geschikte uitbreiding van Z/pZ factoriseert f dan als
f=bly+/—52)(y—+/—52) In het bewijs van propositie zullen we zien dat er in dit geval
alleen een niet-triviale oplossing in Z;’, bestaat als —7 een kwadraat is in Z/pZ.

2.4 Lokaal-globaalprincipe

We beschouwen in dit hoofdstuk de kwadratische vorm f = aX?+bY? + cZ? € Z[X,Y, Z], waarbij a,
b en ¢ paarsgewijs copriem en kwadraatvrij (niet deelbaar door een kwadraat) zijn, en in het bijzonder

de kegelsnede over Q
f=aX?4+bY?+cZ2%=0. (6)

Merk op dat voor een willekeurige kwadratische vorm g € Z[X,Y, Z] de oplosbaarheid van de ver-
gelijking g = 0 equivalent is met de oplosbaarheid van een vergelijking die aan onze eisen voldoet,
door te schalen en te substitueren. Ook kegelsneden in Q[X,Y, Z] kunnen op deze manier worden
teruggebracht naar kegelsneden in Z[X,Y, Z].

Als (z,y,2) € Q3 \ Z3 een oplossing van vergelijking @ is en n = —min{v,(x),v,(y),vp(2)}, dan is
(p"x,p"y,p"z) € Z;’, ook een oplossing, dus we kunnen het probleem van het vinden van een oplossing
van f in QI?; reduceren tot het vinden van een oplossing in Zf;.

We bekijken nu een belangrijk resultaat van Helmut Hasse uit 1923, bekend als de stelling van Hasse-
Minkowski of het lokaal-globaalprincipe. De stelling zegt dat het bestaan van een niet-triviale oplossing
van f in een getallenlichaam K equivalent is met het bestaan van lokale oplossingen — het bestaan
van een niet-triviale oplossing in de vervollediging van K voor elke absolute waarde op K. Wegens de
stelling van Ostrowski betekent dit in het geval van K = Q dat f een niet-triviale oplossing in R? en
alle p-adische lichamen Qg heeft.

De stelling van Hasse komt overeen met een resultaat van Minkowski uit 1890 dat vrij technisch is. Met
behulp van de door Hensel bedachte p-adische getallen kwam Hasse met een makkelijk hanteerbare
variant. In 1785 is een equivalente vorm van deze stelling al bewezen door Legendre. Zie Schwermer
[3] voor een historisch overzicht.

Stelling 2.13 (Hasse-Minkowski). Vergelijking @ heeft een niet-triviale oplossing in Q3 als en slechts
als vergeligking @) een niet-triviale oplossing heeft in R en Qg voor alle priemen p € Z~g.

Stelling 2.14 (Legendre). Vergelijking @ heeft een niet-triviale oplossing in Q3 als en slechts als
vergeliyjking @ een niet-triviale oplossing heeft in R3 en de volgende congruenties oplosbaar zijn:

P=—bc (modla), #*=-ca (mod o), 2>=—ab (mod ).

We bewijzen de stellingen niet, maar laten wel een gedeeltelijk bewijs zien van de equivalentie.
Propositie 2.15. De volgende uitspraken zijn equivalent:
1. Vergelygking @ heeft een niet-triviaal nulpunt in Zz?; voor alle oneven priemen p € Z~g.

2. De volgende congruenties zijn oplosbaar:
X?=—bc (mod |a]), X? = —ca (mod|b]), X*=—ab (mod |c|).

Bewijs. We beginnen met de implicatie 1 = 2. Kies voor alle oneven priemen p | a een niet-triviaal

nulpunt 0 # (z, Yp, 2p) € Zg. We bewijzen dat —bc een kwadraat is in Z/pZ. Stel zonder verlies van
algemeenheid k = v,(z,) < vp(yp). We maken als volgt een nieuwe oplossing (1}, 4y, 2,) met p { z,,.
Omdat f(zp, yp, 2p) = a:cg =0 (mod p?*) geldt p** | axg. Er geldt dat a kwadraatvrij is, dus p” is een

deler van z;,. Nu geldt dat (Z—ﬁ, z—i, ;—2) een nulpunt van f is in Z;’,; stel zonder verlies van algemeenheid

dat £ = 0.



Er geldt f(xp,yp,2p) = byf, + czf) = 0 (mod p) en 212) # 0 (mod p). We kunnen dus door 212) delen

P “p
kwadraat. Er volgt dat —bc een kwadraat is in Z/p1Z X ... X Z/ppZ, waarbij p1, . .., p, de priemdelers
van a zijn. De Chinese reststelling geeft dat —bc een kwadraat is in Z/aZ. De andere twee congruenties
volgen uit de symmetrie van f.

2,2 2
en krijgen —bc = % = (b—y> (mod p). Dus —bc is een kwadraat in Z/pZ. In Z/27Z is alles een

Voor 2 = 1 hoeven we alleen de gevallen p | abe te bekijken, want voor p 1 abe heeft f wegens gevolg

altijd een nulpunt. Stel zonder verlies van algemeenheid p | a. Zij z € Z zodat x? = —bc (mod p).
Dan geldt f(0,¢,z) =0 (mod p) en %(O,c,x) = 2bc # 0 (mod p). Stelling (Hensel) geeft dat f
een nulpunt in Z, heeft. O

De implicatie naar rechts van stelling is triviaal, omdat Q in @, en R bevat is. Propositie
bewijst dus ook de implicatie naar rechts van stelling Zie Serre |4] voor de andere implicatie.



3 Kegelsneden over functielichamen

3.1 Inleiding

Voor F een lichaam met karakteristiek ongelijk aan 2, een functielichaam K = F'(t) en coéfficiénten
a,b,c € K*, beschouwen we de kegelsnede over F'(t)

aX?4+bY? +cZ%=0. (1)

We willen weten wanneer deze vergelijking een niet-triviale oplossing heeft, en een oplossing vinden
als die bestaat.

We behandelen een variant van het lokaal-globaalprincipe voor kegelsneden over functielichamen. De
hoofdstelling (stelling lijkt op stelling en het bewijs (dat we nu wel laten zien) gaat op
een vergelijkbare manier. In plaats van de eis dat de kegelsnede een oplossing over R heeft eisen
we nu dat een andere kegelsnede, waarvan de coéfficiénten gelijk zijn aan de kopcoéfficiénten van de
oorspronkelijke kegelsnede, een oplossing heeft. In plaats van oplossingen over p-adische uitbreidingen
te bekijken, bekijken we nu oplossingen over “gewone” eindige lichaamsuitbreidingen van F. Het is
met behulp van de theorie van valuaties (zoals de p-adische valuatie in het vorige hoofdstuk) mogelijk
om inzicht te verkrijgen in de overeenkomsten tussen de situatie in dit hoofdstuk en die in het vorige
hoofdstuk, maar we gaan hier niet verder op in.

In de volgende paragraaf introduceren we het oplosbaarheidscertificaat en bewijzen we dat dit altijd
bestaat als vergelijking (|1) een niet-triviale oplossing heeft. In paragraaf|3.3|bewijzen we de omgekeerde
implicatie, door een algoritme van Van Hoeij en Cremona [1] te presenteren dat op basis van een
oplosbaarheidscertificaat een oplossing geeft.

We laten nu zien dat elke kegelsnede als in vergelijking is om te zetten naar een kegelsnede die
aan de volgende kenmerken voldoet, op zo'n manier dat (a) de nieuwe vergelijking een niet-triviaal
nulpunt heeft als en alleen als de oude dat heeft, en (b) we met een nulpunt van de nieuwe vergelijking
gemakkelijk een nulpunt van de oude vergelijking kunnen vinden.

1. a,b,c € FJt].
2. ged(a, b) = ged(b, ¢) = ged(c,a) = 1.
3. a, b, en c zijn kwadraatvrij: niet deelbaar door een kwadraat d? met d € F[t] en deg(d) > 0.

In de stellingen en het algoritme in dit hoofdstuk gaan we uit van coéfficiénten die aan deze eisen
voldoen. Het omzetten van een kegelsnede gaat als volgt. Voor eis 1: door te vermenigvuldigen met
de noemers zorgen we dat a,b, ¢ € F[t]; de nulpunten van blijven dan onveranderd.

Voor eis 2, deel a,b en ¢ door ged(a,b,c). Zij g = ged(a,b). Als deg(g) > 0, vervang a, b, ¢ dan met
a/g,b/g,cg. Als (x,y,2) € K3 nu een oplossing is van de nieuwe vergelijking, dan is (z,y, gz) een
oplossing van de oude vergelijking. Doe de analoge bewerking voor ged(b, ¢) en ged(c, a). Herhaal dit
totdat eis 2 geldt. Dit kan in een eindig aantal stappen, want in elke stap wordt de graad van abc
kleiner.

Voor eis 3: als a, b of ¢ deelbaar is door een kwadraat d?, dan vervangen we a door a/d?. Als
(z,y,2) € K? een oplossing is van de nieuwe vergelijking, dan is (z/d?,y,z) een oplossing van de
oude vergelijking. Omdat aan eis 2 al voldaan is geldt nadat a, b en ¢ kwadraatvrij zijn dat ook abc
kwadraatvrij is.

De bewijzen en algoritmes in dit hoofdstuk zijn gebaseerd op Van Hoeij en Cremona [1].



3.2 Het oplosbaarheidscertificaat

We schrijven S, voor de verzameling monische irreducibele elementen p € F[t] die a delen. Schrijf
verder

Laat fo, fp, fc € F[t][u] de polynomen
fa=bu’+¢, fy=cu’+a, fo=au’+b
zijn. Voor f € F|[t][u] schrijven we (f mod p) € Ly[u] voor het polynoom met coéfficiénten (van f)
modulo p.
Verder noteren we dg, dy, d. voor de graden van a,b, c en I, ly, . voor de kopcoéfficiénten van a, b, c.

We presenteren eerst een vereenvoudigde versie van het algoritme van Van Hoeij en Cremona [1], met
het volgende gevalsonderscheid:

! 0, alsd, =dp=d. (mod 2)
eval ;=
& 1, anders.

Het gevalsonderscheid is niet noodzakelijk maar maakt het makkelijker om een oplossing te vinden
als geval = 1. Aan het eind van paragraaf wijzigen we dit gevalsonderscheid zodat meer situaties
onder het algoritmisch makkelijke geval vallen, waarmee we het algoritme van Van Hoeij en Cremona
[1] krijgen.

Definitie 3.1. Een oplosbaarheidscertificaat van vergelijking is een lijst met:
e Voor alle p € S, een nulpunt van (f, mod p) in Ly,
e Voor alle p € S een nulpunt van (f, mod p) in L.
e Voor alle p € S, een nulpunt van (f. mod p) in L.

e Als geval = 0: een niet-triviale oplossing in F® of oplosbaarheidscertificaat van de vergelijking
law? + Ly? +1.2° = 0. (2)

Stelling 3.2. Vergelijking heeft een niet-triviale oplossing als en alleen als er een oplosbaarheids-
certificaat bestaat.

Als geval = 0 moeten we een oplossing vinden van vergelijking , een kegelsnede over F' in plaats van
F[t]. In het geval dat F' weer een functielichaam is kunnen we ons algoritme opnieuw uitvoeren, en is
het algoritme dus recursief. Zoniet, dan zijn we aangewezen op andere algoritmes om een oplossing te
vinden. Voor F' = QQ bestaan er algoritmes die gebaseerd zijn op stelling Als F' =, kunnen we
een oplossing vinden door een eindig aantal mogelijkheden te proberen (maar er bestaat een algoritme
dat sneller is).

We bewijzen de implicatie naar rechts van stelling 3.2} Zie de volgende paragraaf voor de rest van het
bewijs.

Lemma 3.3. Als vergelijking een niet-triviale oplossing (v,y,z) € K3 heeft, dan heeft ver-
gelijking een niet-triviale oplossing in F3.

Bewijs. Zij (z,vy,2) zo'n oplossing en d het maximum van de graden van az?, by? en cz2. Deze polyno-
men hebben ofwel alle dezelfde graad d, of twee hebben graad d en de derde een strikt kleinere graad.
In het eerste geval vormen de kopcoéfficiénten van x,y, z een oplossing van vergelijking . In het
tweede geval, stel zonder verlies van algemeenheid dat deg(az?) < d. Dan is (0,1,[,) een oplossing
van vergelijking , waarbij [, en [, de kopcoéfficiénten van y en z zijn. O
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Lemma 3.4. Stel dat vergelijking een niet-triviale oplossing (z,y,z) € K> heeft. Dan bestaat er
een oplosbaarheidscertificaat.

Bewigs. Door de oplossing te schalen kunnen we aannemen dat z,y, z € F[t] en ged(z,y,z) = 1 geldt.
Zij p € S,. Er geldt nu 0 = az? + by* + c2? = by? + c2? (mod p). Noteer § = (y mod p) € L,. Omdat
b en ¢ niet deelbaar zijn door p, zijn § en Z beide 0 of beide ongelijk aan 0. Als ze allebei 0 zijn, dan
geldt p? | by? + c2? = —az?. Omdat a kwadraatvrij is geldt dan p | #, maar dat is in tegenspraak met
ged(z,y,2) = 1. Dus ¢ en Z zijn ongelijk aan 0, en y/Z is een oplossing van f, mod p. Op dezelfde
manier vinden we nulpunten van f; en f. modulo de priemdelers van b respectievelijk c¢. Als geval = 0,
dan is de vierde benodigdheid bewezen door lemma [3:3] Er volgt dat er een oplosbaarheidscertificaat
bestaat. O

3.3 Nulpunt vinden

We bewijzen stelling [3.2] door een algoritme te presenteren dat gegeven een oplosbaarheidscertificaat
een oplossing van vergelijking geeft. Dit bewijst tevens dat we van een willekeurige kegelsnede over
F(t) de oplosbaarheid kunnen bepalen en de oplossing kunnen vinden, als we het volgende kunnen:

e factoriseren in F[t];
e van elementen in L, bepalen of het kwadraten zijn en zo ja, een wortel trekken;
e van kegelsneden over F' bepalen of ze een oplossing hebbben en zo ja, een oplossing vinden.

Algoritme VindPunt
Invoer: a,b,c € K* die voldoen aan de eisen 1, 2 en 3 uit de inleiding, en een oplosbaarheidscertificaat.
Uitvoer: Een niet-triviale oplossing (z,y, z) € K van vergelijking ().

1. Laat dg,dp,d. de graden van a, b, ¢ zijn.

2. Laat S,,Sp, Sc de verzamelingen met dezelfde naam uit het oplosbaarheidscertificaat zijn.
3. Als dy, = dp = d. (mod 2), laat geval = 0, en anders geval = 1.
4

. Als geval = 0, laat Iy, ly, [ € F' de kopcoéfficiénten van a, b, c zijn, en laat (I,,ly,1.) de oplossing
van vergelijking zijn, afkomstig uit het oplosbaarheidscertificaat.

dp + d. de + dg do+d
5. Laat A = [H—-‘ —geval, B = {C—i_-‘ —geval, C' = [ ;_ b—‘ — geval.

2 2

6. Zij V = {(z,y,2) € F[t]* : deg(x) < A,deg(y) < B,deg(z) < C}. Dit is een vectorruimte over
F van dimensie A+ B+ C + 3. Voor p € S, U S, US. =: S, zij o een nulpunt van f, mod p,
fp mod p respectievelijk f. mod p. Zij ¢, : V. — L,, gegeven door

y—azmodp, alspéedS,,
(,y,2) —> { z —axmod p, alspc Sy,
r—aymodp, alspeS..

Zij verder, voor geval 0, Lo, = F? en definieer ¢ : V @& F — F3 door
gboo(l'aya 2, UJ) = (:EA - l$w7yB - lywa zZC — lZw)a

waarbij 4, yp en z¢ de A’de, B’de respectievelijk C’de coéfficiént van x, y en z zijn. Laat

¢ : V — (@pgs Lp) ) (957317 Z) — ((bp(wvy? Z))pe&'v alS geval = 17
0:VOF — (@pesuioe) o) s (@120) — (65,2, 0))pesufoo),  als goval =0,
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Dit zijn lineaire afbeeldingen, want L, is een vectorruimte van dimensie deg(p) en de quotiént-
afbeelding F[t] — L, is lineair.

7. Bereken de kern van ¢ en kies een niet-triviaal element.

Bewijs van de correctheid van Algoritme VindPunt. We bewijzen dat het algoritme met een geldige
invoer altijd een oplossing geeft. We laten eerst zien dat een element uit de kern van ¢ inderdaad een
nulpunt is van f = aX?2+bY?2 +cZ?, door een bovengrens te vinden voor de graad en te laten zien dat
f geévalueerd in dat nulpunt deelbaar is door een polynoom van hogere graad. Vervolgens laten we
zien dat ker ¢ # 0, omdat de dimensie van het domein van ¢ in alle gevallen groter is dan de dimensie
van het codomein.

Voor p € S,, a een nulpunt van f, mod p, en een element (z,y,2) € ker¢ geldt y = az (mod p),
dus f(z,y,2) = ax® + (ba? + ¢)z2 = 0 (mod p). Op dezelfde manier is f(z,y, z) deelbaar door alle
p € SqUSpU S, en omdat abc kwadraatvrij is, is f deelbaar door s := [[(S, U Sy U S.) = abe.

Zij D = deg(abc). Stel eerst geval = 1, en stel zonder verlies van algemeenheid dat d, = d. (mod 2).
Dan geldt

deg(f(z,y,2)) < max{d, + 2A,d, + 2B,d. + 2C}
=max{d, +dy +d. — 2,dy +dp + d. — 1,dy + dp + d. — 1}
-D-1,

maar f(z,y, z) is deelbaar door een polynoom van graad deg(s) = D, dus f(x,y,z) = 0. Als geval = 0,
dan geldt deg(f(z,y,2)) < D = d, + 2A = dy + 2B = d. + 2C. De coéfficiént van t” is wegens
oo, Yy, z,w) = 0 en vergelijking gelijk aan w? (1,12 + lblg +1.1%) = 0, dus deg(f(z,y,2)) < D — 1.
Ook in dit geval is f(z,y, z) deelbaar door een polynoom van hogere graad, dus f(z,y,z) = 0.

We moeten nu nog laten zien dat het de dimensie van het domein van ¢ groter is dan de dimensie
van het codomein. Als geval = 0, dan geldt A+ B + C = D en de dimensie van het domein is
A+B+C+3+4+1=D+4. Voor pe S,US,US. van graad d heeft L, dimensie d en F3 heeft
dimensie 3, dus de dimensie van het codomein is D + 3. Als geval =1 geldt A+ B+ C =D — 2. De
dimensie van het domein is A+ B+ C 4+ 3 = D + 1 en de dimensie van het codomein is D.

Er volgt dat ker¢ # 0. In geval 0 is verder nodig dat ker¢ # {0} @ F, en dit is duidelijk omdat
$00(0,0,0,1) # 0. We concluderen dat het algoritme in alle gevallen een niet-triviale oplossing van
vergelijking vindt. O

Bewijs van stelling[3.9. De implicatie naar rechts is bewezen met lemma en de andere implicatie
met het bewijs van Algoritme VindPunt. O

Het blijkt dat er meerdere situaties zijn waarin we het simpelere geval kunnen toepassen, dat wil
zeggen, waarin we vergelijking niet hoeven op te lossen. Om het algoritme te verbeteren wijzigen
we het gevalsonderscheid als volgt, waarmee we het algoritme van Van Hoeij en Cremona [1] krijgen.

) 0, alsd, =dp=d. (mod 2) en abc heeft geen nulpunt in F;
eval ;=
& 1, anders.

Als abc een nulpunt in F' heeft en d, = dp = d. (mod 2), dan verwijderen we voor het uitvoeren van
het algoritme één element van graad 1 uit S,,Sp of S. in het oplosbaarheidscertificaat.

We volgen de notatie van bewijs van Algoritme VindPunt en laten zien dat het algoritme nog steeds
een oplossing geeft. Er geldt nu deg(s) = D — 1, maar voor een element (z,y,2) € ker¢ geldt
deg(f(z,y,2)) < D —2. Om te laten zien dat ker ¢ # 0: er geldt nu A+ B+ C = D — 3. De dimensie
van het domein is deg(S) + dimp(F) = D — 141 = D en de dimensie van het codomein is D — 1.

Laat Algoritme VindPunt* het Algoritme VindPunt zijn waarbij we in de laatste stap uit een basis
van ker¢ C V & F een maximale verzameling linear onafhankelijke oplossingen in V' als uitvoer
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geven, in plaats van een enkele oplossing. De volgende propositie laat zien dat we alle oplossingen
tot een bepaalde graad kunnen vinden als we Algoritme VindPunt* uitvoeren voor alle mogelijke
oplosbaarheidscertificaten.

Propositie 3.5. Zij (x,y,z) € F(t) een niet-triviale oplossing van vergelijking zodat deg(x) < A,
deg(y) < B en deg(z) < C, met A, B,C zoals in Algoritme VindPunt. Dan bestaat er een oplos-
baarheidscertificaat waarvoor (x,y,z) een lineaire combinatie is van oplossingen in de uitvoer van
Algoritme VindPunt*.

Bewijs. Zij (z,y,z) € F(t) een niet-triviale oplossing van vergelijking zodat deg(z) < A, deg(y) <
B en deg(z) < C. De bewijzen van lemma en lemma geven een methode om een oplosbaar-
heidscertificaat te vinden, met nulpunten (% mod p) € L, van f, mod p voor alle p € S,, vergelijk-
bare nulpunten voor S, en S.. Zie het bewijs van lemma [3.3] voor de constructie van een oplossing
(Iz, 1y, 1) € F van vergelijking , als geval = 0. We laten zien dat (z,y,2) € ker ¢, met ¢ zoals
in Algoritme VindPunt en als invoer het bovengenoemde oplosbaarheidscertificaat, en dit bewijst de
propositie.

Voor p € S, en ¢, als in Algoritme VindPunt geldt ¢,(z,y,2) = (y — ¥ - zmod p) = 0, dus geldt
(x,y,2) € ker ¢, voor alle p € S, US, US,. Dus als geval = 1 geldt (z,y,2) € ker¢. Als geval =0
moeten we nog bewijzen dat (z,y, z,w) € ker ¢ voor een w € F. Stel eerst deg(z) < A, deg(y) < B
en deg(z) < C. Dan geldt ¢oo (2,9, 2,0) = (0,0,0). Stel nu dat een van de graden van z, y, 2 maximaal
is (van graad A, B respectievelijk C'), en stel zonder verlies van algemeenheid deg(z) = A.

Zij d het maximum van de graden van ax?, by? en cz?, zoals in lemma Stel dat deze polynomen alle
dezelfde graad hebben. Uit deg(az?) = deg(by?) volgt dy+dp+d. = dp+2-deg(y), dus deg(y) = B. Met
hetzelfde argument volgt deg(z) = C, dus ¢oo(z,y,2,1) = (0,0,0). Stel nu dat een van de polynomen
strikt lagere graad heeft. Er geldt deg(ax?) = d, +dp+d, is groter gelijk aan deg(by?) en deg(cz?), dus
stel zonder verlies van algemeenheid deg(by?) < d. Nu geldt deg(az?) = deg(cz?), dus deg(z) = C.
Verder geldt [, = 0 (zie het bewijs van lemma . Er volgt dat ¢oo(,y,2,1) = (0,0,0). O
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4 Implementatie en voorbeelden

Het algoritme zoals in deze scriptie beschreven (inclusief de verbetering aan het eind van paragraaf
is door de auteur geimlementeerd in SageMath. Het algoritme zal in de standaardfunctionaliteit
van SageMath worden opgenomen, en is reeds beschikbaar voor ontwikkelaars op http://trac.
sagemath.org/ticket/6881. Van Hoeij en Cremona [1] hebben een implementatie geschreven
voor Maple en Magma.

De implementatie kan gebruikt worden om kegelsneden over Q(¢) op te lossen:

sage: K.<t> = FractionField(PolynomialRing(QQ, 't"'))
sage: C = Conic (K, [t"2-2, 2xt"3, -2xt"3-13*xt"2-2+t+18])
sage: C.has_rational_point (point=True)

(True, (-3 : (t + 1)/t : 1))

Het is ook mogelijk om kegelsneden over polynoomringen over eindige lichamen en eindige lichaams-
uitbreidingen van Q op te lossen:

sage: R.<t> = FiniteField(23)[]

sage: C = Conic([2, t"2+1, t"2+5])

sage: C.has_rational_point (point = True)
(True, (5*«t : 8 : 1))

sage: F.<i> = QuadraticField(-1)

sage: R.<t> = F[]

sage: C = Conic([1l, ixt, -t~"2+4])

sage: C.has_rational_point (point = True)

(True, (-t — 2x1 : —=2%1 : 1))

Het is nog niet mogelijk om kegelsneden over F'(t) op te lossen waarbij F' weer een functielichaam is,
omdat SageMath geen wortels kan trekken in eindige uitbreidingen van functielichamen.

Het is ook mogelijk om direct Algoritme VindPunt uit te voeren, met behulp van de functie
find._point (supports, roots, case, solution). Dit is handig omdat verschillende oplos-
baarheidscertificaten verschillende punten kunnen geven, en we wegens propositie alle oplossingen
tot een bepaalde graad kunnen vinden door alle oplosbaarheidscertificaten te proberen. Zie het vol-
gende voorbeeld:

sage: K.<t> = PolynomialRing(QQ, 't"')
sage: C = Conic (K, [t"2-2, 2xt, -2+t 3-13%t"2-2xt+18

1)
sage: supp = [[t"2 - 2], [t]l, [t"3 + 13/2%t"2 + t - 9]]
sage: tbarl = QQ.extension (supp[0][0], 'tbar').gens () [0]
sage: tbar2 = QQ.extension(supp[l][0], 'tbar').gens() [0]
sage: tbar3 = QQ.extension (suppl2][0], 'tbar').gens () [0]
sage: roots = [[tbarl + 1], [1/3xtbar2”0], [2/3xtbar3"2 + 11/3*tbar3 - 31]]

sage: C.find_point (supp, roots, 1)
(3 : ¢t +1 :1)

sage: roots = [[-tbarl - 1], [-1/3%tbar2°0], [-2/3*tbar3"2 - 11/3xtbar3 + 3]]
sage: C.find_point (supp, roots, 1)
(3 : -t -1 : 1)
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