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1 Introduction

The dual space plays an important role in Linear Algebra. Now for 1 ≤ p <∞, consider the vector
space of p-summable sequences:

lp =

x ∈ FN : ‖x‖p =

( ∞∑
i=1

|x(i)|p
) 1
p

<∞

 , F = R or C,

equipped with the norm ‖ · ‖p.
Its dual space turns out to be isometric isomorphic to lq where 1

p + 1
q = 1.

Now we can create a norm by combining these so called p-norms, for example:( ∞∑
i=1

|x(2i− 1)|2
) 1

2

+

( ∞∑
i=1

|x(2i)|π
) 1
π

or ( ∞∑
i=1

(∣∣|x(2i− 1)|2 + |x(2i)|2
) 1

2

∣∣∣3) 1
3

or even more complex combinations.
Also, instead of taking a p-power, we can use a more general function ϕ : [0,∞) → [0,∞) where
limx→∞ ϕ(x)/x = ∞ and limx↓0 ϕ(x)/x = 0, and use a measure space (X,Σ, µ) instead of se-
quences. The space created by the span of{

x ∈ FX : x Σ-measurable and

∫
ϕ(|x(i)|)dµ <∞

}
is called an Orlicz-space. And it can be given the Luxemburg-norm:

‖x‖ϕ = inf

{
u > 0 :

∫
ϕ(|x(i)

u
|)dµ ≤ 1

}
We will find a general formula for combinations of p-norms and find the corresponding dual space.
Also we will find the dual space for Orlicz spaces and for combinations of Luxemburg-norms in the
same way as for p-norms. For general terminology and results on Orlicz spaces, see [1]

2 p-norms

To begin I will state some definitions and theorems of which I assume the reader is familliar with.
Therefore I will not prove any of these statements. Most proofs can be found in [2]

An infinite sequence is usually denoted by x = (xi)i∈N, where xi ∈ F and F is R or C. As Cantor
showed us however, F∞ is a very ambiguous notation since there is no indication wether ∞ is
countable or not. Therefore we will denote the set of infinite sequence by FN the set of all maps
from N to F. An element x ∈ F will however still be denoted as a sequence, where x(i) = xi.

Definition 2.1. Let 1 ≤ p < ∞ and x ∈ FN. We call ‖ · ‖p given by ‖x‖p = (
∑
i∈N |xi|p)

1
p a

p-norm, which is a norm on the space: lp := {x ∈ FN : ‖x‖p <∞}.

Remark 2.2. We can also define a norm for p = ∞ with a corresponding space l∞ by taking
‖x‖∞ := maxi∈N |xi|.

Proposition 2.3. (lp, ‖ · ‖p) is a Banach space.

Definition 2.4. Let p, q ∈ R≥1∪{∞}. We call q the conjugate of p, or we call p and q conjugated
to each other, if 1

p + 1
q = 1.

We call ‖ · ‖q the conjugate norm of ‖ · ‖p.
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Theorem 2.5. (Hölder)
Let p, q ∈ R≥1 ∪ {∞} conjugated to each other, let x, y ∈ FN. Then we have:

∞∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q.

Theorem 2.6. (Young)
Let p, q ∈ R≥1 ∪ {∞} conjugated to each other, let x, y ∈ FN. Then we have:

∞∑
i=1

|xiyi| ≤ ‖x‖p + ‖y‖q.

Definition 2.7. Let X be a normed space over F and ‖ · ‖ its norm. Let f : X → F a linear
function. f is called bounded if supx∈X,‖x‖≤1 |f(x)| <∞.

Definition 2.8. Let X be a normed space and ‖ · ‖ its norm. X ′ = B(X) is the dual space of X
with the dual norm ‖ · ‖′ given by: ‖f‖ = supx∈X,‖x‖≤1 |f(x)|.

We will now prove that the dual of lp is isometric isomrphic to lq where p and q are conjugate,
before proving the more general statement for combinations of p-norms.

Theorem 2.9. Let p ∈ R≥1, and let q conjugated to p.
The dual of lp is isometric isomorphic to lq.

Before we will prove this theorem, we will show that we can always construct a map from a dual
space of infinite sequences to a space of dual sequences.

Lemma 2.10. Let X ⊂ FN a normed space such that

{x ∈ X : the exists a N ∈ N such that xi = 0 for all i ≥ N}

is dense in X. Then there exists an injective homomorphism φ : X ′ → FN.

Proof. Let x ∈ lp given by (xi)i∈N and let ei = (ei,j)j∈N ∈ lp, for all i ∈ N, given by ei,j = 0
whenever i 6= j and ei,i = 1.
Note that the span of ei is dense in X.
Let f ∈ X ′. Note f(x) = f(

∑
i∈N xiei) =

∑
i∈N xif(ei), because f is bounded and linear.

Hence we find a sequence yf ∈ FN given by yf,i = f(ei), such that f(x) =
∑
i∈N xiyf,i.

We can now construct φ by φ : X ′ → FN, f 7→ yf .

Now we will show that φ is a homomorphism.
Let f, g ∈ (lp)′ and λ ∈ F.
Then φ(f + g) = yf+g = (yf+g,i)i∈N = ((f + g)(ei))i∈N = (f(ei) + g(ei))i∈N = (f(ei))i∈N +
(g(ei))i∈N = yf + yg = φ(f) + φ(g).
Also, φ(λf) = (yλf+g,i)i∈N = (λf(ei))i∈N = λ(f(ei))i∈N = λφ(f).
So φ is a homomorphism.
Finally, if φ(f) = 0 then yf,i = 0 for all i, so f(x) = 0 for all x ∈ X. Hence φ is injective.

Proof. of theorem 2.9.
Let φ as in lemma 2.10 where X = lp. Consider ϕ : (lp)′ → φ[(lp)′], f 7→ φ(f), then ϕ is an
isomorphism. It remains to prove that φ is isometric because f ∈ (lp)′ if f is bounded, which is
the same as ‖f‖′ = supx∈X,‖x‖≤1 |f(x)| < ∞, and if φ is isometric we have ‖f‖′ = ‖yf‖q < ∞,
which implies yf ∈ lq.
This gives us φ((lp)′) ⊂ lq. Since for each i ∈ N we have fi ∈ (lp)′ where fi(x) = xi, we have that
ei ∈ φ((lp)′) so lq is the closure of span({ei}i∈I) with respect to ‖ · ‖q, which is a subset of φ(lp)
with respect to ‖ · ‖q, so lq = φ(lp), which gives that ϕ is bijective.

To show that g is isometric, let f ∈ (lp)′, consider:

‖f‖′ = sup
x∈lp,‖x‖p≤1

|f(x)| = sup
x∈lp,‖x‖p≤1

∑
yf,ixi

Hölder
≤ sup

x∈lp,‖x‖p≤1

‖yf‖q · ‖x‖p = ‖yf‖q.
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We will now define an x ∈ lp for which supz∈lp,‖z‖p≤1 |f(z)| = |f(x)|. We do this by using something
which looks a lot like the gradient of the q-norm,

x′i = (
∑
j∈N
|yf,j |q)

1
q−1yf,i|yf,i|q−2 or x′i = 0 if yf,i = 0

Since (
∑
j∈N |yf,j |q)

1
q−1 is independent of i, we can as well take xi = yf,i|yf,i|q−2.

Note that ‖ x
‖x‖p ‖p = 1, so we find:

‖yf‖q · ‖
x

‖x‖p
‖p =

1

‖x‖p
‖yf‖q · ‖x‖p

=
1

‖x‖p
(
∑
i∈N
|yf,i|q)

1
q ((
∑
i∈N
|yf,i|q−1)p)

1
p

=
1

‖x‖p
(
∑
i∈N
|yf,i|q)

1
q (
∑
i∈N
|yf,i|pq−p)

1
p

=
1

‖x‖p
(
∑
i∈N
|yf,i|q)

1
q (
∑
i∈N
|yqf,i|)

1
p

=
1

‖x‖p

∑
i∈N
|yf,i|q

=
1

‖x‖p

∑
i∈N

yf,iyf,i|yf,i|q−2

=
1

‖x‖p

∑
yf,ixi

≤ sup
x∈lp,‖x‖p≤1

∑
i∈N

yf,ixi = ‖f‖′

Above we use that p and q are conjugated, which gives that pq − p = q.
Hence we find that ‖f‖′ = ‖yf‖q, so ϕ is an isometric isomorphism.

3 Combinations of p-norms

We will now take a look at combinations of p-norms. This can be naturally defined by considering
a set of vector spaces Fxi , xi ∈ N endowed with a pi-norm Now the combination of these vector
spaces is given by ⊕i∈IFxi with an a-norm, i.e. the norm ‖ · ‖ is given by:

‖y‖ = (
∑
i∈I

(
∑

0≤j≤xi

|yxi,j |pi)
a
pi )

1
a ,

where 1 ≤ a <∞, 1 ≤ pi <∞.
More generally a combination of p-norms is given as follows.

Definition 3.1. Let Xi ⊂ N, i ∈ I where Xi ∩Xj = ∅ for i 6= j and
⋃
i∈I Xi = N.

Let {pi}i∈I ⊂ R≥1 ∪ {∞}, a ∈ R≥1 ∪ {∞} and x ∈ FN.

We call ‖ · ‖ given by (
∑
i∈I(

∑
j∈Xi |xj |

pi)
a
pi )

1
a a p-combination norm given by {pi} and a which

belongs to the space: l‖·‖ := {x ∈ FN : ‖x‖ <∞}.

As with the p-norms we want to know what the dual space of l‖·‖ looks like. Again we wil find that
the dual space is isometric isomorphic to the space with a conjugated norm, where the conjugated
is exactly what one would expect.
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Theorem 3.2. Let {Xi}i∈I ⊂ P(N) such that for every i, j ∈ I, i 6= j we have Xi ∩Xj = ∅ and
that

⋃
i∈I Xi = N and let {pi}i∈I ⊂ R ≥ 1, {qi}i∈I ⊂ R ≥ 1 the respective conjugates and let a ≥ 1,

with b the conjugate of a.
Let ‖ · ‖ a p-combination norm given by {pi}i∈I and a and ‖x‖c a p-combination norm given by
{qi}i∈I and b.
Then (l‖·‖)′ is isometric isomorphic to l‖·‖

c

.

Proof. Let φ as in lemma 2.10 with X = l‖·‖. We define ϕ : (l‖·‖)′ → φ[(l‖·‖)′], f 7→ φ(f).
From lemma 2.11 we have that ϕ is an isomorphism. Hence we want that φ[(l‖·‖)′] = l‖·‖

c

, which
is entailed, as we have seen in theorem 2.10, by proving that ϕ is isometric.

Let f ∈ (l‖·‖)′. Consider:

‖f‖′ = sup
x∈l‖·‖,‖x‖≤1

|
∑
i∈N

yf,ixi| = sup
x∈l‖·‖,‖x‖≤1

|
∑
i∈I

∑
j∈Xi

yf,jxj |

Hölder
≤ sup

x∈l‖·‖,‖x‖≤1

∑
i∈I

((
∑
j∈Xi

yqif,j)
1
qi (
∑
j∈Xi

xpij )
1
pi )

Hölder
≤ sup

x∈l‖·‖,‖x‖≤1

(
∑
i∈I

(
∑
j∈Xi

yqif,j)
b
qi )

1
b (
∑
i∈I

(
∑
j∈Xi

xpij )
a
pi )

1
a

= sup
x∈l‖·‖,‖x‖≤1

‖yf‖c · ‖x‖ = ‖yf‖c.

Now we wil define an x ∈ l‖·‖ for which supz∈l‖·‖,‖z‖≤1 |f(z)| = |f(x)|. Again we will find a
candidate by using a gradient.
Let j ∈ N and let i ∈ I such that j ∈ Xi. Then define:

x′j =
∂‖yf,j‖c

∂yf,j
= (
∑
n∈I

(
∑
m∈Xn

|yf,m|qn)
b
qn )

1
b−1 · (

∑
m∈Xi

|yf,m|qi)
b
qi
−1 · |yf,j |qi−1 or 0 if yf,j = 0

and let xj = (
∑
m∈Xi |yf,m|

qi)
b
qi
−1 · yf,j |yf,j |qi−2 or 0 if yf,j = 0.

Now consider:

1

‖x‖
‖yf‖c‖x‖ =

1

‖x‖
‖yf‖c(

∑
i∈I

(((
∑
j∈Xi

|yf,j |qi)
b
qi
−1

)pi(
∑
j∈Xi

|yf,j |qi−1)pi)
a
pi )

1
a

=
1

‖x‖
‖yf‖c(

∑
i∈I

((
∑
j∈Xi

|yf,j |qi)
pib

qi
−pi(

∑
j∈Xi

|yf,j |qi))
a
pi )

1
a

=
1

‖x‖
‖yf‖c(

∑
i∈I

(
∑
j∈Xi

|yf,j |qi)(
pib

qi
−pi+1) api )

1
a = (∗).

Now we will take a closer look at the expression (pibqi − pi + 1) api . First note that 1− pi = pi
qi

, so

(
pib

qi
− pi + 1)

a

pi
=
pi
qi

(b− 1)
a

pi
=

1

qi
(ab− a) =

b

qi
.

So we find:

(∗) =
1

‖x‖
‖yf‖c(

∑
i∈I

(
∑
j∈Xi

|yf,j |qi)
b
qi )

1
a

=
1

‖x‖
(
∑
i∈I

(
∑
j∈Xi

|yf,j |qi)
b
qi )

1
b (
∑
i∈I

(
∑
j∈Xi

|yf,j |qi)
b
qi )

1
a

=
1

‖x‖
(
∑
i∈I

(
∑
j∈Xi

|yf,j |qi)
b
qi )

=
∑
i∈I

(
∑
m∈Xi

|yf,m|qi)
b
qi
−1 · |yf,j |qi−2yf,j · yf,j =

∑
j∈N

yf,jxj .
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This gives us that ϕ is isometric, thus ϕ is an isometric isomorphism from (l‖·‖)′ to l‖·‖
c

.

4 Orlicz spaces

We want to generalize the result on dual spaces of sequence spaces with combinations of p-norms.
A natural next step is to consider Orlicz spaces. What we do to define a p-norm is that we take the
elements of the sequence, raise them to the pth power, and then take the inverse function over the
sum. With Orlicz spaces we will make a similar construction, but than for more general functions
then taking the pth powers.

Definition 4.1. Let X be a vector space over F. ρ : X → [0,∞] is called a convex modular if it
satisfies:
(M1) ρ(x) = 0⇔ x = 0
(M2) ρ(x) = ρ(αx) for all α ∈ F, |α| = 1.
(M3) ρ(αx+ βy) ≤ αρ(x) + βρ(y) for α, β ∈ R≥0 with α+ β = 1.

Definition 4.2. Φ is the class of functions ϕ such that ϕ : [0,∞) → [0,∞) is strictly increasing,
continuous and convex and such that ϕ(0) = 0 and

lim
u→0+

ϕ(u)

u
= 0 and lim

u→∞

ϕ(u)

u
=∞

Definition 4.3. Let Ω be a non-empty set, Σ a σ-algebra of subsets of Ω and µ a nonnegative,
complete measure in Σ, which does not vanish identically. If Ω is the union of a countable number
of sets of finite measure, then we call (Ω,Σ, µ) a σ-finite complete measure space.

Definition 4.4. Let (Ω,Σ, µ) a σ-finite complete measure space.
Then S(Ω,Σ, µ) is the space of all F-valued, Σ-measurable and µ-a.s. finite functions on Ω, with
equality µ-a.s.

Proposition 4.5. Let (Ω,Σ, µ) a σ-finite complete measure space, ϕ ∈ Φ, and let X = S(Ω,Σ, µ).
Then ρ(x) = ρϕ(x) =

∫
Ω
ϕ(|x(t)|)dµ is a convex modular in X.

Proof. First note that since ϕ is strictly increasing and ϕ(0) = 0 clearly (M1) holds.
For (M2) we find:

ρ(x) = ρϕ(x) =

∫
Ω

ϕ(|x(t)|)dµ =

∫
Ω

ϕ(|αx(t)|)dµ = ρ(αx), α ∈ C, |α| = 1.

Finally to proof (M3), let α, β ∈ R≥0 with α+ β = 1, consider:

ρ(αx+ βy) =

∫
Ω

ϕ(|αx(t) + βy(t)|) ≤ α
∫

Ω

ϕ(|x(t)|) + β

∫
Ω

ϕ(|y(t)|) = αρ(x) + βρ(y).

Definition 4.6. The modular space Xρ is called an Orlicz space. Instead of Xρ we usually denote
it as Xϕ.

We have to remark that Xρ as we have constructed it, is not the general definition of an Orlicz
space, but only a subclass of the Orlicz spaces. For sake of convenience, when we call a space an
Orlicz space, we refer to an Orlicz space from this specific subclass. Now we have our space, we
want it to have a norm as well.
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Proposition 4.7. Let ρ a convex modular, then the Luxemburg norm:

‖x‖ρ := inf{u > 0 : ρ(
x

u
) ≤ 1}

and the Ameniya norm:

‖x‖0ρ := inf{1

t
(1 + ρ(tx)) : t > 0}

are norms on Xρ.

Proof. We will start with proving that ‖x‖ρ = 0⇔ x = 0 and ‖x‖0ρ = 0⇔ x = 0.
First note that from (M1) we have that if x = 0, then ρ(xu ) = 0 for all u > 0 hence

‖x‖ρ = inf{u > 0 : ρ(
x

u
) ≤ 1} = 0

and

‖x‖0ρ = inf{1

t
(1 + ρ(tx)) : t > 0} = 0

If ‖x‖ρ = 0 then there exist un ↓ 0 such that ρ( x
un

) ≤ 1. Then (M3) gives us ρ(x) = ρ(un
x
un

) ≤
unρ( x

un
) ≤ un, so ρ(x) = 0, hence x = 0.

If ‖x‖ρ = 0 then there exist tn such that 1
tn

(1 + ρ(tnx)) = 1
tn

+ 1
tn
ρ(tnx) ↓ 0. So 1

tn
→ 0, hence we

find that ρ(x) = ρ(tn
x
tn

) ≤ 1
tn
ρ(tnx) ≤ 1

tn
(1 + ρ(tnx)).

So ρ(x) = 0, hence x = 0.

Let a ∈ F, then

|a|‖x‖ρ = inf{|a|·u > 0 : ρ(
x

u
) ≤ 1} = inf{u > 0 : ρ(

|a| · x
u

) ≤ 1} = inf{u > 0 : ρ(
|a| · x
u

) ≤ 1} = ‖a·x‖ρ.

And we also find

|a|·‖x‖0ρ = inf{ |a|
t

(1+ρ(tx)) : t > 0} = inf{1

t
(1+ρ(t|a|x)) : at > 0} = inf{1

t
(1+ρ(tax)) : t > 0} = ‖ax‖0ρ.

Finally we have to proof the triangle inequality, we will start with the Luxemburg norm.
Let u = ‖x‖ρ and v = ‖y‖ρ. Then

ρ(
x+ y

u+ v
) = ρ(

u

u+ v

x

u
+

v

u+ v

y

v
)

≤ u

u+ v
ρ(
x

u
) +

v

u+ v
ρ(
y

v
)

≤ u

u+ v
+

v

u+ v
= 1.

Thus ‖x+ y‖ρ ≤ u+ v. So ‖x+ y‖ρ ≤ ‖x‖ρ + ‖y‖ρ.

For the Ameniya norm let ε > 0. Then for some u, v > 0 we have:
u+ uρ(xu ) < ‖x‖0ρ + 1

2ε and

v + vρ(yv ) < ‖y‖0ρ + 1
2ε. But then:

ρ(
x+ y

u+ v
) ≤ u

u+ v
ρ(
x

u
) +

v

u+ v
ρ(
y

v
) <
‖x‖0ρ + ‖y‖0ρ + ε− u− v

u+ v
.

Hence

‖x+ y‖0ρ ≤ (u+ v)[1 + ρ(
x+ y

u+ v
)] < ‖x‖0ρ + ‖y‖0ρ.

Definition 4.8. Let X and ρ as in proposition 4.5. Then X‖·‖ϕ = {x ∈ X : ‖x‖ϕ < ∞} and
X‖·‖0ϕ = {x ∈ X : ‖x‖0ϕ <∞} are normed Orlicz spaces.
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Example 4.9. Because we want to use Orlicz spaces as a generalization of p-norms, we want that
the lp is an Orlicz space as well.
Let Ω = N, µ such that µ({n}) = 1, p > 1 and ϕp : [0,∞)→ [0,∞), |xn| 7→ |xn|p.
Notice that ϕ ∈ Φ. So we have a Orlicz space Xρ where:

ρϕ(x) =
∑
n∈N
|xn|p.

Now consider the Luxemburg norm:

‖x‖ϕ = inf{u > 0 : ρ(
x

u
) ≤ 1} = inf{u > 0 :

1

up

∑
n∈N
|xn|p ≤ 1} = (

∑
n∈N
|xn|p)

1
p = ‖x‖p.

Remark 4.10. Each ϕ ∈ Φ has an µ-a.s. unique representation:
ϕ(u) =

∫ u
0
p(s)ds, where p is a nondecreasing, right-continuous function, i.e. p is the right derivative

of ϕ.

Lemma 4.11. Let ϕ ∈ Φ and p its representation, then p(0) = 0 and limu→∞ p(u) =∞.

Proof. Suppose p is bounded. We then find

lim
u→∞

φ(u)

u
= lim
u→∞

1

u

∫ u

0

p(s)ds ≤ lim
u→∞

1

u

∫ u

0

sup
t∈R≥0

{p(t)}ds = sup
t∈R≥0

{p(t)} 6=∞.

Since p is non-decreasing it follows that limu→∞ p(u) =∞.

Note that for all u > 0 we have

p(u) ≤ 1

u

∫ 2u

u

p(s)ds ≤ 1

u

∫ 2u

0

p(s)ds = 2
φ(u)

u
.

Hence p(0) = 0.

Definition 4.12. Let ϕ ∈ Φ then q(t) = sup{s : p(s) ≤ t} is the right inverse of p. We cal
ϕ∗(v) =

∫ v
0
q(t)dt the complementary function of ϕ.

Evidently ϕ∗ ∈ Φ.

The complemantary function will fulfill the same role in the Orlicz norms as the conjugate numbers
in the p-norms. We will find that theorems such as Hölder and Young also hold with complementary
functions, instead of p-norms.

Theorem 4.13. (Young)
Let ϕ ∈ Φ and ϕ∗ be complementary to ϕ. Then

uv ≤ ϕ(u) + ϕ∗(v), u, v ≥ 0.

Moreover uv = ϕ(u) + ϕ∗(v) if and only if v = p(u) and u = q(v).

Proof. Suppose p(u) ≤ v. Then:

ϕ(u) + ϕ∗(v) =

∫ u

0

p(s)ds+

∫ p(u)

0

q(t)dt+

∫ v

p(u)

q(t)dt.

Note first that: ∫ v

p(u)

q(t)dt ≥ q(p(u))(v − p(u)) ≥ u(v − p(u)) = uv − up(u)

and by integration by parts:∫ p(u)

0

q(t)dt =

∫ u

0

q(p(t))dp(t) =

∫ u

0

tdp(t) = up(u)−
∫ u

0

p(t)dt.
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Hence we find: ∫ u

0

p(s)ds+

∫ p(u)

0

q(t)dt+

∫ v

p(u)

q(t)dt ≥ uv.

If p(u) > v then q(v) < u and we can use the same argument as above changing the roles of u, v
and p, q.

Up until now we didn’t know whether ϕ is the complementary function of ϕ∗, but with the theorem
of Young we can redefine ϕ∗ and ϕ from where it follows directly.

Corollary 4.14.

ϕ∗(v) = sup
u≥0

[uv − ϕ(u)] and ϕ(v) = sup
u≥0

[uv − ϕ∗(u)].

Corollary 4.15. ϕ∗∗ = ϕ.

We will try to find the dual space of Orlicz spaces.

Lemma 4.16. Let ϕ ∈ Φ, X1 = {y ∈ X; ρϕ(y) ≤ 1}, X2 = {y ∈ X; ‖y‖ϕ ≤ 1}. Then

‖x‖1ϕ∗ := sup
y∈X1

|
∫

Ω

x(t)y(t)dµ| = sup
y∈X2

|
∫

Ω

x(t)y(t)dµ| =: ‖x‖⊗ϕ∗ .

Proof. Let y ∈ Xϕ and let Xy := span{y}.
We want that the restricted function ρϕ|Xy : Xy → F is continuous.

If λn → λ then ϕ(|λny(t)|)→ ϕ(|λy(t)|) because ϕ is continuous.
Since |λn||y(t)| ≤ supn |λn||y(t)| <∞ we have that ϕ(|λn||y(t)) ≤ ϕ(supn |λn||y(t)|) <∞ for all n.
Then the dominated convergence theorem gives us:

ρϕ(λny) =

∫
Ω

ϕ(|λn||y(t))dµ→
∫

Ω

ϕ(|λ||y(t))dµ =

∫
Ω

ρϕ(λy).

So ρϕ|Xy is continuous.

Note: if un ↓ 1 then ρϕ( y
un

)→ ρϕ(y). From this follows that

‖y‖ϕ = inf{u > 0 : ρϕ(
y

u
) ≤ 1} ≤ 1⇔ ρϕ(y) ≤ 1.

Hence X1 = X2.

Theorem 4.17. Let ϕ ∈ Φ, p its representation. Then

‖x‖0ϕ∗ = ‖x‖1ϕ∗ = sup
y∈X1

|
∫

Ω

x(t)y(t)dµ|

Proof. Let x ∈ X be bounded, then f(k) = ρϕ(q(k|x|)), k ∈ [0,∞) is continuous and f(0) = 0 and
f(k)→∞ if k →∞, so there exists a c > 0 such that f(c) = 1.
Then q(c|x|) ∈ X1, so

‖x‖1ϕ∗ ≥
∫

Ω

|x(t)|q(c|x(t)|)dµ.

By Young inequality we find:

‖x‖1ϕ∗ = sup
y∈X1

|
∫
x(t)y(t)dµ| ≤ 1

k
sup
y∈X1

[ρϕ∗(kx) + ρϕ(y)]

≤ 1

k
[ρϕ∗(kx) + 1] =

1

k
[ρϕ∗(kx) + ρϕ(q(c|x|))].
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If we further assume that k = c we find:

1

k
[ρϕ∗(kx) + ρϕ(q(c|x|))] =

1

c
[

∫
Ω

ϕ∗(c|x(t)|) + ϕ(q(c|x(t)|))dµ]

=
1

c
[

∫
Ω

ϕ∗(c|x(t)|) + c|x(t)|q(c|x(t)|)− ϕ∗(c|x(t)|)]

=

∫
Ω

|x(t)|q(k|x(t)|)dµ ≤ ‖x‖1ϕ∗

so in particular we find: ‖x‖1ϕ∗ ≥ 1
c [ρϕ∗(cx) + 1] ≥ ‖x‖0ϕ∗ .

Since ‖x‖0ϕ∗ = inf{ 1
k (1 + ρ(kx)) : k > 0} we find that ‖x‖1ϕ∗ ≤ ‖x‖0ϕ∗ .

Corollary 4.18. X‖·‖0
ϕ∗

is isometrically isomorphic to the associate space

X‖·‖⊗
ϕ∗

:= {x ∈ X : ‖x‖⊗ϕ∗ := sup
‖y‖ϕ≤1

|
∫

Ω

x(t)y(t)dµ| <∞}

Definition 4.19. Let Ω = N, let µ be given by µ({n}) = 1, then the modular space Xρ is called
a sequence space.

The associate space is however not always isometrically isomorphic to the dual space, X ′‖·‖ϕ , of

X‖·‖ϕ , but only to a subset of it. With Lemma 2.10 it is easy to see that X‖·‖⊗ϕ is isometrically

isomorphic to X ′‖·‖ϕ if X‖·‖ϕ is a normed sequence space. It is even possible to prove that this is

the case too, if X‖·‖ϕ is reflexive, but we will not prove that in this work.

Corollary 4.20. Let X‖·‖ϕ an Orlicz sequence space. Then (X‖·‖ϕ)′ is isometrically isomorphic
to X‖·‖0

ϕ∗
.

Example 4.21. Now let us consider Example 4.9. Note that for every u ≥ 0

ϕp(u) =

∫ |u|
0

ptp−1dt.

So ϕp has the function f : [0,∞)→ [0,∞), u 7→ pup−1 as representation.
Now the complementary function ϕ∗p is given by it’s representation g where g is given by g(t) =

sup{s : f(s) ≤ t} = ( tp )
1
p−1 , hence ϕ∗p(u) = p−1

p ·
1

p
1
p−1
|u|

p
p−1 = p−1

p
p
p−1
|u|

p
p−1 .

According to Corollary 4.20 we have:

‖x‖1ϕ∗p = ‖x‖0ϕ∗p = inf{1

t
(1 + ρϕ∗(tx)) : t > 0}

= inf{1

t
(1 +

∑
i∈N

p− 1

p
p
p−1

(t|xi|)
p
p−1 ) : t > 0}

= inf{1

t
+
p− 1

p
p
p−1

t
p
p−1−1

∑
i∈N
|xi|

p
p−1 : t > 0} = (∗)

Let q be the conjugate number of p, then p− 1 = p
q . Consider:

h(t) =
1

t
+
p− 1

p
p
p−1

t
p
p−1−1

∑
i∈N
|xi|

p
p−1 =

1

t
+
p− 1

pq
tq−1

∑
i∈N
|xi|q.

We can find the infimum of the expression by looking at it’s extreme values:

h′(t) =
(p− 1)(q − 1)

pq
tq−2(

∑
i∈N
|xi|q)−

1

t2
=

1

pq
tq−2(

∑
i∈N
|xi|q)−

1

t2
= 0⇔ t = p

(∑
i∈N
|xi|q

)− 1
q

.
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Now that we have find the infimum, we only need to substitute it in (∗):

‖x‖1ϕ∗p =
1

p
(
∑
i∈N
|xi|q)

1
q +

p− 1

pq
· pq−1(

∑
i∈N
|xi|q)1− q−1

q

=
1

p
(
∑
i∈N
|xi|q)

1
q +

p− 1

p
(
∑
i∈N

p− 1

p
p−2
p−1

|xi|q)1− 1
p

=
1

p
(
∑
i∈N
|xi|q)

1
q +

1

q
(
∑
i∈N

p− 1

p
p−2
p−1

|xi|q)
1
q

= (
∑
i∈N

p− 1

p
p−2
p−1

|xi|q)
1
q = ‖x‖q

With Theorem 4.17 we can easily prove the Hölder inequality.

Corollary 4.22. (Hölder)
Let X‖·‖ϕ be an Orlicz space and let x, y ∈ X. Then∫

Ω

x(t)y(t)dµ ≤ ‖x‖ϕ‖y‖0ϕ∗ .

Proof. Let k ∈ F such that ‖xk‖ϕ = 1 then ‖x‖ϕ = k. Then∫
Ω

x(t)y(t)dµ = k

∫
Ω

x(t)

k
y(t)dµ ≤ k‖y‖1ϕ∗ = k‖y‖0ϕ∗ = ‖x‖ϕ‖y‖0ϕ∗ .

5 Combination of Orlicz norms

Though we have shown that all p-norms are Luxemburg-norms, it is not certain that combina-
tions of p-norms are always Luxemburg-norms as well. In fact, it is a general belief that this
is not the case, though this has not been proven. Therefore we wil introduce combinations of
Luxemburg-norms and combinations of Ameniya-norms to capture the combinations of p-norms in
our generalisation.
We will achieve this by splitting up Ω in measurable, pairwise disjoint subsets (Ti)i∈I , and treat the
index-set I for the subsets as a measurespace where {i} has measure 1 for all i ∈ I. A x : Ω→ F,
we then split up in (xTi)i where we can give each xTi a different norm ‖ · ‖ϕi .
Elements in the index sets then are as follows xT : I → F, i 7→ ‖xTi‖ϕi .

Definition 5.1. Let (Ω,Σ, µ) a σ-finite complete measure space and let X = S(Ω,Σ, µ). Note
that every measurable subset is a σ-finite complete measure space too.
Let (I,ΣI , µI) a σ-finite complete measure space with for every i ∈ I we have µI(i) = 1 and
T = {Ti}i∈I with ∅ 6= Ti ⊂ Ω, Ti ∩ Tj = ∅,

⋃
i∈I Ti = Ω, Ti ∈ Σ and let Y = S(I,ΣI , µI).

Let x ∈ X and xTi := {x(j)}j∈Ti , let xT ∈ Y such that xT (i) = ‖xTi‖ϕi and x∗T ∈ Y such that
x∗T (i) = ‖xTi‖0ϕ∗i . Let {ϕi}i∈I and ϕ be elements of Φ.
A combination of modulars ρϕ,ϕI is given by:

ρϕ,ϕI (x) =

∫
I

ϕ(‖xTi‖ϕi)dµI =
∑
i∈I

ϕ(‖xTi‖ϕi).

The complementary modular of a combination of Orlicz modulars is given by:

ρ(ϕ,ϕI)∗(x) =
∑
i∈I

ϕ∗(‖xTi‖0ϕ∗i ).
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Definition 5.2. Let X,Y, T as in 5.1. Then X‖·‖ϕ,ϕI := {x ∈ X : ‖x‖ϕ,ϕI <∞} and X‖·‖0
ϕ∗,ϕ∗

I

:=

{x ∈ X : ‖x‖0ϕ∗,ϕ∗I <∞} are normed Orlicz spaces, and we call Y‖·‖ϕ,ϕI = {xT ∈ Y : ‖xT ‖ϕ <∞}
and Y 0

ϕ∗,ϕ∗I
= {x∗T ∈ Y : ‖x∗T ‖ϕ∗ <∞} their respective index spaces.

Now that we have described combinations of Luxemburg-norms, and their complementary norms,
we naturally want that the Hölder inequality and the Young-inequality still hold.

Theorem 5.3. (Combination Hölder)
Let X‖·‖ϕ,ϕI be a normed Orlicz space and Y‖·‖ϕ,ϕI its index space, and let x, y ∈ X. Then∫

Ω

x(t)y(t)dµ ≤ ‖x‖ϕ,ϕI‖y‖0(ϕ,ϕI)∗

Proof. Consider: ∫
Ω

x(t)y(t)dµ =
∑
i∈I

∫
Ti

x(t)y(t)dµ

Hölder
≤

∑
i∈I
‖xTi‖ϕi‖yTi‖0ϕ∗i

Hölder
≤ ‖xT ‖ϕ‖y∗T ‖0ϕ∗

= ‖x‖ϕ,ϕI‖y‖0(ϕ,ϕI)∗

Theorem 5.4. (Combination Young)
Let X‖·‖ϕ,ϕI be a normed Orlicz space and Y‖·‖ϕ,ϕI its index space, and let x, y ∈ X. Then∫

Ω

x(t)y(t)dµ ≤ ρϕ,ϕI (xT ) + ρ(ϕ,ϕI)∗(yT ).

Proof. Consider:

∫
Ω

x(t)y(t)dµ =
∑
i∈I

∫
Ti

x(t)y(t)dµ

Hölder
≤

∑
i∈I
‖xTi‖ϕi‖yTi‖0ϕ∗i

Young

≤
∑
i∈I

ϕ(‖xTi‖ϕi) + ϕ∗(‖yTi‖0ϕ∗i )

= ρϕ(xT ) + ρϕ∗(y
∗
T )

= ρϕ,ϕI (xT ) + ρ(ϕ,ϕI)∗(yT ).

Theorem 5.5. Let X‖·‖ϕ,ϕI be a normed Orlicz space and Y‖·‖ϕ,ϕI its index space. Then:

‖x‖0ϕ∗,ϕ∗I = ‖x‖⊗ϕ∗,ϕ∗I = sup
‖y‖ϕ,ϕI≤1

|
∫

Ω

x(t)y(t)dµ|.

12



Proof. Let cT ∈ Y such that ‖cTi‖ϕi = 1 for all i ∈ I.
Then

‖y‖ϕ,ϕI = ‖yT ‖ϕ =
∑
i∈I

ϕ(‖yTi‖ϕi)

=
∑
i∈I

ϕ(‖yTi‖ϕi‖cTi‖ϕi)

=
∑
i∈I

ϕ(‖‖yTi‖ϕicTi‖ϕi)

Hence:

‖x‖⊗ϕ∗,ϕ∗I = sup
‖y‖ϕ,ϕI≤1

∫
Ω

x(t)y(t)dµ

= sup
‖y‖ϕ,ϕI≤1

∑
i∈I

sup
d:Ti→F,‖d‖ϕi=1

∫
Ti

‖yTi‖ϕid(t)x(t)dµ

= sup
‖y‖ϕ,ϕI≤1

∑
i∈I
‖yTi‖ϕi sup

d:Ti→F,‖d‖ϕi=1

∫
Ti

d(t)x(t)dµ

= sup
‖y‖ϕ,ϕI=1

∑
i∈I
‖yTi‖ϕi‖xTi‖⊗ϕ∗i

With Theorem 4.17 and Lemma 4.16 we now find that ‖xTi‖⊗ϕ∗i = ‖xTi‖0ϕ∗i .

Hence we find:

‖x‖⊗ϕ∗,ϕ∗I = sup
‖y‖ϕ,ϕI≤1

∑
i∈I
‖yTi‖ϕi‖xTi‖0ϕ∗i

= sup
‖yT ‖ϕ≤1

∑
i∈I
‖yTi‖ϕi‖xTi‖0ϕ∗i

= ‖x∗T ‖⊗ϕ∗

By using Theorem 4.17 again we find ‖x∗T ‖
⊗
ϕ∗ = ‖x∗T ‖0ϕ∗ .

Hence we find:
‖x‖⊗ϕ∗,ϕ∗I = ‖x∗T ‖⊗ϕ∗ = ‖x∗T ‖0ϕ∗ = ‖x‖0ϕ∗,ϕ∗I

Corollary 5.6. Let X‖·‖ϕ,ϕI an Orlicz sequence space. Then (X‖·‖ϕ,ϕI )′ is isometrically isomor-
phic to X‖·‖0

ϕ∗,ϕ∗
I

.
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