

F.C. Claassens

Combination of Orlicz norms

Bachelorscriptie, 17 januari 2013

Scriptiebegeleider: dr. O. van Gaans

Universiteit Leiden

Mathematisch Instituut, Universiteit Leiden

1 Introduction

The dual space plays an important role in Linear Algebra. Now for $1 \leq p < \infty$, consider the vector space of p -summable sequences:

$$l^p = \left\{ x \in \mathbb{F}^{\mathbb{N}} : \|x\|_p = \left(\sum_{i=1}^{\infty} |x(i)|^p \right)^{\frac{1}{p}} < \infty \right\}, \quad \mathbb{F} = \mathbb{R} \text{ or } \mathbb{C},$$

equipped with the norm $\|\cdot\|_p$.

Its dual space turns out to be isometric isomorphic to l^q where $\frac{1}{p} + \frac{1}{q} = 1$.

Now we can create a norm by combining these so called p -norms, for example:

$$\left(\sum_{i=1}^{\infty} |x(2i-1)|^2 \right)^{\frac{1}{2}} + \left(\sum_{i=1}^{\infty} |x(2i)|^{\pi} \right)^{\frac{1}{\pi}}$$

or

$$\left(\sum_{i=1}^{\infty} \left(|x(2i-1)|^2 + |x(2i)|^2 \right)^{\frac{1}{2}} \right)^{\frac{1}{3}}$$

or even more complex combinations.

Also, instead of taking a p -power, we can use a more general function $\varphi : [0, \infty) \rightarrow [0, \infty)$ where $\lim_{x \rightarrow \infty} \varphi(x)/x = \infty$ and $\lim_{x \downarrow 0} \varphi(x)/x = 0$, and use a measure space (X, Σ, μ) instead of sequences. The space created by the span of

$$\left\{ x \in \mathbb{F}^X : x \text{ } \Sigma\text{-measurable and } \int \varphi(|x(i)|) d\mu < \infty \right\}$$

is called an Orlicz-space. And it can be given the Luxemburg-norm:

$$\|x\|_{\varphi} = \inf \left\{ u > 0 : \int \varphi\left(\left|\frac{x(i)}{u}\right|\right) d\mu \leq 1 \right\}$$

We will find a general formula for combinations of p -norms and find the corresponding dual space. Also we will find the dual space for Orlicz spaces and for combinations of Luxemburg-norms in the same way as for p -norms. For general terminology and results on Orlicz spaces, see [1]

2 p -norms

To begin I will state some definitions and theorems of which I assume the reader is familiar with. Therefore I will not prove any of these statements. Most proofs can be found in [2]

An infinite sequence is usually denoted by $x = (x_i)_{i \in \mathbb{N}}$, where $x_i \in \mathbb{F}$ and \mathbb{F} is \mathbb{R} or \mathbb{C} . As Cantor showed us however, \mathbb{F}^{∞} is a very ambiguous notation since there is no indication whether ∞ is countable or not. Therefore we will denote the set of infinite sequence by $\mathbb{F}^{\mathbb{N}}$ the set of all maps from \mathbb{N} to \mathbb{F} . An element $x \in \mathbb{F}$ will however still be denoted as a sequence, where $x(i) = x_i$.

Definition 2.1. Let $1 \leq p < \infty$ and $x \in \mathbb{F}^{\mathbb{N}}$. We call $\|\cdot\|_p$ given by $\|x\|_p = (\sum_{i \in \mathbb{N}} |x_i|^p)^{\frac{1}{p}}$ a p -norm, which is a norm on the space: $l^p := \{x \in \mathbb{F}^{\mathbb{N}} : \|x\|_p < \infty\}$.

Remark 2.2. We can also define a norm for $p = \infty$ with a corresponding space l^{∞} by taking $\|x\|_{\infty} := \max_{i \in \mathbb{N}} |x_i|$.

Proposition 2.3. $(l^p, \|\cdot\|_p)$ is a Banach space.

Definition 2.4. Let $p, q \in \mathbb{R}_{\geq 1} \cup \{\infty\}$. We call q the conjugate of p , or we call p and q conjugated to each other, if $\frac{1}{p} + \frac{1}{q} = 1$.

We call $\|\cdot\|_q$ the conjugate norm of $\|\cdot\|_p$.

Theorem 2.5. (Hölder)

Let $p, q \in \mathbb{R}_{\geq 1} \cup \{\infty\}$ conjugated to each other, let $x, y \in \mathbb{F}^{\mathbb{N}}$. Then we have:

$$\sum_{i=1}^{\infty} |x_i y_i| \leq \|x\|_p \|y\|_q.$$

Theorem 2.6. (Young)

Let $p, q \in \mathbb{R}_{\geq 1} \cup \{\infty\}$ conjugated to each other, let $x, y \in \mathbb{F}^{\mathbb{N}}$. Then we have:

$$\sum_{i=1}^{\infty} |x_i y_i| \leq \|x\|_p + \|y\|_q.$$

Definition 2.7. Let X be a normed space over \mathbb{F} and $\|\cdot\|$ its norm. Let $f : X \rightarrow \mathbb{F}$ a linear function. f is called bounded if $\sup_{x \in X, \|x\| \leq 1} |f(x)| < \infty$.

Definition 2.8. Let X be a normed space and $\|\cdot\|$ its norm. $X' = B(X)$ is the dual space of X with the dual norm $\|\cdot\|'$ given by: $\|f\| = \sup_{x \in X, \|x\| \leq 1} |f(x)|$.

We will now prove that the dual of l^p is isometric isomorphic to l^q where p and q are conjugate, before proving the more general statement for combinations of p -norms.

Theorem 2.9. Let $p \in \mathbb{R}_{\geq 1}$, and let q conjugated to p .

The dual of l^p is isometric isomorphic to l^q .

Before we will prove this theorem, we will show that we can always construct a map from a dual space of infinite sequences to a space of dual sequences.

Lemma 2.10. Let $X \subset \mathbb{F}^{\mathbb{N}}$ a normed space such that

$$\{x \in X : \text{there exists a } N \in \mathbb{N} \text{ such that } x_i = 0 \text{ for all } i \geq N\}$$

is dense in X . Then there exists an injective homomorphism $\phi : X' \rightarrow \mathbb{F}^{\mathbb{N}}$.

Proof. Let $x \in l^p$ given by $(x_i)_{i \in \mathbb{N}}$ and let $e_i = (e_{i,j})_{j \in \mathbb{N}} \in l^p$, for all $i \in \mathbb{N}$, given by $e_{i,j} = 0$ whenever $i \neq j$ and $e_{i,i} = 1$.

Note that the span of e_i is dense in X .

Let $f \in X'$. Note $f(x) = f(\sum_{i \in \mathbb{N}} x_i e_i) = \sum_{i \in \mathbb{N}} x_i f(e_i)$, because f is bounded and linear.

Hence we find a sequence $y_f \in \mathbb{F}^{\mathbb{N}}$ given by $y_{f,i} = f(e_i)$, such that $f(x) = \sum_{i \in \mathbb{N}} x_i y_{f,i}$.

We can now construct ϕ by $\phi : X' \rightarrow \mathbb{F}^{\mathbb{N}}, f \mapsto y_f$.

Now we will show that ϕ is a homomorphism.

Let $f, g \in (l^p)'$ and $\lambda \in \mathbb{F}$.

Then $\phi(f+g) = y_{f+g} = (y_{f+g,i})_{i \in \mathbb{N}} = ((f+g)(e_i))_{i \in \mathbb{N}} = (f(e_i) + g(e_i))_{i \in \mathbb{N}} = (f(e_i))_{i \in \mathbb{N}} + (g(e_i))_{i \in \mathbb{N}} = y_f + y_g = \phi(f) + \phi(g)$.

Also, $\phi(\lambda f) = (y_{\lambda f+g,i})_{i \in \mathbb{N}} = (\lambda f(e_i))_{i \in \mathbb{N}} = \lambda(f(e_i))_{i \in \mathbb{N}} = \lambda\phi(f)$.

So ϕ is a homomorphism.

Finally, if $\phi(f) = 0$ then $y_{f,i} = 0$ for all i , so $f(x) = 0$ for all $x \in X$. Hence ϕ is injective. \square

Proof. of theorem 2.9.

Let ϕ as in lemma 2.10 where $X = l^p$. Consider $\varphi : (l^p)' \rightarrow \phi[(l^p)']$, $f \mapsto \phi(f)$, then φ is an isomorphism. It remains to prove that ϕ is isometric because $f \in (l^p)'$ if f is bounded, which is the same as $\|f\|' = \sup_{x \in X, \|x\| \leq 1} |f(x)| < \infty$, and if ϕ is isometric we have $\|f\|' = \|y_f\|_q < \infty$, which implies $y_f \in l^q$.

This gives us $\phi((l^p)') \subset l^q$. Since for each $i \in \mathbb{N}$ we have $f_i \in (l^p)'$ where $f_i(x) = x_i$, we have that $e_i \in \phi((l^p)')$ so l^q is the closure of $\text{span}(\{e_i\}_{i \in \mathbb{N}})$ with respect to $\|\cdot\|_q$, which is a subset of $\phi(l^p)$ with respect to $\|\cdot\|_q$, so $l^q = \phi(l^p)$, which gives that φ is bijective.

To show that ϕ is isometric, let $f \in (l^p)'$, consider:

$$\|f\|' = \sup_{x \in l^p, \|x\|_p \leq 1} |f(x)| = \sup_{x \in l^p, \|x\|_p \leq 1} \sum y_{f,i} x_i \stackrel{\text{Hölder}}{\leq} \sup_{x \in l^p, \|x\|_p \leq 1} \|y_f\|_q \cdot \|x\|_p = \|y_f\|_q.$$

We will now define an $x \in l^p$ for which $\sup_{z \in l^p, \|z\|_p \leq 1} |f(z)| = |f(x)|$. We do this by using something which looks a lot like the gradient of the q -norm,

$$x'_i = \left(\sum_{j \in \mathbb{N}} |y_{f,j}|^q \right)^{\frac{1}{q}-1} \bar{y}_{f,i} |y_{f,i}|^{q-2} \text{ or } x'_i = 0 \text{ if } y_{f,i} = 0$$

Since $(\sum_{j \in \mathbb{N}} |y_{f,j}|^q)^{\frac{1}{q}-1}$ is independent of i , we can as well take $x_i = \bar{y}_{f,i} |y_{f,i}|^{q-2}$. Note that $\left\| \frac{x}{\|x\|_p} \right\|_p = 1$, so we find:

$$\begin{aligned} \|y_f\|_q \cdot \left\| \frac{x}{\|x\|_p} \right\|_p &= \frac{1}{\|x\|_p} \|y_f\|_q \cdot \|x\|_p \\ &= \frac{1}{\|x\|_p} \left(\sum_{i \in \mathbb{N}} |y_{f,i}|^q \right)^{\frac{1}{q}} \left(\left(\sum_{i \in \mathbb{N}} |y_{f,i}|^{q-1} \right)^p \right)^{\frac{1}{p}} \\ &= \frac{1}{\|x\|_p} \left(\sum_{i \in \mathbb{N}} |y_{f,i}|^q \right)^{\frac{1}{q}} \left(\sum_{i \in \mathbb{N}} |y_{f,i}|^{pq-p} \right)^{\frac{1}{p}} \\ &= \frac{1}{\|x\|_p} \left(\sum_{i \in \mathbb{N}} |y_{f,i}|^q \right)^{\frac{1}{q}} \left(\sum_{i \in \mathbb{N}} |y_{f,i}^q| \right)^{\frac{1}{p}} \\ &= \frac{1}{\|x\|_p} \sum_{i \in \mathbb{N}} |y_{f,i}|^q \\ &= \frac{1}{\|x\|_p} \sum_{i \in \mathbb{N}} y_{f,i} \bar{y}_{f,i} |y_{f,i}|^{q-2} \\ &= \frac{1}{\|x\|_p} \sum_{i \in \mathbb{N}} y_{f,i} x_i \\ &\leq \sup_{x \in l^p, \|x\|_p \leq 1} \sum_{i \in \mathbb{N}} y_{f,i} x_i = \|f\|' \end{aligned}$$

Above we use that p and q are conjugated, which gives that $pq - p = q$. Hence we find that $\|f\|' = \|y_f\|_q$, so φ is an isometric isomorphism. \square

3 Combinations of p -norms

We will now take a look at combinations of p -norms. This can be naturally defined by considering a set of vector spaces \mathbb{F}^{x_i} , $x_i \in \mathbb{N}$ endowed with a p_i -norm. Now the combination of these vector spaces is given by $\bigoplus_{i \in I} \mathbb{F}^{x_i}$ with an a -norm, i.e. the norm $\|\cdot\|$ is given by:

$$\|y\| = \left(\sum_{i \in I} \left(\sum_{0 \leq j \leq x_i} |y_{x_i,j}|^{p_i} \right)^{\frac{a}{p_i}} \right)^{\frac{1}{a}},$$

where $1 \leq a < \infty$, $1 \leq p_i < \infty$.

More generally a combination of p -norms is given as follows.

Definition 3.1. Let $X_i \subset \mathbb{N}$, $i \in I$ where $X_i \cap X_j = \emptyset$ for $i \neq j$ and $\bigcup_{i \in I} X_i = \mathbb{N}$.

Let $\{p_i\}_{i \in I} \subset \mathbb{R}_{\geq 1} \cup \{\infty\}$, $a \in \mathbb{R}_{\geq 1} \cup \{\infty\}$ and $x \in \mathbb{F}^{\mathbb{N}}$.

We call $\|\cdot\|$ given by $(\sum_{i \in I} (\sum_{j \in X_i} |x_j|^{p_i})^{\frac{a}{p_i}})^{\frac{1}{a}}$ a p -combination norm given by $\{p_i\}$ and a which belongs to the space: $l^{\|\cdot\|} := \{x \in \mathbb{F}^{\mathbb{N}} : \|x\| < \infty\}$.

As with the p -norms we want to know what the dual space of $l^{\|\cdot\|}$ looks like. Again we will find that the dual space is isometric isomorphic to the space with a conjugated norm, where the conjugated is exactly what one would expect.

Theorem 3.2. Let $\{X_i\}_{i \in I} \subset \mathcal{P}(\mathbb{N})$ such that for every $i, j \in I$, $i \neq j$ we have $X_i \cap X_j = \emptyset$ and that $\bigcup_{i \in I} X_i = \mathbb{N}$ and let $\{p_i\}_{i \in I} \subset \mathbb{R} \geq 1$, $\{q_i\}_{i \in I} \subset \mathbb{R} \geq 1$ the respective conjugates and let $a \geq 1$, with b the conjugate of a .

Let $\|\cdot\|$ a p -combination norm given by $\{p_i\}_{i \in I}$ and a and $\|x\|^c$ a p -combination norm given by $\{q_i\}_{i \in I}$ and b .

Then $(l^{\|\cdot\|})'$ is isometric isomorphic to $l^{\|\cdot\|^c}$.

Proof. Let ϕ as in lemma 2.10 with $X = l^{\|\cdot\|}$. We define $\varphi : (l^{\|\cdot\|})' \rightarrow \phi[(l^{\|\cdot\|})']$, $f \mapsto \phi(f)$. From lemma 2.11 we have that φ is an isomorphism. Hence we want that $\phi[(l^{\|\cdot\|})'] = l^{\|\cdot\|^c}$, which is entailed, as we have seen in theorem 2.10, by proving that φ is isometric.

Let $f \in (l^{\|\cdot\|})'$. Consider:

$$\begin{aligned} \|f\|' &= \sup_{x \in l^{\|\cdot\|}, \|x\| \leq 1} \left| \sum_{i \in \mathbb{N}} y_{f,i} x_i \right| = \sup_{x \in l^{\|\cdot\|}, \|x\| \leq 1} \left| \sum_{i \in I} \sum_{j \in X_i} y_{f,j} x_j \right| \\ &\stackrel{\text{Hölder}}{\leq} \sup_{x \in l^{\|\cdot\|}, \|x\| \leq 1} \sum_{i \in I} \left(\left(\sum_{j \in X_i} y_{f,j}^{q_i} \right)^{\frac{1}{q_i}} \left(\sum_{j \in X_i} x_j^{p_i} \right)^{\frac{1}{p_i}} \right) \\ &\stackrel{\text{Hölder}}{\leq} \sup_{x \in l^{\|\cdot\|}, \|x\| \leq 1} \left(\sum_{i \in I} \left(\sum_{j \in X_i} y_{f,j}^{q_i} \right)^{\frac{b}{q_i}} \right)^{\frac{1}{b}} \left(\sum_{i \in I} \left(\sum_{j \in X_i} x_j^{p_i} \right)^{\frac{a}{p_i}} \right)^{\frac{1}{a}} \\ &= \sup_{x \in l^{\|\cdot\|}, \|x\| \leq 1} \|y_f\|^c \cdot \|x\| = \|y_f\|^c. \end{aligned}$$

Now we wil define an $x \in l^{\|\cdot\|}$ for which $\sup_{z \in l^{\|\cdot\|}, \|z\| \leq 1} |f(z)| = |f(x)|$. Again we will find a candidate by using a gradient.

Let $j \in \mathbb{N}$ and let $i \in I$ such that $j \in X_i$. Then define:

$$x'_j = \frac{\partial \|y_{f,j}\|^c}{\partial y_{f,j}} = \left(\sum_{n \in I} \left(\sum_{m \in X_n} |y_{f,m}|^{q_n} \right)^{\frac{b}{q_n}} \right)^{\frac{1}{b}-1} \cdot \left(\sum_{m \in X_i} |y_{f,m}|^{q_i} \right)^{\frac{b}{q_i}-1} \cdot |y_{f,j}|^{q_i-1} \text{ or } 0 \text{ if } y_{f,j} = 0$$

and let $x_j = \left(\sum_{m \in X_i} |y_{f,m}|^{q_i} \right)^{\frac{b}{q_i}-1} \cdot \overline{y_{f,j}} |y_{f,j}|^{q_i-2}$ or 0 if $y_{f,j} = 0$.

Now consider:

$$\begin{aligned} \frac{1}{\|x\|} \|y_f\|^c \|x\| &= \frac{1}{\|x\|} \|y_f\|^c \left(\sum_{i \in I} \left(\left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right)^{\frac{b}{q_i}-1} \right)^{p_i} \left(\sum_{j \in X_i} |y_{f,j}|^{q_i-1} \right)^{\frac{a}{p_i}} \right)^{\frac{1}{a}} \\ &= \frac{1}{\|x\|} \|y_f\|^c \left(\sum_{i \in I} \left(\left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right)^{\frac{p_i b}{q_i}-p_i} \left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right) \right)^{\frac{a}{p_i}} \right)^{\frac{1}{a}} \\ &= \frac{1}{\|x\|} \|y_f\|^c \left(\sum_{i \in I} \left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right)^{\left(\frac{p_i b}{q_i}-p_i+1 \right) \frac{a}{p_i}} \right)^{\frac{1}{a}} = (*). \end{aligned}$$

Now we will take a closer look at the expression $\left(\frac{p_i b}{q_i} - p_i + 1 \right) \frac{a}{p_i}$. First note that $1 - p_i = \frac{p_i}{q_i}$, so

$$\left(\frac{p_i b}{q_i} - p_i + 1 \right) \frac{a}{p_i} = \frac{p_i}{q_i} (b-1) \frac{a}{p_i} = \frac{1}{q_i} (ab - a) = \frac{b}{q_i}.$$

So we find:

$$\begin{aligned} (*) &= \frac{1}{\|x\|} \|y_f\|^c \left(\sum_{i \in I} \left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right)^{\frac{b}{q_i}} \right)^{\frac{1}{a}} \\ &= \frac{1}{\|x\|} \left(\sum_{i \in I} \left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right)^{\frac{b}{q_i}} \right)^{\frac{1}{b}} \left(\sum_{i \in I} \left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right)^{\frac{b}{q_i}} \right)^{\frac{1}{a}} \\ &= \frac{1}{\|x\|} \left(\sum_{i \in I} \left(\sum_{j \in X_i} |y_{f,j}|^{q_i} \right)^{\frac{b}{q_i}} \right) \\ &= \sum_{i \in I} \left(\sum_{m \in X_i} |y_{f,m}|^{q_i} \right)^{\frac{b}{q_i}-1} \cdot |y_{f,j}|^{q_i-2} \overline{y_{f,j}} \cdot y_{f,j} = \sum_{j \in \mathbb{N}} y_{f,j} x_j. \end{aligned}$$

This gives us that φ is isometric, thus φ is an isometric isomorphism from $(l^{\|\cdot\|})'$ to $l^{\|\cdot\|^c}$. \square

4 Orlicz spaces

We want to generalize the result on dual spaces of sequence spaces with combinations of p -norms. A natural next step is to consider Orlicz spaces. What we do to define a p -norm is that we take the elements of the sequence, raise them to the p th power, and then take the inverse function over the sum. With Orlicz spaces we will make a similar construction, but than for more general functions then taking the p th powers.

Definition 4.1. Let X be a vector space over \mathbb{F} . $\rho : X \rightarrow [0, \infty]$ is called a convex modular if it satisfies:

- (M1) $\rho(x) = 0 \Leftrightarrow x = 0$
- (M2) $\rho(x) = \rho(\alpha x)$ for all $\alpha \in \mathbb{F}$, $|\alpha| = 1$.
- (M3) $\rho(\alpha x + \beta y) \leq \alpha \rho(x) + \beta \rho(y)$ for $\alpha, \beta \in \mathbb{R}_{\geq 0}$ with $\alpha + \beta = 1$.

Definition 4.2. Φ is the class of functions φ such that $\varphi : [0, \infty) \rightarrow [0, \infty)$ is strictly increasing, continuous and convex and such that $\varphi(0) = 0$ and

$$\lim_{u \rightarrow 0^+} \frac{\varphi(u)}{u} = 0 \text{ and } \lim_{u \rightarrow \infty} \frac{\varphi(u)}{u} = \infty$$

Definition 4.3. Let Ω be a non-empty set, Σ a σ -algebra of subsets of Ω and μ a nonnegative, complete measure in Σ , which does not vanish identically. If Ω is the union of a countable number of sets of finite measure, then we call (Ω, Σ, μ) a σ -finite complete measure space.

Definition 4.4. Let (Ω, Σ, μ) a σ -finite complete measure space.

Then $S(\Omega, \Sigma, \mu)$ is the space of all \mathbb{F} -valued, Σ -measurable and μ -a.s. finite functions on Ω , with equality μ -a.s.

Proposition 4.5. Let (Ω, Σ, μ) a σ -finite complete measure space, $\varphi \in \Phi$, and let $X = S(\Omega, \Sigma, \mu)$. Then $\rho(x) = \rho_\varphi(x) = \int_\Omega \varphi(|x(t)|) d\mu$ is a convex modular in X .

Proof. First note that since φ is strictly increasing and $\varphi(0) = 0$ clearly (M1) holds. For (M2) we find:

$$\rho(x) = \rho_\varphi(x) = \int_\Omega \varphi(|x(t)|) d\mu = \int_\Omega \varphi(|\alpha x(t)|) d\mu = \rho(\alpha x), \quad \alpha \in \mathbb{C}, |\alpha| = 1.$$

Finally to proof (M3), let $\alpha, \beta \in \mathbb{R}_{\geq 0}$ with $\alpha + \beta = 1$, consider:

$$\rho(\alpha x + \beta y) = \int_\Omega \varphi(|\alpha x(t) + \beta y(t)|) d\mu \leq \alpha \int_\Omega \varphi(|x(t)|) d\mu + \beta \int_\Omega \varphi(|y(t)|) d\mu = \alpha \rho(x) + \beta \rho(y).$$

\square

Definition 4.6. The modular space X_ρ is called an Orlicz space. Instead of X_ρ we usually denote it as X_φ .

We have to remark that X_ρ as we have constructed it, is not the general definition of an Orlicz space, but only a subclass of the Orlicz spaces. For sake of convenience, when we call a space an Orlicz space, we refer to an Orlicz space from this specific subclass. Now we have our space, we want it to have a norm as well.

Proposition 4.7. Let ρ a convex modular, then the Luxemburg norm:

$$\|x\|_\rho := \inf\{u > 0 : \rho\left(\frac{x}{u}\right) \leq 1\}$$

and the Ameniya norm:

$$\|x\|_\rho^0 := \inf\left\{\frac{1}{t}(1 + \rho(tx)) : t > 0\right\}$$

are norms on X_ρ .

Proof. We will start with proving that $\|x\|_\rho = 0 \Leftrightarrow x = 0$ and $\|x\|_\rho^0 = 0 \Leftrightarrow x = 0$. First note that from (M1) we have that if $x = 0$, then $\rho\left(\frac{x}{u}\right) = 0$ for all $u > 0$ hence

$$\|x\|_\rho = \inf\{u > 0 : \rho\left(\frac{x}{u}\right) \leq 1\} = 0$$

and

$$\|x\|_\rho^0 = \inf\left\{\frac{1}{t}(1 + \rho(tx)) : t > 0\right\} = 0$$

If $\|x\|_\rho = 0$ then there exist $u_n \downarrow 0$ such that $\rho\left(\frac{x}{u_n}\right) \leq 1$. Then (M3) gives us $\rho(x) = \rho(u_n \frac{x}{u_n}) \leq u_n \rho\left(\frac{x}{u_n}\right) \leq u_n$, so $\rho(x) = 0$, hence $x = 0$.

If $\|x\|_\rho = 0$ then there exist t_n such that $\frac{1}{t_n}(1 + \rho(t_n x)) = \frac{1}{t_n} + \frac{1}{t_n}\rho(t_n x) \downarrow 0$. So $\frac{1}{t_n} \rightarrow 0$, hence we find that $\rho(x) = \rho(t_n \frac{x}{t_n}) \leq \frac{1}{t_n}\rho(t_n x) \leq \frac{1}{t_n}(1 + \rho(t_n x))$. So $\rho(x) = 0$, hence $x = 0$.

Let $a \in \mathbb{F}$, then

$$|a|\|x\|_\rho = \inf\{|a| \cdot u > 0 : \rho\left(\frac{x}{u}\right) \leq 1\} = \inf\{u > 0 : \rho\left(\frac{|a| \cdot x}{u}\right) \leq 1\} = \inf\{u > 0 : \rho\left(\frac{|a| \cdot x}{u}\right) \leq 1\} = \|a \cdot x\|_\rho.$$

And we also find

$$|a| \cdot \|x\|_\rho^0 = \inf\left\{\frac{|a|}{t}(1 + \rho(tx)) : t > 0\right\} = \inf\left\{\frac{1}{t}(1 + \rho(t|a|x)) : at > 0\right\} = \inf\left\{\frac{1}{t}(1 + \rho(tax)) : t > 0\right\} = \|ax\|_\rho^0.$$

Finally we have to proof the triangle inequality, we will start with the Luxemburg norm.

Let $u = \|x\|_\rho$ and $v = \|y\|_\rho$. Then

$$\begin{aligned} \rho\left(\frac{x+y}{u+v}\right) &= \rho\left(\frac{u}{u+v}\frac{x}{u} + \frac{v}{u+v}\frac{y}{v}\right) \\ &\leq \frac{u}{u+v}\rho\left(\frac{x}{u}\right) + \frac{v}{u+v}\rho\left(\frac{y}{v}\right) \\ &\leq \frac{u}{u+v} + \frac{v}{u+v} = 1. \end{aligned}$$

Thus $\|x+y\|_\rho \leq u+v$. So $\|x+y\|_\rho \leq \|x\|_\rho + \|y\|_\rho$.

For the Ameniya norm let $\epsilon > 0$. Then for some $u, v > 0$ we have:

$$u + u\rho\left(\frac{x}{u}\right) < \|x\|_\rho^0 + \frac{1}{2}\epsilon$$

$$v + v\rho\left(\frac{y}{v}\right) < \|y\|_\rho^0 + \frac{1}{2}\epsilon.$$

But then:

$$\rho\left(\frac{x+y}{u+v}\right) \leq \frac{u}{u+v}\rho\left(\frac{x}{u}\right) + \frac{v}{u+v}\rho\left(\frac{y}{v}\right) < \frac{\|x\|_\rho^0 + \|y\|_\rho^0 + \epsilon - u - v}{u+v}.$$

Hence

$$\|x+y\|_\rho^0 \leq (u+v)\left[1 + \rho\left(\frac{x+y}{u+v}\right)\right] < \|x\|_\rho^0 + \|y\|_\rho^0.$$

□

Definition 4.8. Let X and ρ as in proposition 4.5. Then $X_{\|\cdot\|_\varphi} = \{x \in X : \|x\|_\varphi < \infty\}$ and $X_{\|\cdot\|_\varphi^0} = \{x \in X : \|x\|_\varphi^0 < \infty\}$ are normed Orlicz spaces.

Example 4.9. Because we want to use Orlicz spaces as a generalization of p -norms, we want that the l^p is an Orlicz space as well.

Let $\Omega = \mathbb{N}$, μ such that $\mu(\{n\}) = 1$, $p > 1$ and $\varphi_p : [0, \infty) \rightarrow [0, \infty)$, $|x_n| \mapsto |x_n|^p$. Notice that $\varphi \in \Phi$. So we have a Orlicz space X_ρ where:

$$\rho_\varphi(x) = \sum_{n \in \mathbb{N}} |x_n|^p.$$

Now consider the Luxemburg norm:

$$\|x\|_\varphi = \inf\{u > 0 : \rho\left(\frac{x}{u}\right) \leq 1\} = \inf\{u > 0 : \frac{1}{u^p} \sum_{n \in \mathbb{N}} |x_n|^p \leq 1\} = \left(\sum_{n \in \mathbb{N}} |x_n|^p\right)^{\frac{1}{p}} = \|x\|_p.$$

Remark 4.10. Each $\varphi \in \Phi$ has an μ -a.s. unique representation:

$\varphi(u) = \int_0^u p(s)ds$, where p is a nondecreasing, right-continuous function, i.e. p is the right derivative of φ .

Lemma 4.11. Let $\varphi \in \Phi$ and p its representation, then $p(0) = 0$ and $\lim_{u \rightarrow \infty} p(u) = \infty$.

Proof. Suppose p is bounded. We then find

$$\lim_{u \rightarrow \infty} \frac{\phi(u)}{u} = \lim_{u \rightarrow \infty} \frac{1}{u} \int_0^u p(s)ds \leq \lim_{u \rightarrow \infty} \frac{1}{u} \int_0^u \sup_{t \in \mathbb{R}_{\geq 0}} \{p(t)\}ds = \sup_{t \in \mathbb{R}_{\geq 0}} \{p(t)\} \neq \infty.$$

Since p is non-decreasing it follows that $\lim_{u \rightarrow \infty} p(u) = \infty$.

Note that for all $u > 0$ we have

$$p(u) \leq \frac{1}{u} \int_u^{2u} p(s)ds \leq \frac{1}{u} \int_0^{2u} p(s)ds = 2 \frac{\phi(u)}{u}.$$

Hence $p(0) = 0$. □

Definition 4.12. Let $\varphi \in \Phi$ then $q(t) = \sup\{s : p(s) \leq t\}$ is the right inverse of p . We call $\varphi^*(v) = \int_0^v q(t)dt$ the complementary function of φ .

Evidently $\varphi^* \in \Phi$.

The complementary function will fulfill the same role in the Orlicz norms as the conjugate numbers in the p -norms. We will find that theorems such as Hölder and Young also hold with complementary functions, instead of p -norms.

Theorem 4.13. (Young)

Let $\varphi \in \Phi$ and φ^* be complementary to φ . Then

$$uv \leq \varphi(u) + \varphi^*(v), \quad u, v \geq 0.$$

Moreover $uv = \varphi(u) + \varphi^*(v)$ if and only if $v = p(u)$ and $u = q(v)$.

Proof. Suppose $p(u) \leq v$. Then:

$$\varphi(u) + \varphi^*(v) = \int_0^u p(s)ds + \int_0^{p(u)} q(t)dt + \int_{p(u)}^v q(t)dt.$$

Note first that:

$$\int_{p(u)}^v q(t)dt \geq q(p(u))(v - p(u)) \geq u(v - p(u)) = uv - up(u)$$

and by integration by parts:

$$\int_0^{p(u)} q(t)dt = \int_0^u q(p(t))dp(t) = \int_0^u tdp(t) = up(u) - \int_0^u p(t)dt.$$

Hence we find:

$$\int_0^u p(s)ds + \int_0^{p(u)} q(t)dt + \int_{p(u)}^v q(t)dt \geq uv.$$

If $p(u) > v$ then $q(v) < u$ and we can use the same argument as above changing the roles of u, v and p, q . \square

Up until now we didn't know whether φ is the complementary function of φ^* , but with the theorem of Young we can redefine φ^* and φ from where it follows directly.

Corollary 4.14.

$$\varphi^*(v) = \sup_{u \geq 0} [uv - \varphi(u)] \quad \text{and} \quad \varphi(v) = \sup_{u \geq 0} [uv - \varphi^*(u)].$$

Corollary 4.15. $\varphi^{**} = \varphi$.

We will try to find the dual space of Orlicz spaces.

Lemma 4.16. Let $\varphi \in \Phi$, $X_1 = \{y \in X; \rho_\varphi(y) \leq 1\}$, $X_2 = \{y \in X; \|y\|_\varphi \leq 1\}$. Then

$$\|x\|_{\varphi^*}^1 := \sup_{y \in X_1} \left| \int_\Omega x(t)y(t)d\mu \right| = \sup_{y \in X_2} \left| \int_\Omega x(t)y(t)d\mu \right| =: \|x\|_{\varphi^*}^\otimes.$$

Proof. Let $y \in X_\varphi$ and let $X_y := \text{span}\{y\}$.

We want that the restricted function $\rho_\varphi|_{X_y} : X_y \rightarrow \mathbb{F}$ is continuous.

If $\lambda_n \rightarrow \lambda$ then $\varphi(|\lambda_n y(t)|) \rightarrow \varphi(|\lambda y(t)|)$ because φ is continuous.

Since $|\lambda_n||y(t)| \leq \sup_n |\lambda_n||y(t)| < \infty$ we have that $\varphi(|\lambda_n||y(t)|) \leq \varphi(\sup_n |\lambda_n||y(t)|) < \infty$ for all n . Then the dominated convergence theorem gives us:

$$\rho_\varphi(\lambda_n y) = \int_\Omega \varphi(|\lambda_n||y(t)|)d\mu \rightarrow \int_\Omega \varphi(|\lambda||y(t)|)d\mu = \int_\Omega \rho_\varphi(\lambda y).$$

So $\rho_\varphi|_{X_y}$ is continuous.

Note: if $u_n \downarrow 1$ then $\rho_\varphi(\frac{y}{u_n}) \rightarrow \rho_\varphi(y)$. From this follows that

$$\|y\|_\varphi = \inf\{u > 0 : \rho_\varphi(\frac{y}{u}) \leq 1\} \leq 1 \Leftrightarrow \rho_\varphi(y) \leq 1.$$

Hence $X_1 = X_2$. \square

Theorem 4.17. Let $\varphi \in \Phi$, p its representation. Then

$$\|x\|_{\varphi^*}^0 = \|x\|_{\varphi^*}^1 = \sup_{y \in X_1} \left| \int_\Omega x(t)y(t)d\mu \right|$$

Proof. Let $x \in X$ be bounded, then $f(k) = \rho_\varphi(q(k|x|))$, $k \in [0, \infty)$ is continuous and $f(0) = 0$ and $f(k) \rightarrow \infty$ if $k \rightarrow \infty$, so there exists a $c > 0$ such that $f(c) = 1$.

Then $q(c|x|) \in X_1$, so

$$\|x\|_{\varphi^*}^1 \geq \int_\Omega |x(t)|q(c|x(t)|)d\mu.$$

By Young inequality we find:

$$\begin{aligned} \|x\|_{\varphi^*}^1 &= \sup_{y \in X_1} \left| \int_\Omega x(t)y(t)d\mu \right| \leq \frac{1}{k} \sup_{y \in X_1} [\rho_{\varphi^*}(kx) + \rho_\varphi(y)] \\ &\leq \frac{1}{k} [\rho_{\varphi^*}(kx) + 1] = \frac{1}{k} [\rho_{\varphi^*}(kx) + \rho_\varphi(q(c|x|))]. \end{aligned}$$

If we further assume that $k = c$ we find:

$$\begin{aligned} \frac{1}{k}[\rho_{\varphi^*}(kx) + \rho_{\varphi}(q(c|x|))] &= \frac{1}{c} \left[\int_{\Omega} \varphi^*(c|x(t)|) + \varphi(q(c|x(t)|)) d\mu \right] \\ &= \frac{1}{c} \left[\int_{\Omega} \varphi^*(c|x(t)|) + c|x(t)|q(c|x(t)|) - \varphi^*(c|x(t)|) \right] \\ &= \int_{\Omega} |x(t)|q(k|x(t)|) d\mu \leq \|x\|_{\varphi^*}^1 \end{aligned}$$

so in particular we find: $\|x\|_{\varphi^*}^1 \geq \frac{1}{c}[\rho_{\varphi^*}(cx) + 1] \geq \|x\|_{\varphi^*}^0$.

Since $\|x\|_{\varphi^*}^0 = \inf\{\frac{1}{k}(1 + \rho(kx)) : k > 0\}$ we find that $\|x\|_{\varphi^*}^1 \leq \|x\|_{\varphi^*}^0$. \square

Corollary 4.18. $X_{\|\cdot\|_{\varphi^*}^0}$ is isometrically isomorphic to the associate space

$$X_{\|\cdot\|_{\varphi^*}^{\otimes}} := \{x \in X : \|x\|_{\varphi^*}^{\otimes} := \sup_{\|y\|_{\varphi} \leq 1} |\int_{\Omega} x(t)y(t) d\mu| < \infty\}$$

Definition 4.19. Let $\Omega = \mathbb{N}$, let μ be given by $\mu(\{n\}) = 1$, then the modular space X_{ρ} is called a sequence space.

The associate space is however not always isometrically isomorphic to the dual space, $X'_{\|\cdot\|_{\varphi}}$, of $X_{\|\cdot\|_{\varphi}}$, but only to a subset of it. With Lemma 2.10 it is easy to see that $X_{\|\cdot\|_{\varphi}^{\otimes}}$ is isometrically isomorphic to $X'_{\|\cdot\|_{\varphi}}$ if $X_{\|\cdot\|_{\varphi}}$ is a normed sequence space. It is even possible to prove that this is the case too, if $X_{\|\cdot\|_{\varphi}}$ is reflexive, but we will not prove that in this work.

Corollary 4.20. Let $X_{\|\cdot\|_{\varphi}}$ an Orlicz sequence space. Then $(X_{\|\cdot\|_{\varphi}})'$ is isometrically isomorphic to $X_{\|\cdot\|_{\varphi^*}^0}$.

Example 4.21. Now let us consider Example 4.9. Note that for every $u \geq 0$

$$\varphi_p(u) = \int_0^{|u|} pt^{p-1} dt.$$

So φ_p has the function $f : [0, \infty) \rightarrow [0, \infty)$, $u \mapsto pu^{p-1}$ as representation.

Now the complementary function φ_p^* is given by it's representation g where g is given by $g(t) = \sup\{s : f(s) \leq t\} = (\frac{t}{p})^{\frac{1}{p-1}}$, hence $\varphi_p^*(u) = \frac{p-1}{p} \cdot \frac{1}{p^{\frac{1}{p-1}}} |u|^{\frac{p}{p-1}} = \frac{p-1}{p^{\frac{1}{p-1}}} |u|^{\frac{p}{p-1}}$.

According to Corollary 4.20 we have:

$$\begin{aligned} \|x\|_{\varphi_p^*}^1 &= \|x\|_{\varphi_p^*}^0 = \inf\left\{\frac{1}{t}(1 + \rho_{\varphi^*}(tx)) : t > 0\right\} \\ &= \inf\left\{\frac{1}{t}(1 + \sum_{i \in \mathbb{N}} \frac{p-1}{p^{\frac{1}{p-1}}} (t|x_i|)^{\frac{p}{p-1}}) : t > 0\right\} \\ &= \inf\left\{\frac{1}{t} + \frac{p-1}{p^{\frac{1}{p-1}}} t^{\frac{p}{p-1}-1} \sum_{i \in \mathbb{N}} |x_i|^{\frac{p}{p-1}} : t > 0\right\} = (*) \end{aligned}$$

Let q be the conjugate number of p , then $p-1 = \frac{p}{q}$. Consider:

$$h(t) = \frac{1}{t} + \frac{p-1}{p^{\frac{p}{p-1}}} t^{\frac{p}{p-1}-1} \sum_{i \in \mathbb{N}} |x_i|^{\frac{p}{p-1}} = \frac{1}{t} + \frac{p-1}{p^q} t^{q-1} \sum_{i \in \mathbb{N}} |x_i|^q.$$

We can find the infimum of the expression by looking at it's extreme values:

$$h'(t) = \frac{(p-1)(q-1)}{p^q} t^{q-2} \left(\sum_{i \in \mathbb{N}} |x_i|^q \right) - \frac{1}{t^2} = \frac{1}{p^q} t^{q-2} \left(\sum_{i \in \mathbb{N}} |x_i|^q \right) - \frac{1}{t^2} = 0 \Leftrightarrow t = p \left(\sum_{i \in \mathbb{N}} |x_i|^q \right)^{-\frac{1}{q}}.$$

Now that we have find the infimum, we only need to substitute it in (*):

$$\begin{aligned}
\|x\|_{\varphi_p^*}^1 &= \frac{1}{p} \left(\sum_{i \in \mathbb{N}} |x_i|^q \right)^{\frac{1}{q}} + \frac{p-1}{p^q} \cdot p^{q-1} \left(\sum_{i \in \mathbb{N}} |x_i|^q \right)^{1-\frac{q-1}{q}} \\
&= \frac{1}{p} \left(\sum_{i \in \mathbb{N}} |x_i|^q \right)^{\frac{1}{q}} + \frac{p-1}{p} \left(\sum_{i \in \mathbb{N}} \frac{p-1}{p^{\frac{p-2}{p-1}}} |x_i|^q \right)^{1-\frac{1}{p}} \\
&= \frac{1}{p} \left(\sum_{i \in \mathbb{N}} |x_i|^q \right)^{\frac{1}{q}} + \frac{1}{q} \left(\sum_{i \in \mathbb{N}} \frac{p-1}{p^{\frac{p-2}{p-1}}} |x_i|^q \right)^{\frac{1}{q}} \\
&= \left(\sum_{i \in \mathbb{N}} \frac{p-1}{p^{\frac{p-2}{p-1}}} |x_i|^q \right)^{\frac{1}{q}} = \|x\|_q
\end{aligned}$$

With Theorem 4.17 we can easily prove the Hölder inequality.

Corollary 4.22. (Hölder)

Let $X_{\|\cdot\|_\varphi}$ be an Orlicz space and let $x, y \in X$. Then

$$\int_{\Omega} x(t)y(t)d\mu \leq \|x\|_\varphi \|y\|_{\varphi^*}^0.$$

Proof. Let $k \in \mathbb{F}$ such that $\|\frac{x}{k}\|_\varphi = 1$ then $\|x\|_\varphi = k$. Then

$$\int_{\Omega} x(t)y(t)d\mu = k \int_{\Omega} \frac{x(t)}{k} y(t)d\mu \leq k \|y\|_{\varphi^*}^1 = k \|y\|_{\varphi^*}^0 = \|x\|_\varphi \|y\|_{\varphi^*}^0.$$

□

5 Combination of Orlicz norms

Though we have shown that all p -norms are Luxemburg-norms, it is not certain that combinations of p -norms are always Luxemburg-norms as well. In fact, it is a general belief that this is not the case, though this has not been proven. Therefore we wil introduce combinations of Luxemburg-norms and combinations of Ameniya-norms to capture the combinations of p -norms in our generalisation.

We will achieve this by splitting up Ω in measurable, pairwise disjoint subsets $(T_i)_{i \in I}$, and treat the index-set I for the subsets as a measurespace where $\{i\}$ has measure 1 for all $i \in I$. A $x : \Omega \rightarrow \mathbb{F}$, we then split up in $(x_{T_i})_i$ where we can give each x_{T_i} a different norm $\|\cdot\|_{\varphi_i}$. Elements in the index sets then are as follows $x_T : I \rightarrow \mathbb{F}, i \mapsto \|x_{T_i}\|_{\varphi_i}$.

Definition 5.1. Let (Ω, Σ, μ) a σ -finite complete measure space and let $X = S(\Omega, \Sigma, \mu)$. Note that every measurable subset is a σ -finite complete measure space too.

Let (I, Σ_I, μ_I) a σ -finite complete measure space with for every $i \in I$ we have $\mu_I(i) = 1$ and $T = \{T_i\}_{i \in I}$ with $\emptyset \neq T_i \subset \Omega, T_i \cap T_j = \emptyset, \bigcup_{i \in I} T_i = \Omega, T_i \in \Sigma$ and let $Y = S(I, \Sigma_I, \mu_I)$.

Let $x \in X$ and $x_{T_i} := \{x(j)\}_{j \in T_i}$, let $x_T \in Y$ such that $x_T(i) = \|x_{T_i}\|_{\varphi_i}$ and $x_T^* \in Y$ such that $x_T^*(i) = \|x_{T_i}\|_{\varphi_i}^0$. Let $\{\varphi_i\}_{i \in I}$ and φ be elements of Φ .

A combination of modulars $\rho_{\varphi, \varphi_I}$ is given by:

$$\rho_{\varphi, \varphi_I}(x) = \int_I \varphi(\|x_{T_i}\|_{\varphi_i}) d\mu_I = \sum_{i \in I} \varphi(\|x_{T_i}\|_{\varphi_i}).$$

The complementary modular of a combination of Orlicz modulars is given by:

$$\rho_{(\varphi, \varphi_I)^*}(x) = \sum_{i \in I} \varphi^*(\|x_{T_i}\|_{\varphi_i}^0).$$

Definition 5.2. Let X, Y, T as in 5.1. Then $X_{\|\cdot\|_{\varphi, \varphi_I}} := \{x \in X : \|x\|_{\varphi, \varphi_I} < \infty\}$ and $X_{\|\cdot\|_{\varphi^*, \varphi_I^*}^0} := \{x \in X : \|x\|_{\varphi^*, \varphi_I^*}^0 < \infty\}$ are normed Orlicz spaces, and we call $Y_{\|\cdot\|_{\varphi, \varphi_I}} = \{x_T \in Y : \|x_T\|_{\varphi} < \infty\}$ and $Y_{\varphi^*, \varphi_I^*}^0 = \{x_T^* \in Y : \|x_T^*\|_{\varphi^*} < \infty\}$ their respective index spaces.

Now that we have described combinations of Luxemburg-norms, and their complementary norms, we naturally want that the Hölder inequality and the Young-inequality still hold.

Theorem 5.3. (Combination Hölder)

Let $X_{\|\cdot\|_{\varphi, \varphi_I}}$ be a normed Orlicz space and $Y_{\|\cdot\|_{\varphi, \varphi_I}}$ its index space, and let $x, y \in X$. Then

$$\int_{\Omega} x(t)y(t)d\mu \leq \|x\|_{\varphi, \varphi_I} \|y\|_{(\varphi, \varphi_I)^*}^0$$

Proof. Consider:

$$\begin{aligned} \int_{\Omega} x(t)y(t)d\mu &= \sum_{i \in I} \int_{T_i} x(t)y(t)d\mu \\ &\stackrel{\text{Hölder}}{\leq} \sum_{i \in I} \|x_{T_i}\|_{\varphi_i} \|y_{T_i}\|_{\varphi_i^*}^0 \\ &\stackrel{\text{Hölder}}{\leq} \|x_T\|_{\varphi} \|y_T^*\|_{\varphi^*}^0 \\ &= \|x\|_{\varphi, \varphi_I} \|y\|_{(\varphi, \varphi_I)^*}^0 \end{aligned}$$

□

Theorem 5.4. (Combination Young)

Let $X_{\|\cdot\|_{\varphi, \varphi_I}}$ be a normed Orlicz space and $Y_{\|\cdot\|_{\varphi, \varphi_I}}$ its index space, and let $x, y \in X$. Then

$$\int_{\Omega} x(t)y(t)d\mu \leq \rho_{\varphi, \varphi_I}(x_T) + \rho_{(\varphi, \varphi_I)^*}(y_T).$$

Proof. Consider:

$$\begin{aligned} \int_{\Omega} x(t)y(t)d\mu &= \sum_{i \in I} \int_{T_i} x(t)y(t)d\mu \\ &\stackrel{\text{Hölder}}{\leq} \sum_{i \in I} \|x_{T_i}\|_{\varphi_i} \|y_{T_i}\|_{\varphi_i^*}^0 \\ &\stackrel{\text{Young}}{\leq} \sum_{i \in I} \varphi(\|x_{T_i}\|_{\varphi_i}) + \varphi^*(\|y_{T_i}\|_{\varphi_i^*}^0) \\ &= \rho_{\varphi}(x_T) + \rho_{\varphi^*}(y_T^*) \\ &= \rho_{\varphi, \varphi_I}(x_T) + \rho_{(\varphi, \varphi_I)^*}(y_T). \end{aligned}$$

□

Theorem 5.5. Let $X_{\|\cdot\|_{\varphi, \varphi_I}}$ be a normed Orlicz space and $Y_{\|\cdot\|_{\varphi, \varphi_I}}$ its index space. Then:

$$\|x\|_{\varphi^*, \varphi_I^*}^0 = \|x\|_{\varphi^*, \varphi_I^*}^{\otimes} = \sup_{\|y\|_{\varphi, \varphi_I} \leq 1} \left| \int_{\Omega} x(t)y(t)d\mu \right|.$$

Proof. Let $c_T \in Y$ such that $\|c_{T_i}\|_{\varphi_i} = 1$ for all $i \in I$.
Then

$$\begin{aligned}\|y\|_{\varphi, \varphi_I} &= \|y_T\|_{\varphi} = \sum_{i \in I} \varphi(\|y_{T_i}\|_{\varphi_i}) \\ &= \sum_{i \in I} \varphi(\|y_{T_i}\|_{\varphi_i} \|c_{T_i}\|_{\varphi_i}) \\ &= \sum_{i \in I} \varphi(\|y_{T_i}\|_{\varphi_i} c_{T_i}\|_{\varphi_i})\end{aligned}$$

Hence:

$$\begin{aligned}\|x\|_{\varphi^*, \varphi_I^*}^{\otimes} &= \sup_{\|y\|_{\varphi, \varphi_I} \leq 1} \int_{\Omega} x(t) y(t) d\mu \\ &= \sup_{\|y\|_{\varphi, \varphi_I} \leq 1} \sum_{i \in I} \sup_{d: T_i \rightarrow \mathbb{F}, \|d\|_{\varphi_i} = 1} \int_{T_i} \|y_{T_i}\|_{\varphi_i} d(t) x(t) d\mu \\ &= \sup_{\|y\|_{\varphi, \varphi_I} \leq 1} \sum_{i \in I} \|y_{T_i}\|_{\varphi_i} \sup_{d: T_i \rightarrow \mathbb{F}, \|d\|_{\varphi_i} = 1} \int_{T_i} d(t) x(t) d\mu \\ &= \sup_{\|y\|_{\varphi, \varphi_I} = 1} \sum_{i \in I} \|y_{T_i}\|_{\varphi_i} \|x_{T_i}\|_{\varphi_i^*}^{\otimes}\end{aligned}$$

With Theorem 4.17 and Lemma 4.16 we now find that $\|x_{T_i}\|_{\varphi_i^*}^{\otimes} = \|x_{T_i}\|_{\varphi_i^*}^0$.
Hence we find:

$$\begin{aligned}\|x\|_{\varphi^*, \varphi_I^*}^{\otimes} &= \sup_{\|y\|_{\varphi, \varphi_I} \leq 1} \sum_{i \in I} \|y_{T_i}\|_{\varphi_i} \|x_{T_i}\|_{\varphi_i^*}^0 \\ &= \sup_{\|y_T\|_{\varphi} \leq 1} \sum_{i \in I} \|y_{T_i}\|_{\varphi_i} \|x_{T_i}\|_{\varphi_i^*}^0 \\ &= \|x_T^*\|_{\varphi^*}^{\otimes}\end{aligned}$$

By using Theorem 4.17 again we find $\|x_T^*\|_{\varphi^*}^{\otimes} = \|x_T^*\|_{\varphi^*}^0$.
Hence we find:

$$\|x\|_{\varphi^*, \varphi_I^*}^{\otimes} = \|x_T^*\|_{\varphi^*}^{\otimes} = \|x_T^*\|_{\varphi^*}^0 = \|x\|_{\varphi^*, \varphi_I^*}^0$$

□

Corollary 5.6. Let $X_{\|\cdot\|_{\varphi, \varphi_I}}$ an Orlicz sequence space. Then $(X_{\|\cdot\|_{\varphi, \varphi_I}})'$ is isometrically isomorphic to $X_{\|\cdot\|_{\varphi^*, \varphi_I^*}^0}$.

6 References

1. Maligranda, Lech, *Orlicz spaces and interpolation*, Campinas, 1989
2. Megginson, Robert E., *Introduction to Banach Space theory*, Appendix C, Springer- Verlag, New York, 1998