
Overaftelbaar oneindig veel
getalsontwikkelingen

Hans Fritzsche

Voorwoord 1

Voorwoord

Deze scriptie is geschreven als afronding voor mijn bachelor Wiskunde aan de
Universiteit Leiden, in samenwerking met Dr. C.C.C.J. Kalle. Ik wil bij deze
Dr. C.C.C.J. Kalle enorm bedanken voor haar inzet en begeleiding die mij
geholpen hebben deze scriptie tot een succes te brengen.
Ik wens de lezer veel plezier bij het lezen van mijn scriptie.

Inhoudsopgave 2

Inhoudsopgave

Voorwoord . 1
Inhoudsopgave . 2

1 Inleiding . 3
2 Bepalen van ontwikkelingen . 4
2.1 Dynamische systemen . 4
2.2 Algoritmen . 5
3 Werken met getalsontwikkelingen 7
3.1 Familie van getalsvoortbrengende functies. 7
3.2 Bepalen van verschillende getalsontwikkelingen 8
4 Hoofdstelling . 11
4.1 Fouten bij andere waarden van β 11
4.2 Een eindig aantal iteraties . 12
4.3 Bewijs van de hoofdstelling . 14
5 Verdieping: Hoe kunnen β-ontwikkelingen gebruikt worden in een

telefoon. 15
Gebruikte literatuur . 19

1 Inleiding 3

1 Inleiding

In het dagelijks leven wordt met een 10-tallig stelsel gewerkt. Dit betekent dat
elk getal (jaartal, prijs, leeftijd, hoeveelheid) opgedeeld kan worden in machten
van 10. Het opdelen van een getal in een bepaald stelsel wordt ook wel het
ontwikkelen van een getal genoemd. Zo kan het getal 4283,50 ontwikkeld worden
in 4 · 103 + 2 · 102 + 8 · 101 + 3 · 100 + 5 · 10−1. In mijn scriptie zal ik naar een
speciaal soort stelsel kijken, namelijk het ‘β-tallig stelsel’ waarbij 1 < β < 2.

Een verschil tussen het 10-tallig stelsel en het β-tallig stelsel is dat een getal zoals
4283,50 op meerdere verschillende manieren ontwikkeld kan worden. Een ander
verschil is dat bij het 10-tallig stelsel ik de keuze heb getallen uit {0, 1, 2, 3, 4, 5, 6,
7, 8, 9} voor een macht van 10 te zetten, terwijl in het β-tallig stelsel ik alleen 0
of 1 mag gebruiken. Dit verschil is cruciaal, omdat met behulp van het β-tallig
stelsel ontwikkelingen zullen ontstaan die alleen uit nullen en enen bestaan.
Zulke rijtjes van nullen en enen worden gebruikt in elk digitaal aparaat. Dit
stelsel zou dus gebruikt kunnen worden bij ontwikkeling van onder andere com-
puters, mobiele telefoons, mp3-spelers enzovoort.

Je zou je af kunnen vragen waarom dit stelsel gebruikt zou worden. We hebben
nu namelijk al een stelsel dat gebruikt wordt bij ontwikkeling van computers
en dergelijke, namelijk het 2-tallig stelsel. Er is echter een belangrijk verschil
tussen het 2-tallig stelsel en het β-tallig stelsel. Het zal namelijk blijken, zie
sectie 5, dat het β-tallig stelsel zijn eigen foutjes kan herstellen waar het 2-tallig
stelsel dat niet kan. Dit betekent dat als een computer bezig is een ontwikkeling
te maken (een rijtje van nullen en enen) en op de i-de plek per ongeluk een 0
zet waar een 1 had moeten staan, de rest van de rij achter de i-de plek op een
manier wordt veranderd zodat de gehele rij nog steeds dezelfde waarde aangeeft.
Dit betekent dus dat als foutjes gemaakt worden het niet erg is voor de code.
Dit kan helpen om storingen van signalen (zoals radiogolven) te voorkomen.

In deze scriptie komen de volgende onderwerpen aan bod:

Hoofdstuk 2. Hier zal ik bespreken hoe een ontwikkeling gevonden kan
worden, met zogenaamde dynamische systemen of met een algoritme.

Hoofdstuk 3. Hier zal ik laten zien hoe verschillende ontwikkelingen voor
hetzelfde getal gevonden worden.

Hoofdstuk 4. Ik zal hier de hoofdstelling van de scriptie formuleren en be-
wijzen. Deze stelling zegt iets over het aantal verschillende ontwikkelingen
voor bepaalde waarden van β.

Hoofdstuk 5. Hier zal ik uitgebreid en gedetailleerd verklaren hoe de ont-
wikkelingen van het β-tallig stelsel gebruikt kan worden om een telefoon
te laten werken. Ik zal laten zien hoe analoge signalen (een stem, muziek)
omgezet kunnen worden naar digitale signalen (een rij van nullen en enen)
met behulp van het β-tallig stelsel.

2 Bepalen van ontwikkelingen 4

2 Bepalen van ontwikkelingen

2.1 Dynamische systemen

Een manier om een getal te ontwikkelen is met behulp van een dynamisch sy-
steem. Een dynamisch systeem is een systeem dat door een functie

T (x) :

[
0,

1

β − 1

]
→
[
0,

1

β − 1

]
gegeven wordt, waarbij β de basis van het systeem is. Het systeem is dynamisch
omdat elk volgende getal in de ontwikkeling bepaald wordt door een volgende
iteratie van T te nemen. Tijdens dit hoofdstuk zal ik aannemen dat 1 < β < 2

en T (x) = βx− b1(x) waar b1(x) =

{
0 als x < 1

β ,

1 als x ≥ 1
β .

Ik laat hieronder zien hoe je met behulp van deze functie een ontwikkeling voor
x maakt:
Zij β en T zoals beschreven en zij x ∈

[
0, 1

β−1

]
willekeurig. Als ik T toepas op

deze x geldt de volgende vergelijking:

T (x) = βx− b1(x).

Als ik hieruit x isoleer krijg ik de vergelijking:

x =
b1(x)

β
+
T (x)

β
.

Nu pas ik T nogmaals toe op het resultaat van T (x). Ik neem dus T (T (x))
welke gegeven wordt door:

T 2(x) = T (T (x)) = βT (x)− b2(x).

Als ik hier T (x) isoleer volgt:

T (x) =
T 2(x)

β
+
b2(x)

β
.

Als ik de gevonden vergelijking voor T (x) nu invul in de vergelijking voor x
volgt dat:

x =
b1(x)

β
+
b2(x)

β2
+
T 2(x)

β2
.

De vervanging van T 2(x) kan weer gedaan worden door T 3(x) te bepalen en hier
T 2(x) uit te isoleren en weer in x in te vullen. Na n keer dit proces herhalen
volgt de volgende vergelijking voor x:

x =
b1(x)

β
+
b2(x)

β2
+ · · ·+ bn(x)

βn
+
Tn(x)

βn
. (2.1)

Omdat Tn(x) ∈
[
0, 1

β−1

]
geldt dat limn→∞

Tn(x)
βn = 0 waardoor de getalson-

twikkeling van de willekeurig gekozen x de volgende sommatie wordt:

x =

∞∑
i=1

bi(x)

βi
.

2 Bepalen van ontwikkelingen 5

Merk op dat een getalsontwikkeling gegeven kan worden door slechts de waarde
van b1, b2, . . . te geven, aangezien voor elke bi met i = 1, 2, . . . bekend is wat in
de noemer staat.

2.2 Algoritmen

Een andere manier om een getalsontwikkeling te maken is met behulp van een
algoritme. Ik introduceer hier twee algoritmen.

• Het Greedy algoritme: Stel b1, b2, . . . , bn zijn bekend. Dan is bn+1 = 1 als:

n∑
k=1

bk
βk

+
1

βn+1
≤ x.

Als dit niet het geval is, wordt bn+1 = 0.

• Het Lazy algoritme: Stel b1, b2, . . . , bn zijn bekend. Dan is bn+1 = 0 als:

x ≤
n∑
k=1

bk
βk

+

∞∑
k=n+2

1

βk
.

Als dit niet het geval is, wordt bn+1 = 1.

Om bekend te raken met de algoritmen zal ik van beide algoritmen een voor-
beeld uitwerken. Uit dit voorbeeld zal meteen duidelijk worden dat deze twee
algoritmen een verschillende ontwikkeling geven.

Voorbeeld 2.1.
Neem β = 1+

√
5

2 . Deze β heeft de fijne eigenschap dat 1
β−1 = β. Nu ontwikkel

ik het getal 1
β2 op twee manieren.

Greedy:

b1 = 1 als
0∑
k=1

bk
βk

+
1

β
=

1

β
≤ 1

β2
.

Dit is niet het geval, dus b1 = 0.

b2 = 1 als

1∑
k=1

bi
βk

+
1

β2
= 0 +

1

β2
≤ 1

β2
.

Dit klopt, dus b2 = 1.

b3 = 1 als

2∑
k=1

bk
βk

+
1

β3
=

1

β2
+

1

β3
≤ 1

β2
.

Dit is niet het geval, dus b3 = 0.
Voor elke volgende n blijft ongelijkheid niet waar en blijft dus elke bn+1 voor
n ≥ 2 gelijk aan 0. De ontwikkeling voor 1

β2 is met het Greedy algoritme dus
de volgende geworden:

01000000 . . .

2 Bepalen van ontwikkelingen 6

Lazy:

b1 = 0 als
1

β2
≤
∞∑
k=2

1

βk
= 0 +

1

(β − 1) · β
=
β

β
= 1.

Dit is het geval, dus b1 = 0.

b2 = 0 als
1

β2
≤

1∑
k=1

bk
βk

+

∞∑
k=3

1

βk
= 0 +

1

(β − 1) · β2
=

β

β2
=

1

β
.

Dit is het geval, dus b2 = 0.

b3 = 0 als
1

β2
≤

2∑
k=1

bk
βk

+

∞∑
k=4

1

βk
= 0 +

1

(β − 1) · β3
=

β

β3
=

1

β2
.

Dit is het geval, dus b3 = 0.

b4 = 0 als
1

β2
≤

3∑
k=1

bk
βk

+

∞∑
k=5

1

βk
= 0 +

1

(β − 1) · β4
=

β

β4
=

1

β3
.

Dit is niet het geval, dus b4 = 1.

Ik weet tot zover dat:

1

β2
=

0

β
+

0

β2
+

0

β3
+

1

β4
+

∞∑
k=5

bk
βk
. (2.2)

Hier zijn de waarden van bk onbekend. Ik claim dat de overige bk allemaal gelijk
aan 1 moeten zijn. Er geldt namelijk dat:

1

β4
+

∞∑
k=5

1

βk
=

1

β4
+

1

β3
=
β + 1

β4
=
β2

β4
=

1

β2
.

Uit (2.2) volgt dat ik voor geen enkele k ≥ 5 een bk = 0 mag kiezen, want dan
geldt dat 1

β4 +
∑∞
k=5

bk
βk < 1

β2 . Hieruit volgt dat de ontwikkeling voor 1
β2 met

het Lazy algoritme dus de volgende is:

0001111111

3 Werken met getalsontwikkelingen 7

3 Werken met getalsontwikkelingen

3.1 Familie van getalsvoortbrengende functies.

Tot nu toe zijn er twee verschillende ontwikkelingsmethoden gegeven, namelijk
de Greedy en de Lazy manier. Het verschil tussen beide is het moment waarop
je kiest om een bi gelijk aan 0 of 1 te maken. Bij Greedy maak je bi(x) = 0
als x < 1

β en bij Lazy maak je bi(x) = 0 als x ≤ 1
β(β−1) . De grens, die ik α

noem, waar je bi(x) = 0 kiest kan gevarieerd worden, waardoor je verschillende
ontwikkelingen krijgt. Er zijn echter grenzen voor α.

0 1
β

1
β−1

1
β−1

βx
βx− 1

1
β(β−1)

Figuur 1: Familie van getalsvoortbrengende functies

Een specifieke functie T hangt van de waarde van α af. Voor onbekende α ziet
de functie er als volgt uit:

Tα−(x) =

{
βx als x < α,
βx− 1 als x ≥ α of Tα+(x) =

{
βx als x ≤ α,
βx− 1 als x > α.

(3.1)

Lemma 3.1 legt een eis op het domein waarin α gekozen mag worden.

Lemma 3.1.

Voor iedere α ∈
[
1
β ,

1
β(β−1)

]
bestaan er twee verschillende transformaties, namelijk

Tα− en Tα+ uit (3.1), die β-ontwikkelingen genereren.

Bewijs Lemma 3.1
Bekend is dat:

βx− 1 ≥ 0⇔ x ≥ 1

β
en βx ≤ 1

β − 1
⇔ x ≤ 1

β(β − 1)
. (3.2)

Als α ∈
[
1
β ,

1
β(β−1)

]
, dan geldt dat Tα±(x) ∈

[
0, 1

β−1

]
voor alle x ∈

[
0, 1

β−1

]
.

De twee verschillende ontwikkelingen ontstaan door de verschillende functies

3 Werken met getalsontwikkelingen 8

Tα− en Tα+ te gebruiken. Als ik Tα− gebruik zal ik zijn ontwikkeling aangeven
met een rij b−i (x) en als ik Tα+ gebruik b+i (x). Er geldt dan:

b−1 (x) =

{
0 x < α,
1 x ≥ α en b+1 (x) =

{
0 x ≤ α,
1 x > α

. (3.3)

Voor verdere n ≥ 1 volgt dan b±n (x) = b±1
(
Tn−1α± (x)

)
. De twee verschillende

ontwikkelingen voor x worden dan net zo bepaald als in hoofdstuk 2.1.

3.2 Bepalen van verschillende getalsontwikkelingen

Figuur 1 heeft drie delen, namelijk:

• E0 = [0, 1
β),

• S =
[
1
β ,

1
β(β−1)

]
,

• E1 = (1
β(β−1) ,

1
β−1] .

Voor deze gebieden gelden twee fijne eigenschappen, namelijk:

∀x : x ∈ E0 ∪ S ⇒ βx ∈
[
0,

1

β − 1

]
en ∀x : x ∈ E1 ∪ S ⇒ βx− 1 ∈

[
0,

1

β − 1

]
.

Met behulp van algoritme 3.1 zijn verschillende getalsontwikkelingen te bepalen.
In dit algoritme wordt gebruik gemaakt van de gebieden E0, S, E1.

Algoritme 3.1.
Stap 1. Laat x = x1 en laat n = 1.
Stap 2. Bepaal in welk van de drie gebieden xn ligt.
Stap 3. Afhankelijk van het gebied waar xn ligt, volg stap 3a, 3b of 3c.

a Als xn ∈ E0, dan bn(x) = 0 en xn+1 = βxn = Tbn ◦ Tbn−1 ◦ · · · ◦ Tb1(x1).

b Als xn ∈ E1, dan bn(x) = 1 en xn+1 = βxn−1 = Tbn ◦Tbn−1
◦· · ·◦Tb1(x1).

c Als xn ∈ S, dan kies:
of bn(x) = 0 en xn+1 = βxn = Tbn ◦ Tbn−1

◦ · · · ◦ Tb1(x1),
of bn(x) = 1 en xn+1 = βxn − 1 = Tbn ◦ Tbn−1

◦ · · · ◦ Tb1(x1).

Stap 4. Laat n := n+ 1 en ga terug naar stap 2.

Ongeacht de keuze van bn is elke xn+1 met dezelfde formule te bepalen, namelijk
xn+1 = βxn−bn. Met behulp van deze eigenschap valt dan een algemene formule
voor de ontwikkeling van x te bepalen, namelijk:

x = x1 =
b1
β

+
Tb1(x1)

β
=
b1
β

+
b2
β2

+
Tb2 ◦ Tb1(x1)

β2

= · · · = b1
β

+ · · ·+ bn
βn

+
Tbn ◦ · · · ◦ Tb1(x1)

βn
.

Zoals in het algoritme te zien is zijn er twee keuzes voor bn als xn in deel S
ligt, namelijk bn = 0 of bn = 1. Ik zoek hier echter niet naar een specifieke

3 Werken met getalsontwikkelingen 9

ontwikkeling, maar naar meerdere mogelijke getalsontwikkelingen. Hoe deze
verschillende ontwikkelingen gevonden worden zal ik nu laten zien met behulp
van voorbeeld 3.1.

Voorbeeld 3.1.
Stel ik neem een punt x = x1 zoals gegeven in figuur 2. Dit punt ligt in E0,
dus met stap 3a volgt dat b1(x) = 0. Om b2 te bepalen moet ik bepalen waar
x2 = T0(x1) ligt. Dit doe ik door een verticale lijn vanuit punt x1 te tekenen tot
ik op lijn βx kom, waarna ik horizontaal naar de lijn y = x loop. Het snijpunt
van deze horizontale lijn met de lijn y = x geeft de waarde voor x2. Zoals te
zien in figuur 3, ligt x2 ∈ S.

0 1
β

1
β−1

E1SE01
β−1

1
β(β−1)

x

Figuur 2

0 1
β

1
β−1

E1SE01
β−1

1
β(β−1)

Figuur 3

Omdat x2 ∈ S zijn er met stap 3c twee keuzes. Deze keuzes zijn met twee
kleuren in figuur 4 gegeven. Als ik b2 = 0 kies, dan kan ik de positie van x3
bepalen door x3 = T0(x2), oftewel een verticale lijn vanuit punt x2 tekenen tot
ik bij lijn βx kom, daarna horizontaal naar het snijpunt met de lijn y = x waar
ik de waarde voor x3 vind. Als ik b2 = 1 kies, dan kan ik de positie van x3
analoog bepalen maar dan neem ik de verticale lijn vanuit x2 tot de lijn βx− 1.
Er ontstaan nu twee verschillende ontwikkelingen. De positie van x3 zal ver-
schillen afhankelijk van de keuze van b2. In figuur 5 is te zien welke positie x3
in beide gevallen aanneemt.

0 1
β

1
β−1

E1SE01
β−1

1
β(β−1)

Figuur 4

0 1
β

1
β−1

E1SE01
β−1

1
β(β−1)

Figuur 5

Hier is duidelijk te zien dat de waarde voor x3 verschilt. Als ik b2 = 1 kies,
dan ligt x3 ∈ E0, maar als ik b2 = 0 kies, dan ligt x3 ∈ S. In het eerste geval
geldt met stap 3a dat b3 = 0. In het andere geval geldt x3 ∈ S, dus heb ik met

3 Werken met getalsontwikkelingen 10

stap 3c twee keuzes voor b3. Dit proces kan herhaald worden, waardoor telkens
meerdere verschillende ontwikkelingen ontstaan, omdat ik telkens weer keuzes
krijg als een xn ∈ S.

Als ik de blauwe lijn volg, weet ik dat geldt b1 = 0, b2 = 1, b3 = 0, dus deze
ontwikkeling van x begint met 010 Als ik bij de splitsing de groene lijn
volgt weet ik dat geldt dat b1 = 0, b2 = 0, dus deze ontwikkeling van x begint
met 00

Elke keer als een xn in S komt heb ik dus keuze uit twee opties voor bijbehorende
bn. Een schematische weergave waarin te zien is dat er dankzij deze opties
telkens meer ontwikkelingen ontstaan is te zien in sectie 4.3.

4 Hoofdstelling 11

4 Hoofdstelling

Dit project heeft als belangrijkste stelling de onderstaande.

Stelling 4.1.

Als 1 < β < 1+
√
5

2 , dan heeft elke x ∈
(

0, 1
β−1

)
overaftelbaar oneindig veel

β-ontwikkelingen.

Uit paragraaf 3.2 volgt dat als een xn in S komt, er twee verschillende takken

ontstaan. Paragraaf 4.1 zal laten zien waarom 1+
√
5

2 ≤ β < 2 uitgesloten is.

Paragraaf 4.2 zal laten zien dat er voor elke x ∈
(

0, 1
β−1

)
een n aantal iteraties

is zodat xn ∈ S. Hierna zal paragraaf 4.3 het bewijs van de hoofdstelling geven.

4.1 Fouten bij andere waarden van β

Verschillende ontwikkelingen voor dezelfde waarde x worden gevonden wanneer
een iteratie van x in het gebied S komt. Er zijn echter bepaalde waarden voor
1 < β < 2 waarin er geen enkele iteratie van x in S komt. De waarde van β moet
gelimiteerd worden, zodat het niet mogelijk is vanuit E0 naar E1 te springen
zonder in S te komen. Er moet dus gelden dat β · 1

β < 1
β(β−1) . Eenvoudige

algebra geeft dat deze ongelijkheid geldt als β < 1+
√
5

2 . Er volgen nu twee

voorbeelden. Voorbeeld 4.1 laat zien wat gebeurt als β = 1+
√
5

2 en voorbeeld

4.1 laat zien wat gebeurt als β > 1+
√
5

2 .

Voorbeeld 4.1.
Neem aan dat β = 1+

√
5

2 . Merk op dat voor deze β geldt dat 1
β(β−1) = 1. Neem

x = x1 = 1
β . Merk op dat x1 ∈ S. Nu mag ik met behulp van stap 3c van

algoritme 3.1 een keuze voor b1 maken.

Stel dat ik b1 = 1 kies. Dan geldt dat x2 = T1(x1) = T1

(
1
β

)
= β · 1β − 1 = 0.

Omdat 0 ∈ E0 en wegens stap 3a geldt dat x3 = T0(0) = 0, volgt dat elke bn = 0
voor n ≥ 2.

Stel dat ik b1 = 0 kies. Dan geldt dat x2 = T0(x1) = T0

(
1
β

)
= β · 1β = 1. Nu

geldt dat x2 ∈ S, dus mag ik weer een keuze maken voor b2.

Stel dat ik b2 = 0 kies. Dan geldt dat x3 = T0◦T0(x1) = T0(1) = T0

(
1

β(β−1)

)
=

β · 1
β(β−1) = 1

β−1 . Omdat 1
β−1 ∈ E1 en wegens stap 3b geldt dat x4 =

T1

(
1

β−1

)
= 1

β−1 , volgt dat elke bn = 1 voor n ≥ 3.

Stel dat ik b2 = 1 kies. Dan geldt dat x3 = T1◦T0(x1) = T1(1) = T1

(
1

β(β−1)

)
=

β · 1
β(β−1) − 1 = 1

β . Nu geldt dat x3 = x1, dus zijn we terug bij het begin. Een-

voudig zien we hier dat elke iteratie een extra ontwikkeling voor x toevoegd.
Het aantal ontwikkelingen groeit dus lineair evenredig met het aantal iteraties.
Dit aantal is aftelbaar veel en niet overaftelbaar veel. Dus voor deze waarde
van β geldt stelling 4.1 niet.

4 Hoofdstelling 12

Voorbeeld 4.2.
Neem aan dat 1+

√
5

2 < β < 2. Merk op dat voor deze waarden van β geldt dat
β < β2 − 1. Deze eigenschap zal ik tweemaal gebruiken.
Ik zoek nu een waarde voor x = x1 ∈ E0 zodanig dat T0(x1) ∈ E1 en T1 ◦
T0(x1) = x1. Ik claim dat x = 1

β2−1 hieraan voldoet.

Voor de gekozen grenzen van β geldt dat x = 1
β2−1 <

1
β . Hieruit volgt dat x1 ∈

E0, dus met stap 3a van algoritme 3.1 volgt dat x2 = T0(x1) = β · 1
β2−1 = β

β2−1 .

Voor de gekozen grenzen van β geldt dat β
β2−1 >

1
β(β−1) (want β < β2− 1), dus

x2 ∈ E1.
Nu geldt dat x2 ∈ E1, dus met stap 3b van algoritme 3.1 volgt dat x3 =

T1 ◦ T0(x1) = T1

(
β

β2−1

)
= β · β

β2−1 − 1 = β2

β2−1 −
β2−1
β2−1 = 1

β2−1 = x.

Ik heb nu dus een waarde van x gevonden waar maar 1 mogelijke ontwikkeling
voor is, namelijk 010101

4.2 Een eindig aantal iteraties

Lemma 4.1.

Voor elke x ∈
(

0, 1
β

)
geldt dat er een n ∈ N is zodanig dat Tn0 (x) ∈ S en

T k0 (x) ∈ E0 voor alle 0 < k < n.

Omdat het figuur symmetrisch is, is het bewijzen van dit lemma genoeg om te

concluderen dat er voor elke x ∈
(

0, 1
β−1

)
een n ∈ N is zodat xn ∈ S.

Bewijs Lemma 4.2
Er zijn twee manieren waarop Tn0 (x) /∈ S voor alle n, namelijk:

1. voor een gegeven x bestaat een n zodat Tn0 (x) van E0 naar E1 springt
(oftewel Tn−10 (x) ∈ E0 en Tn0 (x) ∈ E1),

2. voor een gegeven x blijft Tn0 ∈ E0 voor alle n.

Ik zal laten zien dat beide gevallen niet mogelijk zijn, waaruit ik kan concluderen
dat voor elke x er een eindige n bestaat zodat Tn0 (x) ∈ S.

1. Omdat de waarde van n waar de sprong van E0 naar E1 voorkomt niet
uitmaakt, kan ik Tn−10 (x′) vervangen door x en Tn0 (x′) = T0(x). Stel dat
x ∈ E0 en T0(x) ∈ E1. Er geldt dan dat x < 1

β en βx > 1
β(β−1) . Ik zoek

dus een x die als volgt begrensd is:

1

β2(β − 1)
< x <

1

β

Dit kan alleen als 1
β2(β−1) <

1
β . Deze ongelijkheid geldt als β > 1+

√
5

2 .

Dit is in tegenspraak met de aanname dat β < 1+
√
5

2 , dus een dergelijke
x bestaat niet.

4 Hoofdstelling 13

2. Voor elke willekeurige x ∈
(

0, 1
β

)
geldt dat Tn0 (x) = βnx. Elke iteratie

die optreedt bij verhogen van de n geeft een strikt stijgende functie, wat
betekent dat voor een gegeven n moet gelden dat Tn0 (x) ≥ 1

β , oftewel dat

Tn0 (x) /∈ E0.
Er is dus geen x waarvoor Tn0 (x) ∈ E0 voor alle n.

Hieruit concludeer ik dat voor elke x ∈
(

0, 1
β

)
geldt dat er een n is zodanig dat

Tn0 (x) ∈ S en voor elke x ∈
(

1
β(β−1) ,

1
β−1

)
geldt dat er een m is zodanig dat

Tm1 (x) ∈ S.

4 Hoofdstelling 14

4.3 Bewijs van de hoofdstelling

Ik zal nu beginnen met het bewijzen van stelling ??. Deze stelling luidt:

Stelling 4.1.

Als 1 < β < 1+
√
5

2 , dan heeft elke x ∈
(

0, 1
β−1

)
overaftelbaar oneindig veel

β-ontwikkelingen.

Bewijs Stelling 4.1
Laat β en x binnen de intervallen zoals gegeven liggen. Een ontwikkeling van
willekeurige x begint in een van de delen E0, S, E1. Ik weet uit Lemma 4.2
dat ongeacht in welk deel x begint, de ontwikkeling van x na een eindig aantal
iteraties in gebied S komt. Wanneer dit gebeurt ontstaan twee verschillende
ontwikkelingen. Als ik verder ga met een van deze ontwikkelingen, zal er voor
deze ontwikkeling weer na een eindig aantal stappen een moment komen waar
de ont- wikkeling in S komt. Hier wordt de ontwikkeling weer in twee delen
gesplitst. Dit proces herhaalt zich.

Het moment dat elke splitsing zelf weer splitst is niet voor elke tak gelijk. In het
algemeen geldt wel dat voor elke n ≥ 1 er een minimale kn is zodat, met behulp
van algoritme 3.1, na kn stappen er minstens 2n verschillende beginstukken van
ontwikkelingen van x ontstaan zijn. In de limiet van n naar oneindig zal het
aantal verschillende beginstukken overaftelbaar oneindig veel worden.

Dus met deze gekozen x en β ontstaan overaftelbaar oneindig veel verschillende
getalsontwikkelingen.

Figuur 6 laat schematisch zien hoe de minimale kn bepaald worden voor ver-
schillende waarden van n. Op de horizontale lijnen zijn de bijbehorende xi /∈ S.
Een splitsing treedt op als een bepaalde xi ∈ S.

0

0

0

1

1 0

1

1

1

1

0

0 1

0

k1 k2 k3

Figuur 6

5 Verdieping: Hoe kunnen β-ontwikkelingen gebruikt worden in een telefoon. 15

5 Verdieping: Hoe kunnen β-ontwikkelingen gebruikt worden
in een telefoon.

AD-omzetting is een term die gebruikt wordt om analoge naar digitale signalen
om te zetten. Dit houdt in dat analoge signalen (denk aan tekst, geluid, spraak)
gecodeerd worden naar een bepaalde digitale code (denk aan binaire code, morse
code, rook en licht signalen). Tegenwoordig worden de digitale signalen vooral
omgezet in een reeks van nullen en enen. Om dit te doen zijn verschillende
algoritmen bedacht. Bij ontwerp van zulke algoritmen zijn er twee stromingen
waar aandacht naar uitgaat. Als eerste moet het algoritme er mooi uitzien en
moet het algoritme eenvoudig werken (het algoritme moet dus niet oneindig lang
duren of zoveel stappen uitvoeren dat het te lang duurt voor een computer om
het algoritme af te lopen). Ten tweede moet geprobeerd worden een algoritme
te maken dat zijn eigen fouten kan herstellen. Dit is handig omdat computers
die erg lange codes moeten maken wel eens een foutje kunnen maken. Als dit
foutje niet herstelt kan worden zal de code nutteloos zijn. Het herstellen van
foutjes wordt ook wel robuustheid van een algoritme genoemd.

Bestaande AD-omzetters kunnen in twee grote klassen opgedeeld worden, namelijk
de ‘oversampled’-omzetters en de Nyquist-rate omzetters. De oversampled-
omzetters zal ik buiten beschouwing laten. De Nyquist-rate omzetter bestaat
uit twee delen, een versterker en een zogenaamde weerstand-condensator filter
(RC-filter in engels). Wat dit precies inhoudt probeer ik aan de hand van een
voorbeeld duidelijk te maken.

Stel dat je een voicemail wil inspreken. Je praat dan in een telefoon met analoge
signalen. Je telefoon kan echter alleen digitale signalen doorsturen naar een
antwoordapparaat in een ander huis. Het analoge signaal (de geluidsgolf) moet
dus omgezet worden naar een digitaal signaal. De geluidsgolf bestaat uit een
frequentie en een amplitude. De frequentie bepaalt de hoogte van de klanken,
hoge klanken hebben een grote frequentie en lage klanken een kleine. De am-
plitude bepaalt het volume van het geluid, oftewel hoe hard je klinkt. Iemand
die fluistert geeft dus golven met een zeer lage amplitude af terwijl iemand die
schreeuwt een grote amplitude heeft. Deze golven gaan de telefoon in, waar
een versterker de amplitude vermenigvuldigt met een factor. Kleine volumever-
schillen worden hierdoor groter omdat alle amplituden die in je telefoon komen
met dezelfde factor vermenigvuldigd worden. Hierdoor herkent je telefoon kleine
volumeverschillen beter.
Op je voicemail wil je natuurlijk niet elk klein geluidje terughoren. Achter-
grondgeluiden zoals je broertje die met een pen speelt of de vogels die buiten
zingen zijn niet belangrijk. Daarom worden alleen golven met een amplitude bin-
nen een bepaald interval toegelaten. Deze test zit ook verwerkt in de versterker.
Omdat geen enkele machine 100% rendement heeft, ontstaat er een beetje ruis
tijdens dit proces. Het rendement in dit proces ligt in het meten van de ampli-
tude. De waarde van de amplitude wordt altijd afgerond, dus het geluid blijft
niet precies gelijk. Hierdoor klinkt een voicemail niet exact hetzelfde als wanneer
je rechtstreeks tegen iemand praat. De hoeveelheid ruis die ontstaat hangt af
van de versterker, omdat hier de amplitude gemeten wordt en vermenigvuldigd
wordt met een factor wat afrondfouten meebrengt.

5 Verdieping: Hoe kunnen β-ontwikkelingen gebruikt worden in een telefoon. 16

De golven (met vergrootte amplituden) die doorgelaten zijn door de versterker
worden daarna getest op frequentie. Een voicemail hoeft geen geluiden door te
geven die zo hoog of laag zijn dat het menselijk oor ze niet kunnen horen. De
frequentie wordt dus ook getest en doorgelaten als deze in een bepaald interval
ligt. Dit wordt gedaan door de RC-filter.

Nu is het tijd om deze golven om te zetten naar een reëel getal. Er zijn twee
factoren die in te stellen zijn op je telefoon om deze analoge signalen om te
zetten, namelijk:

• Hoeveel metingen je telefoon per seconde doet. Dit wordt ook wel ‘Sam-
pling rate’ genoemd.

• De nauwkeurigheid van de meting. Hierbij moet gedacht worden aan hoe
klein de verschillen moeten zijn tussen verschillende amplituden.

Stel dat we bij het inspreken de volgende analoge golf krijgen, waar op de
verticale as de amplitude in volt is uitgedrukt en op de horizontale as de tijd:

Figuur 7: De blauwe lijn geeft de verdeling in waarden van amplitude aan die
bepaald worden uit de golf. [1]

Hier is de sampling rate vrij klein en de nauwkeurigheid ook, er zijn namelijk
maar 10 verschillende waarden die de amplitude aan kan nemen. Door ver-
schillen in de dichtsbijzijnde waarde op de y-as met de waarden van de frequentie
ontstaat de ruis waar ik het eerder over had. Als ik nu op beide assen kleinere
intervallen neem, zal het signaal telkens nauwkeuriger worden. Voor telefoons
wordt een sampling rate van 8000 gebruikt (dus er wordt 8000 keer per seconde
een meting gedaan) en het aantal intervallen op de amplitude zijn er ongeveer
65000. Bij elke meting wordt nu gekeken bij welk van de 65000 punten de am-
plitude het meest in de buurt ligt. Een meting krijgt dan een waarde tussen 0
en 65000.

Het hele proces wat nu doorlopen is vanaf een analoog signaal tot een getal
tussen 0 en 65000, wordt gedaan door een Nyquist-rate omzetter is dus een
analoog signaal omgezet naar een reeks reële getallen. Deze getallen moeten
dan nog omgezet worden naar binaire codes. Dit is het punt waarop algoritmes
ingezet worden om deze binaire codes te maken.

De β-encoder is een van deze algoritmen. Het fijne aan dit algoritme is dat het
zijn eigen fouten herstelt. De precizie van dit algoritme vervalt exponentieel,
maar langzamer dan de algoritmen die normaal gebruikt worden. De β-encoder

werkt alleen op getallen x in het interval
[
0, 1

β−1

]
. Omdat de getallen x die

het systeem inkomen tussen 0 en 65000 liggen, zal de encoder eerst dit interval
moeten verkleinen naar een geschikt interval. Om dit te doen kan de encoder

5 Verdieping: Hoe kunnen β-ontwikkelingen gebruikt worden in een telefoon. 17

bijvoorbeeld elke inkomende x vermenigvuldigen met de factor 1
65000(β−1) .

Nu ontstaat een reeks getallen op een geschikt interval voor het algoritme. Een
elektrisch apparaat werkt echter niet met behulp van een algoritme, maar met
behulp van een circuit. In een circuit wordt een elektrische stroom gestuurd,
waarna er bepaalde handelingen met het stroompje uitgevoerd worden. De
handelingen lijken erg op de handelingen van het algoritme. Het circuit ziet er
als volgt uit:

β Qv
ui+1

Delay

xi bi+1

−

+

ui − bi

Figuur 8: Het elektrische circuit om ontwikkelingen te maken. [3]

Ik zal nu een toelichting geven van het circuit uit figuur 8. De bepaalde x, na-

dat x vermenigvuldigd is met 1
65000(β−1) zodat x ∈

[
0, 1

β−1

]
, is een elektrische

stroom die in het circuit gestuurd wordt. De waarde van x is de spanning van
de stroom. De term xi is de spanning van de stroom die het circuit ingestuurd
wordt. Hier is x1 = x en x2, x3, . . . , xn = 0. Deze spanning wordt dan naar een
knooppunt gestuurd. In dit knooppunt wordt een bepaalde spanning opgeteld.
Wat deze spanning is zal ik later verklaren.
De driehoek in het figuur is een vermenigvuldiger. Hier wordt een bepaalde
stroom vermenigvuldigd met een gegeven factor, die in mijn geval β is. De
waarde van de spanning na het vermenigvuldigen wordt aangegeven met ui+1 =
βxi.
Dit stroompje wordt daarna naar een zogenaamde comparator gestuurd (aange-
geven met een vierkant met Qv erin). Hier wordt de waarde van de spanning
van de stroom gemeten en vergeleken met de waarde v, waarna de waarde bi+1

gelijk aan 0 of 1 wordt. Je zou verwachten dat de waarde van v in hetzelfde
interval ligt als de waarde van α uit sectie 3.1, waardoor bi+1 net zo bepaald
wordt als in (3.3). Er is echter een belangrijk verschil tussen het moment waarop
bi+1 bepaald wordt in (3.3) en het moment waarop bi+1 bepaald wordt in het
circuit. In het circuit wordt xi+1 namelijk eerst vermenigvuldigd met β voor-
dat het vergeleken wordt met een bepaalde waarde v, terwijl in (3.3) alleen x
vergeleken wordt met een waarde α. De bepaling van bi+1 volgt dus uit (3.3)
door zowel x als α met β te vermenigvuldigen. Er geldt dan:

bi+1(βxi+1) =

{
0 βxi+1 < βα,
1 βxi+1 ≥ βα

.

Als ik nu v = βα kies, volgt wegens het interval van α uit 3.1 dat v ∈
[
1, 1

β−1

]
.

5 Verdieping: Hoe kunnen β-ontwikkelingen gebruikt worden in een telefoon. 18

Omdat βxi+1 = ui+1, kan ik de bepaling van bi+1 ook schrijven als:

bi+1(ui+1) = Qv(ui+1) =

{
0 ui+1 < v,
1 ui+1 ≥ v

.

Merk op dat de waarde van v ingesteld kan worden door de fabrikant. Deze
waarde voor bi+1 wordt dan ook de output van het circuit en levert na meerdere
iteraties een ontwikkeling voor x op.
Nadat bi+1 bepaald is, moet bi+2 bepaald worden. Uit algoritme 3.1 weet ik
dat xn+1 = βxn − bn. In dit circuit is un+1 gelijk aan βxn+1. De waarde van
deze twee stromen worden echter niet tegelijkertijd bepaald. Om ze toch gelijk
door te sturen is een delay in het circuit gezet. De stroom ui+1 bereikt eerder
de delay dan de stroom bi+1. De delay zorgt er dan voor dat de stroom ui+1

niet wordt doorgegeven voordat de waarde van stroom bi+1 ervanaf gehaald is.
Nadat dit gedaan is wordt de stroom ui+1 − bi+1 bij xi+1 = 0 opgeteld, waarna
het circuit weer opnieuw begint.
De fabrikant kan ook instellen hoeveel iteraties er gedaan moeten worden. Eerder
hebben we de mogelijke spanning van de analoge signalen in 65000 stukjes
gedeeld. Het aantal bits dat per spanning x bepaald moet worden, moet zodanig
bepaald worden dat geldt dat #bits < log2(65000). Dit geldt als het aantal
bits minstens 16 is.

Het hele proces wat nu beschreven is lijkt erg op de manier zoals nu binaire
codes gemaakt worden. Het verschil is dat de vermenigvuldiger nu op β staat in
plaats van 2. Hierdoor veranderen tevens ook de grenzen van v. Dit verschil is
cruciaal voor de robuustheid van het proces. Er geldt namelijk dat een binaire
code maar op één manier gemaakt kan worden in het 2-tallig stelsel. Dit houdt
in dat er maar 1 mogelijkheid is van een ontwikkeling van een willekeurige input.
Het β-tallig stelsel kan echter oneindig veel verschillende ontwikkelingen maken
van een willekeurige input. Hierdoor is het niet erg wanneer een computer een
foutje maakt, omdat dit foutje doorberekent wordt in het systeem (namelijk het
stroompje met waarde ui+1) waarna een nog steeds correcte (maar wel andere)
ontwikkeling ontstaat. Het β-tallig stelsel kan dus zijn eigen foutjes verbeteren
omdat er oneindig veel verschillende ontwikkelingen per input zijn, waaruit volgt
dat het β-tallig stelsel robuuster is dan het 2-tallig stelsel.

Het omzetten van analoge signalen naar digitale signalen is dus een enorm pro-
ces. We weten nu dat er per seconde 8000 getallen ontwikkelt worden, elk met
minstens 16 bits. Nadat een digitaal signaal is ontstaan bestaan er soortgelijke
circuits met DA-omzetting, zodat iemand aan de andere kant van de lijn jouw
stem kan horen. Hoe dit proces werkt laat ik buiten beschouwing, daar het niet
relateert aan mijn scriptie.

Gebruikte literatuur 19

Gebruikte literatuur

Referenties

[1] M. Brain, How Analog and Digital Recording Works, http://electronics.
howstuffworks.com/analog-digital.htm, (2011).

[2] K. Dajani, C. Kraaikamp, Ergodic Theory of Numbers, Mathematical As-
sociation of America, Washington, DC (2002).

[3] I. Daubechies, R.A. DeVore, C.S. Güntürk, V.A. Vaishampayan, A/D con-
version with imperfect quantizers, IEEE Trans. Inform. Theory, 52(3):874-
885 (2006).

[4] I. Daubechies, C.S. Güntürk, Y. Wang, Ö. Yilmaz, The Golden Ratio En-
coder, IEEE Trans. Inform. Theory, 56(10):5097-5110 (2010).

[5] C. Gammel, Switching Regulators and Switching Noise, http:

//chrisgammell.com/switching-regulators-and-switching-noise/,
(2009).

[6] J. Widder, Y. Zhao, Understanding output filters for Class-D
amplifiers, http://www.eetimes.com/design/audio-design/4015847/

Understanding-output-filters-for-Class-D-amplifiers, (2008).

[7] Digital Audio- Digital Sound Primer, http://www.zytrax.com/tech/

audio/digital-sound.html, (2013).

