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1 Introduction

In this thesis we will get familiar with the Theorem of Banach and Stone and a nice ap-
plication. The Theorem is a classic result within the theory of spaces of continuous maps
on compact Hausdorff spaces and is named after the mathematicians Stefan Banach and
Marshall Stone.

Let C(K) denote the Banach space consisting of all real- or complex-valued continuous func-
tions on a compact Hausdorff spaceK, with the supremumnorm ‖f‖∞ = sup{|f(x)| : x ∈ K}.
Stefan Banach thought about the case when there is a isometric function between two such
spaces. In 1932 he solved his problem for compact metric spaces K by describing that iso-
metric map. This was extended by Marshall Stone in 1937 to general compact Hausdorff
spaces K. We will consider this generalized version in this paper.

The contents of this paper are as follows. In the next Section, we will discuss some basic
results from different fields in mathematics. We will conclude this Section with a precise
formulation of the Banach-Stone Theorem, Theorem 2.14. In Section 3 we consider more
advanced results from linear functional analysis. In Section 4 we prove some important
theorems from topology which are essential in the proof of the Banach-Stone Theorem. Then
we have enough knowledge to prove it in Section 5. We conclude this thesis with Section 6,
where we apply the Banach-Stone Theorem to obtain a description of the structure on the
group of isometric isomorphisms from C(K) to C(K).

Prior to reading this thesis, one should have some basic knowledge of topology and linear
functional analysis. A short recap is given, but for details one could consult [6] or [7].

Before we take off, I would like to express my appreciation to my advisor M.F.E. de Jeu for
the support and interesting conversations during this project.
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2 Basic Results

Before we start introducing some more advanced tools, we will discuss some elementary
definitions and facts in this section, which will be concluded by formulating the Theorem of
Banach-Stone. We will also state a known result which is going to be important in the proof.
The Banach-Stone Theorem and its proof depend on some other special structures, so we
start by defining those structures.

2.1. Definition. A topological space (X, T ) is called locally compact if there exists a
compact neighborhood for every point of X.

2.2. Definition. A topological space (X, T ) is called Hausdorff if, for any x, y ∈ X with
x 6= y, there are open sets U, V ∈ T with x ∈ U , y ∈ V and U ∩ V = ∅.

We would like to define a special structure on a locally compact space, but the notion of a
general σ-algebra is needed for that.

2.3. Definition. Let Ω be a set. A subset A ⊆ P(Ω) is called a σ-algebra (in Ω) if it
satisfies the following properties

• Ω ∈ A,

• Ω \ A = Ac ∈ A for any A ∈ A,

•
⋃
n∈NAn ∈ A for any sequence of sets (An)n∈N ⊆ A.

2.4. Definition. Let X be a locally compact space and let B(X) denote the smallest
σ-algebra of subsets of X that contains all open sets of X. Then B(X) is called the Borel-σ-
algebra of X, and its elements are called Borel sets.

This Borel-σ-algebra of X is essential for our proof of the Banach-Stone Theorem. In measure
theory, for example [2], the notion of a measure on a measurable space is introduced. In the
following definition we consider a special class of measures on (X,B(X)).

2.5. Definition. A positive measure µ on the Borel-σ-algebra (X,B(X)) is called a regular
Borel measure if it is

• a Borel measure, µ(K) <∞ for K ⊂ X compact,

• inner regular, µ(V ) = sup{µ(K) : K ⊂ V with K compact} for any V ∈ B(X),

• outer regular, µ(V ) = inf{µ(U) : V ⊂ U with U open in X} for any V ∈ B(X).

If µ is a complex-valued measure, it is regular Borel if |µ|, the variation of µ, is a regular
Borel measure, see [3, Definitions C.3 and C.10].

2.6. Definition. Let M(X) denote the set of all complex-valued regular Borel measures on
X.

The variation of a measure is also used for defining a norm on this space M(X), as stated in
the next proposition.
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2.7. Proposition. M(X) is a vector space over C with its natural addition and scalar
multiplication and norm ‖µ‖ = |µ|(X) for µ ∈ M(X).

Before we switch from measure theory to linear functional analysis, we recall two propositions
about continuous maps between topological spaces.

2.8. Proposition. Let (X, TX), (Y, TY ) be topological spaces then the following are equiv-
alent for a map f : X → Y

1. f is continuous,

2. f−1(F ) is closed in X for every closed F ⊆ Y ,

3. f−1(U) is open in X for every open U ⊆ Y .

2.9. Proposition. Let X, Y be topological spaces. Suppose that X is compact, Y is
Hausdorff and f : X → Y bijective and continuous. Then f is a homeomorphism.

Proof. The only thing to prove here is that f−1 : Y → X is continuous. Let F ⊆ X be
a closed set. Note that F is compact and that (f−1)−1(F ) = f(F ) since f is a bijection.
Furthermore, note that f(F ) is a compact subset of Y since f is a continuous map. Because
Y is Hausdorff, f(F ) is closed in Y . Now we have that (f−1)−1(F ) is closed, hence f−1 is
continuous by Proposition 2.8.

From now on, we will switch to linear functional analysis. In particular, we will consider the
following function spaces.

2.10. Definition. Let X be a topological space. Define the following sets of functions,

C(X) := {f : X → F : f is continuous},
Cb(X) := {f ∈ C(X) : f is bounded },
C0(X) := {f ∈ C(X) : {x ∈ X : |f(x)| > ε} is compact in X for all ε ∈ R>0}.

It is easy to verify that both Cb(X) and C0(X) are vector spaces over F (which will always
be either R or C) with the natural addition and scalar multiplication. Moreover, Cb(X) and
C0(X) can be made into normed spaces since the function ‖f‖ := supx∈X |f(x)| defines a
norm on Cb(X).

2.11. Notation. The space Cb(X) will be called the dual (space) of X and denoted by X∗.
Also, for f ∈ X∗ and x ∈ X we will sometimes write 〈f, x〉 instead of f(x). There are some
other interesting properties that are worth mentioning.

2.12. Proposition. Let X be a Hausdorff space. Then both Cb(X) and C0(X) are Banach
spaces over F and C0(X) is a closed linear subspace of Cb(X).

Proof. Let ε = 1, f ∈ C0(X) and define V := {x ∈ X : |f(x)| > 1}. Then, by assumption,
we have that V is compact in X. Thus f(V ) is compact in F since f is continuous. Since
F is either equal to R or homeomorphic to R2, we conclude that f(V ) is always closed and
bounded by the Heine-Borel Theorem, [6, Corollary 2.5.12]. Hence f is bounded on V and
we have |f | < 1 on X \V . We conclude that C0(X) ⊆ Cb(X). From now on this is a routine
verification, we will not spell it out. For the details, see [3, Example III.1.6].
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There is another important result which we will need before we are able to state the Banach-
Stone Theorem.

2.13. Proposition. For X compact Hausdorff the equality C0(X) = Cb(X) = C(X) holds.

Proof. We have already proved that C0(X) ⊆ Cb(X) ⊆ C(X). Now let f ∈ Cb(X) and
ε ∈ R>0. Then f−1(Bε(0)) = {x ∈ X : |f(x)| < ε} is open in X. This is immediate from
Proposition 2.8 since Bε(0) denotes the open ball around 0 with radius ε and f is continuous.
Then its complement is closed and equal to {x ∈ X : |f(x)| > ε}. Now we have a closed
set in a compact space, therefore it is compact. Thus f ∈ C0(X) and we conclude that
Cb(X) = C0(X). For the second equality we note that a continuous F-valued function f on
the compact space X has a compact image f(X) ⊆ F. Now we apply the same argument as
in the previous proof, with X instead of V . Hence f is bounded on X so f ∈ Cb(X) and
Cb(X) = C(X).

At this moment we have enough knowledge to state and understand the Banach-Stone The-
orem. As stated in the Introduction, it will be proved in Section 5.

2.14. Theorem (Banach-Stone). Let X, Y be compact Hausdorff spaces and let T be
a surjective isometry C(X)→ C(Y ). Then there exists a homeomorphism τ : Y → X and a
function h ∈ C(Y ) such that |h(y)| = 1 for all y ∈ Y and

T (f)(y) = h(y)f(τ(y)), for all f ∈ C(X) and y ∈ Y.

Also the converse is true. Let h and τ as stated, and define the map T : C(X) → C(Y )
by T (f)(y) = h(y)f(τ(y)) for f ∈ C(X) and y ∈ Y . Since τ is a homeomorphism and the
assumption |h(y)| = 1 for all y ∈ Y we have that

‖T (f)‖ = sup
y∈Y
|T (f)(y)| = sup

y∈Y
|h(y)f(τ(y))| = sup

y∈Y
|h(y)||f(τ(y))| = sup

x∈X
|f(x)| = ‖f‖.

Thus T is isometric. It is also surjective. For any g ∈ C(Y ) we define f := 1
h◦τ−1 · (g ◦ τ−1).

Since h, τ−1 and g are continuous maps we have that both g ◦ τ−1 and h ◦ τ−1 are continuous
maps. Thus f is continuous as product of composition of continuous maps, since h(y) 6= 0
for all y ∈ Y . Let y ∈ Y , then we have

T (f)(y) = h(y)

(
1

h ◦ τ−1
· (g ◦ τ−1)

)
(τ(y)) = h(y)

(
1

h ◦ τ−1

)
(τ(y)) · (g ◦ τ−1)(τ(y))

=
h(y)

h(y)
· g(y) = g(y).

Hence Tf = g and the converse of the Banach-Stone Theorem is proved. The proof of the
Banach-Stone Theorem is more complicated and involves the Riesz Representation Theorem.

2.15. Theorem (Riesz Representation Theorem). Let X be a locally compact
Hausdorff space and µ ∈ M(X). Define

Fµ : C0(X) → C
f 7→

∫
f dµ.
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Then Fµ ∈ C0(X)∗ and the map

M(X) → C0(X)∗

µ 7→ Fµ

is an isometric isomorphism.

The proof of this theorem is an involved construction, which will not be discussed here. For
more details, one consults [4, Theorem 7.17 and Corollary 7.18].
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3 Linear Functional Analysis

The first part of the proof of the Banach-Stone Theorem is fully covered by general results
about normed spaces from Linear Functional Analysis. In this section we will investigate
those results and give a rough sketch of the structure of our proof. Before we start, recall
that continuous and bounded maps between normed vectorspaces are called bounded linear
operators or sometimes just operators or (linear) functionals. We will also use isometric
isomorphism instead of surjective isometry, because tey are equivalent. This is clear since
every isometric map is always injective. We start with the following theorem, which states
the existence of a special map for any bounded linear operator, just like every isomorphism
has an inverse.

3.1. Theorem (Adjoint map). Let X, Y be normed spaces and T : X → Y a bounded
linear operator. Then there exists a unique operator T ∗ : Y ∗ → X∗ such that

T ∗(f)(x) = f(Tx), for all f ∈ Y ∗, x ∈ X.

For a proof of this theorem see [7, Theorem 5.50]. We will call T ∗ the adjoint of T . The
following lemma is needed in the proof of the next proposition, which states another important
property of this dual map.

3.2. Lemma. Let (X, ‖·‖) be a normed space with X 6= {0},∅ and f ∈ X∗. Then for every
ε ∈ R>0 there exists x ∈ X such that ‖x‖ = 1 and ‖f‖ − ε 6 |f(x)|.

Proof. Note that for f = 0 we have ‖f‖ = 0, thus any x ∈ X will do. So assume f 6= 0,
and ε ∈ R>0. Then, by definition of the supremumnorm, there exists 0 6= y ∈ X such that
‖y‖ 6 1 and ‖f‖ − ε 6 |f(y)|. Since y 6= 0, the norm of x := y

‖y‖ is equal to 1 and 1
‖y‖ > 1.

Now we have

‖f‖ − ε 6 1

‖y‖
(‖f‖ − ε) 6 f(y)

‖y‖
= ‖f(x)‖.

3.3. Proposition. Let X, Y be normed spaces and T : X → Y an isometric isomorphism.
Then T ∗ : Y ∗ → X∗ is again an isometric isomorphism with (T ∗)−1 = (T−1)

∗
.

Proof. Let S := T−1 and let S∗ and T ∗ be as in Theorem 3.1. Now, let f ∈ X∗, x ∈ X.
Then, by definition of S,

T ∗(S∗f)(x) = S∗(f)(Tx) = f((S ◦ T )(x)) = f(x)

On the other hand, for g ∈ Y ∗, y ∈ Y we conclude from that definition

S∗(T ∗g)(y) = T ∗(g)(Sy) = g((T ◦ S)(y)) = g(y)

Hence, we have S∗ ◦ T ∗ = IY ∗ and T ∗ ◦ S∗ = IX∗ . We conclude that (T ∗)−1 = S∗ and
T ∗ = (S∗)−1. So T ∗ is an isomorphism which satisfies (T ∗)−1 = (T−1)

∗
.

In order to prove that T ∗ is isometric, let f ∈ Y ∗ and consider ‖T ∗(f)‖. For x ∈ X we know
that

‖T ∗(f)(x)‖ = ‖f(Tx)‖ 6 ‖f‖‖Tx‖ 6 ‖f‖‖T‖‖x‖.
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Since T is an isometry, we have ‖T‖ = 1. With the result above we have that

‖T ∗(f)‖ = sup{‖T ∗(f)(x)‖ : x ∈ X such that ‖x‖ 6 1}
6 ‖T‖‖f‖ sup{‖x‖ : x ∈ X such that ‖x‖ 6 1}
6 ‖T‖‖f‖ = ‖f‖.

Let ε ∈ R>0. Then, by Lemma 3.2, there exists y ∈ Y such that ‖y‖ = 1 and ‖f‖−ε 6 |f(y)|.
Since T is an isometric isomorphism, x := T−1y is well-defined and we have

‖x‖ = ‖Tx‖ = ‖TT−1y‖ = ‖y‖ = 1.

Now we conclude

‖f‖ − ε 6 |f(y)| = |f(Tx)| = |T ∗(f)(x)|
6 sup{|T ∗(f)(x)| : x ∈ X such that ‖x‖ 6 1}
= ‖T ∗(f)‖

Then we have
‖f‖ = sup

ε∈R>0

{‖f‖ − ε} 6 sup
ε∈R>0

‖T ∗(f)‖ = ‖T ∗(f)‖.

We conclude ‖T ∗(f)‖ = ‖f‖. Hence T ∗ is an isometric isomorphism.

Now that we know some properties of this dual space and the adjoint, consider the following
map.

3.4. Definition. Let X be any Hausdorff space and x ∈ X. Define the evaluation map by

δx : Cb(X) → F
f 7→ f(x).

This map has some convenient properties, as stated in the next proposition.

3.5. Proposition. For δx as in Definition 3.4 above, δx ∈ Cb(X)∗ and ‖δx‖ = 1.

Proof. It is clear from Definition 3.4 that δx is linear, since f is linear. On the other hand,
by using the operator norm

‖δx‖ = sup{‖δx(f)‖ : f ∈ Cb(X) such that ‖f‖ 6 1}
6 sup{|f(x)| : f ∈ Cb(X) such that ‖f‖ 6 1}
6 1.

On the other hand, for f = 1 ∈ Cb(X) we have equality. So we conclude δx ∈ Cb(X)∗ with
‖δx‖ = 1.

Now it is time to reveal the connection between the previous two sections, especially the
one between the regular Borel measures on X and the dual of X. We need the following
definitions to make it clear.

3.6. Definition. Let K be a convex set in a vector space X, and x1, x2 ∈ K. Let

[x1, x2] := {λx1 + (1− λ)x2 : λ ∈ [0, 1]}
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denote the line segment connecting x1 with x2. We call it proper if x1 6= x2. The open line
segment connecting x1 with x2 is (x1, x2) := [x1, x2] \ {x1, x2}.

This definition will make more sense with the next definition and theorem.

3.7. Definition. Let X be a vector space and K ⊆ X a convex subset. A point k ∈ K is
called an extreme point of K if there exists no proper open line segment that contains k. Let
ExtK be the of extreme points of K.

Recall that, for any normed space X, the closed unit ball of X is denoted by BallX. Then
we have the following theorem.

3.8. Theorem. Let X be a compact Hausdorff space. Then

Ext[Ball M(X)] = {αδx : α ∈ F with |α| = 1 and x ∈ X}.

The proof of this theorem is in [3, Theorem V.8.4]. Together with the Riesz Representation
Theorem, this will be the key to success while proving the Banach-Stone theorem. Before we
proceed to this proof we have to consider a special topology on the dual.
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4 Nets and weak*-topology on the dual

In metric spaces there is the notion of a (converging) sequence. However, this is not sufficient
in general topological spaces. In this section we will discuss a well-known generalization. First
of all, we have some definitions.

4.1. Definition. Let (X, T ) be a topological space and x ∈ X. A set N ⊆ X is called a
neighborhood of x if there is a set U ∈ T such that x ∈ U ⊆ N . Let Nx denote the collection
of neighborhoods of x.

4.2. Definition. A directed set is a partially ordered set (A,6) such that if α1, α2 ∈ I, then
there exists α3 ∈ I such that α1 6 α3 and α2 6 α3.

4.3. Definition. Let (X, T ) be a topological space. A net in X is a pair ((A,6), x) with A
a directed set and x a function A→ X.

We will write xα instead of x(α) and will use the phrase ”let {xα}α∈A be a net in X”. Since
N with its natural ordering is a directed set, any sequence is a net.

4.4. Definition. Let (X, T ) be a topological space and {xα}α∈A a net in X. Then {xα}α∈A
converges to x ∈ X (in symbols, x = limα xα) if for every N ∈ Nx there exists an αN ∈ A
such that xα ∈ N for all α ∈ A with αN 6 α.

4.5. Proposition. Let (X, T ) be a Hausdorff space and {xα}α∈A a net in X and x1, x2 ∈ X
such that the net converges to both x1 and x2. Then x1 and x2 are equal.

Proof. Let {xα}α∈A be a net in X such that limα xα = x1 and limα xα = x2 with x1, x2 ∈ X
such that x1 6= x2. Then there are U, V ∈ T such that x1 ∈ U, x2 ∈ V and U ∩ V = ∅ since
X is Hausdorff. From the assumption on convergence of the net, we have αU , αV ∈ A such
that xα ∈ U for every α ∈ A with αU 6 α and xα ∈ V for every α ∈ A with αV 6 α. Since A
is a directed set, there is an index α0 such that αU , αV 6 α0. Then we have a contradiction,
because for every α ∈ A such that α0 6 α we have that α ∈ U ∩ V = ∅. We conclude
x1 = x2, so the limit is unique.

We already have some characterizations for a continuous map, as stated in Proposition 2.8.
We are almost ready to to extend it.

4.6. Definition. Let (X, TX), (Y, TY ) be topological spaces and x0 ∈ X. A function
f : X → Y is called continuous at x0 if f−1(N) ∈ Nx0 for every N ∈ Nf(x0). As usual, we
call f continuous if it is continuous at every point of X.

4.7. Proposition. Let (X, TX), (Y, TY ) be topological spaces, f : X → Y and x0 ∈ X.
Then f is continuous at x0 if and only if limα f(xα) = f(x0) for all nets {xα}α∈A in X such
that limα xα = x0.

Proof. Assume that f is continuous at x0 and let {xα}α∈A be a net in X with limit x0. Also
let V ∈ TY such that f(x0) ∈ V and N ∈ Nf(x0). According to the definition of continuity at
x0 we have f−1(N) ∈ Nx0 . Then there is an index α0 ∈ A such that xα ∈ f−1(N) for all α ∈ A
with α0 6 α. That is, for such α we have f(xα) ∈ N . We conclude that limα f(xα) = f(x0)
since N was arbitrary.
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Let {xα}α∈A be a net in X such that limα xα = x0. Now assume that limα f(xα) = f(x0)
and let U = {U ∈ TX : x0 ∈ U}. Suppose that f is not continuous at x0. Then there exists
an N ∈ Nf(x0) such that f−1(N) /∈ Nx0 . That is, for every U ∈ U we have U * f−1(N).
Hence for every U ∈ U we have that f(U) \ N 6= ∅, that is, there exists xU ∈ U such that
f(xU) /∈ N . Now we have that U is a directed set: for U, V ∈ U define U 6 V if V ⊆ U .
Hence {xU}U∈U is a net and it converges to x0 while the net {f(xU)}U∈U can not converge
to f(x0) by assumption on N . This is a contradiction, and we conclude that f is continuous
at x0.

Also, we may equip the dual of a normed space with a special topology.

4.8. Definition. Let X be a normed space. The weak* topology is the weakest topology on
X∗ such that the map

φx : X∗ → F
x∗ 7→ 〈x∗, x〉

is continuous for all x ∈ X.

In case we consider the dual of a normed space X together with this weak* topology, we
simply write (X∗,wk∗). Then we have the next lemma.

4.9. Lemma. Let X be a normed space. The weak* topology on X∗ is generated by all
sets of the form {(φx)−1[U ] : U ⊆ F open and x ∈ X}.

Proof. Since φx must be continuous for all x ∈ X and U ⊆ F open, those sets are exactly
the ones from Proposition 2.8.

Let us now consider what it means for a net in this topology to converge.

4.10. Lemma. Let X be a normed space and consider (X∗,wk∗). Let {x∗α}α∈A a net in X∗

and x∗ ∈ X∗ a function. Then {x∗α}α∈A is weak* convergent to x∗ (in symbols limα x
∗
α = x∗)

if and only if
lim
α
〈x∗α, x〉 = 〈x∗, x〉 for all x ∈ X.

Proof. Apply [5, Proposition 2.2.4] on X∗ and the family {x∗ 7→ 〈x∗, x〉 : x ∈ X}.

With this equivalence in mind, we define a continuous map between two topological spaces
with this weak* topology.

4.11. Definition. Let X, Y be normed spaces and consider (X∗,wk∗), (Y ∗,wk∗). Let
{x∗α}α∈A a net in X∗ converging to x∗ ∈ X∗ and T : X∗ → Y ∗ a map. Then T is weak*-weak*
continuous if limα Tx

∗
α = Tx∗.

Now we are able to prove the following proposition, which will be very useful.

4.12. Proposition. Let X, Y be topological vector spaces and T : X → Y an isometric
isomorphism. Then T ∗ is a weak*-weak* homeomorphism of BallY ∗ onto BallX∗.

Proof. From Lemma 3.3 we have that T ∗ is an isomorphism such that (T ∗)−1 = (T−1)
∗
. So,

it suffices to show that T ∗ and (T ∗)−1 are weak*-weak* continuous. Let {y∗α}α∈A be a net in
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Y ∗ such that limα y
∗
α = y∗. Let x ∈ X and consider limα〈T ∗y∗α, x〉. Now we use the definition

of T ∗ to find
lim
α
〈T ∗y∗α, x〉 = lim

α
〈y∗α, Tx〉 = 〈y∗, Tx〉 = 〈T ∗y∗, x〉.

So we conclude that limα T
∗y∗α = T ∗y∗. Thus T ∗ is weak*-weak* continuous.

Now let {x∗α}α∈A be a net in X∗ converging to x∗ ∈ X∗. Now let y ∈ Y ∗ and use the property
of T ∗ from Lemma 3.3

lim
α
〈(T ∗)−1x∗α, y〉 = lim

α
〈(T−1)∗x∗α, y〉

= lim
α
〈x∗α, T−1y〉

= 〈x∗, T−1y〉
= 〈(T ∗)−1x∗, y〉.

So we conclude that limα(T ∗)−1y∗α = (T ∗)−1y∗. Thus (T ∗)−1 is weak*-weak* continuous.

By Lemma 3.3 we also have that T ∗ is an isometry, so the unit ball of Y ∗ is mapped onto
the unit ball of X∗. Hence T ∗ is a weak*-weak* homeomorphism such that

T ∗[BallY ∗] = BallX∗.

We have another important property of the evaluation map from Definition 3.4.

4.13. Proposition. Let X be a compact Hausdorff space and consider the map

∆: X → (C(X)∗,wk∗)
x 7→ δx.

Then ∆ is well-defined and a homeomorphism onto its image (∆(X),wk∗).

Proof. First of all, the map is well-defined by Proposition 3.5. First we prove that ∆ is
continuous. So let f ∈ C(X) and {xα}α∈A a net in X converging to x ∈ X. Because f is
continuous, we have that

lim
α
〈δxα , f〉 = lim

α
〈f, xα〉 = 〈f, x〉 = 〈δx, f〉.

So, by Lemma 4.10 the net {δxα}α∈A is weak* convergent to δx in the weak* topology on
C(X)∗. We conclude that ∆ is continuous by Proposition 4.7. Let x, y ∈ X with x 6= y.
We will show that ∆(x) 6= ∆(y) to conclude that ∆ is injective. Since X is Hausdorff, the
singletons {x}, {y} are closed. Then, by Urysohn’s Lemma [6, 4.1.2], there exists a continuous
function f : X → F such that f(X) ⊆ [0, 1] ⊆ R ⊆ C with f(x) = 0 and f(y) = 1. Thus
∆(x) = δx(f) 6= δy(f) = ∆(y). We conclude that ∆ is continuous and injective onto its
image, hence ∆: X → (∆(X),wk∗) is a continuous bijection. We also need that (∆(X),wk∗)
is Hausdorff. Let f, g ∈ X∗ such that f 6= g, so there exist x ∈ X such that f(x) 6= g(x).
Since F is Hausdorff, there exist U, V ⊆ F open such that U ∩ V = ∅ and f(x) ∈ U and
g(x) ∈ V . Then f ∈ (φx)

−1[U ] and g ∈ (φx)
−1[V ], which are open by Lemma 4.9. Also

disjoint since U and V are disjoint. We conclude that (∆(X),wk∗) is Hausdorff. So, we
have that X is compact, and (∆(X),wk∗) is Hausdorff, hence by Proposition 2.9 ∆ is a
homeomorphism onto its image (∆(X),wk∗).
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5 Banach-Stone Theorem

Now we have enough knowledge, so it is time to prove the main theorem of this thesis.

5.1. Theorem (Banach-Stone). Let X, Y be compact Hausdorff spaces and let T be a
surjective isometry C(X) → C(Y ). Then there exists a homeomorphism τ : Y → X and a
function h ∈ C(Y ) such that |h(y)| = 1 for all y ∈ Y and

T (f)(y) = h(y)f(τ(y)), for all f ∈ C(X) and y ∈ Y.

Proof. First of all, we know that T is an isometric isomorphism and by Proposition 3.3 both
T and T ∗ are isometric isomorphisms, such that (T−1)

∗
= (T ∗)−1. From Proposition 4.12 we

have that T ∗ is a weak*-weak* homeomorphism such that

T ∗(Ball C(Y )∗) = Ball C(X)∗.

First note that those closed unit balls are convex. Furthermore, T ∗ is a linear map, hence it
preserves convex combinations. It is therefore clear that

T ∗(Ext[Ball C(Y )∗]) = Ext[Ball C(X)∗].

This is the point where the Riesz Representation Theorem, 2.15, comes in. One finds that

T ∗(Ext[Ball M(Y )]) = Ext[Ball M(X)].

Let y ∈ Y , then by Theorem 3.8 there exists a unique τ(y) ∈ X and a unique scalar h(y) ∈ F
such that |h(y)| = 1 and

T ∗(δy) = h(y)δτ(y).

We will prove now that h : Y → F is a continuous map and that τ : Y → X is a homeomor-
phism. After that we will finish the proof.

Claim. h : Y → F is continuous.
Proof. Let y ∈ Y and {yα}α∈A be a net in Y converging to y. Since ∆ is a continuous
map, Proposition 4.13, we have that limα δyα = δy in C(Y )∗. Also, since T ∗ is a weak*-weak*
continuous map, we have that

lim
α
h(yα)δτ(yα) = lim

α
T ∗(δyα) = T ∗(δy) = h(y)δτ(y).

Now we have, for the constant map 1: X → F, x 7→ 1, which is clearly an element of C(X),

lim
α
h(yα) = lim

α
〈h(yα)δyα , 1〉 = 〈h(y)δτ(y), 1〉 = h(y).

We conclude that h is a continuous map by Proposition 4.7, since y was arbitrary.

Claim. τ : Y → X is a homeomorphism.
Proof. Let y ∈ Y and {yα}α∈A be a net in Y converging to y. We will use the results

15



limα h(yα)δτ(yα) = h(y)δτ(y) and limα h(yα) = h(y) from the previous proposition. Since the
scalar multiplication on a topological vector space is continuous, we have that

lim
α
δτ(yα) = lim

α
(h(yα))−1[h(yα)δτ(yα)] = δτ(y).

By Proposition 4.13, we have also that limα τ(yα) = τ(y). Thus τ is continuous by Proposi-
tion 4.7 since y was arbitrary.

Now suppose that y1, y2 ∈ Y and y1 6= y2. Then, since ∆ is injective, we have that δy1 6= δy2 .

So h(y1)δy1 6= h(y2)δy2 and since T ∗ is injective by Proposition 3.3, we conclude

δτ(y1) = h(y1)h(y1)δτ(y1) = T ∗
(
h(y1)δy1

)
6= T ∗

(
h(y2)δy2

)
= h(y2)h(y2)δτ(y2) = δτ(y2).

By Proposition 4.13, it is immediate that τ(y1) 6= τ(y2). Thus τ is injective.

Let x ∈ X. From Proposition 3.3 we also have that T ∗ is surjective, so by the main proof,
we conclude that there exists µ ∈ Ext[Ball M(Y )] such that T ∗µ = δx. Moreover, for some
β ∈ F with |β| = 1 and y ∈ Y we have that µ = βδy. Now we have that

δx = T ∗(βδy) = βT ∗(δy) = βh(y)δτ(y).

That is, β = h(y) and x = τ(y). Thus τ is surjective.

Therefore, we have that τ : Y → X is a continuous bijection and by Proposition 2.9 we
conclude that τ is a homeomorphism.

Let us now finish the main proof. So let f ∈ C(X) and y ∈ Y . Then one concludes, by using
the definition of the adjoint in Definition 3.1, that

T (f)(y) = 〈δy, T f〉 = 〈T ∗δy, f〉 = 〈h(y)δτ(y), f〉 = h(y)δτ(y)(f) = h(y)f(τ(y)).
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6 Semi-direct product

In this final section, we will consider a special application of the Banach-Stone Theorem. We
will also use that the converse of the Banach-Stone Theorem is true. From now on, suppose
that X is a compact Hausdorff space. It turns out that there is a group theoretic connection
between the following sets:

Isom(C(X)) := {T : C(X)→ C(X) : T is an isometric isomorphism},
Homeo(X) := {τ : X → X : τ is a homeomorphism},

Um(X) := {h ∈ C(X) : |h(x)| = 1 for all x ∈ X}.

In particular, those sets are groups with respect to some simple operations. Let ◦ be the com-
position of maps and · the pointwise multiplication. Functions in the set Um(X) are some-
times called unimodular functions. Then it is immediate that (Isom(C(X)), ◦), (Homeo(X), ◦)
and (Um(X), ·) are groups. Recall that, for a group G, the group of automorphisms of G is
denoted by

Aut(G) = {f : G→ G : f is a bijective homomorphism}.

We will use this set in the definition of a semi-direct product.

6.1. Proposition. Let G and H be groups and f : H → Aut(G) a homomorphism. Then
the operation (g1, h1)(g2, h2) = (g1f(h1)(g2), h1h2) defines a group operation on the product
G×H.

The proof of this proposition is in [1, Proposition 8.12]. This group G × H is called the
semi-direct product of G and H with respect to f and will be denoted by G of H. Let us
consider the map

σ : Homeo(X) → Aut(Um(X))
τ 7→ τ∗,

where the map τ∗ is defined as

τ∗ : Um(X) → Um(X)
h 7→ h ◦ τ−1.

6.2. Proposition. σ is a homomorphism.

Proof. First of all, we see that τ∗ is well-defined, hence σ is a well-defined map. Let
τ1, τ2 ∈ Homeo(X) and h ∈ Um(X). Then we have that

σ(τ1 ◦ τ2)(h) = (τ1 ◦ τ2)∗(h)

= h ◦ (τ1 ◦ τ2)−1

= (h ◦ τ−12 ) ◦ τ−11

= τ1∗(h ◦ τ−12 )

= (τ1∗ ◦ τ2∗)(h)

= (σ(τ1) ◦ σ(τ2))(h).
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Hence σ(τ1 ◦ τ2) = σ(τ1) ◦ σ(τ2) and we have that σ is a homomorphism.

By applying Proposition 6.1 we have that the semi-direct product Um(X) oσ Homeo(X) is
a group with operation (h1, τ1)(h2, τ2) = (h1 · σ(τ1)(h2), τ1 ◦ τ2). We are now able to prove
the desired result, where we will need the Banach-Stone Theorem.

6.3. Theorem. The map

ψ : Isom(C(X)) → Um(X) oσ Homeo(X)[
T : C(X) → C(X)

f 7→ h · (f ◦ τ)

]
7→ (h, τ−1)

is a group isomorphism.

Proof. First of all, the map ψ is well-defined and injective, since there exists unique functions
h ∈ Um(X) and τ ∈ Homeo(X) for every T ∈ Isom(C(X)) by the Banach-Stone Theorem. It
is immediate from the converse of the Banach-Stone Theorem that ψ is surjective, as stated
in Section 2. Moreover, ψ is a group homomorphism. Let T1, T2 ∈ Isom(C(X)). Then we
assume ψ(T1) = (h1, τ

−1
1 ) and ψ(T2) = (h2, τ

−1
2 ) for certain maps τ1, τ2 ∈ Homeo(X) and

h1, h2 ∈ Um(X). By definition of the group operation on Um(X) oσ Homeo(X) we have

ψ(T1)ψ(T2) = (h1, τ
−1
1 )(h2, τ

−1
2 ) = (h1 · σ(τ−11 )(h2), τ

−1
1 ◦ τ−12 ) = (h1 · h2 ◦ τ1, (τ2 ◦ τ1)−1).

On the other hand, we have for an arbitrary map f ∈ C(X) that

(T1 ◦ T2)(f) = T1(T2(f)) = T1(h2 · f ◦ τ2) = h1 · (h2 · f ◦ τ2) ◦ τ1 = h1 · h2 ◦ τ1 · f ◦ τ2 ◦ τ1.

Then we conclude that

ψ(T1 ◦ T2) = (h1 · h2 ◦ τ1, (τ2 ◦ τ1)−1).

Thus ψ is a bijection and a homomorphism, hence it is an isomorphism.

We conclude that Isom(C(X)) ∼= Um(X) oσ Homeo(X).
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