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1 Introduction

This thesis is about the polar auxin transport in Arabidopsis thaliana inflores-
cence stems. It is made in collaboration with the Plant BioDynamics Laboratory
in Leiden, where the experiments mentioned in this thesis were done.
In this thesis we investigate the inter- and intracellular transport of auxin. The
reason for this is that we want to know more about how auxin is transported.
Is this done by simple diffusion in the cell or is there active transport? Which
transporters in the cell membrane play a role and what is their transport ca-
pacity? The problem with this is that the auxin molecule, indole-3-acetic acid,
is very small and therefore not visible. It can’t be made visible either, e.g. by
labelling with a fluorescent protein.
Our attempt to learn more about this transport in Arabidopsis thaliana is to
look at auxin at a macroscopic level. This is possible by making the auxin ra-
dioactive. It is not as accurate as looking at visible molecules, but it is accurate
enough for this macroscopic level. With modelling we try to fit the obtained
experimental results. Assumptions will be made and tested in this thesis by this
modelling.
One of the most elaborate articles about this subject is that of G.J. Mitchison,
[8], dating back to the 1980s. In the following three decades the mathematical
modelling of polar auxin transport in stem segments seems to have stalled. Re-
search seems to have shifted to the molecular biology of the system, with a few
exceptions, [3, 5]. This article was used as a starting point and improved at the
Plant BioDynamics Laboratory. This thesis is a sub-question of the research
that is being done there.
This thesis will differ from most other mathematical theses, because of the bio-
logical nature of the subject. As such it is located in the field of mathematical
biology. It is meant to be readable for both mathematicians and experimental
biologists with some mathematical training.
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2 Underlying Information

2.1 Biology

Arabidopsis thaliana is a small flowering plant that, like any other plant, trans-
ports auxin, indole-3-acetic acid (IAA), through it’s tissue. Auxin is a phyto-
hormone that regulates growth, rates of cell expansion and rates of cell division
and establishment and maintenance of pattern during growth and development,
like a morphogen, [2, 7]. In this thesis we will look at auxin as a molecule and
its function is not relevant.
The transport of auxin is confined to transport channels. One transport channel
consists of a single file of cells with an apoplast between every two adjacent cells.
In the stem there are around 10 vascular bundles. The cross-sectional area of
the stem is around 3, 7 × 10−7 m2 of which 0, 7 × 10−7 m2 consists of vascular
bundles. Around 20 to 30 percent of this area of vascular bundles is expected
to consist of transport channels.
IAA is a weak acid, with acidity constant pKa = 4.8. Thus it is present both in
protonated form (IAAH) and anion form (IAA−) at the same time. In the cell
membrane we have PIN-transporters and AUX-transporters to transport IAA
through the membrane. PIN-transporters hypothetically transport IAA− out of
the cell and AUX-transporters transport IAA− into the cell. PIN-transporters
are mainly located in the membrane at the basal end of the cell and AUX-
transporters are equally distributed across the membrane. The protonated form
can only diffuse through the membrane. The different forms of transport are
assumed to be linear in the concentration of the solute they transport. That is,
we assume that the concentrations if IAA are such that transport rates are in
the linear regime. No saturation effect needs to be taken into account.
The fraction of IAA in each form are pH-dependent and can be computed from
the Henderson-Hasselbalch equation:

pH = pKa + log10

[A−]

[HA]
.

The fraction of IAA in anion form as function of pH is then given by

f =
1

1 + 10pKa−pH
.

pH fraction anion fraction protonated
4 0.1368 0.8632
5 0.6131 0.3869
7 0.9937 0.0063

We assume that the acidity in the cytoplasm and apoplast is buffered and there-
fore constant. The fraction of auxin in anion form is in a chemical equilibrium.
The constant acidity dictates then that the fraction of anion auxin is a constant,
fa for the apoplast and fc for the cytoplasm of all cells.
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There are no known carriers that can transport IAA in either form into a vac-
uole and it is not likely to go in there by itself either, so the transport of IAA
within the cell is exclusively through the cytoplasm.

2.2 Experimental Set-up(s) and Results

Indole-3-acetic acid (IAA) is a small molecule and therefore it is not visible. It
can’t be made fluorescent either yet. So in the experiments, done in the Plant
BioDynamics Laboratory in Leiden, tritium labelled IAA (3H-IAA) is used, so
the radioactivity can be measured in order to determine the total amount of
auxin in different sections of plant tissue. The tritium is located in the indole
ring. (See Figure 1)

Figure 1: IAA-molecule struc-
ture.

Another possibility is using 14C labelled IAA.
However, the carbon is typically located in the
COOH part of the auxin molecule. (See Fig-
ure 1) This part can be split off, so this is not
as accurate as tritium, which is in one of the
rings and can’t be cut off, since not only the
radioactivity of the 14C attached to the auxin
is measured, but also the radioactivity of the
14C that has been cut off.
Petri dishes filled with molten paraffin, in
which grooves between a donor well and re-
ceiver well were cut, were used for the exper-
iments. The grooves had a length of 16 mm
and in each groove a 16 mm inflorescence stem
of the Arabidopsis was placed, with the api-
cal side of the stem at the donor well. In the
donor well the tritium labelled IAA is added
with a concentration of 1 × 10−7 M. The receiver well is filled with neutral
buffer and is emptied regularly at relatively short time intervals during the ex-
periments, so the concentration of IAA (tritium labelled and unlabelled) in the
receiver well can be considered to remain approximately 0 M during the exper-
iment. The total amount of 3H-IAA taken from the receiver well is measured
over time and after 600 minutes the stem is cut in 4 parts of 4 mm and the
amount of 3H-IAA in each part is measured.
An example of results of such experiments is shown in Figures 2 and 3. From
the slope of the asymptote as t → ∞ in Figure 2 we conclude that that the
steady state transport rate of IAA through the stem segment is approximately
9× 10−3 fmol/s.
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Figure 2: The total cumulative amount of auxin that reached the receiver well
as function of time.

Figure 3: The steady state profile of the total amount of auxin in fmol measured
in 4 mm long quarters of the stem.
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3 Preparations: Cellular Level Models

It is convenient to do some preparations on cellular level before we continue
modelling the entire system.

3.1 Effective Number Flux between Adjacent Cells

Between every two cells there is an apoplast. To find an expression for the
effective number flux of auxin between cell i and cell i + 1, we first have to
examine the number fluxes between cell i and the apoplast and between the
apoplast and cell i + 1. With the assumption that auxin is homogeneously
distributed near the membranes ’connecting’ two cells, with the apoplast in
between and that the auxin concentration in the apoplast is in quasi-steady
state, we can derive the following expressions:

νAUX(Ca) = P̂inAfaCa

νPIN (Ci) = P̂exAfcCi

J i,as (Ci, Ca) = P̂sA(1− fc)Ci − P̂sA(1− fa)Ca

= P̂sA(1− fc)
(
Ci −

1− fa
1− fc

Ca

)
Ja,i+1
s (Ci+1, Ca) = −P̂sA(1− fc)

(
Ci+1 −

1− fa
1− fc

Ca

)
where νAUX , νPIN , J i,as , Ja,i+1

s are the number fluxes of the AUX transporters,
PIN transporters, diffusion over the left membrane and diffusion over the right
membrane respectively, (recall that transport rates were assumed to be in the
linear regime),
Ci, Ca, Ci+1 are the total concentration of auxin (anion and protonated auxin)
in cell i, the apoplast and cell i + 1 respectively, the first and last close to the
membrane,
A is the area of the connecting cell membrane,
P̂in, P̂ex, P̂s are the effective permeabilities by means of the AUX transporters,
PIN transporters and simple diffusion respectively dependent only in the form
of auxin they transport, i.e. anion or protonated form.
Let Ji,a(Ci, Ca) and Ja,i+1(Ci+1, Ca) be the total number flux of auxin over
the membrane from cell i to the apoplast and from the apoplast to cell i + 1
respectively, then

Ji,a(Ci, Ca) = J i,as (Ci, Ca) + νPIN (Ci)− νAUX(Ca)

= P̂sA(1− fc)
(
Ci −

1− fa
1− fc

Ca

)
+ P̂exAfcCi − P̂inAfaCa

Ja,i+1(Ci+1, Ca) = νAUX(Ca) + Ja,i+1
s (Ci+1, Ca)

= P̂inAfaCa − P̂sA(1− fc)
(
Ci+1 −

1− fa
1− fc

Ca

)
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The assumption is made that Ca is in quasi-steady state, C?a . From this
follows

Ji,a(Ci, C
?
a) = Ja,i+1(Ci+1, C

?
a)

P̂sA(1− fc)
(
Ci −

1− fa
1− fc

C?a

)
+P̂exAfcCi − P̂inAfaC?a = P̂inAfaC

?
a

−P̂sA(1− fc)
(
Ci+1 −

1− fa
1− fc

C?a

)
P̂sA(1− fc) (Ci + Ci+1) + P̂exAfcCi = 2P̂inAfaC

?
a + 2P̂sA(1− fa)C?a

P̂s(1− fc) (Ci + Ci+1) + P̂exfcCi = (2P̂infa + 2P̂s(1− fa))C?a

C?a =
P̂s(1− fc) (Ci + Ci+1) + P̂exfcCi

2P̂infa + 2P̂s(1− fa)

Define

Ps := P̂s(1− fc)
Pin := P̂infa

Pex := P̂exfc

R̃ :=
1− fa
1− fc

,

then we get

C?a =
Ps (Ci + Ci+1) + PexCi

2Pin + 2PsR̃
.

Since our quasi-steady state assumption implies that

Ji,a(Ci, C
?
a) = Ja,i+1(Ci+1, C

?
a)

we can define Ji,i+1 := Ji,a(Ci, C
?
a) = Ja,i+1(Ci+1, C

?
a) as the total number flux

of auxin between cell i and i+ 1.
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We get

Ji,i+1 = Ji,a(Ci, C
?
a)

= P̂sA(1− fc)
(
Ci −

1− fa
1− fc

C?a

)
+ P̂exAfcCi − P̂inAfaC?a

= PsA(Ci − R̃C?a) + PexACi − PinAC?a

= PsA

(
Ci − R̃

Ps (Ci + Ci+1) + PexCi

2Pin + 2PsR̃

)
+ PexACi

−PinA
Ps (Ci + Ci+1) + PexCi

2Pin + 2PsR̃

=
1

2Pin+2PsR̃
[(2Pin+2PsR)PsACi−PsAR̃(Ps(Ci+Ci+1)+PexCi)

+(2Pin + 2PsR̃)PexACi − PinA(Ps(Ci + Ci+1) + PexCi)]

=
A

2Pin + 2PsR̃
[(P 2

s R̃) + PsPin + PsPexR̃+ PinPex)Ci

−(P 2
s R̃+ PsPin)Ci+1)]

=
A

2Pin + 2PsR̃
[(Pin + PsR̃)(Ps + Pex)Ci − (Pin + PsR̃)PsCi+1]

=
1

2
PsA

[
Ps + Pex

Ps
Ci − Ci+1

]
= −PA(Ci+1 −RCi),

where

P =
1

2
Ps

=
1

2
P̂s(1− fc)

and

R =
Ps + Pex

Ps

= 1 +
P̂exfc

P̂s(1− fc)
.

Mitchison, [8], assumes the expression

Ji,i+1 = pCi + q(Ci − Ci+1)

for these fluxes. Thus,

q = PA, p = PA(R− 1).
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Since the values of P and R may not be the same at the beginning and end of
the stem, e.g. due to damage to cells caused by cutting process, we get

Ji,i+1 = −1

2
PsA

(
Ci+1 −

Ps + Pex
Ps

Ci

)
= −PA(Ci+1 −RCi), i ∈ {1, 2, . . . , N − 1}

Jin = −PinA(C1 −RinCd)
Jout = −PoutA(Cr −RoutCN )

Cr=0
= PoutRoutACN (1)

where Cd is the concentration of auxin in the donor well and Cr the concentra-
tion in the receiver well.
Note that this last Pin is not the same Pin as used before. The Pin = P̂infa
will not return, since our expressions of Ji,i+1, Jin and Jout are not dependent
of this Pin, so from now on every Pin will be the one as in (1).

3.2 Intracellular Transport

Diffusion is in all directions and not just in one. We have to deal with the three
dimensions of the cells. Assume that the cells are cylindrical, with a cylindrical
vacuole in the middle. Let l be the length of one cell, l − 2δ (0 < δ < l

2 ) the
length of the vacuole, R the radius of the cells and R − d(x) the radius of the
vacuoles at point x in the cell. From this follows that the non-vacuole part of
the radius equals R − (R − d(x)) = d(x). Let A(x) be the cross section of the

cytoplasm at x, i.e. A(x) = {(x, y, z)|R− d(x) <
√
y2 + z2 < R}.

Figure 4: The mathematical abstraction of a cell in a transport channel of
Arabidopsis.

Let Ci(x, y, z, t) be the concentration of auxin in cell i in point (x, y, z) at
time t. A change to cylindrical coördinates is convenient:

C̃i(x, r, θ, t) = Ci(x, y, z, t)
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The cylinder is invariant under rotation around the x-axis, so if the flux of auxin
over the boundaries is rotationally symmetric, then C̃i is independent of θ:

Ĉi(x, r, t) = C̃i(x, r, θ, t)

Now we can simplify our three-dimensional cell to a two-dimensional cell (see
figure 5).

Figure 5: The two-dimensional simplification of the three-dimensional geometry
presented in Figure 4 given that the concentration of auxin within the cells is
independent of θ.

We assume that there is no flux through the lateral area of the cell membrane
and no flux through the vacuole membrane. From this assumptions we get that

∂Ĉi
∂r

(R− d(x)) = 0 and
∂Ĉi
∂r

(R) = 0. (2)

Figure 6 illustrates this.
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Figure 6: The independency of θ yields that ∂Ĉi
∂r (0) = ∂Ĉi

∂r (R − d(x)) = 0
for 0 < x < δ and l − δ < x < l (left figure). The absence of flux through
both the lateral area of the cell membrane and vacuole membrane yield that
∂Ĉi
∂r (R − d(x)) = 0 for δ < x < l − δ (right figure) and ∂Ĉi

∂r (R) = 0 (both left
and right figure).

We define the longitudinal density of total IAA as

ui(x, t) :=

∫∫
A(x)

Ci(x, y, z, t) dydz

=

∫∫
A(x)

Ĉi(x, r, t) dydz

=

∫ R

0

∫ 2π

0

Ĉi(x, r, t)r dθdr

=

∫ R

0

2πĈi(x, r, t)r dr

?
= 2π

∫ R

R−d(x)

Ĉi(x, r, t)r dr.

? : There is no auxin in the vacuole.

For intracellular diffusion we know

∂Ĉi
∂t

= D

(
∂2Ĉi
∂x2

+
∂2Ĉi
∂r2

+
1

r

∂Ĉi
∂r

)
,
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where D is the effective diffusivity, so for intracellular diffusion we get

∂ui
∂t

= 2π

∫ R

R−d(x)

∂Ĉi
∂t

r dr

= 2π

∫ R

R−d(x)

D

(
∂2Ĉi
∂x2

+
∂2Ĉi
∂r2

+
1

r

∂Ĉi
∂r

)
r dr

= 2πD


∫ R

R−d(x)

∂2Ĉi
∂x2

r dr +

∫ R

R−d(x)

∂2Ĉi
∂r2

r dr︸ ︷︷ ︸
(&)

+

∫ R

R−d(x)

∂Ĉi
∂r

dr

 ,

where

(&) =

[
∂Ĉi
∂r

r

]R
R−d(x)

−
∫ R

R−d(x)

∂Ĉi
∂r

dr

(2)
= −

∫ R

R−d(x)

∂Ĉi
∂r

dr.

So

∂ui
∂t

= 2πD

∫ R

R−d(x)

∂2Ĉi
∂x2

r dr

= D
∂2

∂x2

(
2π

∫ R

R−d(x)

Ĉi(x, r, t)r dr

)

= D
∂2ui
∂x2

. (3)

For intracellular diffusion and active transport in longitudinal direction we know

∂Ĉi
∂t

= D

(
∂2Ĉi
∂x2

+
∂2Ĉi
∂r2

+
1

r

∂Ĉi
∂r

)
− v∇Ci,

where v is the transport velocity vector field, but we don’t know anything about
the v-field. There may be active transport within the cell, as there should be
in large (5 cm) Chara and Nitella cells, [2, 9]. The precise mechanism there
is not yet known, nor is there particular evidence that such transport exists in
the much smaller Arabidopsis transport cells (∼ 100 µm). In order to be able
to proceed investigations, we make the simplest imaginable phenomenological
modification of (3) that effectively includes active transport, namely

∂ui
∂t

= D
∂2ui
∂x2

− v ∂ui
∂x

. (4)

Now we have one-dimensional equations for the auxin transport within the cells
by intracellular diffusion only and for transport within the cells for both intra-
cellular diffusion and active transport.
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4 Cell Array Models

Now we have made the necessary preparations we will proceed with modelling
the entire system. This entire system consist of an array of cells.

Figure 7: Cartoon of the experimental set-up.

4.1 Fast Homogenization within Cells

As a first and easiest approach we assume that the concentration of auxin will
be equally distributed within the cells very fast. This assumption might not
be realistic, because the transport within the cell might not be so fast that the
concentration can be considered homogeneous at all times. When you assume
homogeneity every molecule of auxin effects the concentration everywhere in the
cell and so the length of the cells doesn’t play any role in the intracellular trans-
port velocity when this assumption is made. However when the total number of
cells will become very large, the length of the cells will become very small. In
this case the transport can be considered to be instantaneous, since both ends
of the cells are very close to each other. This approximates a situation where
there is fast homogenization within the cells and thus this might give some use-
ful results.
With the expressions of number fluxes and the assumption of fast homogeniza-
tion within the cells the change of the concentration in time for each cell can
now easily be described. We get

dCi
dt

=
Ji−1,i

V
− Ji,i+1

V

=
Ji−1,i − Ji,i+1

V
, i ∈ {2, 3, . . . , N − 1}

dC1

dt
=

Jin − J1,2

V
dCN
dt

=
JN−1,N − Jout

V

13



where V is the volume of the cell.
Substituting (1) gives us the change of concentration in time for each cell:

dCi
dt

=
−PA(Ci −RCi−1) + PA(Ci+1 −RCi)

V
, i ∈ {2, 3, . . . , N − 1}

dC1

dt
=
−PinA(C1 −RinCd) + PA(C2 −RC1)

V
dCN
dt

=
−PA(CN −RCN−1) + PoutRoutACN )

V
(5)

A simulation in Matlab gives the results in Figure 8. Parameter values were
taken as described in Appendix A.
As you can see in Figure 8 the stem fills up very fast. This is the effect of the

Figure 8: Concentration of auxin in mol in the cells of the stem at t=20 (upper
figure), t=200 (middle figure) and t=400(bottom figure).

instantaneous transport of auxin within the cells. This is too fast to match the
experiment. We will make a continuum approximation of the cell array model
in Section 4.3.
To assess the validity of the homogenization assumption, we shall consider the
case of intracellular diffusion and active transport.
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4.2 A Model with Intracellular Diffusion and Active Trans-
port

When there is no equal distribution of auxin within the cells the concentration
of the apical end of the cells can differ from the concentration on the basal end
of the cell. Modifying (5) to this case gives

dCi
dt

=
−PA(Cai −RCbi−1) + PA(Cai+1 −RCbi )

V
, i ∈ {2, 3, . . . , N − 1}

dC1

dt
=
−PinA(Ca1 −RinCd) + PA(Ca2 −RCb1)

V

dCN
dt

=
−PA(CaN −RCbN−1) + PoutRoutAC

b
N

V
,

where Cai and Cbi are the concentrations at the apical end of the cell and the
basal end of the cell respectively.
By definition we have

Ci(t) =
1

V

∫ l

0

ui(x, t) dx

Cai (t) =
ui(0, t)

A

Cbi (t) =
ui(l, t)

A
.

Within the cells we have (4). It follows that

1

V

∫ l

0

D
∂2ui
∂x2
−v ∂ui

∂x
dx =

−P (ui(0, t)−Rui−1(l, t)) + P (ui+1(0, t)−Rui(l, t))
V

.

Modifying (1) to this case gives

Ji,i+1 = −P (ui+1(0)−Rui(l)), i ∈ {1, 2, . . . , N − 1}
Jin = −Pin(u1(0)−RinACd)
Jout = PoutRoutuN (l). (6)

We get

∂ui
∂t

(0, t) = Ji−1,i −
(
−D∂ui

∂x
(0, t) + vui(0, t)

)
∂ui
∂t

(l, t) = −D∂ui
∂x

(0, t) + vui(0, t)− Ji,i+1.

Simulating this is not as easy as when auxin is equally distributed within the
cells, because in this case we have a concatenation of partial differential equa-
tions. Numerical simulation was not within the scope of this thesis. Instead we
consider the steady state solution of these these cases, that can be approached
analytically. See Chapter 5.
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4.3 A Continuum Approximation for fast Homogenization

With the previous derivatives we can examine how the model works with a
large number of cells in a fixed macroscopic stem length (i.e. small length of the
cells). When the cells become very small the model approaches a continuum.
We expect an equation of the form

∂u

∂t
= D

∂2u

∂x2
− v ∂u

∂x
(7)

where D is the effective diffusivity constant and v the velocity.
Rewriting (5) gives

dCi
dt

=
−PA(Ci −RCi−1) + PA(Ci+1 −RCi)

V

=
PA

V
(RCi−1 − (1 +R)Ci + Ci+1)

=
PA

V
([RCi+1 − 2RCi +RCi−1] + [(1−R)Ci+1 + (R− 1)Ci])

=
PAR

V
∆x2

[
Ci+1 − 2Ci + Ci−1

∆x2

]
+
PA(1−R)

V
∆x

[
Ci+1 − Ci

∆x

]
,(8)

where ∆x is the length of the cells.
When N →∞ (i.e. ∆x→ 0) then, formally,

Ci+1 − 2Ci + Ci−1

∆x2
→ ∂2Ci

∂x2

Ci+1 − Ci
∆x

→ ∂Ci
∂x

.

It follows from (7) and (8) that

D = lim
∆x→0

PAR

V
∆x2

and

v = lim
∆x→0

PA(R− 1)

V
∆x.

Assume that V = A∆x, then

D = lim
∆x→0

PAR

A∆x
∆x2

= lim
∆x→0

PR∆x

= lim
∆x→0

1

2
Ps
Ps + Pex

Ps
∆x

= lim
∆x→0

1

2
(P̂s(1− fc) + P̂exfc)∆x
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and

v = lim
∆x→0

PA(R− 1)

A∆x
∆x

= lim
∆x→0

P (R− 1)

= lim
∆x→0

1

2
Ps

(
Ps + Pex

Ps
− 1

)
= lim

∆x→0

1

2
P̂exfc.

When we change the length of our cells, we want that the proportions of the
thickness of the membrane compared to the entire length of the cell stays the
same. P̂s is the effective permeability by means of diffusion. This is dependent
on the thickness of the membrane, dm, and the diffusivity constant of the mem-
brane, Dm. dm is dependent on the length of the cell. In order to keep the same
proportions we have that dm = c∆x, where c is the proportion of the thickness
of the cell membrane compared to the cell length. Dm is not dependent on. We
have P̂s = CDm

dm
= C Dm

c∆x , where C is the partitioning coefficient.[1]

P̂ex is the effective permeability by means of the PIN transporters. We have
that P̂ex = dm

∆t , where ∆t is the time needed to cross the membrane. Say that
the transport speed through the PIN transporter (in the membrane) is constant,
c′, then we have that ∆t = c′dm. We get that the P̂ex = c

c′ and so P̂ex is not
dependent on ∆x.

It follows that

D = lim
∆x→0

1

2
(P̂s(1− fc) + P̂exfc)∆x

= lim
∆x→0

1

2

(
C
Dm

c
+ P̂exfc∆x

)
= C

Dm

2c

and

v = lim
∆x→0

1

2
P̂exfc

=
1

2
Pex.
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5 Steady State Analysis

The system of flux-coupled diffusion-convection equations for the cell array (see
Section 4.2) is quite complicated to analyse dynamically. Instead we will deter-
mine the steady state solutions for diffusion within the cells and for diffusion
and active transport within the cells. Then the number flux between adjacent
cells is equal for every two adjacent cells. The number flux from the donor well
into the stem and from the stem into the receiver well are also equal to this
number flux between adjacent cells.
Recall that in our model we assume that there is no diffusion of auxin in radial
transversal direction out of the transport channel.

5.1 Case of Intracellular Diffusion

We investigate the assumption of diffusion by examining the steady state solu-
tion of our model.
When the system is in steady state the number flux between adjacent cells and
the number flux into the stem and out of the stem must be equal to each other.
In the case of steady state we have

J := J0,1 = Ji,i+1 = JN,N+1,

for all i.
Let u?i (x) be the steady state solution, then we get from (1), with l the cell
length,

J = −PA
(
u?i+1(0)

A
−Ru

?
i (l)

A

)
, i ∈ {1, 2, . . . , N − 1}

= −P (u?i+1(0)−Ru?i (l))

J = −PinA
(
u?1(0)

A
−RinCd

)
= −Pin(u?1(0)−RinACd)

J = PoutRoutA
u?N (l)

A
= PoutRoutu

?
N (l) (9)

Within the cell the diffusion equation applies, so we know

∂ui
∂t

= D
∂2u

∂x2
,

where D is the effective diffusivity of auxin within the cells and thus

∂2u?i
∂x2

= 0.

It follows that the steady state solution has the form

u?i (x) = c1 + c2x. (10)
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It’s easy to see that c1 = u?i (0) and c2 =
∂u?i
∂x . From Fick’s first law of diffusion

we know that the diffusive flux inside cell i equals −D ∂u?i
∂x . Since the system is

in steady state it must hold that

J = −D∂u
?
i

∂x
= −Dc2

and hence

c2 = − J
D
.

Substitution into (10) gives

u?i (x) = u?i (0)− J

D
x

as the steady state solution for cell i.

From (9) we get that

u?1(0) = − J

Pin
+RinACd,

u?i+1(0) = − J
P

+Ru?i (l)

= − J
P

+R

(
u?i (0)− Jl

D

)
= −J

(
1

P
+R

l

D

)
+Ru?i (0). (11)

Let xi = u?i (0) and let x1 = u?1(0), then

xi+1 = αxi + β,

x1 = γ, (12)

where α = R, β = −J
(

1
P +R l

D

)
and γ = − J

Pin
+RinACd.

From this follows:

x2 = αγ + β

x3 = α(αγ + β) + β

= α2γ + αβ + β

x4 = α(α2γ + αβ + β) + β

= α3γ + α2β + αβ + β

Now it’s easy to see that

xn = αn−1γ + β

(
n−2∑
k=0

αk

)

=

{
γ + β(n− 1), α = 1

αn−1γ + β α
n−1−1
α−1 , α 6= 1

. (13)
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Replacing the xn, α, γ and β gives

u?n(0)
R 6=1
= Rn−1

(
− J

Pin
+RinACd

)
− J

(
1

P
+R

l

D

)
Rn−1 − 1

R− 1
. (14)

From (9) we get that

u?N (l) =
J

PoutRout
− ACr
Rout

Cr=0
=

J

PoutRout
,

u?N (0) =
J

PoutRout
+
Jl

D

= J

(
1

PoutRout
+

l

D

)
.

From (14) we get that

u?N (0) = RN−1

(
− J

Pin
+RinACd

)
− J

(
1

P
+R

l

D

)
RN−1 − 1

R− 1
.

It follows that

J

(
1

PoutRout
+

l

D

)
= RN−1

(
− J

Pin
+RinACd

)
−J

(
1

P
+R

l

D

)
RN−1 − 1

R− 1
,

RN−1RinACd = J

(
1

PoutRout
+

l

D
+
RN−1

Pin

+

(
1

P
+R

l

D

)
RN−1 − 1

R− 1

)
.
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J = RN−1RinACd ·
[

1

PoutRout
+

l

D
+
RN−1

Pin

+
1

P

RN−1 − 1

R− 1
+

l

D

RN −R
R− 1

]−1

= RinACd ·
[

1

PoutRoutRN−1
+

l

D

1

RN−1
+

1

Pin

+
1

P

1− 1
RN−1

R− 1
+

l

D

R− 1
RN−2

R− 1

]−1

= RinACd
D

l
·

[(
1 +

D
l

PoutRout

)
1

RN−1
+

D
l

Pin

+
D
l

P

1

R− 1

(
1− 1

RN−1

)
+

R

R− 1

(
1− 1

RN−1

)]−1

= RinACd
D

l
·

[(
1 +

D
l

PoutRout

)
1

RN−1

+

(
R

R− 1
+

D
l

Pin
+

D
l

P

1

R− 1

)(
1− 1

RN−1

)
+

D
l

Pin

1

RN−1

]−1

= RinACd
D

l
·

[(
1 +

D
l

PoutRout
+

D
l

Pin

)
1

RN−1

+

(
R

R− 1
+

D
l

Pin
+

D
l

P

1

R− 1

)(
1− 1

RN−1

)]−1

N large
≈ RinACd

D

l

[
R

R− 1
+

D
l

Pin
+

D
l

P

1

R− 1

]−1

= RinACd
D

l

(
1− 1

R

)[
1 +

D
l

Pin

(
1− 1

R

)
+

D
l

P

1

R

]−1

.

Filling in our parameter values, putting R = 100, gives

J ≈ 9× 10−18 mol/s, for Pin = 1× 10−7 m/s

and
J ≈ 4× 10−17 mol/s, for Pin = 7× 10−7 m/s.

With experiments is measured that J ≈ 9× 10−18 mol/s (see Figure 2 on page
5). So for Pin ∼ 1 × 10−7 m/s we get a value for J that fits the experimental
results. In Section 5.4 and Appendix C equation (13) is further examined. We
know that for α� 1 the profile is likely to blow up for small n. In this case we
have α = R� 1 so we expect this profile to blow up, but maybe ε = (α−1)γ+β
is small enough.
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Filling in our parameter values and taking J = 9 × 10−18 mol/s and Pin =
1× 10−7 m/s gives

α = 100,

β ≈ −1× 10−9 mol/m,

γ = 1× 10−11 mol/m

and

ε ≈ −1× 10−10 mol/m.

Taking J = 4× 10−17 mol/s and Pin = 7× 10−7 m/s gives

α = 100,

β = −5× 10−9 mol/m,

γ ≈ 4× 10−11 mol/m

and

ε ≈ −1× 10−10 mol/m.

For both Pin = 1× 10−7 m/s and Pin = 7× 10−7 m/s we get ε < 0. Appendix
C shows that for ε < 0 the profile doesn’t relate to the experimental results.
As mentioned, see Section 5.4 for further analysis.

5.2 Case of Intracellular Diffusion and Transport

We also take a look at a model with active transport within the cells. In Chara
and Nitella cells their is evidence that such transport should exist because of the
size of these cells, although its biochemical/-physical origins are unclear, [2, 9].
As we did before in the previous section we can determine the steady state
solution. With active transport within cells we have the following governing
equations:

∂ui
∂t

= D
∂2ui
∂x2

− v ∂ui
∂x

Here v is the transport velocity within the cells.
So for the steady state solution u?i it follows that

D
∂2u?i
∂x2

− v ∂u
?
i

∂x
= 0

and hence our steady state solution has the form

u?i (x) = c1 + c2e
v
D x, v 6= 0. (15)

The number flux at point x within cell i in the direction of increasing x is

−D∂u
?
i

∂x
+ vu?i (x).
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Obviously in steady state the number fluxes between cells has to keep up with
this flow in the cells. We get

J = −D∂u
?
i

∂x
+ vu?i (x)

= −D
[
c2
v

D
e
v
D x
]

+ v
(
c1 + c2e

v
D x
)

= −c2ve
v
D x + c1v + c2ve

v
D x

= c1v.

So

c1 =
J

v
.

Substituting this in (15) gives

u?i (x) =
J

v
+ c2e

v
D x

u?i (0) =
J

v
+ c2

c2 = u?i (0)− J

v

u?i (x) =
J

v
+

(
u?i (0)− J

v

)
e
v
D x

=
J

v

(
1− e vD x

)
+ u?i (0)e

v
D x.

From (9) we get

u?1(0) = − J

Pin
+RinACd

u?i+1(0) = − J
P

+Ru?i (l)

= − J
P

+R

(
J

v

(
1− e vD l

)
+ u?i (0)e

v
D l

)
= − J

P
+R

J

v

(
1− e vD l

)
+Re

v
D lu?i (0).

We have the same form as before, see (12), where now α = Re
v
D l, β = − J

P +

RJ
v

(
1− e vD l

)
and γ = − J

Pin
+RinACd.

From (13) we get

u?N (0) = RN−1e(N−1) vD l

(
− J

Pin
+RinACd

)
+

(
− J
P

+R
J

v

(
1− e vD l

)) RN−1e(N−1) vD l − 1

Re
v
D l − 1

.
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From (9) we also have

u?N (l) =
J

PoutRout
J

v

(
1− e vD l

)
+ u?N (0)e

v
D l =

J

PoutRout

u?N (0) =
J
(

1
PoutRout

− 1
v

(
1− e vD l

))
e
v
D l

.

It follows that

J
(

1
PoutRout

− 1
v

(
1− e vD l

))
e
v
D l

= RN−1e(N−1) vD l

(
− J

Pin
+RinACd

)
+

(
− J
P

+R
J

v
(1− e vD l)

)
·R

N−1e(N−1) vD l − 1

Re
v
D l − 1

z = e
v
D l

J
(

1
PoutRout

− 1
v (1− z)

)
z

= RN−1zN−1

(
− J

Pin
+RinACd

)
+

(
− J
P

+R
J

v
(1− z)

)
RN−1zN−1 − 1

Rz − 1

y = Rz

J
(

1
PoutRout

− 1
v

(
1− y

R

))
y
R

= yN−1

(
− J

Pin
+RinACd

)
+

(
− J
P

+R
J

v

(
1− y

R

)) yN−1 − 1

y − 1

J
(

1
PoutRout

− 1
v

(
1− y

R

))
yN

R

= − J

Pin
+RinACd

+

(
− J
P

+R
J

v

(
1− y

R

)) 1− 1
yN−1

y − 1

24



RinACd = J

(
1

Pin
+

(
1

P
−R1

v

(
1− y

R

)) 1− 1
yN−1

y − 1

+
1

PoutRout
− 1

v

(
1− y

R

)
yN

R

)

= J

(
1

Pin
− 1

v

(
R− y − v

P

) 1− 1
yN−1

y − 1
+

R

yN
1

PoutRout

−
R
yN
− 1

yN−1

v

)

J = RinACd

[
1

Pin
− 1

v

(
R− y − v

P

) 1− 1
yN−1

y − 1
+

R

yN
1

PoutRout

−
R
yN
− 1

yN−1

v

]−1

N large
≈ RinACd

[
1

Pin
− 1

v

(
R− y − v

P

) 1

y − 1

]−1

= RinACd

[
1

Pin
+

(
1

P
− R

v
(1− e vD l)

)
1

Re
v
D l − 1

]−1

.

Since the value for v is unknown we use J = 9 × 10−18 mol/s from the ex-
perimental results to determine a value for v. Filling in our parameter values
gives

v ≈ 2× 10−7 m/s, for Pin = 1× 10−7 m/s

v ≈ −3× 10−6 m/s, for Pin = 7× 10−7 m/s.

Since v < 0 for Pin = 7× 10−7 m/s, only Pin = 1× 10−7 m/s will be examined
further.
Taking J = 9× 10−18 mol/s and v = 2, 13903× 10−7 m/s we get

α = 100 · e2×10−1

,

β ≈ −1× 10−9 mol/m,

γ = 1× 10−11 mol/m

and

ε ≈ −7× 10−11 mol/m.

Note that J is dependent on v, so v = 2, 13903 m/s is not the exact value to
get J = 9× 10−18 mol/s.
Again we have ε < 0 and Appendix C shows that the profile doesn’t relate to
the experimental results when ε < 0.
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5.3 Case of Intracellular Mixing

Another possibility is the case of intracellular mixing. This case yields that the
auxin is equally distributed within each cell when the system is in steady state.
We get

u?i (x) = u?i (0).

From (9) we get that

u?1(0) = − J

Pin
+RinACd

u?i+1(0) = − J
P

+Ru?i (l)

= − J
P

+Ru?i (0)

Again we have the same form as in (12). As with diffusion we have α = R and
γ = − J

Pin
+RinACd. In this case we have β = − J

P . From (13) we get

u?N (0) = RN−1

(
− J

Pin
+RinACd

)
− J

P

RN−1 − 1

R− 1
.

From (9) we also have

u?N (l) =
J

PoutRout

u?N (0) =
J

PoutRout

It follows that

J

PoutRout
= RN−1

(
− J

Pin
+RinACd

)
− J

P

RN−1 − 1

R− 1

RN−1RinACd = J

(
1

PoutRout
+
RN−1

Pin
+

1

P

RN−1 − 1

R− 1

)
RinACd = J

(
1

PoutRoutRN−1
+

1

Pin
+

1

P

1− 1
RN−1

R− 1

)

J = RinACd ·
[(

1

PoutRout
+

1

Pin

)
1

RN−1
+

(
1

Pin
+

1

P

1

R− 1

)(
1− 1

RN−1

)]−1

N large
≈ RinACd ·

[
1

Pin
+

1

P

1

R− 1

]−1

> 0

Filling in our parameter values gives

J ≈ 1× 10−17 mol/s, for Pin = 1× 10−7 m/s
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and
J ≈ 6× 10−17 mol/s, for Pin = 7× 10−7 m/s.

For Pin = 1×10−7 m/s we have a value for J that fits the experimental results.
Filling in our parameter values and taking J = 1 × 10−17 mol/s and Pin =
1× 10−7 m/s gives

α = 100

β ≈ −3× 10−10 mol/m

γ = 0 mol/m

and

ε ≈ −3× 10−10 mol/m.

Taking J = 6× 10−17 mol/s and Pin = 7× 10−7 m/s gives

α = 100

β ≈ −2× 10−9 mol/m

γ ≈ 1× 10−11 mol/m

and

ε ≈ −9× 10−11 mol/m.

We get ε < 0 for both Pin = 1×10−7 m/s and Pin = 7×10−7 m/s. This doesn’t
relate to the experimental results.

5.4 Examining Exponential ’Blow-up’ in Detail

From the previous sections it becomes clear that to assess the profile found with
the experiments a more detailed analysis is needed than that exhibited in Ap-
pendix C. Such an analysis is also needed to be able to draw strong conclusions
on the validity of the proposed models. In this section a less sensitive approach
is used instead.
Recall that for intracellular diffusion and transport we have

α = Re
l
D v,

β = −J

(
1

P
−R1− e l

D v

v

)
,

and

γ = u?1(0) = − J

Pin
+RinACd.
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Define

β̃ :=
β

u?1(0)

=
−J

(
1
P −R

1−e
v
D
l

v

)
− J
Pin

+RinACd

=
−PinP

PinRinACd
J − 1

·
[
1− PR1− e vD l

v

]
,

then

u?n(0)

u?1(0)
=

{
αn−1 + β̃ α

n−1−1
α−1 , α 6= 1

1 + β̃(n− 1), α = 1

=

{
αn−1

(
1 + β̃

α−1

)
− β̃

α−1 , α 6= 1

1 + β̃(n− 1), α = 1
.

Recall

u?N (l) =

(
u?N (0)− J

v

)
e
l
D v +

J

v

and define

λ :=
l

D
v,

then

u?N (l) =

(
αN−1

(
u?1(0) +

β

α− 1

)
− β

α− 1
− J

v

)
eλ +

J

v

= eλ
(
αN−1

(
u?1(0) +

β

α− 1

)
− β

α− 1

)
+
J

v
(1− eλ)

Recall

u?N (l) =
J

PoutRout
.

We get

J

PoutRout
= eλ

(
αN−1

(
u?1(0) +

β

α− 1

)
− β

α− 1

)
+
J

v
(1− eλ)

J

(
1

PoutRout
− 1− eλ

v

)
= eλ

(
αN−1

(
u?1(0) +

β

α− 1

)
− β

α− 1

)

J

(
1

PoutRout
− 1− eλ

v
+ eλ

(
αN−1

α− 1

(
1

P
−R1− eλ

v

)
− 1

α− 1

(
1

P
−R1− eλ

v

)))
= eλαN−1u?1(0)

J

(
1

PoutRout
− 1− eλ

v
+ eλ

(
αN−1 − 1

α− 1

(
1

P
−R1− eλ

v

)))
= eλαN−1u?1(0)
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J

u?1(0)
=

eλαN−1

1
PoutRout

− 1−eλ
v + eλ

(
αN−1−1
α−1

(
1
P −R

1−eλ
v

)) (16)

Then

β̃ =
β

u?1(0)

=
−J

(
1
P −R

1−eλ
v

)
u?1(0)

(16)
= − eλαN−1

1
PoutRout

− 1−eλ
v + eλ

(
αN−1−1
α−1

(
1
P −R

1−eλ
v

)) · ( 1

P
−R1− eλ

v

)
.

Put

δ :=
1

P
−R1− eλ

v
,

then

β̃

α− 1
= − eλαN−1δ

(α− 1)
(

1
PoutRout

− 1−eλ
v

)
+ eλ(αN−1 − 1)δ

= − 1

α−N+1 α−1
δ e−λ

(
1

PoutRout
− 1−eλ

v

)
+ 1− α−N+1

Recall

u?N (0) = αN−1u?1(0)− βα
N−1 − 1

α− 1
.

It follows that

u?N (0)

u?1(0)
= αN−1 + β̃

αN−1 − 1

α− 1

= αN−1

(
1 +

β̃

α− 1

)
− β̃

α− 1

= αN−1

 α−N+1 α−1
δ e−λ

(
1

PoutRout
− 1−eλ

v

)
− α−N+1

α−N+1 α−1
δ e−λ

(
1

PoutRout
− 1−eλ

v

)
+ 1− α−N+1

− β̃

α− 1

=

α−1
δ e−λ

(
1

PoutRout
− 1−e−λ

v

)
− 1

α−N+1 α−1
δ e−λ

(
1

PoutRout
− 1−eλ

v

)
+ 1− α−N+1

− β̃

α− 1

=

α−1
δ e−λ

(
1

PoutRout
− 1−e−λ

v

)
α−N+1 α−1

δ e−λ
(

1
PoutRout

− 1−eλ
v

)
+ 1− α−N+1

.
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Define

ρ :=
α− 1

δ
e−λ

(
1

PoutRout
− 1− e−λ

v

)
,

then

u?N (0)

u?1(0)
=

ρ

α−N+1(ρ− 1) + 1

=
ρ

ρ−1
αN−1 + 1

≈ ρ. (17)

For 1 ≤ n ≤ N it holds that

u?n(0)

u?1(0)
=

αn−Nρ− αn−N + 1

α−N+1(ρ− 1) + 1

=
αn−N (ρ− 1) + 1

ρ−1
αN−1 + 1

≈ αn−N (ρ− 1) + 1. (18)

For the diffusive case, i.e. v = 0, we get

ρ = lim
v→0

α− 1

δ
e−

l
D v

(
1

PoutRout
− 1− e− l

D v

v

)

=
α− 1

δ

(
1

PoutRout
+

l

D

)
,

δ = lim
v→0

1

P
−R1− e l

D v

v

=
1

P
+R

l

D

and

α = lim
v→0

Re
l
D v

= R.
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So for the diffusive case it follows that

ρ =
R− 1

1
P +R l

D

(
1

PoutRout
+

l

D

)
=

1
PoutRout

+ l
D

1
P (R−1) + R

R−1
l
D

=
D

l·PoutRout + 1
D
l

P (R−1) + R
R−1

=
D

l·PoutRout + 1
D
l

P (R−1) + 1
R−1 + 1

=
D

l·PoutRout + 1
D
l +P

P (R−1) + 1
.

With our parameter values, putting R = 101 we get

ρ ≈ 40.

Also α = 101 and N = 160, so

αN−1 = 101159.

This is big enough for (17) and (18) to be good approximations, so

u?N ≈ 40u?1(0).

It also gives us the following profile:

u?n(0)

u?1(0)
= 1 +

ρ− 1

αN−n

For the last cell we get ρ = 40.
For the second last we get 1 + ρ−1

α = 1 + 39
101 ≈ 1.386.

For the third last we get 1 + ρ−1
α2 = 1 + 39

10201 ≈ 1.004.
Note that in comparison with the last cell all the other values are close to 1. So
this gives us a pretty flat profile with a very small peak at the very end.
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6 Discussion and Conclusions

This thesis examined the transport of auxin in Arabidopsis thaliana. The start-
ing point was the article of G.J. Mitchison, [8]. This article suggested that there
was simple diffusion within cells as only form of transport within the cells of
Arabidopsis. There was some reasonable doubt whether this is true or not.
In this thesis there is some support. The value found for the flux of auxin be-
tween adjacent cells, assuming simple diffusion, corresponds to the value mea-
sured with experiments done in the Plant BioDynamics Laboratory in Leiden.
However in other cases this value also corresponds to the experiments.
Assuming simple diffusion also gave us a reasonably good match with the pro-
file of the distribution of auxin within the stem. Other cases in this thesis are
not examined and it can be that something other than simple diffusion gives a
match as well as this one.
The formula for the profile as used in Appendix C should be used carefully or
not at all in further investigation. The approach in Section 5.4 is recommended
to be used instead.
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A Parameter values

Meaning Parameter Value
Permeability P 4× 10−8 m/s
Permeability

at the donor end of the stem Pin 1× 10−7 − 7× 10−7 m/s
Length of the stem L 16× 10−3 m
Length of a cell l 1× 10−4 m
Total number of cells in the stem N L/l = 160
Cross section surface of all the

transport channels together A 1× 10−8 m2

Volume of the cell V Al = 1× 10−12 m3

Concentration of auxin
in the donor well Cd 1× 10−4 mol/m3

Concentration of auxin
in the receiver well Cr 0 mol/m3

Accumulation ratio R 3 - 400
Accumulation ratio

at the donor end of the stem Rin 100
Accumulation ratio

times permeability
at the receiver end of the stem PoutRout 2× 10−8

Effective diffusivity of auxin
within the cells D 1× 10−10 m2/s

In literature is found that for the diffusion of IAAH through the cell mem-
brane is ∼ 5× 10−7 m/s. Taking into account a pH-value of 4-5 in the apoplast
between donor well and first transporter cell we estimate a lower effective per-
meability with a lower bound for Pin of 1× 10−7 m/s. It may be that there are
still functioning AUX-transporters in this part of the membrane increasing Pin,
[4, 6].
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B Matlab Simulation

B.1 Parameters.m

L=16*10^-3; % length of the stem in m

N=160; % number of cells

l=L/N; % length of cells in m

d=25*10^-6; % diameter cell in m

fu=0.15; % fraction non-vacuole

fa=0.5; % fraction auxin in anion form in apoplast

fc=0.97; % fraction auxin in anion form in cell (cytoplasm)

fd=0.97; % fraction auxin in anion form in donor well

Cd=1*10^-4; % concentration donor well (mol/m^3)

Cr=0; % concentration receiver well

Ps=5*10^-7; % permeability for diffusion protonated form

Pex=5*10^-6*fc; % transporters

P=Ps*(1-fc)/2; % permeability

Pin=Ps*(1-fd)/2; %

Pout=Ps*(1-fc)/2; %

A=pi*(d/2)^2; % cross surface between cells in m^2

V=A*l*fu; % volume cell in m^3

R=1+Pex*fc/(Ps*(1-fc)); % accumulation ratio

Rin=1+Pex*fd/(Ps*(1-fd));

Rout=1+Pex*fc/(Ps*(1-fc));

N=round(N); % rounding N to an integer value

D=10^-10; % diffusion constant auxin in cell in m^2/s

Pr=2.4*10^-8; % Pout*Rout

B.2 conc.m

function dy = conc(t,y,P,Pin,Pout,A,V,R,Rin,Rout,Cd,Cr,N)

dy = zeros(N,1);

dy(1) = (-Pin*A*(y(1)-Rin*Cd)+P*A*(y(2)-R*y(1)))/V;

for i=2:N-1

dy(i) = (-P*A*(y(i)-R*y(i-1))+P*A*(y(i+1)-R*y(i)))/V;

end

dy(N) = (-P*A*(y(N)-R*y(N-1))+Pout*A*(Cr-Rout*y(N)))/V;
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B.3 Auxplot.m

[T,Y] = ode45(@(t,y)conc(t,y,P,Pin,Pout,A,V,R,Rin,Rout,Cd,Cr,N),[0 10^5],zeros(N,1));

X = zeros(N,1);

for i = 1:N

X(i) = i;

end

YT = Y’;

hold off

bar(X,YT(:,21)) % The integer in this line is the value for t+1
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C Examining equation (13)

Now we examine the profile of xn (as a function of n) for different α, β and γ
in

xn =

{
γ + β(n− 1), α = 1

αn−1γ + β α
n−1−1
α−1 , α 6= 1

. (19)

We know that α, γ > 0 and β < 0. Considering we don’t want xn to blow up
fast we can distinguish between α = 1 and α > 1. α < 1 is not relevant because
we need an increase in the profile of xn.
When α = 1 we get

xn = γ + (n− 1)β,

so the profile of xn is a straight line with a slope of β starting at γ. Concentra-
tions of auxin will be negative if n is large enough.

When α > 1 and β = 0 we get that the profile is exponentially increasing, but
β < 0, so β can cancel out the increase. When we have β such that x2 = x1 = γ,
we get from (19) that

γ = αγ + β

β = −(α− 1)γ.

When we substitute this back into (19) we get

xn = αn−1γ − (α− 1)γ
αn−1 − 1

α− 1

= αn−1γ −
(
αn−1 − 1

)
γ

= γ.

So when α > 1 and β = −(α− 1)γ we get that the profile of xn is constant.
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Take β = −(α− 1)γ + ε, where ε 6= 0, and let α > 1, then we get from (19)
that

xn = αn−1γ − ((α− 1)γ − ε) α
n−1 − 1

α− 1

= αn−1γ − (α− 1)γ
αn−1 − 1

α− 1
+ ε

αn−1 − 1

α− 1

= γ + ε
αn−1 − 1

α− 1
.

Define

x(ν) := γ + ε
αν

α− 1
, ν > 0

where ν = n − 1 is a continuous variable. Looking at the first and second
derivative of x(ν),

dx

dν
= ε

αν log(α)

α− 1

d2x

dν2
= ε

αν log2(α)

α− 1
,

we see that for α > 1 the sign of the first and second derivative is that of ε.
So when α > 1 and ε > 0 we get that x(ν) has an increasing and convex expo-
nential profile. when α > 1 and ε < 0 we get that x(ν) has a decreasing and
concave exponential profile.

37



In the case of ε > 0 we have a profile that relates to the experimental results.
In the first derivative of x(ν) we can see that the slope is determined by α and ε.
When α & 1 the profile will blow op when ν is large enough. When α� 1 the
profile will blow up for small ν. When ε increase, the slope of x(ν) increases.
So when ε & 0 it can compensate a blow up that could appear when α� 1.
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