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1 Introductie

Een ’ruimtelijke patroon’ U(x, t) is wiskundige termen een oplossing van een
partiële differentiaal vergelijkingen (PDE). Zo’n PDE kan uiteenlopende ver-
schijnselen als watergolven of de elektrische lading van een zenuwcel modelleren.
Voor vast t representeert U als functie van x een ’patroon’: een doorsnede van
een watergolf of de gelokaliseerde lading van een lopende elektrische puls. In
deze bachelorscriptie gaan we naar PDE’s van de volgende vorm kijken:

∂U

∂t
=
∂2U

∂x2
+ F (U). (1.1)

met daarin U(x, t) : R× R+ → R (uniform begrensd) en F : R→ R een gladde
functie. Helaas is (1.1) te simpel om een realistisch verschijnsel te modelleren,
maar het treedt wel vaak op als bouwsteen in geavanceerde modellen. F (U) is
een niet lineaire functie en heet ook wel de reactie term, daarom wordt (1.1)
ook wel een reactie diffusie vergelijking genoemd.

De stationaire oplossingen van (1.1) zijn eigenlijk gewone differentiaal vergelij-
king (ODE). Deze zijn onafhankelijk van de tijd t en er geldt dan U(x, t) = u(x).
Onze ODE is dan

d2u

dx2
+ F (u) = 0. (1.2)

Van (1.2) zijn we vooral gëıntereseerd naar de begrensde oplossingen u∗(x).
Deze kunnen worden gezien als een kritiek punt van (1.1).

Voorbeelden van deze begrensde oplossingen zijn homocliene banen en hetero-
cliene baan. Een homocliene baan uhom(x) begint in een vaste punt en eindigt
ook weer in datzelfde vaste punt, maar het moet wel ondertussen in een andere
punt zijn geweest, oftewel limx→±∞ uhom(x) = c met c ∈ R en er bestaat een
x̂ zodanig dat uhom(x̂) 6= c. En een heterocliene baan uhet(x) begint in een
vaste punt en eindigt in een andere vaste punt, oftewel limx→−∞ uhet(x) = c1
en limx→∞ uhet(x) = c2 met c1, c2 ∈ R en c1 6= c2.

Je kunt dus nu afvragen hoe U(x, t) van (1.1) in de omgeving van u∗(x) ge-
draagt. Dit geeft de volgende handige definitie uit [1].

Definitie 1. Een stationaire oplossing van een partiële differentiaal vergelij-
king is stabiel als alle tijdsafhankelijke oplossingen, die dichtbij de stationaire
oplossing starten, in een gegeven omgeving rond de stationaire oplossing blijven
voor alle tijd t > 0. Een stationaire oplossing is instabiel, als het niet stabiel
is.

Met behulp van Sturm-Liouville theorie (Hoofdstuk 2) is het mogelijk om aan
te tonen dat homocliene banen instabiel zijn en heterocliene banen stabiel zijn
(Hoofdstuk 3).
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Omdat onze PDE (1.1) redelijke eenvoudig is, is daarover al veel om bekend.
Daarom gaan we ruimtelijke inhomogeniteit toevoegen aan (1.1). Dit betekent
dat de term F (U) in (1.1) een ’sprong’ maakt tussen x < 0 en x > 0. Dit
creërt een onverwachte rijkdom aan patronen, als ’pinned fluxons’ spelen dit
soort oplossingen een belangrijke rol binnen processen in supergeleiders.

In dat onderzoek over ’pinned fluxons’ [2] hebben ze een PDE zonder hetero-
cliene banen bestudeerd. Met behulp van ruimtelijke inhomogeniteit hebben ze
uiteindelijk een heterocliene baan kunnen maken. Vervolgens is er ook nog een
voorwaarde bepaald waarvoor die heterocliene baan stabiel is. Dus ruimtelijke
inhomogeniteit geeft nieuwe mogelijkheden.

Zoals eerder opgemerkt, kan er worden aangetoond dat een homocliene baan in
(1.2) instabiel is. Nu is de vraag of het mogelijk is om met behulp van ruimtelijke
inhomogeniteit een homocliene baan kan bepalen die stabiel is. Dit geeft in de
volgende onderzoeksvraag:

Is het mogelijk een stabiele homocliene baan te bepalen met
ruimtelijke inhomogeniteit?

Nu wordt er in het kort iets verteld over de inhoud van deze bachelorscriptie.
In hoofdstuk 2 gaan we de singuliere Sturm-Liouville theorie bestuderen. Deze
theorie is essentieel voor het analyseren van de stabiliteit van homocliene banen
en heterocliene banen.

In hoofdstuk 3 bekijken we de algemene reactie-diffusie vergelijking. Van deze
vergelijking worden de vaste punten bepaald en de banen in het (u, ux) vlak
worden berekend. Ook worden hier voorwaarden bepaald voor F (U) zodat er
homocliene en heterocliene banen bestaan. En we sluiten dit hoofdstuk af met
de stabiliteitsanalyse van homocliene banen en heterocliene banen.

In hoofdstuk 4 behandelen we de reactie-diffusie vergelijking met ruimtelijke
inhomogeniteit bij x = 0. Eerst wordt er gekeken naar de existentie van homo-
cliene banen. Tenslotte wordt de stabiliteit van die homocliene banen bepaald.

In hoofdstuk 5 beschouwen we de reactie-diffusie vergelijking met een geloka-
liseerd defect. Dat is een reactie-diffusie vergelijking met ruimtelijke inhomo-
geniteit op een bepaald domein bijvoorbeeld voor |x| < L met L > 0. Hier
wordt eerst ook gekeken naar de existentie van homocliene banen. Vervolgens
kijken we naar specifieke vergelijkingen en gaan daarvan de stabiliteit van de
homocliene banen bepalen.
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2 Singuliere Sturm-Liouville theorie

In dit hoofdstuk wordt de singuliere Sturm-Liouville theorie behandeld, deze
theorie wordt in de andere hoofdstukken vaak gebruikt om de stabiliteit van
heterocliene banen en homocliene banen te bepalen. In de singuliere Sturm-
Liouville hebben we te maken met randvoorwaarden voor x → ±∞ in plaats
van de Dirichlet, Neumann en Robin randvoorwaarden bij de ’normale’ Sturm-
Liouville theorie. Dit geeft de volgende stelling.

Stelling 1. Laat een differentiaal operator van de vorm − d
dx (p(x)du

dx )+q(x)u =
λw(x)u zijn met p(x), w(x) : R → R>0 en q(x) : R → R. Veronderstel dat de
eigenwaarde probleem de randvoorwaarden limx→±∞ u(x) = 0 heeft, nu gelden

(i) Er is een eindig aantal reële eigenwaarden λj, j = 0, 1 · · · , J met λ0 >
λ1 > · · · > λJ .

(ii) De bijbehorende eigenfuncties uj(x) hebben j verschillende nulpunten en
zijn even respectievelijk oneven als functie van x indien j even respectie-
velijk oneven is.

Stelling 1 lijkt wel op de ’normale’ Sturm-Liouville theorie, maar het belang-
rijkste verschil is dat er nu maar eindig veel eigenwaarden zijn. Net als bij de
’normale’ Sturm-Liouville theorie zijn er meer resultaten (zoals orthogonaliteit
van de eigenfuncties, etc.), maar in deze bachelorscriptie worden de andere re-
sultaten niet gebruikt. Daarom zijn die resultaten dan ook niet aan de stelling
toegevoegd. Stelling 1 wordt vooral gebruik in hoofdstuk 3. Daar wordt er
p(x) = w(x) = 1 en q(x) = −F ′(u(x)) gekozen.

In de overige hoofdstukken wordt een Stelling 2 gebruikt. Stelling 2 is handi-
ger voor homocliene banen, wat we gaan bestuderen. Stelling 2 is als lemma
3.2 aangegeven in [3], maar in plaats van een lemma wordt het in deze bache-
lorscriptie een stelling genoemd.

Stelling 2. Laat H : R≥0 → R zodat de differentiaal vergelijking uxx = ρu −
H(u) met ρ > 0 een oplossing uh(x) heeft, die een homocliene baan heeft in
(u, ux) = (0, 0), en neem h(x) = H ′(uh(x)). Voor een differentiaal operator

van de vorm L(x) = d2

dx2 + h(x) − ρ, veronderstel dat de eigenwaarde probleem
de vorm heeft van (L(x) − λ)u = 0 met randvoorwaarden limx→±∞ u(x) = 0.
Bovendien, definieer Λ =

√
ρ+ λ met arg(Λ) ∈ (−π2 ,

π
2 ). Nu gelden

(i) Er is een eindig aantal reële eigenwaarden λj, j = 0, 1 · · · , J met λ0 > 0,
λ1 = 0 en 0 > λ2 > · · · > λJ > −ρ. Equivalent, er is een eindig aantal
reële eigenwaarden Λj met Λ >

√
ρ, Λ1 =

√
ρ en

√
ρ > Λ2 > · · · > ΛJ > 0.

(ii) De bijbehorende eigenfuncties uj(x) hebben j verschillende nulpunten en
zijn even respectievelijk oneven als functie van x indien j even respectie-
velijk oneven is. Bovendien, d

dxuh(x) is een eigenfunctie voor λ1 = 0 (of

Λ1 = 1); met andere woorden, u1(x) ∈ span{ d
dxuh(x)}.
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Stelling 2 wordt in de hoofdstukken 4 en 5 vaak toepast op (1.2). In hoofdstuk
3 worden er aannames bepaald voor F (u), zodat homocliene banen bestaan
voor deze F (u). Één van die aannames is dat F ′(0) < 0, dit zorgt ervoor dat
de lineaire stabiliteit van (0,0) een zadel wordt. (1.2) kan nu worden geschreven
als

uxx = −F (u) = −F ′(0)u− (−F ′(0)u+ F (u)).

Dan nemen we ρ = −F ′(0) > 0 en H(u) = −F ′(0)u+F (u). En nu voldoet (1.2)
aan de voorwaarden van Stelling 2 en dus kan deze stelling op (1.2) worden
toegepast.
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3 Algemene reactie-diffusie vergelijking

In dit hoofdstuk wordt de singuliere Sturm-Liouville theorie toegepast om te
laten zien dat homocliene banen instabiel zijn en heterocliene banen stabiel
zijn. We beschouwen weer dezelfde PDE, namelijk

∂U

∂t
=
∂2U

∂x2
+ F (U). (3.1)

Als de stationaire oplossingen worden bestudeerd, geldt weer U(x, t) = u(x).
Nu volgt dan de ODE

d2u

dx2
+ F (u) = 0. (3.2)

Van (3.2) zijn we vooral gëıntereseerd in de begrensde oplossingen uh(x). Merk
op dat uh(x) alleen de homocliene, heterocliene of periodieke banen kunnen zijn.
Maar in dit bachelorscriptie worden de homocliene banen en de heterocliene
banen alleen behandeld. Maar eerst moet (3.2) beter worden geanalyseerd om
meer de oplossingen beter te begrijpen. Vervolgens moeten er aannames voor
F (U) worden bepaald opdat er homocliene banen of heterocliene banen zijn.
Namelijk voor F (U) = 0, zijn alle niet triviale stationaire oplossingen lineaire
lijnen. Deze zijn dan ook niet begrensd en zijn er dus noch homocliene banen
noch heterocliene banen.

3.1 Stelsel

Zoals alle hogere ordes differentiaal vergelijkingen omgeschreven kunnen wor-
den naar een stelsel van ODE’s, kan dat ook worden gedaan bij (3.2). We
introduceren dan w = du

dx , hierdoor komt uit (3.2) het volgende stelsel{
du
dx = w
dw
dx = −F (u)

.

Het handige van het omschrijven naar een stelsel van ODE’s is dat de vaste
punten makkelijker te bepalen zijn en vervolgens kunnen we de lineaire stabiliteit
van die vaste punten berekenen. Voor een vaste punt is er nodig dat du

dx = dw
dx =

0. Stel er bestaat een u∗ waarvoor F (u∗) = 0, dan is (u∗, 0) een vaste punt
van dit stelsel. Nu moet de lineaire stabiliteit van de vaste punten nog bepaald
worden. Dat kan worden gedaan met de afgeleiden matrix, die is(

∂
∂uw

∂
∂ww

− ∂
∂uF (u) − ∂

∂uF (u)

)
=

(
0 1

−F ′(u) 0

)
.

Als er een u∗ is met F (u∗) = 0, dan is karakteristieke polynoom van deze matrix
gelijk aan λ2 + F ′(u∗) = 0. Hieruit volgt dat λ± = ±

√
−F ′(u∗). Nu kan het

volgende geconcludeerd worden:
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• Als F ′(u∗) < 0, dan geldt λ± ∈ R en dus is (u∗, 0) een zadelpunt.

• Als F ′(u∗) > 0, dan geldt λ± ∈ iR en dus is (u∗, 0) een centrum.

3.2 De Hamiltoniaan

Om preciezer de banen te bepalen in (u,w) fase plaatje, kunnen we beter kijken
naar de hamiltoniaan. Deze hamiltoniaan geeft een verband tussen u en w = ux.
Uit (3.2) kan de hamiltoniaan als volgt worden bepaald: (3.2) wordt aan beide
kanten met du

dx vermenigvuldigd, nu volgt er

du

dx2
du

dx
+ F (u)

du

dx
= 0.

Daarna integreren we over x, vervolgens geldt

1

2

(
du

dx

)2

+

∫
F (u)du = H met H ∈ R.

Hieruit krijgen we een expliciete functie van ux uitgedrukt in u. Deze is

ux = ±

√
2

(
H −

∫
F (u)du

)
.

Merk op dat dit precies de niveaukrommes zijn in het (u,w) fase plaatje. Nu is
er genoeg voorkennis om lemma 1 te bewijzen.

Lemma 1. Stel er bestaan ui met 1 ≤ i ≤ N met N ∈ N waarvoor geldt dat
F (ui) = 0, dan geldt dat de zadelpunten en de centra zich onderling afwisselen
(zadel, centrum, zadel, · · · of andersom).

Bewijs: Er is al aangetoond dat ux = ±
√

2
(
H −

∫
F (u)du

)
. De belangrijkste

term hiervan is H −
∫
F (u)du, deze bepaalt de vorm van ux. De verschillende

niveau krommes van H−
∫
F (u)du worden bepaald door de H te gaan variëren.

Omdat F glad is, volgt hieruit dat H−
∫
F (u)du minima en maxima heeft. Dus

dan heeft ux ook minima en maxima. Als H wordt gevarieerd, zien we dat de
maxima de centra geven en de minima de zadelpunten (zie figuur 1). En door
de gladheid van F geldt dat de minima en de maxima elkaar afwisselen. Dus
wisselen de zadelpunten en centra elkaar ook af.
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(a) (3.2) met F (u) = −u+ u3. (b) (3.2) met F (u) = −u(u− 1)(u− 2).

Figuur 1: Plot van het faseplaatje van (3.2) met bijbehorende F (u). De rode
pijlen zijn de richtingen, de blauwe lijnen zijn de niveau krommes en de groene
lijn geeft een homocliene baan in (a) en een heterocliene baan in (b).

3.3 Aannames voor F (u)

Zoals er al eerder is opgemerkt, geeft niet iedere willekeurige F (U) een homo-
cliene baan of een heterocliene baan. Nu hebben we voldoende voorkennis om
eisen aan F (U) te koppelen opdat we een homocliene baan of een heterocliene
baan krijgen.

In figuur 1(a) kunnen we ook zien dat er een homocliene baan is voor u < 0.
Maar we in dit bachelorscriptie gaan we richten op positieve oplossing van u(x).
Daarom is onze eerste eis dat u(x) > 0.

Voor een homocliene baan moet de oplossing vanuit de instabiele manifold van
een zadel komen en eindigen in de stabiele manifold van dezelfde zadel eindigen.
Dit kan alleen maar als er een centrum in de buurt is die de oplossing weer
terugleidt naar de zadel. Uit lemma 1 volgt dan dat voor een homocliene baan
hebben we minstens 2 verschillende oplossingen u1 < u2 waarvoor moet gelden
dat F (u1) = F (u2) = 0.

Voor een heterocliene baan moet de oplossing vanuit de instabiele manifold van
een zadel z1 komen en eindigen in de stabiele manifold van een zadel z2 eindigen,
hij kan immers nooit in een centrumpunt eindigen. Uit lemma 1 volgt er dat
er dus 3 verschillende oplossingen u1 < u2 < u3 moeten zijn, waarvoor geldt
dat F (u1) = F (u2) = F (u3) = 0. Omdat er 2 verschillende zadels zijn, moeten
we ook eisen dat F ′(u1), F ′(u3) < 0 en F ′(u2) > 0.

Zonder verlies van algemeenheid kan er worden aangenomen dat (0, 0) een vast
punt is en het een zadel is in het (u,w) faseplaatje. Indien dat niet het geval
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zou zijn, kan er zo verschoven worden dat (0, 0) het vast punt wordt. Dus de
aannames voor homocliene baan zijn dat er een u1 > 0 bestaat met F (0) =
F (u1) = 0 en F ′(0) < 0. En de aannames voor een heterocliene baan zijn dat
er u2 > u1 > 0 bestaan met F (0) = F (u1) = F (u2) = 0 en F ′(0), F ′(u2) < 0 en
F ′(u1) > 0.

Van deze aannames kan er nu een fase plaatje worden gemaakt met de nullclines
erin zodat we weten welke richtingen de oplossingen naar toe gaan. Zie figuur
2.

u

w

(0, 0) (u1, 0)

wx = 0
u = 0

wx = 0
u = u1

ux = 0

w = 0

(a) Faseplaatje voor (3.2) met F zodanig
gekozen dat F (0) = F (u1) = 0 met F ′(0) <
0 en F ′(u1) > 0.

u

w

(0, 0) (u1, 0) (u2, 0)

wx = 0
u = 0

wx = 0
u = u1

wx = 0
u = u2

ux = 0

w = 0

(b) Faseplaatje voor (3.2) met F zodanig
gekozen dat F (0) = F (u1) = F (u2) = 0
met F ′(0), F ′(u2) < 0 en F ′(u1) > 0.

Figuur 2: Illustraties van het faseplaatje met nullclines voor een homocliene
baan (a) en een heterocliene baan (b). De rode lijnen zijn de richtingen en
zwarte lijnen zijn de nullclines.

3.4 Stabiliteit van homocliene banen en heterocliene ba-
nen

We zochten naar begrensde oplossingen uh(x). Deze oplossingen uh(x) zijn voor
deze bachelorscriptie de homocliene banen en heterocliene banen. Nu wordt er
bestudeerd hoe U(x, t) zich gedraagt in de buurt van uh(x). Om antwoord
hierop te krijgen introduceren we U(x, t) = uh(x) + εV (x, t) met ε klein. Als dit
wordt ingevuld in (3.1), dan krijgen we

∂

∂t
(uh(x) + εV (x, t)) =

∂2

∂x2
(uh(x) + εV (x, t)) + F (uh(x) + εV (x, t))

ε
∂V

∂t
=

d2uh
dx2

+ ε
∂2V

∂x2
+ F (uh(x) + εV (x, t)).
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Als F wordt getaylord rond uh(x), krijgen we

ε
∂V

∂t
=

d2uh
dx2

+ ε
∂2V

∂x2
+ F (uh(x)) + εF ′(uh(x))V +O(ε2).

Omdat uh voldoet aan (3.2) geldt

ε
∂V

∂t
= ε

∂2V

∂x2
+ εF ′(uh(x))V +O(ε2).

Dan volgt hieruit het volgende PDE van orde ε

∂V

∂t
=
∂2V

∂x2
+ F ′(uh(x))V.

Door scheiden van variabelen wordt V (x, t) geschreven als V (x, t) = eλtv(x)
met een eigenwaarde λ ∈ C en v : C → C is voldoende glad en begrensd op
heel R. De functie v(x) is dan een oplossing van de singuliere Sturm-Liouville
vergelijking,

Lv = λv met L =
d2

dx2
+ F ′(uh). (3.3)

Per definitie van uh geldt d2uh

dx2 + F (uh) = 0. Als deze wordt gedifferentieerd
naar x aan beide kanten, volgt

d

dx

(
d2uh
dx2

+ F (uh)

)
= 0.

Deze vergelijking is precies gelijk aan (3.3) met v = uh,x en λ = 0 want

Luh,x =
d2

dx2
(uh,x) + F ′(uh)uh,x = 0 · uh,x.

Dus uh,x is een eigenfunctie van (3.3) met eigenwaarde 0. Laat de homocliene
baan en heterocliene baan worden weergeven met respectievelijk uhom en uhet.
Nu moeten uhet,x en uhom,x worden bepaald, want deze zijn de oplossingen van
(3.3) met λ = 0. Deze twee functies zijn te zien op Figuur 3(b) en figuur 3(d).
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x

u

uhom

(a) Grafiek van uhom(x).

x

u

uhom,x

(b) Grafiek van uhom,x(x).

x

u

uhet

(c) Grafiek van uhet(x).

x

u

uhet,x

(d) Grafiek van uhet,x(x).

Figuur 3: Illustraties van een homocliene baan en een heterocliene baan met
hun afgeleiden.

Op figuur 3(b) zien we dat uhom,x precies één snijpunt heeft met de x-as en op
figuur 3(d) zien we dat uhet,x geen snijpunten heeft met de x-as. Als Stelling
1 erop wordt toegepast, geldt er:

• Voor de homocliene oplossingen hebben we dat uhom,x precies één snijpunt
nulpunt heeft. Dus volgt hieruit dat λ1 = 0. Nu weten we dat λ0 > 0. Als
we n eigenwaarden hebben en vi(x) de bijbehorende eigenfuncties zijn,
geldt V (x, t) =

∑n
i=0 vi(x)eλit. Uit Definitie 1 volgt nu dat uhom(x)

instabiel is omdat λ0 > 0.

• Voor de heterocliene oplossingen hebben we dat uhet,x geen nulpunten
heeft. Dus volgt hieruit dat λ0 = 0. Als we n eigenwaarden hebben en
vi(x) de bijbehorende eigenfuncties zijn, geldt V (x, t) =

∑n
i=0 vi(x)eλit.

Uit Definitie 1 volgt nu dat uhet(x) stabiel is omdat λi < 0 voor alle
0 ≤ i ≤ n.
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4 Ruimtelijke inhomogeniteit

In dit hoofdstuk gaan we PDE’s bestuderen met ruimtelijke inhomogeniteit bij
x = 0. Een simpel voorbeeld hiervan is{

Ut = Uxx + F−(U) x < 0
Ut = Uxx + F+(U) x ≥ 0

Met F− : R → R en F+ : R → R gladde functies en F− 6= F+. Voor x < 0
hebben we een oplossing van Ut = Uxx + F−(U) en voor x ≥ 0 hebben we
een oplossing van Ut = Uxx + F+(U). Merk op dat het omslagpunt gekozen
is op x = 0, maar in principe kunnen we een willekeurige x coördinaat kiezen.
Eerst zal er vooral worden gekeken naar de existentie van de homocliene banen
in systemen met ruimtelijk inhomogeniteit en daarna wordt de stabiliteit van
de homocliene banen bepaald. Omdat we voornamelijk gëınteresseerd zijn in
homocliene banen, hebben we een aantal eisen nodig. Uit paragraaf 3.3 hebben
we de volgende eisen; F+(0) = F−(0) = 0, F ′+(0), F ′−(0) < 0 en er bestaan
û1, û2 > 0 met F+(û1) = F−(û2) = 0.

4.1 Existentie

Voor de existentie van de homocliene banen, moeten eerst de stationaire oplos-
singen worden bepaald. Als we U(x, t) = u(x) nemen, dan voldoen de stationaire
oplossingen aan {

d2u
dx2 = −F−(u) x < 0
d2u
dx2 = −F+(u) x ≥ 0

. (4.1)

Deze kan worden geschreven naar het volgende hamiltoniaan,

1

2

(
du

dx

)2

+

∫
F−(u)du = H− voor x < 0 met H− ∈ R

1

2

(
du

dx

)2

+

∫
F+(u)du = H+ voor x ≥ 0 met H+ ∈ R.

Laat de 2 vergelijkingen hierboven gelden voor alle x ∈ R, dus we halen de
beperkingen x < 0 en x ≥ 0 weg. Dan krijgen we 2 hamiltoniaanse systemen.
Deze 2 hamiltoniaanse systemen zijn verschillend omdat F− 6= F+. We weten
ook dat (0, 0) een vaste punt is, nu geven H− = 0 en H+ = 0 de homocliene

baan bij (0,0) in respectievelijk d2u
dx2 = −F−(u) en d2u

dx2 = −F+(u). In het (u,w)
fase plaatje zijn er nu dan 3 mogelijkheden, want de homocliene banen snijden
elkaar 0,1 of 2 keer. Als de homocliene banen elkaar niet snijden, dan is er ook
geen homocliene baan in (4.1), want er kan dan niet over worden gesprongen
naar de andere homocliene baan.
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Stel we zitten nu het geval dat er minstens 1 snijpunt is, dan moet er worden
gekozen dat een van de snijpunten valt op x = 0. Zodat het systeem precies op

x = 0 van de homocliene baan van d2u
dx2 = −F−(u) naar de homocliene baan van

d2u
dx2 = −F+(u) springt.

Als de homocliene banen 1 snijpunt hebben, dan moeten ze elkaar snijden
bij de top, dus voor ux = 0. Laat het snijpunt (u∗, 0) zijn. Bij dit geval

hebben we 2 situaties, want er geldt
√
−2
∫
F−(u)du <

√
−2
∫
F+(u)du of√

−2
∫
F+(u)du <

√
−2
∫
F−(u)du voor 0 ≤ u ≤ u∗. Gelijkheid kan niet op-

treden omdat er aangenomen is dat F− 6= F+.

Beschouw nu het geval dat de homocliene banen 2 snijpunten hebben. Laat
(u∗, w∗) een snijpunt zijn, dan weten we door de symmetrie van de homo-
cliene baan dat (u∗,−w∗) de andere snijpunt is. Laat u− > 0 voldoen aan√
−2
∫
F−(u)du = 0 en u+ > 0 voldoen aan

√
−2
∫
F+(u)du = 0. Merk op

dat u− en u+ bestaan omdat F−(u) en F+(u) beide 2 verschillende nulpun-
ten hebben. Nu hebben we weer 2 situaties, namelijk er geldt u− < u+ of
u+ < u−. Gelijkheid kan hier niet optreden omdat dat zou betekenen dat er
maar 1 snijpunt is.

Dus we hebben nu 4 mogelijke situaties waarbij er minstens één snijpunt is
tussen de homocliene banen. Die zijn:

1. Als u− < u+ met u± > 0 de oplossing van
√
−2
∫
F±(u)du = 0.

2. Als u+ < u− met u± > 0 de oplossing van
√
−2
∫
F±(u)du = 0.

3. Als u− = u+ met u± > 0 de oplossing van
√
−2
∫
F±(u)du = 0 en√

−2
∫
F+(u)du <

√
−2
∫
F−(u)du voor 0 < u < u±.

4. Als u− = u+ met u± > 0 de oplossing van
√
−2
∫
F±(u)du = 0 en√

−2
∫
F−(u)du <

√
−2
∫
F+(u)du voor 0 < u < u±.

Merk op dat situaties 3 en 4 hetzelfde als je −x in plaats van x. Daarom zijn
de eerste 3 situaties zijn gëıllusteerd op figuur 4.
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u

w
F−

F+

(a) Situatie 1.

u

w

F−

F+

(b) Situatie 2.

u

wF−

F+

(c) Situatie 3.

Figuur 4: Illustraties van mogelijke situaties van (4.1) waarbij een homocliene
baan bestaat. De rode lijnen zijn de homocliene banen met F−(u) en de blauwe
lijnen zijn de homocliene banen met F+(u).

Beschouw eerst situatie 1 oftewel figuur 4(a). We gaan nu proberen zoveel mo-
gelijk homocliene banen te vinden in figuur 4(a). Een homocliene baan begint
vanuit (0, 0) op de rode lijn en moet eindigen via de blauwe lijn in (0, 0) Hier-
van zijn maar 2 mogelijkheden, want er zijn precies 2 snijpunten. x = 0 kan
alleen maar worden gekozen op één van beide snijpunten. Dus zijn er maar 2
homocliene banen in figuur 4(a). Zie figuur 5(a) en figuur 5(b).

Op precies hetzelfde manier kan situatie 2 worden geanalyseerd. Daar zijn er
ook maar 2 mogelijke manieren om een homocliene baan te krijgen, omdat we
daar ook 2 snijpunten hebben.

Ook op hetzelfde manier kan situatie 3 worden geanalyseerd. Maar daar is
maar 1 mogelijke manier om een homocliene baan te krijgen, omdat we daar 1
snijpunt hebben. Zie figuur 5(c).

u

w
F−

F+

(a) Homocliene baan ge-
bruikmakend van het eer-
ste snijpunt van figuur
4(a).

u

w
F−

F+

(b) Homocliene baan
gebruikmakend van het
tweede snijpunt van
figuur 4(a).

u

wF−

F+

(c) Homocliene baan ge-
bruikmakend van het snij-
punt van figuur 4(c).

Figuur 5: Illustraties van de mogelijke homocliene banen. De rode lijnen zijn de
homocliene banen met F−(u), de blauwe lijnen zijn de homocliene banen met
F+(u) en de groene lijnen zijn de homocliene banen van (4.1).
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4.2 Stabiliteit

Om de stabiliteit van de homocliene banen te bepalen, moeten we kijken of λ = 0
hier een eigenwaarde is en hoeveel nulpunten de bijbehorende eigenfunctie dan
heeft. Laat uhom een homocliene baan zijn van (4.1). Weer gaan we bestuderen
hoe U(x, t) zich gedraagt in de buurt van uhom(x). Om antwoord hierop te
krijgen introduceren we U(x, t) = uhom(x) + εeλtv(x) met ε klein. Analoog aan
paragraaf 3.4 hebben we dat de functie v(x) een oplossing is van de singuliere
Sturm-Liouville vergelijking,{

L−v = λv met L− = d2

dx2 + F ′−(uh(x)) voor x < 0

L+v = λv met L+ = d2

dx2 + F ′+(uh(x)) voor x ≥ 0
. (4.2)

Beschouw nu eerst homocliene baan van figuur 5(a), noem het uhom. Laat uhom−
de homocliene baan zijn van d2u

dx2 = −F−(u) en uhom+ de homocliene baan zijn
d2u
dx2 = −F+(u) voor alle x ∈ R. Dus

uhom =

{
uhom− x < 0
uhom+ x ≥ 0

.

Doordat uhom− en uhom+ homocliene banen zijn, weten we dat

L−uhom−,x =
d2

dx2
(uhom−,x) + F ′(uhom)uhom−,x = 0 · uhom−,x voor x < 0

L+uhom+,x =
d2

dx2
(uhom+,x) + F ′(uhom)uhom+,x = 0 · uhom+,x voor x ≥ 0.

Dus geldt nu

uhom,x =

{
uhom−,x x < 0
uhom+,x x ≥ 0

.

Merk nu op dat uhom,x voldoet aan (4.2). Maar uhom,x is niet continu, want uhom
is niet differentieerbaar op x = 0. Zie figuur 6(b). Het is alleen mogelijk uhom
differentieerbaar te krijgen op x = 0 in situatie 3 (of situatie 4) of als F−(U) =
F+(U). Maar bij F−(U) = F+(U) hebben we geen ruimtelijke inhomogeniteit
meer en dan is de homocliene baan instabiel. En situatie 3 (en 4) analyseren
we later. Dus omdat uhom,x niet continu meer is, geldt dus dat λ = 0 geen
eigenwaarde meer is.

Met precies dezelfde reden geldt dat λ = 0 geen eigenwaarde is voor de homo-
cliene banen in figuur 4(b). Ook met hetzelfde reden volgen voor de homocliene
banen van figuur 4(b) dat λ = 0 geen eigenwaarde meer is.

Ook voor situatie 3 en 4 is λ = 0 ook geen eigenwaarde. Want de uhom,x is wel
continu voor x = 0, maar niet differentieerbaar in x = 0, want de versnelling op
x = 0 is anders. Zie figuur 7.

Dus de homocliene banen met ruimtelijke inhomogeniteit zijn niet stabiel.
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x

u

F−
F+

(a) De rode lijn is de homocliene baan van
F−(u), de blauwe lijn is de homocliene baan
van F+(u) en de groene lijn is uhom(x).

x

u

uhom,x

(b) Grafiek van uhom,x.

Figuur 6: Illustratie van uhom en uhom,x van (4.2).

x

u

uhom,x

Figuur 7: Illustratie van uhom,x van situatie 3.
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4.3 Translatie symmetrie

Een andere reden waarom λ = 0 geen eigenwaarde meer kan zijn, kan worden
gegeven door de translatie symmetrie. Laat uhom de homocliene baan zijn van
(3.2). De translatie symmetrie is eigenlijk de reden waarom uhom,x een eigen-
functie is bij λ = 0. De translatie symmetrie zegt dat als uh(x) een homocliene
baan, dan geldt ook dat uh(x+ r) een homocliene baan is voor alle r ∈ R. Zie
figuur 8.

x

u

uh(x)

uh(x+ r)

Figuur 8: Illustratie van translatie symmetrie.

Uit figuur 8 zien we dat de verstoring van uh(x) naar uh(x + r) de vorm niet
laat krimpen of groeien. Dit heeft te maken λ = 0, want eλt groeit of krimpt
niet met λ = 0. Als we nu uh(x+r) gaan tayloren rond x met r klein, dan volgt

uh(x+ r) = uh(x) + ruh,x(x) +O(r2) = uh(x) + ruh,x(x)e0·t +O(r2).

Omdat er is aangenomen dat U(x, t) = uhom(x) + εeλtv(x) met ε klein, is hier
v(x) = uh,x(x) en λ = 0. Dit gaat niet lukken bij een systeem met ruimtelijk
inhomogeniteit bij x = 0, want er is geen translatie symmetrie meer. Omdat je
in dit geval x niet meer kunt verschuiven.
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5 Gelokaliseerde defect

In dit hoofdstuk gaan we kijken naar systemen met een gelokaliseerd defect.
Deze worden ook wel systemen met defect genoemd. Een voorbeeld hiervan is{

Ut = Uxx + F (U) |x| ≥ L
Ut = Uxx +G(U) |x| < L

Met F : R → R en G : R → R gladde functies, F 6= G en L > 0, deze L is
vrij te kiezen zodat er een homocliene baan bestaat. Voor |x| ≥ L hebben we
een oplossing van Ut = Uxx + F (U) en voor |x| < L hebben we een oplossing
van Ut = Uxx + G(U). Eerst zal er vooral worden gekeken naar de existentie
van de homocliene banen in systemen met defect en daarna wordt de stabiliteit
van een aantal homocliene banen bepaald. Omdat we gëınteresseerd zijn in
homocliene banen, hebben we een aantal eisen nodig. Uit paragraaf 3.3 moeten
we de volgende eisen hebben; F (0) = G(0) = 0, F ′(0), G′(0) < 0 en er bestaan
û1, û1 > 0 met F (û1) = G(û2) = 0.

5.1 Existentie

Voor de existentie van de homocliene banen, moeten eerst weer de stationaire
oplossingen worden bepaald. Als we U(x, t) = u(x) nemen, dan voldoen de
stationaire oplossingen aan{

d2u
dx2 = −F (u) |x| ≥ L
d2u
dx2 = −G(u) |x| < L

. (5.1)

Deze kan worden geschreven naar het volgende hamiltoniaan,

1

2

(
du

dx

)2

+

∫
F (u)du = HF voor |x| ≥ L met HF ∈ R

1

2

(
du

dx

)2

+

∫
G(u)du = HG voor |x| < L met HG ∈ R.

Laat de 2 vergelijkingen hierboven gelden voor alle x ∈ R, dus we halen de
beperkingen |x| < L en |x| ≥ L weg. Nu zijn er 2 verschillende hamiltoniaanse
systemen, omdat G 6= F . Er geldt dat (0,0) een vaste punt is, nu geven HF = 0

en HG = 0 de homocliene baan bij (0, 0) in respectievelijk d2u
dx2 = −F (u) en

d2u
dx2 = −G(u). Laat uhomF de homocliene baan zijn van d2u

dx2 = −F (u) en uhomG

de homocliene baan zijn van d2u
dx2 = −G(u) voor alle x ∈ R.

Een homocliene baan in een systeem met defect springt van uhomF naar een

oplossing in d2u
dx2 = −G(u) en springt dan weer terug naar uhomF , het moment

van de sprongen is afhankelijk van L. Laat uhom de homocliene baan is in
(5.1). uhom moet nu beginnen en eindigen met een gedeelte van uhomF . Maar
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nu hoeft het niet per se gebruik te maken van uhomG. Want uhom kan nu ook
gebruik maken periodieke oplossingen, onbegrensde oplossingen of vaste punten

in d2u
dx2 = −G(u) voor een zeker L. Zie figuur 9. En als er gebruik wordt gemaakt

van de periodieke oplossingen en onbegrensde oplossingen, krijg je een andere L
uit verschillende periodieke oplossing of onbegrensde oplossing. We kunnen zelfs
bijvoorbeeld 3 keer langs een periodieke oplossing. En als er gebruikt gemaakt
wordt van een vast punt, dan heb je voor iedere L > 0 een homocliene baan.
Dus voor één L kan er verschillende homocliene banen bestaan.

u

w
F

G

(a) uhom gebruikmakend
van een homocliene baan
van d2u

dx2 = −G(u).

u

w
F

G

(b) uhom gebruikmakend
van een onbegrensde baan

van d2u
dx2 = −G(u).

u

w
F

G

(c) uhom gebruikmakend
van een periodieke baan

van d2u
dx2 = −G(u).

Figuur 9: Illustraties van mogelijke homocliene banen voor figuur 4(a) in (5.1).
De rode lijnen zijn de homocliene banen met F (u), de blauwe lijnen zijn de
banen met G(u) en de groene lijnen zijn homocliene banen in (5.1).

Neem nu dat uhomF en uhomG hun maximum aannemen bij x = 0. Er zijn nu
ook 4 mogelijke situaties voor liggingen van uhomF en uhomG, waarbij er een
uhom bestaat in (5.1). Deze zijn:

1. Voor |x| < L geldt dat uhomF kleiner is dan uhomG en voor |x| > L geldt
dat uhomF groter is dan uhomG.

2. Voor |x| < L geldt dat uhomF groter is dan uhomG en voor |x| > L geldt
dat uhomF kleiner is dan uhomG.

3. Voor alle x ∈ R geldt dat uhomF groter of gelijk is aan uhomG.

4. Voor alle x ∈ R geldt dat uhomF kleiner of gelijk is aan uhomG.

Merk op dat situatie 3 en 4 ook het geval is met wanneer uhomF en uhomG precies
1 snijpunt hebben bevat. Deze 4 situaties zijn gëıllusteerd op figuur 10.

Bij situaties 1 en 2 kan er worden gebruik gemaakt van homocliene baan, perio-

dieke oplossingen, onbegrensde oplossingen en het vaste punt van d2u
dx2 = −G(u).

Bij situatie 3 kan er alleen maar de onbegrensde oplossingen worden gebruikt.
Bij situatie 4 kan er de periodieke oplossingen en het vaste punt worden gebruikt.
Dus bij iedere situaties zijn er willekeurig veel homocliene banen afhankelijk van
de keuze van L.
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F
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(a) Situatie 1.

u

w

F

G

(b) Situatie 2.

u

w
F

G

(c) Situatie 3.

u

w
G

F

(d) Situatie 4.

Figuur 10: Illustraties van mogelijke situaties van (5.1) waarbij een homocliene
baan bestaat. De rode lijnen zijn de homocliene banen met F (u), de blauwe
lijnen zijn de homocliene banen met G(u).

Nu gaan we bepalen welke waarde L er gekozen moet worden als we gebruik

maken verschillende mogelijke banen in d2u
dx2 = −G(u).

Stel dat uonb een onbegrensde oplossing is van d2u
dx2 = −G(u). We hebben de

volgende hamiltoniaanse systemen

1

2
u2x +

∫
F (u)du = 0

1

2
u2x +

∫
G(u)du = HG.

Deze is op te lossen en hieruit volgt een u∗ en u∗x. Dus (u∗, u∗x) is het snijpunt
van de onbegrensde oplossing met uhomF . Laat nu M het maximum is de
onbegrensde baan. Onze homocliene baan uhom verblijft 2L in de onbegrensde
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oplossing van d2u
dx2 = −G(u). Ook geldt dat ux = ±

√
2(HG −

∫
G(u)du). Deze

kan worden geschreven naar x =
∫

du√
2(HG−

∫
G(u)du)

. Merk op dat voor x = L

precies van u∗ naar M gëıntegreerd wordt. Dus geldt

L =

∫ M

u∗

du√
2(HG −

∫
G(u)du)

.

Dus voor een onbegrensde oplossing van d2u
dx2 = −G(u) geldt L =

∫M
u∗

du√
2(HG−

∫
G(u)du)

met en u∗ het snijpunt van de oplossingen en M het maximum van de onbe-
grensde oplossing. Zie figuur 11(a).

Stel dat uper een periodieke oplossing is van d2u
dx2 = −G(u). Nu hebben we

2 gevallen om verschillende homocliene banen te creëren. We weten dat een

periodieke oplossing d2u
dx2 = −G(u) twee snijpunten heeft met uhomF . Het eerste

geval is via het eerste snijpunt erin en eruit gaan, dan is 2L een veelvoud van
de periode van periodieke oplossing. Het tweede geval is via het eerste snijpunt
erin en via het tweede snijpunt eruit, dan is L van hetzelfde vorm als bij een
onbegrensde oplossing.

Geval 1: Deze uper(x) neemt een minimum m aan en een maximum M , deze zijn
te bepalen via 0 = HG −

∫
G(u)du. Omdat er geldt dat ux = 0 bij het

minimum of maximum. Ook geldt dat ux = ±
√

2(HG −
∫
G(u)du). Laat

nu xp de periode zijn van de periodieke oplossing van d2u
dx2 = −G(u), dan

volgt uit de voorgaande

1

2
xp =

∫ M

m

du√
2(HG −

∫
G(u)du)

.

Een homocliene baan uhom verblijft 2L in de periodieke oplossing van
d2u
dx2 = −G(u). En bovendien kan 2L dan een veelvoud zijn xp, omdat
je bijvoorbeeld 3 keer om de periodieke oplossing kan gaan. Dus hieruit
volgt

2L = kxp = 2k

∫ M

m

du√
2(HG −

∫
G(u)du)

⇐⇒ L = k

∫ M

m

du√
2(HG −

∫
G(u)du)

met k ∈ Z≥1.

Zie figuur 11(b).

Geval 2: We hebben de volgende hamiltoniaanse systemen

1

2
u2x +

∫
F (u)du = 0

1

2
u2x +

∫
G(u)du = HG.
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Deze is op te lossen en hieruit volgt een u∗ en u∗x. Dus (u∗, u∗x) is het
snijpunt van de periodieke oplossing met uhomF . En uper(x) heeft een
maximum M . Analoog als voor het onbegrensde geval volgt nu

L =

∫ M

u∗

du√
2(HG −

∫
G(u)du)

.

Zie figuur 11(c).

Samengevoegd geldt er voor een periodieke oplossing van d2u
dx2 = −G(u) dat

L = d

∫ M

u∗

du√
2(HG −

∫
G(u)du)

+ k

∫ M

m

du√
2(HG −

∫
G(u)du)

met k ∈ Z≥1, d ∈ 0, 1 en u∗ het snijpunt van de oplossingen. En m het minimum
en M het maximum van de periodieke oplossing.

Stel dat uhomG de homocliene baan is van d2u
dx2 = −G(u). Dit is hetzelfde als bij

het onbegrensde oplossing met HG = 0.

Stel dat u∗ een vaste punt is van d2u
dx2 = −G(u). Nu geldt dat we voor alle L > 0

een homocliene baan hebben.

Merk op dat de meesten allemaal elliptische integralen zijn. Deze zijn dus niet
exact op te lossen en alleen met de computer te bepalen.

u

w(u∗, w∗)

(M, 0)

F

G

(a) uhom gebruikmakend
van een onbegrensde baan

van d2u
dx2 = −G(u).

u

w

(M, 0)(m, 0)

F

G

(b) uhom gebruikmakend
van een periodieke baan

van d2u
dx2 = −G(u).

u

w

(M, 0)

(u∗, w∗)F

G

(c) uhom gebruikmakend
van een periodieke baan

van d2u
dx2 = −G(u).

Figuur 11: Illustraties van mogelijke homocliene banen voor figuur 4(a) in (5.1)
met hun belangrijke punten, die handige zijn om L te bepalen. De rode lijenn
zijn de homocliene banen met F (u), de blauwe lijnen zijn de banen met G(u)
en de groene lijnen zijn homocliene banen in (5.1)
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5.2 Stabiliteit

Om de stabiliteit van de homocliene banen te bepalen, moeten we kijken of λ = 0
hier een eigenwaarde is en hoeveel nulpunten de bijbehorende eigenfunctie dan
heeft. Laat uhom een homocliene baan zijn van (5.1). Weer gaan we bestuderen
hoe U(x, t) zich gedraagt in de buurt van uhom(x). Om antwoord hierop te
krijgen introduceren we U(x, t) = uhom(x) + εeλtv(x) met ε klein. Analoog aan
paragraaf 3.4 hebben we dat de functie v(x) een oplossing is van de singuliere
Sturm-Liouville vergelijking,{

LF v = λv met LF = d2

dx2 + F ′(uh(x)) voor |x| ≥ L
LGv = λv met LG = d2

dx2 +G′(uh(x)) voor |x| < L
. (5.2)

Laat uhomF de homocliene baan zijn van d2u
dx2 = −F (u) en uG de oplossing zijn

die uhom gebruikt in d2u
dx2 = −G(u). Nu weten we

uhom =

{
uhomF |x| ≥ L
uG |x| < L

Hieruit volgt

uhom,x =

{
uhomF,x |x| ≥ L
uG,x |x| < L

We weten nu uit stelling 2 dat uhom,x voldoet aan (5.2). Maar uhom,x hoeft niet
continu of differentieerbaar zijn. Dus uhom,x hoeft niet meteen een eigenfunctie
te zijn bij λ = 0. Omdat er te veel mogelijke homocliene banen zijn, moeten
er specifiekere keuzes voor F (U) en G(U) worden gemaakt zodat λ = 0 een
eigenwaarde is. Een aantal specifieke keuzes worden in de volgende paragrafen
geanalyseerd.

5.3 Even en Oneven

In deze paragraaf wordt er alleen gekeken naar de begrensde homocliene baan
uhomF (x) van 0 = uxx +F (u) voor |x| ≥ L. De Sturm-Liouville vergelijking die
hierbij hoort is

LF v = λv met LF :=
d2

dx2
+ F ′(uhom) voor |x| ≥ L.

Deze vergelijking kan worden omgeschreven naar

LF v = λv met LF :=
d2

dx2
+ F ′(uhom) voor x ≥ L (5.3)

LF v = λv met LF :=
d2

dx2
+ F ′(uhom) voor x ≤ −L. (5.4)
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We weten dat c · uhomF,x met c ∈ R een oplossing is van de (5.3) en (5.4). Nu
worden de oplossingen van (5.3) en (5.4) apart bekeken. Het gebruikelijke was
om uhomF,x voor x ≥ L en x ≤ −L te nemen, maar dankzij het defect kan
ook −uhomF,x genomen worden voor x ≥ L en uhomF,x genomen worden voor
x ≤ −L. Want voor c = −1 geldt dat −uhomF,x ook een oplossing is van (5.3)
en (5.4). Dus we hebben

uhomFo,x =

{
uhomF,x x ≤ L
uhomF,x x ≥ L en uhomFe,x =

{
uhomF,x x ≤ L
−uhomF,x x ≥ L

Zie figuur 12.

x

u

uhom,x

uhom,x

x = Lx = −L

(a) Keuze met uhomF,x voor x ≥ L en x ≤
−L

x

u

uhom,x −uhom,x

x = Lx = −L

(b) Kueze met −uhomF,x voor x ≥ L en
uhomF,x voor x ≤ −L.

Figuur 12: Illustraties van mogelijke keuzes voor uhomF,x in bepaalde domeinen.

Voor figuur 12(a) kan er alleen een oneven functie tussen passen voor |x| < L
en voor figuur 12(b) kan er alleen een even functie tussen passen voor |x| < L.
Merk nu op dat als er een geschikte even functie wordt gekozen voor figuur 12(b),
dan is er een continue en differentieerbare eigenfunctie uhom,x met λ0 = 0. Dus
hebben we een stabiele homocliene baan.

Merk op dat we ook nog de spiegeling op de x-as van figuur 12(a) en figuur
12(b) als mogelijkheden kunnen hebben. Maar deze zijn precies −uhomFo,x en
−uhomFe,x. Deze zijn dus hetzelfde met figuur 12(a) en 12(b) met symmetrie
van de x-as. En heb je dus ook een oneven functie nodig bij −uhomFo,x en een
even functie nodig bij −uhomFe,x.
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5.4 Een eenvoudige homocliene baan

In deze paragraaf gaan we specifieke functie voor F (U) en G(U) bestuderen met
homocliene banen. We beschouwen de volgende ODE

0 = uxx−αu+ βu3︸ ︷︷ ︸
F (u)

met α, β > 0. (5.5)

We gaan eerst (5.5) analyseren en laten zien dat (5.5) een homocliene baan
heeft. (5.5) kan worden omgeschreven naar het volgende stelsel

ux = w

wx = αu− βu3 = u(α− βu2).

De vaste punten zijn dan (0, 0) en (±
√

α
β , 0). Ook geldt dat F ′(0) = −α < 0 en

dus is er een zadel bij (0, 0). Hieruit volgt dan ook dat (±
√

α
β , 0) een centrum

is. En dus bestaat er een homocliene baan. Nu gokken we dat u(x) = A
cosh(Bx)

een oplossing is van (5.1) met A,B ∈ R. Nu hebben we

ux = −AB sinh(Bx)

cosh2(Bx)

uxx = −AB
(
B cosh3(Bx)− 2B sinh2(Bx) cosh(Bx)

cosh4(Bx)

)
= −AB2

(
1

cosh(Bx)
− 2

cosh2(Bx)− 1

cosh3(Bx)

)
(sinh2(Bx) = cosh2(Bx)− 1)

=
AB2

cosh(Bx)
− 2AB2

cosh3(Bx)

Als we dit nu invullen in (5.5) krijgen we

0 =
AB2

cosh(Bx)
− 2AB2

cosh3(Bx)
− αA

cosh(Bx)
+

βA3

cosh3(Bx)

Hieruit volgt nu het volgende stelsel

AB2 = αA

2AB2 = βA3

Hieruit volgt B = ±
√
α en A = ±

√
2α
β . Merk eerst op dat cosh(−

√
ax) =

cosh(
√
αx) (door symmetrie van cosh(x)) en omdat we alleen kijken naar ho-

mocliene banen voor u(x) > 0, hebben we dus

uhom(x) =

√
2α
β

cosh(
√
αx)

. (5.6)
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5.5 Voorbeeld met λ = 0 een eigenwaarde.

In deze paragraaf gaan we een systeem bekijken met homocliene baan waarvan
de eigenwaarde λ = 0 wel bestaat voor een geschikt gekozen L. We beschouwen
het volgende systeem 

Ut = Uxx

F (U)︷ ︸︸ ︷
−U + U3 |x| ≥ L

Ut = Uxx−2U + U3︸ ︷︷ ︸
G(U)

|x| < L
. (5.7)

Als we naar de stationaire oplossingen u(x) = U(x, t) kijken, krijgen we

0 = uxx − u+ u3 voor |x| ≥ L (5.8)

0 = uxx − 2u+ u3 voor |x| < L.

Voor (5.8) weten we uit (5.6) dat uhomF =
√
2

cosh(x) een homocliene baan is Nu

heeft uhomF (x) een maximum bij x = 0 met waarde u =
√

2. Merk nu op
dat (

√
2, 0) een vaste punt is van het stelsel van 0 = uxx − 2u + u3 (vorige

paragraaf). Dus de homocliene baan van (5.8) gaat precies door het vaste punt
(
√

2, 0) heen. Dus de homocliene baan door het vaste punt uhom verblijft 2L in
het vaste punt. Nu geldt voor iedere L > 0 dat we een stationaire homocliene
baan in (5.8) hebben. Omdat uhom niet altijd differentieerbaar is of continu
voor iedere L, is λ = 0 geen eigenwaarde voor iedere L. Zie figuur 13.
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0.4
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0.8
u

0

F

G

Figuur 13: Plot van het faseplaatje van (5.7) met de homocliene baan door het
vaste punt van 0 = uxx − 2u+ u3.

Om de stabiliteit van uhom(x) te bepalen kijken we naar de Sturm-Liouville
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vergelijkingen. Deze zijn

LF v = λv met LF :=
d2

dx2
− 1 + 3u2h voor |x| ≥ L

LGv = λv met LG :=
d2

dx2
+ 4 voor |x| < L.

We weten dat d
dx

√
2

cosh(x) een oplossing is van LF v = λv met λ = 0. LGv = λv

is makkelijk oplosbaar voor λ = 0, hieruit volgt v(x) = c1 sin(2x) + c2 cos(2x)
met c1, c2 ∈ R. Nu moeten we alleen de randvoorwaarden bepalen zodat uhom,x

continu en differentieerbaar is. Merk op dat d
dx

√
2

cosh(x) en v(x) onderdeel zijn

van uhom,x. De eerste randvoorwaarden zijn v(L) = v(−L) = 0, want uhom
springt naar het vaste punt (

√
2, 0) wanneer uhom,x = 0. We weten ook dat

uhom,xx + F (uhom) = 0. Hieruit volgt dat uhom,xx|x=±L = −F (uhom(±L)) =
−F (
√

2) = −
√

2

Even: Voor het even geval zijn er de volgende randvoorwaarden voor v; v(−L) =
v(L) = 0, v′(−L) = −

√
2en v′(L) =

√
2. Hieruit volgen 4 vergelijkingen:

−c1 sin(2L) + c2 cos(2L) = 0 (i)

c1 sin(2L) + c2 cos(2L) = 0 (ii)

2c1 cos(2L) + 2c2 sin(2L) = −
√

2 (iii)

2c1 cos(2L)− 2c2 sin(2L) =
√

2. (iv)

Als we (i)+(ii) en (iii)+(iv) doen, dan krijgen we respectievelijk 2c2 cos(2L) =
0 en 4c1 cos(2L) = 0. Hieruit volgt direct dan cos(2L) = 0 en dit is precies
wanneer 2L = 1

2π + kπ voor k ∈ Z≥0, omdat L > 0. Nu volgt uit (i) en
(ii) automatisch dat c1 = 0. Uit (iii) en (iv) volgt nu

c2 = −
√

2

2 sin(2L)
= −

√
2

2(−1)k
= (−1)k+1 1

2

√
2.

Dus we hebben dan

ve,k = (−1)k+1

√
2

2
cos(2t) en 2L =

1

2
π + kπ met k ∈ Z≥0.

Oneven: Voor het oneven geval zijn er de volgende randvoorwaarden voor v; v(−L) =
v(L) = 0 en v′(−L) = −

√
2 = v′(L) = −

√
2. Hieruit volgen weer 4 verge-

lijkingen:

−c1 sin(2L) + c2 cos(2L) = 0 (v)

c1 sin(2L) + c2 cos(2L) = 0 (vi)

2c1 cos(2L) + 2c2 sin(2L) = −
√

2 (vii)

2c1 cos(2L)− 2c2 sin(2L) = −
√

2. (viii)
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Als we (v)-(vi) en (vii)-(viii) doen, dan krijgen we respectievelijk−2c2 sin(2L) =
0 en 4c1 sin(2L) = 0. Hieruit volgt direct dan sin(2L) = 0 en dit is precies
wanneer 2L = lπ voor l ∈ Z>0 omdat L > 0. Nu volgt uit (v) en (vi)
automatisch dat c2 = 0. Uit (vii) en (viii) volgt nu

c1 = −
√

2

2 cos(2L)
= −

√
2

2(−1)l
= (−1)l+1 1

2

√
2.

Dus we hebben dan

ve,k = (−1)l+1

√
2

2
sin(2t) en 2L = lπ met l ∈ Z>0.

Zie figuur 14 voor de plots met ve en vo.
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Figuur 14: Plots van eigenfunctie uhom,x van (5.7) met verschillende homocliene
banen door andere keuzes voor L.
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Op figuur 14 worden de even en oneven oplossing geplot samen met
√
2

cosh(x) . Uit

figuur 14 halen we dat we L zo kiezen kunnen dat λi = 0 voor i ≥ 2. Maar voor
λi = 0 met i ≥ 2 geldt dat al deze homocliene banen instabiel zijn. Want alleen
voor λ0 = 0 kan een homocliene baan stabiel zijn.

5.6 Stabiele homocliene baan?

In deze paragraaf gaan we proberen een stabiele homocliene baan te vinden. We
beschouwen het volgende systeem

Ut = Uxx

F (U)︷ ︸︸ ︷
−U + 2U3 |x| ≥ L

Ut = Uxx−αU + βU3︸ ︷︷ ︸
G(U)

|x| < L
.

Met α, β, L > 0. Deze α, β en L worden straks bepaald zodat er een stabiele
homocliene baan is. Als we naar de stationaire oplossingen u(x) = U(x, t)
kijken, krijgen we {

0 = uxx − u+ 2u3 voor |x| ≥ L
0 = uxx − αu+ βu3 voor |x| < L

. (5.9)

Laat uhom een homocliene baan zijn van (5.9). Om de stabiliteit van uhom te
bepalen kijken we naar de Sturm-Liouville vergelijkingen. Deze zijn

LF v = λv met LF :=
d2

dx2
− F ′(uhom) voor |x| ≥ L

LGv = λv met LG :=
d2

dx2
+G′(uhom) voor |x| < L.

Omdat voor uhom veel keuze is, kan dus een willekeurige oplossing van 0 =
uxx − αu + βu3 gekozen worden. Maar we gaan aannemen dat uhom gebruikt
maakt van uhomG, de homocliene baan in 0 = uxx − αu+ βu3. Dan hebben we
dat uhomG = uhom voor |x| < L. Nu voldoet uhomG,x met λ = 0 aan

LGv = λv met LG :=
d2

dx2
+G′(uhomG). (5.10)

Merk op dat dit een twee orde differentiaal vergelijking is, dus er zijn twee
oplossing. Nu wordt de methode variatie van constante erop toegepast om de
tweede oplossing te vinden. Stel dat voor de tweede oplossing u2(x) geldt dat
u2(x) = c(x)uhomG,x met c : R → R. Als u2(x) wordt ingevuld in (5.10) met
λ = 0, volgt hieruit

0 = c′′(x)uhomG,x + 2c′(x)uhomG,x + c(x)uhomG,xxx + c(x)G′(uhomG)uhomG,x

= c′′(x)uhomG,x + 2c′(x)uhomG,x + c(x)(uhomG,xxx +G′(uhomG)uhomG,x)

= c′′(x)uhomG,x + 2c′(x)uhomG,x.
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Nu geldt

c′′(x)

c′(x)
= −2

uhomG,xx
uhomG,x

log|c′(x)| = −2 log|uhomG,x|+ C met C ∈ R

c′(x) = K
1

u2homG,x
met K ∈ R

c(x) = K

∫ x 1

u2homG,x(ξ)
dξ.

Dus we hebben

u2 = c(x)uhomG,x = KuhomG,x

∫ x 1

u2homG,x(ξ)
dξ.

Uit (5.6) volgt dat uhomG = A
cosh(Bx) met B =

√
α en A =

√
2α
β . Dus uhomG,x =

−AB sinh(Bx)
cosh2(Bx)

. Nu geldt

u2 =
−K sinh(Bx)

AB cosh2(Bx)

∫ x cosh4(Bξ)

sinh2(Bξ)
dξ.

Nu claimen we dat∫ x cosh4(Bξ)

sinh2(Bξ)
dξ =

1

2B

cosh3(Bx)

sinh(Bx)
+

3

2
x− 3

2B

cosh(Bx)

sinh(Bx)
+ E met E ∈ R.

Laat φ(x) = 1
2B

cosh3(Bx)
sinh(Bx) + 3

2x−
3
2B

cosh(Bx)
sinh(Bx) + E. Nu geldt

φ′(x) =
1

2B

3B cosh2(Bx) sinh2(Bx)−B cosh4(Bx)

sinh2(Bx)
+

3

2
− 3

2B

B sinh2(Bx)−B cosh2(Bx)

sinh2(Bx)

(∗)
=

3

2

(
cosh2(Bx) + 1 +

1

sinh2(Bx)

)
− 1

2

cosh4(Bx)

sinh2(Bx)

(∗)
=

3

2

(
sinh4(Bx) + 2 sinh2(Bx) + 1

sinh2(Bx)

)
− 1

2

cosh4(Bx)

sinh2(Bx)

=
3

2

(
(sinh2(Bx) + 1)2

sinh2(Bx)

)
− 1

2

cosh4(Bx)

sinh2(Bx)

(∗)
=

3

2

(
cosh4(Bx)

sinh2(Bx)

)
− 1

2

cosh4(Bx)

sinh2(Bx)

=
cosh4(Bx)

sinh2(Bx)
.

met (∗) : cosh2(Bx)− sinh2(Bx) = 1
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Neem nu E = 0 want anders krijg je weer een uhomG,x term erbij. Laat ue(x)
u2(x) zijn met E = 0. Nu geldt

ue =
−K sinh(Bx)

AB cosh2(Bx)

∫ x cosh4(Bξ)

sinh2(Bξ)
dξ = − K

2AB2
cosh(Bx)− 3Kx sinh(Bx)

2AB cosh2(Bx)
+

3K

2AB2

1

cosh(Bx)
.
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Figuur 15: Plot van ue(x) voor K = 1, A = 1 en B = 1.

In figuur 15 is een plot gemaakt van ue(x). Door B en K te variëren kunnen
respectievelijk de nulpunten en top verschoven worden. Merk ook op dat ue(x)
even is. Want er geldt

ue(−x) = − K

2AB2
cosh(−Bx)− −3Kx sinh(−Bx)

2AB cosh2(−Bx)
+

3K

2AB2

1

cosh(−Bx)

= − K

2AB2
cosh(Bx)− 3Kx sinh(Bx)

2AB cosh2(Bx)
+

3K

2AB2

1

cosh(Bx)
= ue(x).

Laat uhomF de homocliene baan zijn van 0 = uxx − u+ 2u3. Omdat we opzoek
zijn naar een stabiele homocliene baan, moeten we uhomF,x hebben voor x < −L
en −uhomF,x hebben voor x > L. Nu zijn er twee gevallen waarbij ue(x) kan
aansluiten met uhom,x. De twee gevallen zijn weergegeven op figuur 16.
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Figuur 16: Mogelijke aansluiting voor van ue(x) in uhom,x.
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In figuur 16(a) kan niet K > 0 kan ue(x) niet eraan worden gesloten, want
uhom,x is dan onmogelijk differentieerbaar bij x = ±L. Wel kan ue(x) passen in
figuur 16(a) voor K < 0, maar dan hebben we sowieso 2 nulpunten en dan is
uhom niet stabiel. De enige mogelijkheid is om te proberen ue(x) in figuur 16(b)
te passen met de juiste randvoorwaarden. Dan moet uhomF overspringen naar
uhomG voordat ux zijn maximum bereikt heeft. Een faseplaatje hiervan wordt
weergegeven op figuur 17.

u

w
G

F

Figuur 17: Illustratie van de stabiele homocliene baan behorend bij figuur 16(b).
De rode lijn is de homocliene baan met F (u), de blauwe lijn is de homocliene
baan met G(u) en de groene lijn is uhom van (5.9).

Nu gaan we proberen ue(x) te matchen met uhomF op ±L op figuur 16(b). Uit
(5.6) volgt dat uhomF = 1

cosh(x) . De eerste 2 randvoorwaarden zijn uhomF (±L) =

uhomG(±L), want de homocliene banen moeten elkaar snijden. De andere 2
randvoorwaarden zijn uhomF,x(−L) = ue(−L) en −uhomF,x(L) = ue(L), omdat
we opzoek zijn naar een stabiele homocliene baan en dus moeten we voor x ≥
L −uhomF,x hebben. En de laatste 2 randvoorwaarden zijn uhomF,xx(−L) =
ue,x(−L) en −uhomF,xx(L) = ue,x(L), omdat voor x ≥ L we −uhomF,x moeten
hebben. Merk op dat

ue,x = −K sinh (Bx)

2AB
− 3K sinh (Bx)

AB cosh2 (Bx)
− 3Kx

2A cosh (Bx)
+

3Kx sinh2 (Bx)

A cosh3 (Bx)
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Nu krijgen we het volgende stelsel van vergelijkingen

1

cosh(−L)
=

A

cosh(−BL)
(I)

1

cosh(L)
=

A

cosh(BL)
(II)

− sinh(−L)

cosh2(−L)
= ue(−L) (III)

sinh(L)

cosh2(L)
= ue(L) (IV)

1

cosh(−L)
− 2

cosh3(−L)
= ue,x(−L) (V)

− 1

cosh(L)
+

2

cosh3(L)
= ue,x(−L). (VI)

Deze stelsel kan vereenvoudigt worden. (I) en (II) zijn hetzelfde, omdat cosh(x)
een even functie is. (III) en (IV) zijn hetzelfde, omdat sinh(x) oneven is en
cosh(x) en ue(x) even zijn. (V) en (VI) zijn hetzelfde, omdat cosh(x) even is en
ue,x(x) oneven is (afgeleide van een even functie). Dus nu volgt

1

cosh(L)
=

A

cosh(BL)

sinh(L)

cosh2(L)
= ue(L)

1

cosh(L)
− 2

cosh3(L)
= −ue,x(L).

Er zijn hier 3 vergelijkingen met daarin 4 onbekenden A,B,K en L, daarom
kan er 1 onbekende vrij worden gekozen. We nemen dan L = 2 vast, want
in figuur 16(b) geldt dan L na de top van uhomF,x gekozen moet worden. Nu
kan dit worden opgelost met MATLAB (ook met Maple). MATLAB geeft dan
A = 0.2970810533, B = 0.2402486972, K = 0.008872718077, L = 2.000000000.
Deze resultaten zijn geplot op figuur 18.
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(b) De grafiek van uhom,x.

Figuur 18: Plots van uhom en uhom,x met A = 0.2970810533, B = 0.2402486972,
K = 0.008872718077, L = 2.000000000. De rode lijn is van de homocliene baan
met F (u), de blauwe lijn is van de homocliene baan met G(u) en de groene lijn
is uhom van (5.9).

Figuur 18 voldoet perfect aan onze eisen en lijkt te passen bij figuur 17. Maar
als we het faseplaatje proberen te plotten, voldoet het niet. Er geldt namelijk
ook α = B2 = 0.05771943651 en β = 2α

A2 = 1.307983207. En als we kijken naar
het (u,w) fase plaatje krijgen we het volgende plaatje.
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Figuur 19: Faseplaatje van (5.9) met α = 0.05771943651 en β = 1.307983207.

In figuur 19 snijden de homocliene banen elkaar niet in de (u,w) faseplaatje.
Dus we zijn die voorwaarde vergeten. Merk op dat de homocliene banen wel
op figuur 18(a), maar daar hebben we dat uhom(±L) = uhomG(±L) maar de
w = ux zijn de niet gelijk voor x = ±L. Dus snijden ze elkaar niet op figuur 18.
Het snijpunt in het (u,w) faseplaatje kunnen we bepalen door de hamiltonianen
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aan elkaar gelijk te stellen. We krijgen dan de volgende hamiltonianen{
u2x = u2 − u4 voor |x| ≥ L

u2x = αu2 − 1
2βu

4 voor |x| < L
.

Als deze 2 aan elkaar worden gelijkgesteld, volgt hieruit

u2−u4 = αu2−1

2
βu4 ⇐⇒ 1−u2 = α−1

2
βu2 ⇐⇒ (

1

2
β−1)u2 = α−1 ⇐⇒ u2 =

α− 1
1
2β − 1

.

We hebben ook dat α = B2 en β = 2α
A2 = 2B2

A2 . Dus geldt

u2 =
B2 − 1
B2

A2 − 1
=
A2(B2 − 1)

B2 −A2
.

Merk ook op dat het tijdstip dat het snijpunt moet vallen is x = ±L. Dus
u(±L)2 = 1

cosh2(L)
. Dus onze laatste voorwaarde is dan

1

cosh2(L)
=
A2(B2 − 1)

B2 −A2
.

Onze stelsel wordt dan

1

cosh(L)
=

A

cosh(BL)
(X)

sinh(L)

cosh2(L)
= ue(L) (XI)

1

cosh(L)
− 2

cosh3(L)
= −ue,x(L) (XII)

1

cosh2(L)
=
A2(B2 − 1)

B2 −A2
. (XIII)

Allereerst geven de vergelijkingen (X), (XI), (XII) met een gekozen waarde van
L de functies A(L),B(L) en K(L). Nu kan (XIII) worden geschreven als

fun(L) =
1

cosh2(L)
− A2(L)(B2(L)− 1)

B2(L)−A2(L)
= 0.

Nu kan er met behulp van MATLAB een plot worden gemaakt van fun(L). Zie
figuur 20.
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Figuur 20: Plot van fun(L) uitgezet tegen L van 0 tot 10 met stapgrootte 0.01
in MATLAB.

Uit figuur 20 zien we dat fun(L) een verticale asymptoot heeft bij ongeveer
L = 2.3 en een horizontale asymptoot bij de L-as. De stapgrootte is 0.01
en MATLAB verbindt alle puntjes en daarom hebben we rare lijn bij onge-
veer L = 2.3. Deze verticale asymptoot wordt veroorzaakt door de term
A2(L)(B2(L)−1)
B2(L)−A2(L) , dan geldt er namelijk dat B(L) = A(L). Nu kan fun(L) al-

leen nulpunten hebben voor de asymptoot, want na de asymptoot is duidelijk
te zien dat fun(L) groter is dan 0. Als er wordt ingezoomd wordt op het gebied
voor de verticale asymptoot, krijgen we figuur 21.

Figuur 21: Plot van fun(L) uitgezet tegen L van 0 tot 1 met stapgrootte 0.01
in MATLAB.

In figuur 21 is er te zien dat er in 0 tot 1 ook geen nulpunten zijn. Er zijn
ook rare schommelingen te zien. Deze ontstaan omdat L klein wordt, hierdoor
worden A(L) en B(L) ook heel klein. Deze getallen kunnen te klein worden
voor MATLAB. Maar dit heeft niet veel invloed op de nulpunten van funL.
Dus er bestaat geen L die voldoet aan de (X), (XI), (XII) en (XIII). Maar
hieruit kunnen we concluderen dat λ0 6= 0. Dus uhom is instabiel.
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6 Conclusie

In deze bachlorscriptie hebben we als eerst naar de reactie diffusie vergelijking
(1.1) gekeken. Deze vergelijking is vrij nauwkeurig geanalyseerd om de niveauk-
rommes te bepalen bij het (u,w = ux) faseplaatje. Dankzij de analyse konden
er voorwaarden worden gevonden zodat er homocliene banen en heterocliene
banen bestaan. Toen is er met behulp van de singuliere Sturm Liouville theorie
aangetoond dat homocliene banen instabiel zijn en heterocliene banen stabiel.

Daarna introduceerden we ruimtelijke inhomogeniteit bij x = 0 met als doel
een stabiele homocliene baan te vinden. Hierna toonden we de existentie van
homocliene banen in een systeem met ruimtelijk inhomogeniteit bij x = 0. En
bij die homocliene banen is er ook gekeken naar de stabiliteit. Maar helaas
waren alle homocliene banen instabiel.

Vervolgens beschouwden systemen met een gelokaliseerd defect. Bij systemen
met een gelokaliseerd defect bleken er heel veel homocliene banen te zijn. Je
kon namelijk in het defect ook gebruik maken van de vaste punten, periodieke
oplossingen en onbegrensde banen voor |x| < L. Hierna keken we naar een
systeem met defect met een homocliene baan door een vaste punt, hier vonden
we dat λ = 0 eigenwaarde is. Bovendien kon de index i van λi = 0 verschoven
worden naar alle i ≥ 2 door te variëren van L. Maar helaas ging de verschuiving
niet de goede richting op en bleken alle homocliene banen door een vaste punt
instabiel te zijn. En als laatst werd er gekeken naar mogelijke stabiele homo-
cliene baan. We waren goed op weg, alles ging goed totdat het (u,w) faseplaatje
niet klopt. Er bleek een voorwaarde te missen. Maar na het toevoegen van de
laatste voorwaarde kon er met MATLAB geen oplossing worden gevonden. Dus
uiteindelijk is er toch geen stabiele homocliene baan gevonden in een systeem
met defect.

6.1 Vervolg onderzoek

Omdat er geen stabiele homocliene baan in een systeem met defect is gevonden,
hebben we onze doelstelling niet gehaald. Dus we moeten verder zoeken naar
een stabiele homocliene baan in een systeem met defect. Ondanks dat we in
de paragraaf 5.6 geen stabiele homocliene baan hebben gevonden, kunnen we
hieruit wel verder werken. F (u) en G(U) zijn namelijk daar specifiek in de
vorm van −αu + βu3 gekozen, maar er kan ook −αu + βup worden genomen
met p ∈ R>1. Zoals in [4] met −αu + βup een algemene formule bepaald om
alle eigenwaarden uit te rekenen in een systeem zonder defect. Merk op dat
de vergelijkingen met −αu + βup allemaal homocliene banen geven. Dankzij
−αu + βup is er nu een extra parameter p. Dan hebben de 4 vergelijking (X),
(XI), (XII) en (XIII) nu 5 variabelen A,B,K,L en p. En als we nu een L
vast kiezen, hebben we misschien wel een stabiele homocliene baan. Maar voor
algemene p zijn de homocliene banen niet makkelijk expliciet te bepalen. En
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helaas is dit te moeilijk voor een bachelorscriptie.

Als er uiteindelijk een A = A∗, B = B∗,K = K∗, L = L∗ en p = p∗ gevonden is
met λ0 = 0, is er dus die homocliene baan die stabiel is in een systeem met de-
fect. Voor vervolg onderzoek hierop kunnen we in buurt van (A∗, B∗,K∗, L∗, p∗)
kijken en zoeken waarden die geven dat λ0 < 0. Dan hebben we voor alle
0 ≤ i ≤ N dat λi < 0 met N ∈ N, dus is onze puls dan spectraal stabiel. En
dat zou een heel mooi resultaat zijn.
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MATLAB code voor het bepalen van fun(L).

function fcns=eqns(z)

A=z(1);

B=z(2);

K=z(3);

L=z(4);

l=z(5);

fcns(1)=1/cosh(L)-A/cosh(B*L);

fcns(2)=(sinh(L))/((cosh(L))^2)+(1/2)*K*cosh(B*L)/(A*B^2)

+(3/2)*K*L*sinh(B*L)/(A*B*(cosh(B*L))^2)-(3/2)*K/(A*B^2*cosh(B*L));

fcns(3)=1/cosh(L)-2/((cosh(L))^3)+(-(1/2)*K*sinh(B*L)/(B*A)

-3*K*sinh(B*L)/(A*B*(cosh(B*L))^2)-(3/2)*K*L/(cosh(B*L)*A)

+3*K*L*sinh(B*L)^2/(A*(cosh(B*L))^3));

fcns(4)=L-l;

end

clear all;

clc;

tab=[]; %Tabel met benodigde gegevens.

j=1; %Teller van rij in tabel.

lmax=10; %Maximum waarde van L.

lstap=0.01; %Stapgrootte van L.

for i=0:lstap:lmax

guess=[0.1 0.1 0.1 i i]; %begingok

result=fsolve(@eqns,guess);

tab(j,:)=[result(1) result(2) i]; %We maken de volgende kolommen [A(L) B(L) L].

j=j+1;

end

m=j-1; %Maximum aantal rijen.

for k=1:m

fun(k)=1/(cosh(tab(k,3)))^2-tab(k,1)^2*(tab(k,2)^2-1)/(tab(k,2)^2-tab(k,1)^2);

end

plot(tab(:,3),fun)

41


