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1 Introductie

Een ’ruimtelijke patroon’ U(z,t) is wiskundige termen een oplossing van een
partiéle differentiaal vergelijkingen (PDE). Zo'n PDE kan uiteenlopende ver-
schijnselen als watergolven of de elektrische lading van een zenuwcel modelleren.
Voor vast t representeert U als functie van x een ’patroon’: een doorsnede van
een watergolf of de gelokaliseerde lading van een lopende elektrische puls. In
deze bachelorscriptie gaan we naar PDE’s van de volgende vorm kijken:

o _ou

5 = g5+ F(U): (1.1)

met daarin U(z,t) : R x Ry — R (uniform begrensd) en F': R — R een gladde
functie. Helaas is (1.1) te simpel om een realistisch verschijnsel te modelleren,
maar het treedt wel vaak op als bouwsteen in geavanceerde modellen. F(U) is
een niet lineaire functie en heet ook wel de reactie term, daarom wordt (1.1)
ook wel een reactie diffusie vergelijking genoemd.

De stationaire oplossingen van (1.1) zijn eigenlijk gewone differentiaal vergelij-
king (ODE). Deze zijn onathankelijk van de tijd ¢ en er geldt dan U(x,t) = u(z).
Onze ODE is dan

d*u
Van (1.2) zijn we vooral geintereseerd naar de begrensde oplossingen u*(z).
Deze kunnen worden gezien als een kritiek punt van (1.1).

Voorbeelden van deze begrensde oplossingen zijn homocliene banen en hetero-
cliene baan. Een homocliene baan upem(2) begint in een vaste punt en eindigt
ook weer in datzelfde vaste punt, maar het moet wel ondertussen in een andere
punt zijn geweest, oftewel lim, 4o Unom () = ¢ met ¢ € R en er bestaat een
% zodanig dat unem(Z) # c¢. En een heterocliene baan upet(z) begint in een
vaste punt en eindigt in een andere vaste punt, oftewel lim,_, o upet(x) = 1
en lim, oo Unet () = co met ¢1,c0 € R en ¢1 # co.

Je kunt dus nu afvragen hoe U(x,t) van (1.1) in de omgeving van u*(x) ge-
draagt. Dit geeft de volgende handige definitie uit [1].

Definitie 1. Een stationaire oplossing van een partiéle differentiaal vergelij-
king is stabiel als alle tijdsafhankelijke oplossingen, die dichtbij de stationaire
oplossing starten, in een gegeven omgeving rond de stationaire oplossing blijven
voor alle tid t > 0. Fen stationaire oplossing is instabiel, als het niet stabiel
is.

Met behulp van Sturm-Liouville theorie (Hoofdstuk 2) is het mogelijk om aan
te tonen dat homocliene banen instabiel zijn en heterocliene banen stabiel zijn
(Hoofdstuk 3).



Omdat onze PDE (1.1) redelijke eenvoudig is, is daarover al veel om bekend.
Daarom gaan we ruimtelijke inhomogeniteit toevoegen aan (1.1). Dit betekent
dat de term F(U) in (1.1) een ’sprong’ maakt tussen x < 0 en x > 0. Dit
creért een onverwachte rijkdom aan patronen, als 'pinned fluxons’ spelen dit
soort oplossingen een belangrijke rol binnen processen in supergeleiders.

In dat onderzoek over ’pinned fluxons’ [2] hebben ze een PDE zonder hetero-
cliene banen bestudeerd. Met behulp van ruimtelijke inhomogeniteit hebben ze
uiteindelijk een heterocliene baan kunnen maken. Vervolgens is er ook nog een
voorwaarde bepaald waarvoor die heterocliene baan stabiel is. Dus ruimtelijke
inhomogeniteit geeft nieuwe mogelijkheden.

Zoals eerder opgemerkt, kan er worden aangetoond dat een homocliene baan in
(1.2) instabiel is. Nu is de vraag of het mogelijk is om met behulp van ruimtelijke
inhomogeniteit een homocliene baan kan bepalen die stabiel is. Dit geeft in de
volgende onderzoeksvraag:

Is het mogelijk een stabiele homocliene baan te bepalen met
ruimtelijke inhomogeniteit?

Nu wordt er in het kort iets verteld over de inhoud van deze bachelorscriptie.
In hoofdstuk 2 gaan we de singuliere Sturm-Liouville theorie bestuderen. Deze
theorie is essentieel voor het analyseren van de stabiliteit van homocliene banen
en heterocliene banen.

In hoofdstuk 3 bekijken we de algemene reactie-diffusie vergelijking. Van deze
vergelijking worden de vaste punten bepaald en de banen in het (u,u,) vlak
worden berekend. Ook worden hier voorwaarden bepaald voor F(U) zodat er
homocliene en heterocliene banen bestaan. En we sluiten dit hoofdstuk af met
de stabiliteitsanalyse van homocliene banen en heterocliene banen.

In hoofdstuk 4 behandelen we de reactie-diffusie vergelijking met ruimtelijke
inhomogeniteit bij x = 0. Eerst wordt er gekeken naar de existentie van homo-
cliene banen. Tenslotte wordt de stabiliteit van die homocliene banen bepaald.

In hoofdstuk 5 beschouwen we de reactie-diffusie vergelijking met een geloka-
liseerd defect. Dat is een reactie-diffusie vergelijking met ruimtelijke inhomo-
geniteit op een bepaald domein bijvoorbeeld voor |x| < L met L > 0. Hier
wordt eerst ook gekeken naar de existentie van homocliene banen. Vervolgens
kijken we naar specifieke vergelijkingen en gaan daarvan de stabiliteit van de
homocliene banen bepalen.



2 Singuliere Sturm-Liouville theorie

In dit hoofdstuk wordt de singuliere Sturm-Liouville theorie behandeld, deze
theorie wordt in de andere hoofdstukken vaak gebruikt om de stabiliteit van
heterocliene banen en homocliene banen te bepalen. In de singuliere Sturm-
Liouville hebben we te maken met randvoorwaarden voor x — +oo in plaats
van de Dirichlet, Neumann en Robin randvoorwaarden bij de 'normale’ Sturm-
Liouville theorie. Dit geeft de volgende stelling.

Stelling 1. Laat een differentiaal operator van de vorm —--(p(z) %)+ q(z)u =
Aw(z)u zign met p(z), w(z) : R = Rsg en q(z) : R — R. Veronderstel dat de
eigenwaarde probleem de randvoorwaarden lim,_, 1 u(x) = 0 heeft, nu gelden

1) Er is een eindig aantal reéle eigenwaarden A;, 7 = 0,1---,J met A\g >
J
AL > > A

(i1) De bijbehorende eigenfuncties u;(x) hebben j verschillende nulpunten en
zign even respectievelijk oneven als functie van x indien j even respectie-
veligk oneven is.

Stelling 1 lijkt wel op de 'normale’ Sturm-Liouville theorie, maar het belang-
rijkste verschil is dat er nu maar eindig veel eigenwaarden zijn. Net als bij de
'normale’ Sturm-Liouville theorie zijn er meer resultaten (zoals orthogonaliteit
van de eigenfuncties, etc.), maar in deze bachelorscriptie worden de andere re-
sultaten niet gebruikt. Daarom zijn die resultaten dan ook niet aan de stelling
toegevoegd. Stelling 1 wordt vooral gebruik in hoofdstuk 3. Daar wordt er
p(x) =w(z) =1 en q(x) = —F'(u(z)) gekozen.

In de overige hoofdstukken wordt een Stelling 2 gebruikt. Stelling 2 is handi-
ger voor homocliene banen, wat we gaan bestuderen. Stelling 2 is als lemma
3.2 aangegeven in [3], maar in plaats van een lemma wordt het in deze bache-
lorscriptie een stelling genoemd.

Stelling 2. Laat H : R>g — R zodat de differentiaal vergelijking uz, = pu —
H(u) met p > 0 een oplossing up(x) heeft, die een homocliene baan heeft in
(u,ugy) = (0,0), en neem h(z) = H'(up(z)). Voor een differentiaal operator
van de vorm L(x) = %22 + h(z) — p, veronderstel dat de eigenwaarde probleem

de vorm heeft van (L(x) — N)u = 0 met randvoorwaarden lim,_, 4, u(z) = 0.
Bovendien, definieer A = \/p+ X met arg(A) € (—Z%,Z). Nu gelden
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(i) Eris een eindig aantal reéle eigenwaarden Xj, j =0,1---,J met Ao > 0,
Al =0en0> X > --->A; > —p. Equivalent, er is een eindig aantal
reéle eigenwaarden Ay met A > \/p, Ay = \/pen/p>NAa>--->A;>0.

(11) De bijbehorende eigenfuncties u;(x) hebben j verschillende nulpunten en
zijn even respectievelijk oneven als functie van x indien j even respectie-
velijk oneven is. Bovendien, d—iuh(x) is een eigenfunctie voor A\ = 0 (of
Ay = 1); met andere woorden, ui(z) € span{-Luy(z)}.



Stelling 2 wordt in de hoofdstukken 4 en 5 vaak toepast op (1.2). In hoofdstuk
3 worden er aannames bepaald voor F(u), zodat homocliene banen bestaan
voor deze F(u). Eén van die aannames is dat F'(0) < 0, dit zorgt ervoor dat
de lineaire stabiliteit van (0,0) een zadel wordt. (1.2) kan nu worden geschreven
als
Upe = —F(u) = —F'(0)u — (—=F'(0)u + F(u)).

Dan nemen we p = —F’(0) > 0 en H(u) = —F’(0)u+ F(u). En nu voldoet (1.2)
aan de voorwaarden van Stelling 2 en dus kan deze stelling op (1.2) worden
toegepast.



3 Algemene reactie-diffusie vergelijking

In dit hoofdstuk wordt de singuliere Sturm-Liouville theorie toegepast om te
laten zien dat homocliene banen instabiel zijn en heterocliene banen stabiel
zijn. We beschouwen weer dezelfde PDE, namelijk

v _ou

5 = a2 T FO). (3.1)

Als de stationaire oplossingen worden bestudeerd, geldt weer U(z,t) = u(x).
Nu volgt dan de ODE

d?u

Van (3.2) zijn we vooral geintereseerd in de begrensde oplossingen uy, (z). Merk
op dat up, () alleen de homocliene, heterocliene of periodieke banen kunnen zijn.
Maar in dit bachelorscriptie worden de homocliene banen en de heterocliene
banen alleen behandeld. Maar eerst moet (3.2) beter worden geanalyseerd om
meer de oplossingen beter te begrijpen. Vervolgens moeten er aannames voor
F(U) worden bepaald opdat er homocliene banen of heterocliene banen zijn.
Namelijk voor F(U) = 0, zijn alle niet triviale stationaire oplossingen lineaire
lijnen. Deze zijn dan ook niet begrensd en zijn er dus noch homocliene banen
noch heterocliene banen.

3.1 Stelsel

Zoals alle hogere ordes differentiaal vergelijkingen omgeschreven kunnen wor-
den naar een stelsel van ODE’s, kan dat ook worden gedaan bij (3.2). We
introduceren dan w = %v hierdoor komt uit (3.2) het volgende stelsel

& =T
Het handige van het omschrijven naar een stelsel van ODE’s is dat de vaste
punten makkelijker te bepalen zijn en vervolgens kunnen we de lineaire stabiliteit
van die vaste punten berekenen. Voor een vaste punt is er nodig dat % = % =
0. Stel er bestaat een u* waarvoor F(u*) = 0, dan is (u*,0) een vaste punt
van dit stelsel. Nu moet de lineaire stabiliteit van de vaste punten nog bepaald
worden. Dat kan worden gedaan met de afgeleiden matrix, die is

( %w ﬁw ) . < 0 1)
—5oF(u) —5-F(u) —F'(u) 0)°
Als er een u* is met F(u*) = 0, dan is karakteristieke polynoom van deze matrix

gelijk aan A2 + F’(u*) = 0. Hieruit volgt dat Ay = ++/—F’(u*). Nu kan het
volgende geconcludeerd worden:



o Als F'(u*) <0, dan geldt AL € R en dus is (u*,0) een zadelpunt.

e Als F'(u*) > 0, dan geldt Ay € iR en dus is (u*,0) een centrum.

3.2 De Hamiltoniaan

Om preciezer de banen te bepalen in (u, w) fase plaatje, kunnen we beter kijken
naar de hamiltoniaan. Deze hamiltoniaan geeft een verband tussen v en w = uy.
Uit (3.2) kan de hamiltoniaan als volgt worden bepaald: (3.2) wordt aan beide

kanten met % vermenigvuldigd, nu volgt er

du du du

S e S <o
dz? dz (u)dx 0

Daarna integreren we over x, vervolgens geldt

L(du 2+/F( )du = H met H € R
B) dgj u)au = me .

Hieruit krijgen we een expliciete functie van u, uitgedrukt in u. Deze is

wy = i\/Q <H - /F(u)du).

Merk op dat dit precies de niveaukrommes zijn in het (u,w) fase plaatje. Nu is
er genoeg voorkennis om lemma 1 te bewijzen.

Lemma 1. Stel er bestaan u; met 1 < i < N met N € N waarvoor geldt dat
F(u;) =0, dan geldt dat de zadelpunten en de centra zich onderling afwisselen
(zadel, centrum, zadel, --- of andersom,).

Bewijs: Er is al aangetoond dat u, = j:\/2(H — [ F(u)du). De belangrijkste
term hiervan is H — [ F(u)du, deze bepaalt de vorm van u,. De verschillende
niveau krommes van H — [ F(u)du worden bepaald door de H te gaan variéren.
Omdat F' glad is, volgt hieruit dat H — [ F(u)du minima en maxima heeft. Dus
dan heeft u; ook minima en maxima. Als H wordt gevarieerd, zien we dat de
maxima de centra geven en de minima de zadelpunten (zie figuur 1). En door
de gladheid van F' geldt dat de minima en de maxima elkaar afwisselen. Dus
wisselen de zadelpunten en centra elkaar ook af. ]
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(a) (3.2) met F(u) = —u +u>. (b) (3.2) met F(u) = —u(u — 1)(u — 2).

Figuur 1: Plot van het faseplaatje van (3.2) met bijbehorende F(u). De rode
pijlen zijn de richtingen, de blauwe lijnen zijn de niveau krommes en de groene
lijn geeft een homocliene baan in (a) en een heterocliene baan in (b).

3.3 Aannames voor F(u)

Zoals er al eerder is opgemerkt, geeft niet iedere willekeurige F'(U) een homo-
cliene baan of een heterocliene baan. Nu hebben we voldoende voorkennis om
eisen aan F'(U) te koppelen opdat we een homocliene baan of een heterocliene
baan krijgen.

In figuur 1(a) kunnen we ook zien dat er een homocliene baan is voor u < 0.
Maar we in dit bachelorscriptie gaan we richten op positieve oplossing van u(x).
Daarom is onze eerste eis dat u(zx) > 0.

Voor een homocliene baan moet de oplossing vanuit de instabiele manifold van
een zadel komen en eindigen in de stabiele manifold van dezelfde zadel eindigen.
Dit kan alleen maar als er een centrum in de buurt is die de oplossing weer
terugleidt naar de zadel. Uit lemma 1 volgt dan dat voor een homocliene baan
hebben we minstens 2 verschillende oplossingen u; < us waarvoor moet gelden
dat F(Ul) = F(UQ) =0.

Voor een heterocliene baan moet de oplossing vanuit de instabiele manifold van
een zadel z; komen en eindigen in de stabiele manifold van een zadel zo eindigen,
hij kan immers nooit in een centrumpunt eindigen. Uit lemma 1 volgt er dat
er dus 3 verschillende oplossingen u; < us < uz moeten zijn, waarvoor geldt
dat F(uy) = F(u2) = F(ug) = 0. Omdat er 2 verschillende zadels zijn, moeten
we ook eisen dat F'(uq), F'(us) < 0 en F'(ug) > 0.

Zonder verlies van algemeenheid kan er worden aangenomen dat (0,0) een vast
punt is en het een zadel is in het (u,w) faseplaatje. Indien dat niet het geval



zou zijn, kan er zo verschoven worden dat (0,0) het vast punt wordt. Dus de
aannames voor homocliene baan zijn dat er een u; > 0 bestaat met F'(0) =
F(u1) =0 en F'(0) < 0. En de aannames voor een heterocliene baan zijn dat
er ug > uj > 0 bestaan met F(0) = F'(uy) = F(u2) =0en F'(0), F'(uz) < 0 en
g (Ul) > 0.

Van deze aannames kan er nu een fase plaatje worden gemaakt met de nullclines
erin zodat we weten welke richtingen de oplossingen naar toe gaan. Zie figuur

Ay Ay
u=0 U = Uy u=0 U = Uy U = u2
o —» —» >
Uy =0 (o,o)f (uf,0) L u Uy =0 <u,o)f (uj,0)  (u ,o)f L u
w = ¢ = W — # >
<« < <+« <+ <

(a) Faseplaatje voor (3.2) met F zodanig(b) Faseplaatje voor (3.2) met F zodanig
gekozen dat F(0) = F(u1) = 0 met F'(0) <gekozen dat F(0) = F(u1) = F(uz2) = 0
Oen F'(u1) > 0. met F'(0), F'(uz2) < 0 en F'(u1) > 0.

Figuur 2: Illustraties van het faseplaatje met nullclines voor een homocliene
baan (a) en een heterocliene baan (b). De rode lijnen zijn de richtingen en
zwarte lijnen zijn de nullclines.

3.4 Stabiliteit van homocliene banen en heterocliene ba-
nen

We zochten naar begrensde oplossingen uy,(z). Deze oplossingen uy (x) zijn voor
deze bachelorscriptie de homocliene banen en heterocliene banen. Nu wordt er
bestudeerd hoe U(x,t) zich gedraagt in de buurt van wup(z). Om antwoord
hierop te krijgen introduceren we U(x,t) = up(z) + €V (z,t) met € klein. Als dit
wordt ingevuld in (3.1), dan krijgen we

2
— (up(x) + €V (xz, 1)) + F(up(x) + €V (x,t))

v dPu, OV

B = dn? + €522 + F(up(x) + €V (x,t)).

10



Als F' wordt getaylord rond up(z), krijgen we

ov P, 0%V

€S T 4Z + €527 + F(un(z)) + eF' (up(x))V + O(e).

Omdat uj voldoet aan (3.2) geldt

oV o?V , 9
o = o7 + eF'(up(x))V 4+ O(e%).

Dan volgt hieruit het volgende PDE van orde ¢

v 0%V

— =+ F V.

ot = azz 1 (@)
Door scheiden van variabelen wordt V(z,t) geschreven als V(z,t) = e*uv(x)
met een eigenwaarde A € C en v : C — C is voldoende glad en begrensd op
heel R. De functie v(x) is dan een oplossing van de singuliere Sturm-Liouville
vergelijking,

2

d
Ly =Xvmet L= 12 + F'(up). (3.3)
Per definitie van wuy, geldt dj;‘r;‘ + F(up) = 0. Als deze wordt gedifferentieerd
naar x aan beide kanten, volgt
d (d*uy,
— | —=+F =0.
dz ( daz? * (uh)) 0

Deze vergelijking is precies gelijk aan (3.3) met v = up , en A = 0 want

2
Euh,ac = @(uh@) + F/(Uh)uh,x =0- Uh,z-

Dus uy, , is een eigenfunctie van (3.3) met eigenwaarde 0. Laat de homocliene

baan en heterocliene baan worden weergeven met respectievelijk upom €n upet.

Nu moeten pet,z €0 Unom,» Worden bepaald, want deze zijn de oplossingen van

(3.3) met A = 0. Deze twee functies zijn te zien op Figuur 3(b) en figuur 3(d).

11
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(a) Grafiek van unom (). (b) Grafiek van unom,z ().
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(c) Grafiek van unet(z). (d) Grafiek van unet,» ().

Figuur 3: Illustraties van een homocliene baan en een heterocliene baan met
hun afgeleiden.

Op figuur 3(b) zien we dat unom,» precies één snijpunt heeft met de z-as en op
figuur 3(d) zien we dat unet,, geen snijpunten heeft met de z-as. Als Stelling
1 erop wordt toegepast, geldt er:

e Voor de homocliene oplossingen hebben we dat upom - precies één snijpunt
nulpunt heeft. Dus volgt hieruit dat A\; = 0. Nu weten we dat A\g > 0. Als
we n eigenwaarden hebben en v;(z) de bijbehorende eigenfuncties zijn,
geldt V(z,t) = Y i vi(z)etit. Uit Definitie 1 volgt nu dat unom()
instabiel is omdat Ao > 0.

e Voor de heterocliene oplossingen hebben we dat upet,, geen nulpunten
heeft. Dus volgt hieruit dat Ag = 0. Als we n eigenwaarden hebben en
vi(z) de bijbehorende eigenfuncties zijn, geldt V(z,t) = Y1 v;(x)ert.
Uit Definitie 1 volgt nu dat upe;(x) stabiel is omdat A; < 0 voor alle
0<i<n.

12



4 Ruimtelijke inhomogeniteit

In dit hoofdstuk gaan we PDE’s bestuderen met ruimtelijke inhomogeniteit bij
x = 0. Een simpel voorbeeld hiervan is

Met F_ : R — R en F; : R — R gladde functies en F_ # F,. Voor z < 0
hebben we een oplossing van U; = U, + F_(U) en voor > 0 hebben we
een oplossing van U; = U,, + F(U). Merk op dat het omslagpunt gekozen
is op x = 0, maar in principe kunnen we een willekeurige x cotrdinaat kiezen.
Eerst zal er vooral worden gekeken naar de existentie van de homocliene banen
in systemen met ruimtelijk inhomogeniteit en daarna wordt de stabiliteit van
de homocliene banen bepaald. Omdat we voornamelijk geinteresseerd zijn in
homocliene banen, hebben we een aantal eisen nodig. Uit paragraaf 3.3 hebben
we de volgende eisen; Fy(0) = F_(0) = 0, F/.(0),F’ (0) < 0 en er bestaan
i1, Uo > 0 met F+(’a1) = F,(ﬂg) =0.

4.1 Existentie

Voor de existentie van de homocliene banen, moeten eerst de stationaire oplos-
singen worden bepaald. Als we U(z,t) = u(x) nemen, dan voldoen de stationaire
oplossingen aan

o — F (u) 2<0
a5 ~ . (4.1)
e = —Fi(u) >0

Deze kan worden geschreven naar het volgende hamiltoniaan,

2
;(;m) —|—/F,(u)du: H_ voor z <Omet H_ € R
x

2
;(jg) + /F+(u)du = H, voor x > 0 met H; € R.
Laat de 2 vergelijkingen hierboven gelden voor alle x € R, dus we halen de
beperkingen z < 0 en > 0 weg. Dan krijgen we 2 hamiltoniaanse systemen.
Deze 2 hamiltoniaanse systemen zijn verschillend omdat F_ # F,. We weten
ook dat (0,0) een vaste punt is, nu geven H_ = 0 en Hy = 0 de homocliene
baan bij (0,0) in respectievelijk 3273 =—F_(u) en 32712‘ = —F,(u). In het (u,w)
fase plaatje zijn er nu dan 3 mogelijkheden, want de homocliene banen snijden
elkaar 0,1 of 2 keer. Als de homocliene banen elkaar niet snijden, dan is er ook
geen homocliene baan in (4.1), want er kan dan niet over worden gesprongen
naar de andere homocliene baan.

13



Stel we zitten nu het geval dat er minstens 1 snijpunt is, dan moet er worden

gekozen dat een van de snijpunten valt op x = 0. Zodat het systeem precies op
d%u

x = 0 van de homocliene baan van % = —F_(u) naar de homocliene baan van
d? ;
¢ = —Fy(u) springt.

Als de homocliene banen 1 snijpunt hebben, dan moeten ze elkaar snijden
bij de top, dus voor u, = 0. Laat het snijpunt (u*,0) zijn. Bij dit geval

hebben we 2 situaties, want er geldt \/72fF_(u)du < \/72fF+(u)du of

\/—2fF+(u)du < \/—QfF, (u)du voor 0 < u < u*. Gelijkheid kan niet op-
treden omdat er aangenomen is dat F_ # F.
Beschouw nu het geval dat de homocliene banen 2 snijpunten hebben. Laat

(u*,w*) een snijpunt zijn, dan weten we door de symmetrie van de homo-
cliene baan dat (u*, —w*) de andere snijpunt is. Laat u_ > 0 voldoen aan

\/=2 [ F_(u)du = 0 en uy > 0 voldoen aan \/—2 [ Fi(u)du = 0. Merk op

dat u_ en u; bestaan omdat F_(u) en F(u) beide 2 verschillende nulpun-
ten hebben. Nu hebben we weer 2 situaties, namelijk er geldt u_ < wuy of
uy < u_. Gelijkheid kan hier niet optreden omdat dat zou betekenen dat er
maar 1 snijpunt is.

Dus we hebben nu 4 mogelijke situaties waarbij er minstens één snijpunt is
tussen de homocliene banen. Die zijn:

1. Als u_ < uy met ug > 0 de oplossing van /=2 [ Fi(u)du = 0.
2. Als uy < u_ met ug > 0 de oplossing van y/—2 [ Fy (u)du = 0.

3. Als u— = uy met uy > 0 de oplossing van /=2 [ Fi(u)du = 0 en
\/foF+(u)du < \/foF_(u)du voor 0 < u < ug.

4. Als u— = uy met uy > 0 de oplossing van /=2 [ Fi(u)du = 0 en
\/—2fF,(u)du < \/—2fF+(u)du voor 0 < u < ug.

Merk op dat situaties 3 en 4 hetzelfde als je —z in plaats van x. Daarom zijn
de eerste 3 situaties zijn geillusteerd op figuur 4.
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(a) Situatie 1. (b) Situatie 2. (c) Situatie 3.

Figuur 4: Tllustraties van mogelijke situaties van (4.1) waarbij een homocliene
baan bestaat. De rode lijnen zijn de homocliene banen met F_(u) en de blauwe
lijnen zijn de homocliene banen met Fy (u).

Beschouw eerst situatie 1 oftewel figuur 4(a). We gaan nu proberen zoveel mo-
gelijk homocliene banen te vinden in figuur 4(a). Een homocliene baan begint
vanuit (0,0) op de rode lijn en moet eindigen via de blauwe lijn in (0,0) Hier-
van zijn maar 2 mogelijkheden, want er zijn precies 2 snijpunten. x = 0 kan
alleen maar worden gekozen op één van beide snijpunten. Dus zijn er maar 2
homocliene banen in figuur 4(a). Zie figuur 5(a) en figuur 5(b).

Op precies hetzelfde manier kan situatie 2 worden geanalyseerd. Daar zijn er
ook maar 2 mogelijke manieren om een homocliene baan te krijgen, omdat we
daar ook 2 snijpunten hebben.

Ook op hetzelfde manier kan situatie 3 worden geanalyseerd. Maar daar is
maar 1 mogelijke manier om een homocliene baan te krijgen, omdat we daar 1
snijpunt hebben. Zie figuur 5(c

W
(a) Homocliene baan ge-(b) Homocliene baan
bruikmakend van het eer—gebrmkmakend van het (¢) Homocliene baan ge-
ste snijpunt van figuurtweede  snijpunt  van brulkmakend van het snij-
4(a). figuur 4(a). punt van figuur 4(c).

Figuur 5: Hlustraties van de mogelijke homocliene banen. De rode lijnen zijn de
homocliene banen met F_(u), de blauwe lijnen zijn de homocliene banen met
F, (u) en de groene lijnen zijn de homocliene banen van (4.1).
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4.2 Stabiliteit

Om de stabiliteit van de homocliene banen te bepalen, moeten we kijken of A = 0
hier een eigenwaarde is en hoeveel nulpunten de bijbehorende eigenfunctie dan
heeft. Laat upom een homocliene baan zijn van (4.1). Weer gaan we bestuderen
hoe U(z,t) zich gedraagt in de buurt van upem(x). Om antwoord hierop te
krijgen introduceren we U(x,t) = upom () + ee*v(z) met € klein. Analoog aan
paragraal 3.4 hebben we dat de functie v(x) een oplossing is van de singuliere
Sturm-Liouville vergelijking,

day

L_v =2 v met L_ :df22+F’,(uh(x)) voor x < 0 (4.2)
Liv=X vmet Ly = % + F (up(x)) voor > 0 '

Beschouw nu eerst homocliene baan van figuur 5(a), noem het upom. Laat tunom—
d?u

de homocliene baan zijn van §-% = —F_(u) en upomy de homocliene baan zijn
32715 = —F; (u) voor alle z € R. Dus

u | tuhom— <0
hom Unhomt+ >0

Doordat upom— €n upom+ homocliene banen zijn, weten we dat

d? ,
‘C*uhﬂm*»fﬁ = @(uhomf,x) +F (uhom)uhomf,x =0- Uhom—,z VOOI T <0
d2
/
LiUhomt,z = @(uhoer,m) + F'(thom ) Uhom+,z = 0 - Unhom+,5 voor = > 0.

Dus geldt nu

u _ Uhom—,z T <0
hom,z Uh0m+,x € 2 0

Merk nu op dat tnom,, voldoet aan (4.2). Maar unom 4 i niet continu, want thom
is niet differentieerbaar op z = 0. Zie figuur 6(b). Het is alleen mogelijk unom
differentieerbaar te krijgen op = 0 in situatie 3 (of situatie 4) of als F_(U) =
F,(U). Maar bij F_(U) = F;+(U) hebben we geen ruimtelijke inhomogeniteit
meer en dan is de homocliene baan instabiel. En situatie 3 (en 4) analyseren
we later. Dus omdat upom,, niet continu meer is, geldt dus dat A = 0 geen
eigenwaarde meer is.

Met precies dezelfde reden geldt dat A = 0 geen eigenwaarde is voor de homo-
cliene banen in figuur 4(b). Ook met hetzelfde reden volgen voor de homocliene
banen van figuur 4(b) dat A = 0 geen eigenwaarde meer is.

Ook voor situatie 3 en 4 is A = 0 ook geen eigenwaarde. Want de upom, is wel
continu voor z = 0, maar niet differentieerbaar in x = 0, want de versnelling op
x = 0 is anders. Zie figuur 7.

Dus de homocliene banen met ruimtelijke inhomogeniteit zijn niet stabiel.
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AU
Au
o X
F+ Ll
(a) De rode lijn is de homocliene baan van
F_(u), de blauwe lijn is de homocliene baan
van Fy (u) en de groene lijn is tUnom (). (b) Grafiek van tunom,z-

Figuur 6: Illustratie van tupom €0 Unom,» van (4.2).

AU

Figuur 7: Illustratie van unom, . van situatie 3.
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4.3 Translatie symmetrie

Een andere reden waarom A = 0 geen eigenwaarde meer kan zijn, kan worden
gegeven door de translatie symmetrie. Laat upom de homocliene baan zijn van
(3.2). De translatie symmetrie is eigenlijk de reden waarom upom » €en eigen-
functie is bij A = 0. De translatie symmetrie zegt dat als up(x) een homocliene
baan, dan geldt ook dat up(z + r) een homocliene baan is voor alle r € R. Zie
figuur 8.

Ay

up ()

up(x + 1) .

Figuur 8: Illustratie van translatie symmetrie.

Uit figuur 8 zien we dat de verstoring van uy(x) naar up(z + r) de vorm niet
laat krimpen of groeien. Dit heeft te maken A\ = 0, want e groeit of krimpt
niet met A = 0. Als we nu uy (2 +r) gaan tayloren rond x met r klein, dan volgt

up(x +71) = up(z) + rupe(z) + O0?) = up(z) + rup . (2)e”t + O(r?).
Omdat er is aangenomen dat U(z,t) = Unom(x) + ee*v(z) met ¢ klein, is hier
v(z) = up(x) en A = 0. Dit gaat niet lukken bij een systeem met ruimtelijk

inhomogeniteit bij x = 0, want er is geen translatie symmetrie meer. Omdat je
in dit geval x niet meer kunt verschuiven.
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5 Gelokaliseerde defect

In dit hoofdstuk gaan we kijken naar systemen met een gelokaliseerd defect.
Deze worden ook wel systemen met defect genoemd. Een voorbeeld hiervan is

Uy =Up+FU) |2|>L
Uy =Ump+GU) |2|<L

Met FF: R - Ren G : R — R gladde functies, F' # G en L > 0, deze L is
vrij te kiezen zodat er een homocliene baan bestaat. Voor |z| > L hebben we
een oplossing van U; = U,, + F(U) en voor |z| < L hebben we een oplossing
van Uy = Uy, + G(U). Eerst zal er vooral worden gekeken naar de existentie
van de homocliene banen in systemen met defect en daarna wordt de stabiliteit
van een aantal homocliene banen bepaald. Omdat we geinteresseerd zijn in
homocliene banen, hebben we een aantal eisen nodig. Uit paragraaf 3.3 moeten
we de volgende eisen hebben; F(0) = G(0) = 0, F'(0), G’'(0) < 0 en er bestaan
i1,U1 > 0 met F(al) = G(’Ilg) =0.

5.1 Existentie

Voor de existentie van de homocliene banen, moeten eerst weer de stationaire
oplossingen worden bepaald. Als we U(x,t) = u(z) nemen, dan voldoen de
stationaire oplossingen aan

Cu
£ - —F(u) [o] > L -
e = —Gu) |z[ <L

Deze kan worden geschreven naar het volgende hamiltoniaan,

1/ du\?
2(du> +/F(U)dU:HF vOor \x|ZLmet HFGR
x

1(du)”

2(du> + /G(u)du = H¢ voor |z| < L met Hg € R.
T

Laat de 2 vergelijkingen hierboven gelden voor alle x € R, dus we halen de

beperkingen |z| < L en |z| > L weg. Nu zijn er 2 verschillende hamiltoniaanse

systemen, omdat G # F. Er geldt dat (0,0) een vaste punt is, nu geven Hp = 0

en Hg = 0 de homocliene baan bij (0,0) in respectievelijk % = —F(u) en
32775 = —G(u). Laat upomp de homocliene baan zijn van 32712‘ = —F(u) en Uphome
de homocliene baan zijn van 327’2‘ = —G(u) voor alle z € R.

Een homocliene baan in een systeem met defect springt van upomp naar een
oplossing in 32712‘ = —G(u) en springt dan weer terug naar Unoms, het moment
van de sprongen is afhankelijk van L. Laat upen, de homocliene baan is in
(5.1). Unom moet nu beginnen en eindigen met een gedeelte van upomp. Maar
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nu hoeft het niet per se gebruik te maken van upomg. Want upem kan nu ook
gebruik maken periodieke oplossingen, onbegrensde oplossingen of vaste punten
in 327’2‘ = —G(u) voor een zeker L. Zie figuur 9. En als er gebruik wordt gemaakt
van de periodieke oplossingen en onbegrensde oplossingen, krijg je een andere L
uit verschillende periodieke oplossing of onbegrensde oplossing. We kunnen zelfs
bijvoorbeeld 3 keer langs een periodieke oplossing. En als er gebruikt gemaakt
wordt van een vast punt, dan heb je voor iedere L > 0 een homocliene baan.
Dus voor één L kan er verschillende homocliene banen bestaan.

W w w

(a) Unom gebruikmakend(b) “hom gebruikmakend(c) wnom gebruikmakend
van een homocliene baanvan een onbegrensde baanvan een periodieke baan
van 3273 = —G(u). van ‘32712‘ = —G(u). van 3273 = —G(u).
Figuur 9: Illustraties van mogelijke homocliene banen voor figuur 4(a) in (5.1).
De rode lijnen zijn de homocliene banen met F'(u), de blauwe lijnen zijn de
banen met G(u) en de groene lijnen zijn homocliene banen in (5.1).

Neem nu dat upomp €n Unome hun maximum aannemen bij x = 0. Er zijn nu
ook 4 mogelijke situaties voor liggingen van upompr €n Unoma, waarbij er een
Unom bestaat in (5.1). Deze zijn:

1. Voor |z| < L geldt dat upomp kleiner is dan upome en voor |x| > L geldt
dat upomp groter is dan upoma-

2. Voor |z| < L geldt dat upomp groter is dan upome en voor |z| > L geldt
dat upomp Kleiner is dan upomea.

3. Voor alle x € R geldt dat upomp groter of gelijk is aan upomg-
4. Voor alle z € R geldt dat upemp kleiner of gelijk is aan upoma-

Merk op dat situatie 3 en 4 ook het geval is met wanneer upomp €n Unoma precies
1 snijpunt hebben bevat. Deze 4 situaties zijn geillusteerd op figuur 10.

Bij situaties 1 en 2 kan er worden gebruik gemaakt van homocliene baan, perio-
dieke oplossingen, onbegrensde oplossingen en het vaste punt van 3% = —-G(u).
Bij situatie 3 kan er alleen maar de onbegrensde oplossingen worden gebruikt.
Bij situatie 4 kan er de periodieke oplossingen en het vaste punt worden gebruikt.
Dus bij iedere situaties zijn er willekeurig veel homocliene banen afhankelijk van

de keuze van L.
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AW A
F
u

(a) Situatie 1. (b) Situatie 2.

y
G
Ay Ay
F G
u u

(c) Situatie 3. (d) Situatie 4.

Figuur 10: Tlustraties van mogelijke situaties van (5.1) waarbij een homocliene
baan bestaat. De rode lijnen zijn de homocliene banen met F'(u), de blauwe
lijnen zijn de homocliene banen met G(u).

Nu gaan we bepalen welke waarde L er gekozen moet worden als we gebruik

maken verschillende mogelijke banen in 3277; = —G(u).
Stel dat uenp een onbegrensde oplossing is van % = —G(u). We hebben de

volgende hamiltoniaanse systemen

1

§ui + /F(u)du =0

1

Eui + /G(u)du = Hg

Deze is op te lossen en hieruit volgt een u* en u’. Dus (u*,u}) is het snijpunt
van de onbegrensde oplossing met upomp. Laat nu M het maximum is de
onbegrensde baan. Onze homocliene baan uyqy, verblijft 2L in de onbegrensde
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oplossing van 3277; = —G(u). Ook geldt dat u, = i\/Q(HG — [ G(u)du). Deze

kan worden geschreven naar x = [ W'
G—, u u

precies van u* naar M geintegreerd wordt. Dus geldt

Merk op dat voor x = L

_ M du
b /u V2(He — [ Gu)du)

d3u

Dus voor een onbegrensde oplossing van §-% = —G/(u) geldt L = fu* SR

2(Hg— [ G(u)du)
met en u* het snijpunt van de oplossingen en M het maximum van de onbe-
grensde oplossing. Zie figuur 11(a).

Stel dat uper een periodieke oplossing is van 3% = —G(u). Nu hebben we
2 gevallen om verschillende homocliene banen te creéren. We weten dat een
periodieke oplossing 327‘; = —G(u) twee snijpunten heeft met upomp. Het eerste
geval is via het eerste snijpunt erin en eruit gaan, dan is 2L een veelvoud van
de periode van periodieke oplossing. Het tweede geval is via het eerste snijpunt
erin en via het tweede snijpunt eruit, dan is L van hetzelfde vorm als bij een
onbegrensde oplossing.

Geval 1: Deze upe(7) neemt een minimum m aan en een maximum M, deze zijn
te bepalen via 0 = Hg — [ G(u)du. Omdat er geldt dat u, = 0 bij het

minimum of maximum. Ook geldt dat u, = j:\/Q(HG — [ G(u)du). Laat
nu z, de periode zijn van de periodieke oplossing van 32712‘ = —G(u), dan
volgt uit de voorgaande

r M du
2%~ /m V2(He — [ Glu)du)

Een homocliene baan upey verblijft 2L in de periodieke oplossing van
H = —G(u). En bovendien kan 2L dan een veelvoud zijn x,, omdat
je bijvoorbeeld 3 keer om de periodieke oplossing kan gaan. Dus hieruit

volgt

2L:ka:p:2k/M du <:»L:k/M du met k € Z.
m \/2(HG — [ G(u)du) m \/2(HG — [ G(u)du)

Zie figuur 11(b).

Geval 2: We hebben de volgende hamiltoniaanse systemen

1
§ur+/F( Ydu=0



Deze is op te lossen en hieruit volgt een u* en uf. Dus (u*,u}) is het
snijpunt van de periodieke oplossing met Unomp. En uper(x) heeft een
maximum M. Analoog als voor het onbegrensde geval volgt nu

B M du
e /u V2(He — [ Gu)du)

Zie figuur 11(c).

Samengevoegd geldt er voor een periodieke oplossing van 3271; = —G(u) dat

B M du M du
b d/u* V2(He — [ Gu)du) ' k/m V2(H — [ Gu)du)

met k € Z>1,d € 0,1 en u* het snijpunt van de oplossingen. En m het minimum
en M het maximum van de periodieke oplossing.

Stel dat unoma de homocliene baan is van g%ﬁ = —G(u). Dit is hetzelfde als bij
het onbegrensde oplossing met Hg = 0.
Stel dat u* een vaste punt is van ‘327“2‘ = —G(u). Nu geldt dat we voor alle L > 0

een homocliene baan hebben.

Merk op dat de meesten allemaal elliptische integralen zijn. Deze zijn dus niet
exact op te lossen en alleen met de computer te bepalen.

(a) Uhom gebruikmakend(b) unom gebruikmakend(c) unom gebruikmakend
van een onbegrensde baanvan een periodieke baanvan een periodieke baan
van 3%‘? = —G(u). van 32772‘ = —G(u). van 327’5 = —G(u).
Figuur 11: Tlustraties van mogelijke homocliene banen voor figuur 4(a) in (5.1)
met hun belangrijke punten, die handige zijn om L te bepalen. De rode lijenn
zijn de homocliene banen met F(u), de blauwe lijnen zijn de banen met G(u)
en de groene lijnen zijn homocliene banen in (5.1)
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5.2 Stabiliteit

Om de stabiliteit van de homocliene banen te bepalen, moeten we kijken of A = 0
hier een eigenwaarde is en hoeveel nulpunten de bijbehorende eigenfunctie dan
heeft. Laat upom een homocliene baan zijn van (5.1). Weer gaan we bestuderen
hoe U(z,t) zich gedraagt in de buurt van upem(x). Om antwoord hierop te
krijgen introduceren we U(x,t) = upom () + ee*v(z) met € klein. Analoog aan
paragraal 3.4 hebben we dat de functie v(x) een oplossing is van de singuliere
Sturm-Liouville vergelijking,

Lrv = A\v met LF:J‘—;JrF’(uh(x)) voor |z| > L (5.2)

Lev =M met L5 = f—;z + G’ (up(x)) voor |z| < L '
Laat unomr de homocliene baan zijn van 327‘2‘ = —F(u) en ug de oplossing zijn
die upom gebruikt in g%ﬁ = —G(u). Nu weten we

” _ UhomF |£K‘ Z L
hom ug |z| <L

Hieruit volgt

U _ uhomF,x |JC‘ 2 L
hom,z UG |£B‘ <

We weten nu uit stelling 2 dat unom o voldoet aan (5.2). Maar tnom,q hoeft niet
continu of differentieerbaar zijn. Dus unom, hoeft niet meteen een eigenfunctie
te zijn bij A = 0. Omdat er te veel mogelijke homocliene banen zijn, moeten
er specifiekere keuzes voor F(U) en G(U) worden gemaakt zodat A\ = 0 een
eigenwaarde is. Een aantal specifieke keuzes worden in de volgende paragrafen
geanalyseerd.

5.3 Even en Oneven

In deze paragraaf wordt er alleen gekeken naar de begrensde homocliene baan
UnomF (2) van 0 = uy, + F(u) voor |z| > L. De Sturm-Liouville vergelijking die
hierbij hoort is
d2
Lrv=Xvmet Lp = o7 + F'(upom) voor |z| > L.
x
Deze vergelijking kan worden omgeschreven naar

2

d

Lrv=Xvmet Lp = e + F'(upom) voor & > L (5.3)
x
2

Lrv =X met Lp = et F'(upom) voor z < —L. (5.4)
x
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We weten dat ¢ - uhomp,» met ¢ € R een oplossing is van de (5.3) en (5.4). Nu
worden de oplossingen van (5.3) en (5.4) apart bekeken. Het gebruikelijke was
om Unhomp,z VoOr > L en x < —L te nemen, maar dankzij het defect kan
00k —UnomF,z genomen worden voor > L en UnomF,; genomen worden voor
x < —L. Want voor ¢ = —1 geldt dat —unomr,» 00k een oplossing is van (5.3)
en (5.4). Dus we hebben

UhomF,xz T <L _ { UhomF,z X S L

UhomFo,x = - €Nl UhomFe,x =
UhomF,xz T > L —UhomF,xz T > L

Zie figuur 12.

=|—L Auz::L r =|—L All;z:::L

Uhom/x Uhom,

X
>

Uhomyx

(a) Keuze met Unomr,e voor x > L en z <(b) Kueze met —unomp,» voor x > L en
—L UhomF,z Voor x < —L.

Figuur 12: Illustraties van mogelijke keuzes voor uhomr,, in bepaalde domeinen.

Voor figuur 12(a) kan er alleen een oneven functie tussen passen voor |z| < L
en voor figuur 12(b) kan er alleen een even functie tussen passen voor |z| < L.
Merk nu op dat als er een geschikte even functie wordt gekozen voor figuur 12(b),
dan is er een continue en differentieerbare eigenfunctie upom,, met Ag = 0. Dus
hebben we een stabiele homocliene baan.

Merk op dat we ook nog de spiegeling op de z-as van figuur 12(a) en figuur
12(b) als mogelijkheden kunnen hebben. Maar deze zijn precies —unomFo,» €N
—UhomFe,z- Deze zijn dus hetzelfde met figuur 12(a) en 12(b) met symmetrie
van de z-as. En heb je dus ook een oneven functie nodig bij —unhomro,- €n een
even functie nodig bij —UnomFe,z-
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5.4 Een eenvoudige homocliene baan

In deze paragraaf gaan we specifieke functie voor F'(U) en G(U) bestuderen met
homocliene banen. We beschouwen de volgende ODE

0 = uyy —au + fu met a, B> 0. (5.5)

—_———
F(u)
We gaan eerst (5.5) analyseren en laten zien dat (5.5) een homocliene baan
heeft. (5.5) kan worden omgeschreven naar het volgende stelsel
Uy = W

wy = au — fud = u(a — pu?).

De vaste punten zijn dan (0,0) en (£ %,O). Ook geldt dat F'(0) = —a < 0 en

dus is er een zadel bij (0,0). Hieruit volgt dan ook dat (& %, 0) een centrum

is. En dus bestaat er een homocliene baan. Nu gokken we dat u(z) = ﬁ@

een oplossing is van (5.1) met A, B € R. Nu hebben we

sinh(Bz)
Uy = — — s o
cosh”(Bx)
3 B .9
Uy = AB<BCOSh (Bz) 2Bfmh (Bx) cosh(Bx))
cosh”(Bx)
1 coshQ(Bx) -1
= —AB? _9 h2(Ba) — cosh(Bz) — 1
(cosh(Bg:) cosh?(Bz) ) (sinh®(Bzx) = cosh”(Bx) — 1)
AB? 2AB2

" cosh(Bz) cosh®(Bz)
Als we dit nu invullen in (5.5) krijgen we

AB? 2AB? aA N BA?
cosh(Bz)  cosh®(Bz) cosh(Bzx) = cosh®(Bx)

Hieruit volgt nu het volgende stelsel

AB? = A
2AB? = pA3

Hieruit volgt B = +y/a en A = + 270‘ Merk eerst op dat cosh(—y/ax) =

cosh(y/az) (door symmetrie van cosh(z)) en omdat we alleen kijken naar ho-
mocliene banen voor u(z) > 0, hebben we dus

uhom(x) = = (56)

cosh(y/az)’
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5.5 Voorbeeld met A = 0 een eigenwaarde.

In deze paragraaf gaan we een systeem bekijken met homocliene baan waarvan
de eigenwaarde A = 0 wel bestaat voor een geschikt gekozen L. We beschouwen
het volgende systeem

FU)
—
Uy=Up —2U +U? |z|< L '
—_———
GU)
Als we naar de stationaire oplossingen u(z) = U(z,t) kijken, krijgen we
0 = Uy —u+ u® voor |z| > L (5.8)

0 = Ugy — 2u + u® voor |z| < L.

Voor (5.8) weten we uit (5.6) dat upomp = % een homocliene baan is Nu

heeft upomr(x) een maximum bij z = 0 met waarde v = V2. Merk nu op
dat (v/2,0) een vaste punt is van het stelsel van 0 = wu,, — 2u + u® (vorige
paragraaf). Dus de homocliene baan van (5.8) gaat precies door het vaste punt
(v/2,0) heen. Dus de homocliene baan door het vaste punt upom verblijft 2L in
het vaste punt. Nu geldt voor iedere L > 0 dat we een stationaire homocliene
baan in (5.8) hebben. Omdat wupem niet altijd differentieerbaar is of continu
voor iedere L, is A = 0 geen eigenwaarde voor iedere L. Zie figuur 13.

—04072 | $20.40.60.8 1 1.21/41.61.8 2

Figuur 13: Plot van het faseplaatje van (5.7) met de homocliene baan door het
vaste punt van 0 = e — 2u + u’.

Om de stabiliteit van upom(x) te bepalen kijken we naar de Sturm-Liouville
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vergelijkingen. Deze zijn

d2
da?
2

d
Lev =M met Lo := — + 4 voor |z] < L.
da?

Lrpv =X v met Lp := — 1+ 3u3 voor |z| > L

We weten dat %CO;{F@) een oplossing is van Lpv = Av met A = 0. Lgv = M

is makkelijk oplosbaar voor A = 0, hieruit volgt v(x) = ¢; sin(2x) + ¢ cos(2x)
met c1,c2 € R. Nu moeten we alleen de randvoorwaarden bepalen zodat unhom,q
d_v2
dz cosh(z)
vall Upom,z- De eerste randvoorwaarden zijn v(L) = v(—L) = 0, want upom
springt naar het vaste punt (\/5, 0) wanneer Upom, = 0. We weten ook dat
Uhom,zz + F(Unhom) = 0. Hieruit volgt dat uhom zzls=+r = —F(Unom(£L)) =

F(V2) = 2
Even: Voor het even geval zijn er de volgende randvoorwaarden voor v; v(—L) =
v(L) =0, v'(=L) = —v/2en v'(L) = v/2. Hieruit volgen 4 vergelijkingen:

(i)

(i)

V2 (iii)
iv)
) =

continu en differentieerbaar is. Merk op dat en v(z) onderdeel zijn

—cysin(2L) + ¢o cos(2L)

(2L)
2¢1 cos(2L) 4 2¢osin(2L) =
2¢1 cos(2L) — 2¢o sin(2L)

0
¢y 8in(2L) 4 ¢3 cos 0

V2. (iv

Als we (i)+(ii) en (iii)+(iv) doen, dan krijgen we respectievelijk 2¢q cos(2L
0 en 4c; cos(2L) = 0. Hieruit volgt direct dan cos(2L) = 0 en dit is precies
wanneer 2L = 11 + k7 voor k € Zxo, omdat L > 0. Nu volgt uit (i) en
(ii) automatisch dat ¢; = 0. Uit (iii) en (iv) volgt nu

V2 V2o k+1}\/§_

= ~ymeD - 2cnr - Y

Dus we hebben dan

2 1
Ve = (—1)’“’1% cos(2t) en 2L = 3T + km met k € Z>o.

Omneven: Voor het oneven geval zijn er de volgende randvoorwaarden voor v; v(—L) =
v(L) =0 en v'(—L) = =2 = v/(L) = —/2. Hieruit volgen weer 4 verge-
lijkingen:

—cysin(2L) + ca cos(2L) =

c18in(2L) 4 cocos(2L) =
2¢q cos(2L (2L) =
2¢1 cos(2L) — 2¢o8in(2L) =

+ 2¢ sin

o O
—
: o<
: |
= D =

S
z

)
)
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Als we (v)-(vi) en (vii)-(viii) doen, dan krijgen we respectievelijk —2¢q sin(2L) =
0 en 4c; sin(2L) = 0. Hieruit volgt direct dan sin(2L) = 0 en dit is precies
wanneer 2L = Im voor | € Zso omdat L > 0. Nu volgt uit (v) en (vi)
automatisch dat ¢ = 0. Uit (vii) en (viii) volgt nu

“2cos(2L)  2(—1)!

v2 V2 (—1)“1%\/5.

Cc1 =
Dus we hebben dan

V2
2

Ve = (=1)'"" —sin(2t) en 2L = Im met | € Z~o.

Zie figuur 14 voor de plots met v, en v,.

I:*lﬂﬂu 1::%71' b
0}8 +
ve ()
0{6 T
4 +
2 +
omF,z (T) —UhomF,2¥&) X UhomF,a Hompz(T) x
—4 =2 | |o| 2 4 4 4
—ol4 +
—0|6\+ 0.6
—0|8 + —0.8
A1 1 —1
(a) k=0,dus L = im. k=1, dus L =3nr.
xr = —%7‘(’ u = %Tk’ x =T
0.8
Vo (),
0.4
0.2
UhomF,a (T uhotnF‘.r(I?{ Uhon|F, x thom AL« (T) X
—4 -2 2 4 —4 — 2 4
0.2 0 —0.2 40
0.4 —0.4
b, ~0.6
—0.8 —0.8
—~1 -1
(c)l=1,dus L =i (d)i=2,dus L=r.

Figuur 14: Plots van eigenfunctie thom, van (5.7) met verschillende homocliene
banen door andere keuzes voor L.
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Op figuur 14 worden de even en oneven oplossing geplot samen met COQ{F(JE). Uit

figuur 14 halen we dat we L zo kiezen kunnen dat A\; = 0 voor ¢ > 2. Maar voor
Ai = 0 met ¢ > 2 geldt dat al deze homocliene banen instabiel zijn. Want alleen
voor A\g = 0 kan een homocliene baan stabiel zijn.

5.6 Stabiele homocliene baan?

In deze paragraaf gaan we proberen een stabiele homocliene baan te vinden. We
beschouwen het volgende systeem

F(U)

—_—

Uy = U —U+2U3  |z|>L
Up = Upp —aU + BU?  |z| < L
N———

G(U)

Met «,8,L > 0. Deze «, en L worden straks bepaald zodat er een stabiele
homocliene baan is. Als we naar de stationaire oplossingen u(z) = U(x,t)
kijken, krijgen we

= — 3 >
{ 0 = ugy —u+ 2u’ voor |z| > L (5.9)

0 = Uye — au + pfu? voor |z| < L

Laat unom een homocliene baan zijn van (5.9). Om de stabiliteit van upom te
bepalen kijken we naar de Sturm-Liouville vergelijkingen. Deze zijn

d2
dz?
d2
Lov=Av met Lg := Fei G’ (upom) voor |z| < L.

x
Omdat voor upem veel keuze is, kan dus een willekeurige oplossing van 0 =
Uze — ot + fu gekozen worden. Maar we gaan aannemen dat upen, gebruikt
maakt van unema, de homocliene baan in 0 = g, — au + Bu3. Dan hebben we
dat Uhoma = Unom vooOr |z| < L. Nu voldoet unoma,» met A = 0 aan

Lrv= v met Ly := — F'(upom) voor |z| > L

2

Lov = met Lg = % + G (Upoma)- (5.10)

Merk op dat dit een twee orde differentiaal vergelijking is, dus er zijn twee
oplossing. Nu wordt de methode variatie van constante erop toegepast om de
tweede oplossing te vinden. Stel dat voor de tweede oplossing uz(x) geldt dat
u2(z) = ¢(x)Unhoma, met ¢ : R — R. Als ua(z) wordt ingevuld in (5.10) met
A = 0, volgt hieruit
0= C//(ir)uhomG,z + 2cl(x)uhomG,az + C(x)uhomG,zxm + C(x)G/(uhomG)uhomG,z
= C//(I)uhomG,m + 2C/(z)rufhom(},fc + C(l’) (uhomG,mmr + G/(uhomG)uhomG,z)

= C//(x)uhomG,w + 2cl(x)uhomG,z-

30



Nu geldt
// (.’L‘)

/

UhomG,zx

=-2
JC) UhomG,z

c(
log|c'(z)| = —2log|unoma | + C met C € R

d(z) = K— met K € R

uhomG,x

r 1
=K —d¢&.
w) / uﬁomG,x(g) g

Dus we hebben

x
1
Uz = C(-/I;)uhomG@ = KUhomG@/ 2 df

uhomG,x (f)

Uit (5.6) volgt dat unoma =

—AB sinh(Buz)

WEBJ)) met B = \/a en A= % Dus UhomG,z =

— K sinh(Bz) /I cosh®(B¢)

AB cosh?(Bz) sinh?(B¢) de.

U =

Nu claimen we dat

/ * cosh*(B¢)
sinh?(B€)

1 cosh®(Bz) 3 3 cosh(Bx)
déd= ———F"—F+ - ——— =+ FEFmet F €R.
¢ 2B sinh(Bzx) + 2" 2B sinh(Bz) et e

cosh®(Bzx cosh(Bz
Laat ¢(z) = %W(gmg +3z -3 sinh((Bo;)) + E. Nu geldt

Bsinh?(Bz) — B cosh?(Bz)

1 3B cosh?(Bz)sinh?(Bx) — B cosh®(Bx) 3
2

¢'(@) = 2B sinh?(Bz)

3
2B sinh?(Bz)

) 3< osh?(Bz) + 1 + 21 > _ lc?shj(Bx)
2 sinh*(Bx) 2 ginh“(Bz)

(=) 3 sinh®(Bz) + 2sinh?(Bz) + 1 1 cosh*(Bz)

B 2< sinh?(Bz) > 2 81nh2(Bx)

3 (sinh®(Bz) + 1)? 1 cosh*(Bz)

B 2( sinh?(Bz) > 2 sinh?(Bz)

(+) 3 cosh®(Bz) 1 cosh*(Bxz)

) < sinh?(Bz) ) 2 sinh?(Bz)

_ cosh*(Bxz)

 sinh?(Bz)’

met (%) : cosh?(Bz) — sinh?(Bz) = 1
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Neem nu E = 0 want anders krijg je weer een unoma,o term erbij. Laat u.(z)
uz(x) zijn met E = 0. Nu geldt

cosh(Ba)— 3Kxsinh(Bx) 3K 1

v — —K sinh(Bz) /I cosh* (BY) ¢ =

K
~ ABcosh?(Bzx) sinh?(B¢) 2AB? 2AB cosh?(Bx) 2AB? cosh(Bz)

ue ()

Figuur 15: Plot van u.(z) voor K =1, A=1en B =1.

In figuur 15 is een plot gemaakt van u.(z). Door B en K te variéren kunnen
respectievelijk de nulpunten en top verschoven worden. Merk ook op dat u.(x)
even is. Want er geldt

(—z) = K h(— Bx) —3Kxsinh(—Bx) 3K 1
Ul = T a2 O YT 9AB cosh?(—Bz) = 2AB? cosh(—Bxz)
K 3K xsinh(Bx) 3K 1
=~ cosh(Bx) — = uo(z).
2482 °" (Bz) 2AB cosh®(Bz) =~ 2AB? cosh(Bx) uel)

Laat unomr de homocliene baan zijn van 0 = ug, — u + 2u3. Omdat we opzoek
zijn naar een stabiele homocliene baan, moeten we unomr,, hebben voor x < —L
en —UnomF,; hebben voor x > L. Nu zijn er twee gevallen waarbij u.(x) kan
aansluiten met unom . De twee gevallen zijn weergegeven op figuur 16.

0.6

04 .
” (z) 2 . (xX . (z) .
UhomF,x (T - ) Uhom F.z (T UhomF,« (T
S —— P —t—t

N Unpmp e (X

—-10-8 —6 —4—62 2 4 6 8 —-10-8 -6 442 +p902 4 6 8
—-0.4 —0.4
—0.6 —0.6
8
1

a:zfols Ux =1L z:—fs Ux =L
6
4
2

—0.8 —0.
-1 L

(a) (b)

Figuur 16: Mogelijke aansluiting voor van u.(z) in thom -
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In figuur 16(a) kan niet K > 0 kan u.(z) niet eraan worden gesloten, want
Uhom,z 1S dan onmogelijk differentieerbaar bij = £L. Wel kan u.(z) passen in
figuur 16(a) voor K < 0, maar dan hebben we sowieso 2 nulpunten en dan is
Unom Niet stabiel. De enige mogelijkheid is om te proberen u.(z) in figuur 16(b)
te passen met de juiste randvoorwaarden. Dan moet upomp Overspringen naar
Unoma voordat u, zijn maximum bereikt heeft. Een faseplaatje hiervan wordt
weergegeven op figuur 17.

Figuur 17: Illustratie van de stabiele homocliene baan behorend bij figuur 16(b).
De rode lijn is de homocliene baan met F'(u), de blauwe lijn is de homocliene
baan met G(u) en de groene lijn is upem van (5.9).

Nu gaan we proberen u.(z) te matchen met upomp op £L op figuur 16(b). Uit
(5.6) volgt dat unomr = m De eerste 2 randvoorwaarden zijn upomp(£L) =
Unoma (L), want de homocliene banen moeten elkaar snijden. De andere 2
randvoorwaarden zijn Unomp,o(—L) = te(—L) en —Unomp,s(L) = ue(L), omdat
we opzoek zijn naar een stabiele homocliene baan en dus moeten we voor x >
L —Unomp,s hebben. En de laatste 2 randvoorwaarden zijn tnomp,es(—L) =
Ue,z(—L) en —Unomp,zz (L) = te (L), omdat voor > L we —Upomp,; moeten
hebben. Merk op dat

_ Ksinh(Bz)  3Ksinh(Bz) 3Kz 3Kxsinh® (Bx)
2AB ABcosh® (Bz) 2Acosh(Bz) = Acosh® (Bx)

ue,a: =
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Nu krijgen we het volgende stelsel van vergelijkingen

cosht—L) - coshé BL) (D)

cosi(L) - cosh?BL) (1)

_:(:}1112((—_6:)) = ue(—L) (I11)

m = ue(L) (IV)

cosht—L) - cosh??(_ D Ue,s(—L) (V)
1  —uea(-L). (V1)

— +
cosh(L) cosh® (L)

Deze stelsel kan vereenvoudigt worden. (I) en (IT) zijn hetzelfde, omdat cosh(x)
een even functie is. (III) en (IV) zijn hetzelfde, omdat sinh(z) oneven is en
cosh(z) en u.(x) even zijn. (V) en (VI) zijn hetzelfde, omdat cosh(x) even is en
Ue, () oneven is (afgeleide van een even functie). Dus nu volgt

o A
cosh(L)  cosh(BL)
sinh(L)
cosh®(L) ue(E)

1 2

cosh(L) cosh®(L) = ~teal(l)

Er zijn hier 3 vergelijkingen met daarin 4 onbekenden A, B, K en L, daarom
kan er 1 onbekende vrij worden gekozen. We nemen dan L = 2 vast, want
in figuur 16(b) geldt dan L na de top van unhomr,. gekozen moet worden. Nu
kan dit worden opgelost met MATLAB (ook met Maple). MATLAB geeft dan
A = 0.2970810533, B = 0.2402486972, K = 0.008872718077, L = 2.000000000.
Deze resultaten zijn geplot op figuur 18.
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(a) Plot van thomF; UhomG €N Uhom- (b) De grafiek van uhom,s-

Figuur 18: Plots van %nom €l Unhom o met A = 0.2970810533, B = 0.2402486972,
K =0.008872718077, L = 2.000000000. De rode lijn is van de homocliene baan
met F'(u), de blauwe lijn is van de homocliene baan met G(u) en de groene lijn
is Unom van (5.9).

Figuur 18 voldoet perfect aan onze eisen en lijkt te passen bij figuur 17. Maar
als we het faseplaatje proberen te plotten, voldoet het niet. Er geldt namelijk
ook a = B? = 0.05771943651 en 8 = 2% = 1.307983207. En als we kijken naar
het (u,w) fase plaatje krijgen we het volgende plaatje.

Figuur 19: Faseplaatje van (5.9) met o = 0.05771943651 en 8 = 1.307983207.

In figuur 19 snijden de homocliene banen elkaar niet in de (u,w) faseplaatje.
Dus we zijn die voorwaarde vergeten. Merk op dat de homocliene banen wel
op figuur 18(a), maar daar hebben we dat unom(£L) = Unoma(£L) maar de
w = u, zijn de niet gelijk voor x = £ L. Dus snijden ze elkaar niet op figuur 18.
Het snijpunt in het (u, w) faseplaatje kunnen we bepalen door de hamiltonianen
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aan elkaar gelijk te stellen. We krijgen dan de volgende hamiltonianen

x
u2 = au® — £ Bu* voor |z| < L

{ u2 = u? — u* voor |z| > L
2
Als deze 2 aan elkaar worden gelijkgesteld, volgt hieruit

1 1 1
w—ut = oqu—i,Bu4 — 1-u? = a—56u2 — (56—1)112 =a—1 < u?=

We hebben ook dat a = B2 en § = % = 2522. Dus geldt

,_BP-1_ AAB-1)

u- = =
%_1 B2 _ A2

Merk ook op dat het tijdstip dat het snijpunt moet vallen is ¢ = +L. Dus

u(£L)? = WE(L) Dus onze laatste voorwaarde is dan

1 A*(B*-1)
cosh’(L) B2 — A2

Onze stelsel wordt dan

1 A
cosh(L) - cosh(BL) (X)
sinh(L)
cosh®(L) ue(L) (X1)
1 2
cosh(L) cosh®(L) = ~teal(l) (1D
L _AE -1 (XIIT)

cosh’(L) B2 — A2

Allereerst geven de vergelijkingen (X), (XI), (XII) met een gekozen waarde van
L de functies A(L),B(L) en K(L). Nu kan (XIII) worden geschreven als

_ 1 AX(L)(B*(L) - 1)
fun(L) = COShZ(L) - B2(L) — A%(L) =0.

Nu kan er met behulp van MATLAB een plot worden gemaakt van fun(L). Zie
figuur 20.
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fun(l)
R -

Figuur 20: Plot van fun(L) uitgezet tegen L van 0 tot 10 met stapgrootte 0.01
in MATLAB.

Uit figuur 20 zien we dat fun(L) een verticale asymptoot heeft bij ongeveer
L = 2.3 en een horizontale asymptoot bij de L-as. De stapgrootte is 0.01
en MATLAB verbindt alle puntjes en daarom hebben we rare lijn bij onge-
veer L = 2.3. Deze verticale asymptoot wordt veroorzaakt door de term
AEE D | dan geldt er namelijk dat B(L) = A(L). Nu kan fun(L) al-
leen nulpunten hebben voor de asymptoot, want na de asymptoot is duidelijk
te zien dat fun(L) groter is dan 0. Als er wordt ingezoomd wordt op het gebied
voor de verticale asymptoot, krijgen we figuur 21.

0 01 02 03 04 05 06 07 08 09 1
L

Figuur 21: Plot van fun(L) uitgezet tegen L van 0 tot 1 met stapgrootte 0.01
in MATLAB.

In figuur 21 is er te zien dat er in 0 tot 1 ook geen nulpunten zijn. Er zijn
ook rare schommelingen te zien. Deze ontstaan omdat L klein wordt, hierdoor
worden A(L) en B(L) ook heel klein. Deze getallen kunnen te klein worden
voor MATLAB. Maar dit heeft niet veel invloed op de nulpunten van funlL.
Dus er bestaat geen L die voldoet aan de (X), (XI), (XII) en (XIII). Maar
hieruit kunnen we concluderen dat \g # 0. Dus upom is instabiel.
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6 Conclusie

In deze bachlorscriptie hebben we als eerst naar de reactie diffusie vergelijking
(1.1) gekeken. Deze vergelijking is vrij nauwkeurig geanalyseerd om de niveauk-
rommes te bepalen bij het (u,w = u,) faseplaatje. Dankzij de analyse konden
er voorwaarden worden gevonden zodat er homocliene banen en heterocliene
banen bestaan. Toen is er met behulp van de singuliere Sturm Liouville theorie
aangetoond dat homocliene banen instabiel zijn en heterocliene banen stabiel.

Daarna introduceerden we ruimtelijke inhomogeniteit bij x = 0 met als doel
een stabiele homocliene baan te vinden. Hierna toonden we de existentie van
homocliene banen in een systeem met ruimtelijk inhomogeniteit bij z = 0. En
bij die homocliene banen is er ook gekeken naar de stabiliteit. Maar helaas
waren alle homocliene banen instabiel.

Vervolgens beschouwden systemen met een gelokaliseerd defect. Bij systemen
met een gelokaliseerd defect bleken er heel veel homocliene banen te zijn. Je
kon namelijk in het defect ook gebruik maken van de vaste punten, periodieke
oplossingen en onbegrensde banen voor |z| < L. Hierna keken we naar een
systeem met defect met een homocliene baan door een vaste punt, hier vonden
we dat A = 0 eigenwaarde is. Bovendien kon de index ¢ van A\; = 0 verschoven
worden naar alle ¢ > 2 door te variéren van L. Maar helaas ging de verschuiving
niet de goede richting op en bleken alle homocliene banen door een vaste punt
instabiel te zijn. En als laatst werd er gekeken naar mogelijke stabiele homo-
cliene baan. We waren goed op weg, alles ging goed totdat het (u,w) faseplaatje
niet klopt. Er bleek een voorwaarde te missen. Maar na het toevoegen van de
laatste voorwaarde kon er met MATLAB geen oplossing worden gevonden. Dus
uiteindelijk is er toch geen stabiele homocliene baan gevonden in een systeem
met defect.

6.1 Vervolg onderzoek

Omdat er geen stabiele homocliene baan in een systeem met defect is gevonden,
hebben we onze doelstelling niet gehaald. Dus we moeten verder zoeken naar
een stabiele homocliene baan in een systeem met defect. Ondanks dat we in
de paragraaf 5.6 geen stabiele homocliene baan hebben gevonden, kunnen we
hieruit wel verder werken. F'(u) en G(U) zijn namelijk daar specifiek in de
vorm van —ou + Bu® gekozen, maar er kan ook —owu + BuP worden genomen
met p € Ryy. Zoals in [4] met —au + SuP een algemene formule bepaald om
alle eigenwaarden uit te rekenen in een systeem zonder defect. Merk op dat
de vergelijkingen met —au + SuP allemaal homocliene banen geven. Dankzij
—au + fuP is er nu een extra parameter p. Dan hebben de 4 vergelijking (X),
(XI), (XII) en (XIII) nu 5 variabelen A,B,K,L en p. En als we nu een L
vast kiezen, hebben we misschien wel een stabiele homocliene baan. Maar voor
algemene p zijn de homocliene banen niet makkelijk expliciet te bepalen. En
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helaas is dit te moeilijk voor een bachelorscriptie.

Als er uiteindelijk een A = A*, B= B*, K = K*, L = L* en p = p* gevonden is
met A\g = 0, is er dus die homocliene baan die stabiel is in een systeem met de-
fect. Voor vervolg onderzoek hierop kunnen we in buurt van (A*, B*, K*, L*, p*)
kijken en zoeken waarden die geven dat Ay < 0. Dan hebben we voor alle
0<¢< Ndat \; <0 met N €N, dus is onze puls dan spectraal stabiel. En
dat zou een heel mooi resultaat zijn.

39



Referenties

[1] Peter Grindrod. Patterns and Waves, the theory and application of reaction-
diffusion equations. Oxford applied matthematics and computing science
series, 1991. p26.

[2] Gianne Derks, Arjen Doelman, Christopher J. K. Knight, and Hadi Susanto.
Pinned fluxons in a Josephson junction with a finite-length inhomogeneity.
Euro. Jnl of Applied Mathematics (2012), vol. 23, 2012. p201-244.

[3] Arjen Doelman and Frits Veerman. An expliciet theory for pulses in two
component, singularly perturbed, reaction-diffusion equations. Leiden Uni-
versity, 2012. p17-18.

[4] Arjen Doelman, Robert A. Gardner, and Tasso J. Kaper. Large Stable Pulse
Solutions in Reaction-diffusion FEquations. Indiana University Mathematics
Journal, Vol. 50, No.1, 2001. p17-18.

40



MATLAB code voor het bepalen van fun(L).

function fcns=eqns(z)
A=z(1);
B=z(2);
K=z(3);
L=z(4);
1=z(5);
fens(1)=1/cosh(L)-A/cosh(Bx*L);
fcns(2)=(sinh(L) )/ ((cosh(L))~2)+(1/2)*K*xcosh(B*L)/(A*B~2)
+(3/2) #*K*L*sinh (B*L) / (A*B* (cosh(B*L)) ~2)-(3/2) *K/ (AxB~2*cosh (Bx*L) ) ;
fcns(3)=1/cosh(L)-2/((cosh(L))~3)+(-(1/2)*K*sinh (B*L) / (B*A)
-3*K*sinh (B*L) / (A*B* (cosh(B#*L)) "2)-(3/2) *K*L/ (cosh (B*L) *A)
+3%K+L*sinh (B*L) "2/ (A*(cosh(B*L))"3));
fcns(4)=L-1;
end

clear all;
clc;
tab=[]; %Tabel met benodigde gegevens.
j=1; %Teller van rij in tabel.
lmax=10; %Maximum waarde van L.
lstap=0.01; %Stapgrootte van L.
for i=0:1stap:1lmax
guess=[0.1 0.1 0.1 i i]; %begingok
result=fsolve(Qeqns,guess);
tab(j,:)=[result(1) result(2) il]; %We maken de volgende kolommen [A(L) B(L) L].
j=j+1;
end
m=j-1; Maximum aantal rijen.
for k=1:m
fun(k)=1/(cosh(tab(k,3))) "2-tab(k,1) “2*(tab(k,2) "2-1)/(tab(k,2) “2-tab(k,1) "2);
end
plot(tab(:,3),fun)
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