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Voorwoord

Vroeger wilde ik weddingplanner worden. Dat ik wiskunde ging studeren
lag daarom ook niet erg voor de hand. Want wie had ooit gedacht dat ik
tijdens mijn bacheloronderzoek de huwelijksstelling zou tegenkomen en zou
kijken naar stabiele koppelingen tussen mannen en vrouwen?

Deze scriptie is een verslag van het (literatuur-)onderzoek dat ik heb gedaan
naar stabiele koppelingen, een onderwerp binnen de besliskunde. Wat mij
opviel tijdens dit onderzoek was dat in veel artikelen die geschreven zijn
over stabiele koppelingen veel dingen die intüıtief duidelijk zijn aangenomen
worden zonder dat ze bewezen worden. Al snel besloot ik dat ik dat in
mijn scriptie juist wel wilde doen. Voorbeelden hiervan zijn Lemma 1.1,
Stelling 1.2 en Stelling 1.3. Wat me ook opviel was dat de notaties die wer-
den gebruikt in artikelen vaak van elkaar verschilden en vaak moeilijk te
interpreteren of contra-intüıtief waren. Ik heb in deze scriptie gekozen voor
de makkelijkst te begrijpen notatie en waar nodig zelf nieuwe notaties in-
gevoerd. Op bladzijde 26 is een overzicht te vinden van de gebruikte notatie.

Met dit alles hoop ik dat mijn scriptie een stuk makkelijker te lezen is dan
de artikelen die tot nu toe zijn verschenen over dit onderwerp, ook voor
mensen die weinig basiskennis hebben op dit vlak. Mocht de wiskunde toch
moeilijk te volgen zijn, dan kunnen de definities, stellingen en lemma’s ook
overgeslagen worden waarbij het verhaal er omheen toch te volgen blijft.
Hierbij moet ik wel vermelden dat Hoofdstuk 2 een stuk technischer is dan
Hoofdstuk 1.

Deze scriptie is als volgt opgebouwd: in Hoofdstuk 1 zal ik een introductie
geven over koppelingen en stabiele koppelingen in het bijzonder. Ook zal ik
een algoritme geven waarmee je zo’n stabiele koppeling kan vinden en zal ik
een aantal eigenschappen van stabiele koppelingen bewijzen. In Hoofdstuk
2 zullen we het probleem op een iets andere manier bekijken, namelijk als
Lineair Programmeringsprobleem. Dit kan ons helpen om álle stabiele kop-
pelingen te vinden en deze onderling te vergelijken. In Hoofdstuk 3 zal ik
kort ingaan op variaties van het probleem, waarbij niet perse mannen aan
vrouwen gekoppeld hoeven te worden, maar bijvoorbeeld kamergenoten aan
elkaar of studenten aan universiteiten.

Aangezien er in deze theoretische scriptie geen wezenlijk verschil is tussen
mannen en vrouwen gelden alle definities, uitspraken en stellingen die ik
noem voor het ene geslacht automatisch ook voor het andere geslacht.
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Deze scriptie was nooit tot stand gekomen zonder Dion Gijswijt, ik wil hem
dan ook hartelijk bedanken. Ten eerste voor het aandragen van dit prachtige
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1 Stabiele Koppelingen

1.1 Inleiding

We bekijken een verzameling van n mannen en n vrouwen. Elke man heeft
zo zijn voorkeuren wat betreft de vrouwen. Zo heeft elke man een lijstje
met daarop de vrouwen met wie hij wel gekoppeld zou willen worden. Bin-
nen deze vrouwen bestaat ook nog een bepaalde volgorde: van bovenaan de
vrouw met wie hij het lieftst gekoppeld wil worden tot onderaan de vrouw
met wie hij het minst graag gekoppeld wil worden. We gaan er vanuit dat
er niet twee vrouwen zijn met wie een man even graag gekoppeld wil woren.
Op dezelfde manier heeft ook elke vrouw een lijstje met mannen met wie ze
gekoppeld wil worden in een bepaalde volgorde.

De verzameling mannen geven we aan met M en de deelverzameling hiervan
waarmee een vrouw w wel gekoppeld zou willen worden metMw. Op dezelfde
manier geven we de verzameling vrouwen aan met W en de deelverzameling
hiervan waarmee een man m wel gekoppeld zou willen worden met Wm. Als
m in de verzameling Mw zit én w in Wm dan willen m en w dus allebei wel
met elkaar gekoppeld worden. We noemen zo’n koppel (m,w) een acceptabel
koppel en de verzameling van alle acceptabele koppels noemen we A :=
{(m,w) : m ∈Mw, w ∈Wm}.
De voorkeuren van mannen en vrouwen geven we aan met > en < waarbij
we met subscript aan zullen geven over wiens voorkeur we het hebben. Zo
betekent m′ >w m dat vrouw w man m′ prefereert boven man m. Rekening
houdend met deze voorkeuren willen we de mannen en de vrouwen koppelen.

Definitie 1.1
Een koppeling is een verzameling van koppels, waarbij elk koppel bestaat uit
één man en één vrouw en elke man en elke vrouw in maximaal één koppel
voorkomt.

Een koppeling X kunnen we representeren met een matrix x = (xij)i∈M,j∈W
waarvoor geldt dat:

xij =

{
1 als i en j gekoppeld onder X
0 anders

Niet elke willekeurige koppeling zal stand houden, dit is alleen het geval
als de koppeling stabiel is. In 1962 gaven Gale en Shapley [1] de volgende
definitie voor een stabiele koppeling.
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Definitie 1.2
Een koppeling is stabiel als er geen koppel (m,w) te vinden is waarvoor
geldt dat:

• m en w zijn niet gekoppeld én

• m prefereert w boven zijn huidige partner én

• w prefereert m boven haar huidige partner.

Is een koppeling niet stabiel, dan zou zo’n koppel (m,w) de koppeling
namelijk kunnen saboteren door hun huidige partner te verlaten en met
elkaar verder te gaan.

Definitie 1.3
Als er wel een koppel (m,w) te vinden is met de eigenschappen uit Definitie
1.2 dan noemen we zo′n koppel een blokkerend paar.

Om iemands partner aan te geven onder een bepaalde koppeling X gebruiken
we de volgende notatie:

• w(X,m) : partner van man m onder koppeling X

• m(X,w) : partner van vrouw w onder koppeling X

Voor een stabiele koppeling X geldt dus voor alle (m,w) ∈ A:

Als w 6= w(X,m) dan geldt w(X,m) >m w of m(X,w) >w m.

Als een persoon zijn partner onder koppeling X ′ prefereert boven zijn part-
ner onder koppeling X, dan zeggen we dat hij koppeling X ′ prefereert boven
koppeling X en geven dit aan met:

• X ′ >w X : vrouw w prefereert koppeling X ′ boven koppeling X

• X ′ >m X : man m prefereert koppeling X ′ boven koppeling X

Als een persoon in een koppeling X niet gekoppeld is dan prefereert hij alle
koppelingen X ′ waarin hij wel gekoppeld is boven X.

Uit de definitie van stabiliteit volgt direct dat als er een X ′ is waarvoor
geldt: m = m(X ′, w), X ′ >m X en X ′ >w X dan is X niet stabiel.

6



1.2 Existentie

In hun artikel lieten Gale en Shapley [1] ook direct zien dat er altijd min-
stens één stabiele koppeling bestaat. Dit deden ze de door een algoritme
te geven waarmee een koppeling te vinden is en vervolgens te bewijzen dat
deze koppeling stabiel is.

Algoritme 1.1

Stap 1: Elke man doet een aanzoek aan de vrouw die hij het meest
prefereert.

Stap 2: Elke vrouw bekijkt de verzameling mannen die haar tot
nu toe een aanzoek hebben gedaan. Van deze mannen
wijst ze iedereen af behalve diegene die ze het meest pref-
ereert binnen deze verzameling.

Stap 3: Elke man die in de vorige ronde afgewezen is doet een
aanzoek aan de vrouw die hij het meest prefereert bin-
nen de verzameling van vrouwen die hij nooit eerder een
aanzoek heeft gedaan.

Stap 4: Herhaal stap 2 en 3 todat alle mannen óf gekoppeld zijn óf
niemand meer hebben wie ze een aanzoek kunnen doen.

Stelling 1.1
Algoritme 1.1 geeft een stabiele koppeling X.

Bewijs
Stel dat er een man m en een vrouw w zijn waarvoor geldt: w >m w(X,m).
Aangezien mw prefereert boven zijn huidige partner, heeft hij w een aanzoek
gedaan voordat hij zijn huidige partner een aanzoek deed. De enige rede voor
w om m af te wijzen is dat zij een aanzoek heeft gekregen van een man m′

waarvoor geldt: m′ >w m. Vrouw w is dus gekoppeld aan iemand die zij
prefereert boven m (namelijk aan m′ of aan iemand die ze nog leuker vindt).
Dus de koppeling is stabiel.

�

Als we de rollen van de mannen en de vrouwen in Algoritme 1.1 omwisselen
(dus de vrouwen doen een aanzoek en de mannen accepteren dit of wijzen
dit af) vinden we in de meeste gevallen een andere stabiele koppeling. Het
algoritme waarin de rollen van de mannen en de vrouwen zijn omgewisseld,
noemen we Algoritme 1.2.
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Voorbeeld 1.1
We hebben vier mannen m1, m2, m3 en m4, vier vrouwen w1, w2, w3 en w4

en de volgende voorkeuren (waarbij de eerste in het rijtje diegene is die het
meest geprefereerd wordt):

m1: w1, w3, w4, w2 w1: m1, m2, m3, m4

m2: w1, w2, w3, w4 w2: m4, m2, m3, m1

m3: w2, w3, w1, w4 w3: m3, m4, m1, m2

m4: w3, w4, w2, w1 w4: m4, m2, m1, m3

Tijdens Algoritme 1.1 zal het volgende gebeuren:

• m1 zal w1 een aanzoek doen, m2 zal w1 een aanzoek doen, m3 zal w2

een aanzoek doen en m4 zal w3 een aanzoek doen

• w1 zal m1’s aanzoek accepteren en m2’s aanzoek afwijzen, w2 zal m3’s
aanzoek accepteren en w3 zal m4’s aanzoek accepteren

• m2 zal w2 een aanzoek doen

• w2 zal m2’s aanzoek accepteren en m3’s aanzoek afwijzen

• m3 zal w3 een aanzoek doen

• w3 zal m3’s aanzoek accepteren en m4’s aanzoek afwijzen

• m4 zal w4 een aanzoek doen

• w4 zal m4’s aanzoek accepteren

• niemand zal meer afgewezen worden en de koppels zijn als volgt:
(m1, w1), (m2, w2), (m3, w3) en (m4, w4)

1.3 Perfecte koppelingen

Definitie 1.4
Een koppeling heet perfect als alle mannen en alle vrouwen gekoppeld zijn
onder deze koppeling.

Bij een gegeven groep personen en gegeven voorkeuren, is het natuurlijk
interessant om te weten of er een perfecte stabiele koppeling mogelijk is. De
volgende stelling helpt ons om dit gemakkelijk na te kunnen gaan.

Stelling 1.2
Gegeven een instantie van het stabiele koppelingsprobleem tussen mannen
en vrouwen hebben in elke stabiele koppeling dezelfde mensen een partner.
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Bewijs
Stel dat de stelling niet waar is. Dan bestaan er twee stabiele koppelingen
X en X ′ en een vrouw w1 waarvoor geldt dat w1 in de ene koppelingen wel
gekoppeld is en in de andere niet.

We mogen aannemen dat w1 wel gekoppeld is onder X en noemen haar
partner m1. Onder X ′ is w1 dan niet gekoppeld. We noem de partner van
m1 onder X ′ w2, de partner van w2 onder X m2, de parter van m2 onder
X ′ w3 etc.

Als X >m1 X
′ dan is X ′ niet stabiel, want m1 en w1 geen koppel en ze

prefereren beide X boven X ′. Dus X ′ >m1 X. Op dezelfde manier kunnen
we bewijzen dat X >w2 X

′, X ′ >m2 X, X >w3 X
′ etc. Ofwel de mannen

prefereren X ′ en de vrouwen X.

Aangezien w1 wel gekoppeld is onder X en niet onder X ′ moet er een vrouw
wj zijn die niet gekoppeld is onder X en wel onder X ′ óf een man mj die
wel gekoppeld is onder X en niet onder X ′. In het eerste geval vind je
een tegenspraak aangezien mj−1 en wj beide X ′ prefereren boven X, dus
X geen stabiele koppeling kan zijn. In het tweede geval vind je ook een
tegenspraak aangezien wj en mj beide X prefereren boven X ′, dus X ′ geen
stabiele koppeling kan zijn.

Eerste geval:
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Tweede geval:
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Dus er bestaat niet zo’n vrouw w1.

�

In alle stabiele koppelingen hebben dus dezelfde mannen en vrouwen een
partner als in de stabiele koppeling verkregen uit Algoritme 1.1. Om uit te
zoeken of er een perfecte stabiele koppeling bestaat hoeven we dus alleen
maar te kijken of de stabiele koppeling uit Algoritme 1.1 perfect is.

1.4 Shortlists

Alhoewel er meestal dus meerdere stabiele koppelingen zijn, komt niet elk
paar (m,w) ∈M×W voor in een stabiele koppeling. Van elke man en vrouw
kunnen we een lijstje maken met vrouwen respectievelijk mannen waarmee
ze voorkomen in een stabiele koppeling: een zogenaamde shortlist.
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Definitie 1.5
Man m en vrouw w staan op elkaars shortlist als er een stabiele koppeling
bestaat waarin m en w gekoppeld zijn.

De ordening binnen zo’n shortlist is dezelfde als binnen de oorspronkelijke
lijst van personen met wie iemand gekoppeld zou willen worden. Dus boven-
aan diegene die het meest geprefereerd wordt en onderaan diegene die het
minst geprefereerd wordt.

Lemma 1.1
w staat bovenaan m’s shortlist ⇔ m staat onderaan w’s shortlist

Bewijs
⇒ Merk op dat m in ieder geval voorkomt op w’s shortlist: w staat namelijk
op m’s shortlist dus er bestaat een stabiele koppeling waarin m en w gekop-
peld zijn.

Bekijk een m′ waarvoor geldt dat m >w m′ (als er niet zo’n m′ bestaat,
dan is m zeker de onderste op w’s shortlist). Als we w en m′ koppelen
onder X dan zijn w en m niet gekoppeld. w staat bovenaan m’s shortlist
dus w >m w(X,m) én m >w m′ = m(X,w). Dus deze koppeling is niet
stabiel. Hieruit volgst dat m′ niet op w’s shortlist voorkomt en dat m dus
de onderste op w’s shortlist moet zijn.

⇐ De shortlist van mensen die in geen enkele stabiele koppeling voorkomen
is leeg. Stelling 1.2 vertelt ons dat dit bij evenveel mannen als vrouwen
het geval is, namelijk precies bij de mannen en vrouwen die in de stabiele
koppeling verkregen uit Algoritme 1.1 geen partner hebben.

Neem aan dat er in deze stabiele koppeling k koppels zijn, dan zijn er
dus k mannen met minstens één vrouw op hun shortlist en k vrouwen die
voorkomen op de shortlist van een man. Een vrouw kan nooit bij meer dan
één man bovenaan zijn shortlist staan, dit zou namelijk volgens ⇒ beteke-
nen dat er twee mannen helemaal onderaan haar shortlist zouden staan. Elk
van deze k vrouwen moet dus bij precies één man bovenaan zijn shortlist
staan, dit moet wel de man zijn die onderaan haar shortlist staat.

�

1.5 Tegengestelde belangen

Aangezien de mannen elkaars concurrenten zijn zou je misschien denken dat
ze het waarschijnlijk niet vaak eens zullen zijn over of een stabiele koppeling
nou wel of niet gunstig voor hen is. Anderszijds zou je denken dat een man
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en een vrouw samen kunnen werken om een hele gunstige stabiele koppeling
te vormen en het dus juist sneller eens zijn.

Het omgekeerde blijkt echter het geval. In het boek van Gusfield en Irving
[2] wordt bewezen dat er één stabiele koppeling is die de beste is voor alle
mannen en juist de slechtste voor alle vrouwen.

Stelling 1.3
De stabiele koppeling verkregen uit Algoritme 1.1 is voor elke man de gun-
stigste en voor elke vrouw de ongunstigste stabiele koppeling die bestaat.

Bewijs
Neem aan dat X de stabiele koppeling is die verkregen is door Algoritme
1.1 uit te voeren. Stel dat er een andere stabiele koppeling X ′ en een man
m zijn waarvoor geldt dat: w′ = w(X ′,m) >m w(X,m) = w.

Omdat w′ >m w heeft m tijdens het algoritme een aanzoek gedaan aan
w′. Aangezien ze aan het einde van het algoritme niet gekoppeld zijn, moet
w′ hem afgewezen hebben. We kunnen er zonder verlies van algemeenheid
vanuit gaan dat deze afwijzing de eerste keer was dat een vrouw iemand
van haar shortlist afwees (m staat op w′’s shortlist omdat ze gekoppeld zijn
onder de stabiele koppeling X ′). Neem verder aan dat zij dit deed omdat
m′ = m(X,w′) haar een aanzoek deed.

Omdat deze afwijzing de eerste keer was dat een vrouw iemand afwees van
haar shortlist, bestaat er geen stabiele koppeling waaronder m′ gekoppeld is
aan iemand die hij prefereert boven w′. X ′ kan dus nooit stabiel zijn omdat
w′ niet gekoppeld is aan m′ terwijl ze elkaar prefereren boven hun huidige
partner.

Blijkbaar is elke man na Algoritme 1.1 gekoppeld aan de bovenste vrouw
van zijn shortlist. Lemma 1.1 vertelt ons nu dat elke vrouw dan gekoppeld
is aan de onderste man van haar shortlist.

�

Analoog is te bewijzen dat Algoritme 1.2 een stabiele koppeling geeft die de
best mogelijke is voor de vrouwen en de slechts mogelijke voor de mannen.
We noemen deze twee stabiele koppelingen dan ook respectievelijk man-
optimaal en vrouw-optimaal.
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2 Lineair Programmeringsprobleem

2.1 Inleiding

In de meeste gevallen zijn we niet (alleen maar) op zoek naar de stabiele
koppeling die het beste voor de mannen of het beste voor de vrouwen is. Veel
vaker is het interessant om te kijken naar welke stabiele koppeling gemiddeld
het beste is of zelfs naar alle mogelijke stabiele koppelingen. In dat geval
hebben we niet meer genoeg aan de algoritmes uit het vorige hoofdstuk.

Een manier om wel naar alle mogelijke stabiele koppelingen te kunnen kijken
en deze te vergelijken is door het probleem als lineair programmeringsprob-
leem te formuleren. In 1988 introduceerde John. H. Vande Vate [3] deze
methode. De manier waarop we dat in dit hoofdstuk doen is echter groten-
deels gebasseerd op een artikel van Rothblum [4].

2.2 Voorwaarden

Zoals we in het vorige hoofdstuk al hebben gezien, kunnen we een koppeling
X representeren met een matrix x = {xij}i∈M,j∈W waarvoor geldt:

xij =

{
1 als i en j gekoppeld onder X
0 anders

Niet alle matrices met alleen nullen en enen representeren een koppeling, laat
staan een stabiele koppeling. Daarvoor moet aan een aantal voorwaarden
voldaan worden. De voorwaarden die we zullen gebruiken komen uit het
artikel van Rothblum [4] en zijn de volgende:

xmw ≥ 0 ∀ (m,w) ∈M ×W (1)

∑
j∈W

xmj ≤ 1 ∀ m ∈M (2)

∑
i∈M

xiw ≤ 1 ∀ w ∈W (3)

xmw = 0 ∀ (m,w) ∈ (M ×W )\A (4)

∑
j>mw

xmj +
∑
i>wm

xiw + xmw ≥ 1 ∀ (m,w) ∈ A (5)
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Voordat we het in de volgende paragraaf over de laatste voorwaarde zullen
hebben, zullen we nu eerst laten zien dat de geheeltallige oplossingen die
voldoen aan de voorwaarden (1) t/m (5) inderdaad stabiele koppelingen
zijn.

• Voorwaarden (1), (2) en (3) eisen dat alle elementen positief zijn en
dat elke man met maximaal één vrouw en elke vrouw met maximaal
één man gekoppeld is zodat je inderdaad disjuncte paren krijgt.

• Voorwaarde (4) zorgt ervoor dat alleen toegestane koppels (m,w) ∈ A
voor kunnen komen.

• Voorwaarde (5) zorgt voor de stabiliteit van de koppeling. Het kan
nu namelijk niet voorkomen dat er een koppel (m,w) te vinden is
waarvoor geldt dat m en w niet gekoppeld zijn én w >m w(X,m) én
m >w m(X,w). In dat geval zijn namelijk alledrie de termen aan
de linkerkant gelijk aan 0 en wordt niet aan de ongelijkheid voldaan.
In alle andere gevallen is ten minste één van de drie termen aan de
linkerkant gelijk aan 1 en wordt wel aan de ongelijkheid voldaan.

2.3 Geheeltalligheid

Als laatste voorwaarde willen we dat een oplossing geheeltallig is. Want een
koppeling waarin een man bijvoorbeeld half aan de ene vrouw en half aan
de andere vrouw is gekoppeld kan natuurlijk niet.

Een lineair programmeringsprobleem waarvan de oplossingen geheeltallig
moeten zijn is echter moeilijk op te lossen. In eerste instantie zullen we
daarom geen rekening houden met deze voorwaarde. Later in dit hoofdstuk
zullen we laten zien dat we dit mogen doen door te bewijzen dat de extreme
oplossingen waar we naar op zoek zijn, toch altijd geheeltallig zijn.

Voor een x die voldoet aan de voorwaarden (1) t/m (5), geheeltallige of niet,
kunnen we als volgt definiëren:

SM (x) := {m ∈M :
∑
j∈W

xmj > 0}, FM (x) := {m ∈M :
∑
j∈W

xmj = 1}

SW (x) := {w ∈W :
∑
i∈M

xiw > 0}, FW (x) := {w ∈W :
∑
i∈M

xiw = 1}

En voor m ∈ SM (x) en w ∈ SW (x):

Sm(x) := {w ∈W : xmw > 0}, Sw(x) := {m ∈M : xmw > 0}
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Binnen zo’n verzameling Sk(x) bestaat er iemand die het meest geprefereerd
wordt en iemand die het minst geprefereerd wordt door k. Dit geven we aan
met respectievelijk bovenster en onderster:

w∗(x,m) := w∗ ∈ Sm(x) waarvoor geldt: w∗ ≥m w ∀w ∈ Sm(x)
w∗(x,m) := w∗ ∈ Sm(x) waarvoor geldt: w∗ ≤m w ∀w ∈ Sm(x)

m∗(x,w) := m∗ ∈ Sw(x) waarvoor geldt: m∗ ≥w m ∀m ∈ Sw(x)
m∗(x,w) := m∗ ∈ Sw(x) waarvoor geldt: m∗ ≤w m ∀m ∈ Sw(x)

Voor een stabiele koppeling X en zijn representant x geldt dus:

w∗(x,m) = w(X,m) = w∗(x,m), m∗(x,w) = m(X,w) = m∗(x,w)

2.4 Tegengestelde belangen

In het vorige hoofdstuk zagen we al dat de belangen van mannen en vrouwen
vaak tegengesteld zijn. In de lemma’s die nu volgen komt dit ook weer naar
voren. Lemma’s 2.1 t/m 2.10 zijn afgeleid uit Lemma’s 2 en 3 uit het ar-
tikel van Rothblum [4] en gelden voor (m,w) ∈ A en x die voldoen aan de
voorwaarden (1) t/m (5).

Lemma 2.1

[ m /∈ SM (x) ] of [ m ∈ SM (x) en w ≥m w∗(x,m) ]

⇒ [
∑

i∈M xiw = 1 en m ≤w m∗(x,w) ]

Bewijs
Als [m /∈ SM (x)] of [m ∈ SM (x) en w ≥m w∗(x,m)] dan

∑
j>mw xmj = 0.

Volgens (5) geldt dan:
∑

i>wm xiw +xmw ≥ 1. En volgens (3):
∑

i>wm xiw +
xmw = 1. Dat betekent dat

∑
i∈M xiw = 1 en

∑
i<wm xiw = 0 en dus dat

m ≤w m∗(x,w).

�

Lemma 2.2

Als
∑

j>mw xmj +
∑

i>wm xiw + xmw = 1 dan geldt ook:

[
∑

i∈M xiw = 1 en m ≤w m∗(x,w) ] ⇒

[ m /∈ SM (x) ] of [ m ∈ SM (x) en w ≥m w∗(x,m) ]
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Bewijs
Als

∑
i∈M xiw = 1 en m ≤w m∗(x,w) dan

∑
i>wm xiw + xmw = 1. Omdat

geldt dat
∑

j>mw xmj+
∑

i>wm xiw+xmw = 1 betekent dit dat
∑

j>mw xmj =
0. Dus als m gekoppeld is, dan is dat aan iemand die hij minder prefereert
dan w of w zelf. Dus [ m /∈ SM (x) ] of [ m ∈ SM (x) en w ≥m w∗(x,m) ].

�

Lemma 2.3

[ m ∈ SM (x) en w = w∗(x,m) ] ⇒ [
∑

i∈M xiw = 1 en m = m∗(x,w) ]

Bewijs
w = w∗(x,m) impliceert dat w ≥m w∗(x,m) en xmw > 0. Uit Lemma 2.1
volgt nu dat

∑
i∈M xiw = 1 en m ≤w m∗(x,w). Omdat xmw > 0 geldt

m = m∗(x,w).

�

Om ook de omgekeerde implicatie van Lemma 2.3 te kunnen bewijzen hebben
we Lemma 2.4 nodig, dat laat zien dat SM (x) en FM (x) niet verschillen.

Lemma 2.4

FM (x) = SM (x)

Bewijs
FM (x) ⊆ SM (x): volgt uit de definities van FM (x) en SM (x).

SM (x) ⊆ FM (x): Lemma 2.3 vertelt ons dat w∗(x, ·) een injectieve afbeel-
ding is van SM (x) naar FW (x): als w∗(x,m1) = w en w∗(x,m2) = w dan
geldt namelijk dat

∑
i∈M xiw = 1 dus w ∈ FW (x) en m1 = m∗(x,w) = m2.

Als we de cardinaliteit van SM (x) en FW (x) bekijken volgt uit de injectiviteit
van w∗(x, ·) dat |FW (x)| ≥ |SM (x)|, maar aan de andere kant geldt:

|FW (x)| =
∑

j∈FW (x)

1 =
∑

j∈FW (x)

∑
i∈SM (x)

xij ≤
∑

i∈SM (x)

1 = |SM (x)|

Dus |FW (x)| = |SM (x)| en voor alle m ∈ SM (x) geldt:
∑

j∈FW (x) xmj = 1
wat betekent dat m ∈ FM (x).

�

Dit betekent dat in alle stellingen en lemma’s waar m ∈ SM (x) staat we ook
m ∈ FM (x) ofwel

∑
j∈W xmj = 1 mogen lezen en andersom.
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Lemma 2.5

[
∑

i∈M xiw = 1 en m = m∗(x,w) ] ⇒ [ m ∈ SM (x) en w = w∗(x,m) ]

Bewijs
Als m = m∗(x,w) dan m ∈ SM (x) en in het bewijs van Lemma 2.4 hebben
we laten zien dat w∗(x, ·) een bijectieve afbeelding van SM (x) naar FW (x) is
dus er is precies één w waarvoor geldt dat m = m∗(x,w) en dat is w∗(x,m).

�

Zoals ik in mijn voorwoord al even aanstipte gelden alle stellingen die ik
bewijs voor het ene geslacht automatisch ook voor het andere geslacht. Ik
geef daarom de lemma’s waarbij de rollen van de mannen en vrouwen zijn
omgedraaid ten opzichte van Lemma 2.1 t/m 2.5 hieronder zonder bewijs.

Lemma 2.6

[ w /∈ SW (x) ] of [ w ∈ SW (x) en m ≥w m
∗(x,w) ]

⇒ [
∑

j∈W xmj = 1 en w ≤m w∗(x,m) ]
�

Lemma 2.7

Als
∑

j>mw xmj +
∑

i>wm xiw + xmw = 1 dan geldt ook:

[
∑

j∈W xmj = 1 en w ≤m w∗(x,m) ] ⇒

[ w /∈ SW (x) ] of [ w ∈ SW (x) en m ≥w m
∗(x,w) ]

�

Lemma 2.8

[ w ∈ SW (x) en m = m∗(x,w) ] ⇒ [
∑

j∈W xmj = 1 en w = w∗(x,m) ]

�

Lemma 2.9

w ∈ FW (x)⇔ w ∈ SW (x)

�

Lemma 2.10

[
∑

j∈W xmj = 1 en w = w∗(x,m) ] ⇒ [ w ∈ SW (x) en m = m∗(x,w) ]

�
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2.5 Knuth

In deze paragraaf zullen we het Lemma van Knuth (1976) bekijken dat
opnieuw de tegengestelde belangen van mannen en vrouwen aangeeft. Dit
lemma zullen we met behulp van de lemma’s uit de vorige paragraaf op een
andere manier bewijzen dan Knuth zelf deed in 1976.

Binnen het Lemma van Knuth bekijken we twee stabiele koppelingen X en
Y , twee disjuncte deelverzameling van M en twee disjuncte deelverzamelin-
gen van W . De mannen respectievelijk vrouwen die X prefereren boven
Y in de ene deelverzameling en de mannen respectievelijk vrouwen die Y
prefereren boven X in de andere deelverzameling:

KM (X) := {m ∈M : X >m Y }, KM (Y ) := {m ∈M : Y >m X}

KW (X) := {w ∈W : X >w Y }, KW (Y ) := {w ∈W : Y >w X}

Lemma 2.11 (Knuth, 1976)

Bekijk twee stabiele koppelingen X en Y en de afbeelding w(X, ·). Deze
afbeelding beeldt KM (X) af op KW (Y ) en KM (Y ) op KW (X). Ditzelfde
geldt voor de afbeelding w(Y, ·).
Bewijs
Neem aan dat x en y de matrices zijn die de stabiele koppelingen X en Y
representeren en neem z := 1

2x+ 1
2y. Aangezien x en y representanten zijn

van stabiele koppelingen voldoen ze aan de voorwaarden (1) t/m (5) en moet
z dus ook wel aan deze voorwaarden voldoen. We mogen dus de lemma’s
uit de vorige paragraaf gebruiken voor z.

Kies nu een m ∈ KM (X). Omdat X >m Y is m in ieder geval gekoppeld
onder X dus m ∈ SM (x). Als

∑
j∈W xmj > 0 dan ook

∑
j∈W zmj > 0 dus

z ∈ SM (z). Lemma 2.4 vertelt ons dat m ∈ FM (z) en dus dat
∑

j∈W zmj =
1. Dit betekent dat

∑
j∈W ymj = 1 dus dat m ∈ SM (y).

Aangezien m X prefereert boven Y geldt: w := w(X,m) >m w(Y,m) =
w∗(y,m). Uit Lemma 2.1 volgt nu dat

∑
i∈M yiw = 1 en m <w m∗(y, w) =

m(Y,w). Dus m(X,w) = m <w m(Y,w) en Y >w X waaruit volgt dat
w ∈ KW (Y ).

Door een w ∈ KW (Y ) te kiezen en de rollen van m en w om te draaien kun-
nen we bewijzen dat m(x,w) ∈ KM (X). Waarmee bewezen is dat w(X, ·)
KM (X) afbeeldt op KW (Y ).

Op analoge wijze kunnen we bewijzen dat w(X, ·)KM (Y ) afbeeldt opKW (X)
en dat ditzelfde geldt voor w(Y, ·).

�
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2.6 Extreme oplossingen

Voordat we kunnen bewijzen dat de extreme oplossingen die voldoen aan de
voorwaarden (1) t/m (5) geheeltallig zijn, hebben we Lemma’s 1.12 t/m 1.15
nodig die gelden voor álle oplossingen x die voldoen aan de voorwaarden (1)
t/m (5). In het artikel van Rothblum [4] zijn deze lemma’s verwerkt in het
bewijs van Stelling 1, maar voor iets meer overzicht behandelen we ze hier
apart.

In de komende lemma’s worden z∗, z∗ en z gebruikt, die we als volgt
definiëren:

(z∗)mw :=

{
1 als w = w∗(x,m)
0 anders

(z∗)mw :=

{
1 als w = w∗(x,m)
0 anders

zmw := (z∗)mw − (z∗)mw

Lemma’s 2.3 en 2.10 vertellen ons dat voor z∗ en z∗ ook geldt:

(z∗)mw :=

{
1 als m = m∗(x,w)
0 anders

(z∗)mw :=

{
1 als m = m∗(x,w )
0 anders

Er is dus een groot verschil tussen de definitie van (z∗) als we kijken vanuit
de mannen of kijken vanuit de vrouwen. Ditzelfde geldt voor de definitie
van (z∗). Hier moeten we goed op blijven letten bij de lemma’s en bewijzen
die nu volgen.

Lemma 2.12
xmw = 0 ⇒ zmw = 0

Bewijs
Als xmw = 0 dan geldt w 6= w∗(x,m) en w 6= w∗(x,m) dus (z∗)mw = 0,
(z∗)mw = 0 en zmw = 0.

�
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Lemma 2.13

∑
j∈W xmj = 1 ⇒

∑
j∈W zmj = 0

∑
i∈M xiw = 1 ⇒

∑
i∈M ziw = 0

Bewijs
Als

∑
j∈W xmj = 1 dan is er precies één w waarvoor geldt dat w = w∗(x,m)

en precies één w′ waarvoor geldt dat w′ = w∗(x,m). Dus
∑

j∈W (z∗)mj = 1,∑
j∈W (z∗)mj = 1 en

∑
j∈W zmj = 0.

Als
∑

i∈M xiw = 1 dan is er precies één m waarvoor geldt dat m = m∗(x,w)
en precies één m′ waarvoor geldt dat m′ = m∗(x,w). Dus

∑
i∈M (z∗)iw = 1,∑

i∈M (z∗)iw = 1 en
∑

i∈M ziw = 0.

�

Lemma 2.14
zmw = 0 ∀(m,w) ∈ (M ×W )\A
Bewijs
Dit volgt direct uit Lemma 2.12 en het feit dat x aan voorwaarde (4) voldoet.

�

Lemma 2.15
Voor (m,w) ∈ A geldt:

[
∑

j>mw

xmj+
∑
i>wm

xiw+xmw = 1] ⇒ [
∑

j>mw

zmj+
∑
i>wm

ziw+zmw = 0]

Bewijs
Neem aan dat

∑
j>mw xmj+

∑
i>wm xiw+xmw = 1 en beschouw drie gevallen:

Geval I: [w /∈ SW (x)] of [w ∈ SW (x) en m ≥w m
∗(x,w)]

Aangezien m∗(x,w) ≥ m∗(x,w) geldt ook m ≥ m∗(x,w). Hieruit volgt
dat als we kijken naar alle mannen die volgens w leuker zijn dan m, we in
ieder geval niet m∗(x,w) of m∗(x,w) tegen zullen komen. Wat betekent dat∑

i>wm(z∗)iw =
∑

i>wm(z∗)iw = 0

Lemma 2.6 vertelt ons dat uit de aanname volgt dat m ∈ SM (x) en w ≤m

w∗(x,m). En aangezien w∗(x,m) ≤m w∗(x,m) geldt ook w ≤ w∗(x,m).
Hieruit volgt dat als we kijken naar alle vrouwen die volgens m leuker zijn
dan w en naar w zelf, we zeker w∗(x,m) en w∗(x,m) tegen zullen komen.
Wat betekent dat

∑
j>mw(z∗)mj + (z∗)mw =

∑
j>mw(z∗)mj + (z∗)mw = 1.
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Uit deze gegevens volgt nu dat
∑

j>mw zmj +
∑

i>wm ziw + zmw = 0.

Geval II: [m /∈ SM (x)] of [m ∈ SM (x) en w ≥m w∗(x,w)]

In dit geval is op analoge wijze te bewijzen datm ≤ m∗(x,w),
∑

j>mw(z∗)mj =∑
j>mw(z∗)mj = 0,

∑
i>wm(z∗)iw + (z∗)mw =

∑
i>wm(z∗)iw + (z∗)mw = 1 en

dus
∑

j>mw zmj +
∑

i>wm ziw + zmw = 0.

Geval III: w ∈ SW (x), m ∈ SM (x), m <w m
∗(x,w) en w <m w∗(x,m)

Hieruit volgt direct dat (z∗)mw = (z∗)mw = 0.

Als we naar alle mannen kijken die volgens w leuker zijn dan m, dan komen
we zeker m∗(x,w) tegen. En als we naar alle vrouwen kijken die vol-
gens m leuker zijn dan w, dan komen we ook zeker w∗(x,m) tegen. Dus∑

i>wm(z∗)iw = 1 en
∑

j>mw(z∗)mj = 1.

Als m ≤ m∗(x,w) dan
∑

i>mm xiw = 1 en omdat w <m w∗(x,m) geldt∑
j>mw xmj > 0 dus dan

∑
j>mw xmj +

∑
i>wm xiw > 1 wat in tegenspraak

is met onze aanname. Dus m >w m∗(x,w). Op dezelfde manier is aan te
tonen dat w >m w∗(x,m).

Hieruit volgt dat als we naar alle mannen kijken die volgens w leuker zijn
dan m, we m∗(x,w) niet tegen zullen komen. Op dezelfde manier geldt dat
als we naar alle vrouwen kijken die volgens m leuker zijn dan w, we w∗(x,m)
niet tegen zullen komen. Dus

∑
i>wm(z∗)iw = 0 en

∑
j>mw(z∗)mj = 0.

Dit alles samen geeft
∑

j>mw zmj +
∑

i>wm ziw + zmw = 0.

�

Stelling 2.1
De extreme punten van de verzameling van oplossingen die voldoen aan de
voorwaarden (1) t/m (5) zijn geheeltallig.

Bewijs
Noem de verzameling van oplossingen die voldoen aan de voorwaarden (1)
t/m (5) C en neem x een extreem punt van C. Hieruit volgt dat voor alle
0 < α < 1 geldt dat er geen x′ 6= x en x′′ 6= x in C zijn waarvoor geldt dat
x = αx′ + (1− α)x′′.

We zullen laten zien dat voor voldoende kleine ε > 0 geldt dat x + εz en
x− εz ook aan de voorwaarden (1) t/m (5) voldoen:

(1) Als xmw = 0 dan zmw = 0 (Lemma 2.12) dus (x + εz)mw = (x −
εz)mw = 0.

Als xmw > 0 dan kunnen we ε klein genoeg kiezen zodat (x+εz)mw ≥
0 en (x− εz)mw ≥ 0
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(2) Als
∑

j∈W xmj = 1 dan
∑

j∈W zmj = 0 (Lemma 2.13) dus
∑

j∈W (x+
εz)mj = 1 en

∑
j∈W (x− εz)mj = 1.

Als
∑

j∈W xmj < 1 dan kunnen we ε klein genoeg kiezen zodat∑
j∈W (x+ εz)mj ≤ 1 en

∑
j∈W (x− εz)mj ≤ 1.

(3) Als
∑

i∈M xiw = 1 dan
∑

i∈M ziw = 0 (Lemma 2.13) dus
∑

i∈M (x +
εz)iw = 1 en

∑
i∈M (x− εz)iw = 1.

Als
∑

i∈M xiw < 1 dan kunnen we ε klein genoeg kiezen zodat∑
i∈M (x+ εz)iw ≤ 1 en

∑
i∈M (x− εz)iw ≤ 1.

(4) zmw = 0 ∀(m,w) ∈ (M ×W )\A (Lemma 2.14) dus (x + εz)mw = 0
en (x− εz)mw = 0 ∀(m,w) ∈ (M ×W )\A.

(5) Als
∑

j>mw xmj +
∑

i>wm xiw + xmw = 1 dan
∑

j>mw zmj +∑
i>wm ziw + zmw = 0 (Lemma 2.15) dus

∑
j>mw(x + εz)mj +∑

i>wm(x+εz)iw +(x+εz)mw = 1 en
∑

j>mw(x−εz)mj +
∑

i>wm(x−
εz)iw + (x− εz)mw = 1.

Als
∑

j>mw xmj+
∑

i>wm xiw+xmw > 1 dan kunnen we ε klein genoeg
kiezen zodat

∑
j>mw(x+ εz)mj +

∑
i>wm(x+ εz)iw + (x+ εz)mw ≥ 1

en
∑

j>mw(x− εz)mj +
∑

i>wm(x− εz)iw + (x− εz)mw ≥ 1.

Hieruit volgt dat (x+εz) ∈ C en (x−εz) ∈ C. Uit het feit dat x een extreem
punt van C is en geldt dat x = 1

2(x + εz) + 1
2(x − εz) volgt dat x + εz = x

en x− εz = x. Dit betekent dat z = 0, waaruit volgt dat z∗ = z∗.

Dus voor alle m ∈ SM (x) geldt w∗(x,m) = w∗(x,m) en voor alle w ∈ SW (x)
geldt m∗(x,w) = m∗(x,w). Dus de leukste vrouw aan wie een man gekoppeld
is, is gelijk aan de minst leuke vrouw aan wie een man gekoppeld is en de
leukste man aan wie een vrouw gekoppeld is, is gelijk aan de minst leuke
man aan wie een vrouw gekoppeld is. Dus iedereen is aan maximaal één
persoon gekoppeld.

Uit Lemma’s 2.4 en 2.9 wisten we al dat voor m ∈ SM (x) en w ∈ SW (x) geldt
dat

∑
j∈W xmj = 1 en

∑
i∈M xiw = 1. Dit betekent dat x een geheeltallige

oplossing is.

�
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3 Variaties

3.1 Inleiding

Een stabiele koppeling tussen mannen en vrouwen is slechts een voorbeeld
van de stabiele koppelingen die mogelijk zijn. In dit hoofdstuk worden twee
variaties besproken die vaak genoemd worden in artikelen die over stabiele
koppelingen gaan. Als eerste een voorbeeld van een many-to-one koppeling:
de koppeling tussen studenten en universiteiten. Zoals de naam al zegt wordt
in dit soort koppelingen niet één-op-één gekoppeld, maar meerdere studenten
aan één universiteit. Daarna bespreken we het roommates-probleem waarbij
er geen onderscheid is tussen mannen en vrouwen maar er één groep is.

3.2 College Admission

Bij het college admission-probleem hebben we te maken met studenten en
universiteiten en hun voorkeuren. We gaan er vanuit dat elke universiteit
U een maximaal aantal studenten qU aan kan nemen. In het artikel van
Rothblum [4] wordt beschreven hoe we dit probleem kunnen transformeren
naar een stabiel koppelingsprobleem tussen mannen en vrouwen. Dit kunnen
we doen door elke universiteit U te splitsen in qU personen van het ene
geslacht, met gelijke voorkeuren wat betreft de studenten. En de studenten
te zien als personen van het andere geslacht, die alle qU personen die een
universiteit vertegenwoordigen op gelijk niveau waarderen.

Of een koppeling tussen studenten en universiteiten stabiel is of niet, kunnen
we op dezelfde manier definiëren als bij mannen en vrouwen. Om stabiel
te zijn mogen er geen koppels van een student en een universiteit zijn die
elkaar prefereren boven de huidige uitkomst. Door Algoritme 1.1 toe te
passen zullen we een koppeling vinden die aan dit criterium voldoet. Hier
wordt uitgebreider op ingegaan in hoofdstuk 5 van het boek van Roth en
Sotomayor [5].

In het artikel van Gale en Shapley [1] worden een aantal zaken genoemd
die het probleem in werkelijkheid een stuk lastiger maken. Er wordt na-
tuurlijk niet gezamelijk een koppeling gemaakt tussen de studenten en de
universiteiten: de studenten kiezen zelf voor welke universiteiten zij zich
aanmelden en de universiteiten moeten beslissen welke studenten zij toelaten
zonder met elkaar te overleggen. Voor de studenten speelt hierbij niet alleen
hun eigen voorkeur een rol, maar ook de kans dat zij ergens toegelaten
worden. Aan de andere kant zijn er voor de universiteiten ook een aantal
zaken die meewegen bij het wel of niet toelaten van een student: of de
student zich ook bij andere universiteiten heeft aangemeld, in welke volgorde
de student de universiteiten prefereert en welke andere universiteiten de
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student toe zullen laten. Helaas zijn al deze gegevens in de meeste gevallen
niet bekend.

In ditzelfde artikel [1] wordt ook een andere eis voor stabiliteit genoemd,
gebaseerd op het principe dat de universiteiten er zijn voor de studenten
en niet andersom. In deze definitie mag er geen tweetal studenten a en b
voorkomen waarvoor geldt dat a de universiteit waar b toegelaten is pref-
ereert boven de universiteit waar hij zelf toegelaten is én b de universiteit
waar a toegelaten is prefereert boven de universiteit waar hij zelf toegelaten
is. Onderstaand voorbeeld laat zien dat Algoritme 1.1 volgens deze definitie
niet altijd een stabiele koppeling geeft. Zelfs als we de studenten de aan-
zoeken laten doen (dus de rol van de mannen krijgen) en de koppeling dus
optimaal voor hen zou moeten zijn.

Voorbeeld 3.1
We hebben 4 studenten a, b, c en d, 4 universiteiten A, B, C en D die allen
één student mogen aannemen en de volgende voorkeuren:

a: A, B, C, D A: b, a, c, d
b: B, A, C, D B: a, c, b, d
c: B, C, A, D C: a, b, c, d
d: D, A, B, C D: d, a, b, c

In Algoritme 1.1 zal het volgende gebeuren:

• a zal A een aanzoek doen, b zal B een aanzoek doen, c zal B een
aanzoek doen en d zal D een aanzoek doen

• A zal a’s aanzoek accepteren, B zal c’s aanzoek accepteren en b’s
aanzoek afwijzen en D zal d’s aanzoek accepteren

• b zal A een aanzoek doen

• A zal b’s aanzoek accepteren en a’s aanzoek afwijzen

• a zal B een aanzoek doen

• B zal a’s aanzoek accepteren

• niemand zal meer afgewezen worden en de koppels zijn als volgt:
(a,B), (b, A), (c, C) en (d,D)

Volgens Definitie 1.2 is deze koppeling stabiel: er is geen koppel student-
universiteit te vinden die elkaar prefereren boven hun partner in deze kop-
peling. Maar volgens onze laatste definitie is deze koppeling niet stabiel: a
zou liever met A gekoppeld willen zijn en b liever met B terwijl ze andersom
gekoppeld zijn.
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Een ander voorbeeld van een many-to-one koppeling komen we tegen op de
banenmarkt en in het bijzonder in de medische wereld, waar artsen geplaatst
moeten worden in ziekenhuizen. Over het algemeen werken er meerdere
werknemers/artsen bij één bedrijf/ziekenhuis en werkt elke werknemers/arts
slechts bij één bedrijf/ziekenhuis. In ziekenhuizen werd een soortgelijk algo-
ritme als Algoritme 1.1 al gebruikt voordat Gale en Shapley erover schreven.

3.3 Roommates

Bij het roommates-probleem hebben we niet te maken met mannen en
vrouwen die gekoppeld moeten worden, maar hebben we één grote groep van
een even aantal personen waaruit we disjuncte paren moeten vormen. In dit
geval is er niet altijd een stabiele koppeling te vinden. Om dit te laten zien
wordt in het artikel van Gale en Shapley [1] het volgende voorbeeld gegeven:

Voorbeeld 3.2
We hebben 4 jongens a, b, c en d en de volgende voorkeuren:

a: b, c, d
b: c, a, d
c: a, b, d
d: a, b, c

In elke mogelijke koppeling is er een blokkerend paar, wat betekent dat er
geen stabiele koppeling mogelijk is:

koppeling blokkerend paar
(a, b), (c, d) (b, c)
(a, c), (b, d) (a, b)
(a, d), (b, c) (a, c)
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Nawoord

In deze scriptie hebben we gezien dat er gegeven een verzameling man-
nen en vrouwen altijd een stabiele koppeling bestaat die voldoet aan hun
voorkeuren. Met behulp van twee simpele algoritmes, één voor mannen en
één voor vrouwen, kunnen we ook altijd een stabiele koppeling vinden. Een
opvallend resultaat was dat er in elke stabiele koppeling precies dezelfde
mensen gekoppeld zijn en dus ook dezelfde mensen alleen overblijven. Daar-
naast viel op dat de best mogelijke stabiele koppeling voor mannen ook
direct de slechts mogelijke stabiele koppeling voor vrouwen is en andersom.

Deze tegenstelling tussen de belangen van de mannen en de vrouwen kwam
ook naar voren toen we het probleem als lineair programmeringsprobleem
bekeken. Op deze manier konden we meer stabiele koppelingen vinden dan
met alleen de twee algoritmes die we eerder zagen. Het grootste obstakel
binnen deze methode was echter de eis dat een oplossing geheeltallig moet
zijn. Gelukkig kon worden aangetoond dat we deze eis in eerste instantie
mogen negeren aangezien alle extreme oplossingen sowieso geheeltallig zijn.

Er zijn nog veel meer manieren om stabiele koppelingen te bekijken en er
is nog veel meer te lezen over dit onderwerp. Mocht je het interessant vin-
den, dan raad ik je zeker aan om het artikel van Vande Vate [3] te lezen
waarin onder andere op rotaties ingegaan wordt. Dit is een manier om va-
nuit een stabiele koppeling (bijvoorbeeld de stabiele koppeling die je vindt
door Algoritme 1.1 of Algoritme 1.2 uit te voeren) nieuwe stabiele koppelin-
gen te vinden, door als het ware partners door te schuiven. Hierop wordt
ook verder ingegaan in een artikel van Király en Pap [6].
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Overzicht Notatie

• M : de verzameling mannen

• W : de verzameling vrouwen

• Mw ⊂ M : de verzameling mannen met wie vrouw w gekoppeld zou
willen worden

• Wm ⊂ W : de verzameling vrouwen met wie man m gekoppeld zou
willen worden

• A := {(m,w) : m ∈ Mw, w ∈ Wm} : de verzameling acceptabele
koppels

• m′ >w m : vrouw w prefereert man m′ boven man m

• w′ >m w : man m prefereert vrouw w′ boven vrouw w

• w(X,m) : partner van man m onder koppeling X

• m(X,w) : partner van vrouw w onder koppeling X

• X ′ >w X : vrouw w prefereert koppeling X ′ boven koppeling X

• X ′ >m X : man m prefereert koppeling X ′ boven koppeling X

• SM (x) := {m ∈M :
∑

j∈W xmj > 0}

• SW (x) := {w ∈W :
∑

i∈M xiw > 0}

• FM (x) := {m ∈M :
∑

j∈W xmj = 1}

• FW (x) := {w ∈W :
∑

i∈M xiw = 1}

• Sm(x) := {w ∈W : xmw > 0}

• Sw(x) := {m ∈M : xmw > 0}

• w∗(x,m) := w∗ ∈ Sm(x) waarvoor geldt: w∗ ≥m w ∀w ∈ Sm(x)

• w∗(x,m) := w∗ ∈ Sm(x) waarvoor geldt: w∗ ≤m w ∀w ∈ Sm(x)

• m∗(x,w) := m∗ ∈ Sw(x) waarvoor geldt: m∗ ≥w m ∀m ∈ Sw(x)

• m∗(x,w) := m∗ ∈ Sw(x) waarvoor geldt: m∗ ≤w m ∀m ∈ Sw(x)
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