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Abstract

We will discuss the use of heterogeneous linear mixed models to an-
alyze long term liking data. Random effects are modelled as a mixture
of Gaussian distributions, highlighting segments of consumers with sim-
ilar response patterns through time. A posteriori investigation of these
segments will be performed using cross-tabulation. Suggestions for future
study designs will be made, as these models allow for missing data and
measurements on unbalanced time points.

Keywords : longitudinal mixed model hlmm package lcmm psychological
scale data ceiling effects curvelinearity latent class regression random coefficient
regression finite mixture distributions maximum likelihood estimation
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1 Material and methods

1.1 Material

Five personal care products with highly different sensory properties, such as
color, fragrance and texture were used. Long term liking data was collected for
330 subjects, which were selected on basis of age, income, education, concern
about the use of a personal care product and current use of this type of product
in order to fit the target group. The groups were balanced with respect to
the main recruitment criteria. The design was parallel, indicating that each
respondent got to rate only one of the five products. Subjects were asked to
rate their liking on the use of a product for one month at day 1, 3, 7, 14, 21
and day 28. This data was collected on a continuous line scale (0 - 88) 1 with
anchor points at the beginning, at the end and at regular intervals. Additional
information about the consumers was collected. Neophobia is either high or low,
based on a segmentation of consumers regarding general neophobia and product
neophobia. Continuation of use was questioned at day 28 where respondents
could choose from: 1 continue using this product, 2 go back to my usual brand
and 3 try another brand. Since there were only two respondents who choosed
3, we decided to take 2 and 3 together. Expected benefit of the product was
registered at day 1.

1.2 Heterogeneous linear mixed model

We will start by explaining the homogeneous linear random coefficient model:
Let Yi = (Yi1, Yi2, ..., Yij) be the response vector for subject i at occasion j.
With i = (1, 2, ..., I) and j = (1, 2, ..., J). The linear mixed model in equation 1
for the j × 1 response vector Yi, is defined as:

Yi = Xiβ + Ziui + εi (1)

Where Xi is a j × p design matrix for the p-vector of fixed effects. Zi is a j × q
design matrix for the q-vector of random effects ui, which represents the subject
specific regression coefficients. β. For example we may want to specify a random
intercept and a random slope. Giving respondent i an individual intercept which
deviates from the general intercept β0 by u0i and an individual slope which
deviates from β1 by u1i. The errors εi are assumed to be normally distributed
with diagonal covariance matrix σ2IJ and are assumed to be independent from
the vector of random effects ui. This example is illustrated below for three
respondents who were followed during three days.

1Originally planned to measure on a 100mm line scale, which was reduced to 88mm upon
printing.
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In an homogeneous mixed model, equation 1, ui is normally distributed with
mean µ and covariance matrix D i.e.

ui ∼ N(µ,D) (2)

In order to extend this to the heterogeneous linear mixed model, in equations
3 and 4, ui is assumed to follow a mixture of G multivariate Gaussians with
different means (µg) and covariance matrix D which can optionally be class-
specific Dg.

uig ∼ N(µg, Dg) (3)

where: Dg = w2
gD

with class proportional parameter: w2
g

Each class of the mixture has a probability πg which suffices the following con-
ditions:

0 ≤ πg ≤ 1∀g = 1, G and

G∑
g=1

πg = 1 (4)

In this model we can have covariates in three different parts of the model. That
is why we split up matrix Xi in three parts: matrix X1i contains the variables for
the class-membership part, matrix X2i contains the variables for the common
effects over classes and X3i contains the covariates for the class-specific effects.
Considering G latent homogeneous classes, we define discrete latent variable
ci = g if subject i belongs to class g, where every subject belongs to only one
class, namely the class to which the subject has the highest posterior probability.
The probability of latent class membership is explained according to covariates
X1i, according to multinomial logistic regression:

0 ≤ πig = P (ci = g|X1i) =
eξ0g+X1iξ1g

G∑
l=1

eξ0l+X1iξ1l

(5)
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The general formulation of the heterogeneous linear mixed model is:

(Yi|ci = g) = Ziuig +X2iβ +X3iγg + εi (6)

pdfpageduration

where Zi =the j × q design matrix for q-vector of random effects uig

where X2i =the j × r design matrix for the r-vector of common effects over classes β

where X3i =the j × s design matrix for the s-vector of class-specific effects γg

Given that respondent i belongs to group g, the model is merely the homoge-
neous linear random coefficient model we saw in equation 1. In other words, the
model can be seen as a finite mixture of LMM’s. Estimation of θG = (uig, β, γg)
for a fixed number of latent classes G is obtained by maximizing the likelihood:

L(θG) =

N∑
i=1

ln

( G∑
g=1

P (ci = g|X1i, θG)× φig(Yi|ci = g;X2i, X3i, Zi, θG)

)
(7)

φig pdf ofMVN(X2iβ +X3iγg + Ziµg, ZiBgZ
′
i + σ2

ε Ini)

The likelihood is maximized using a modified Marquardt optimization algorithm
(1) (? ). For a given number of classes G this method simultaneously finds the
parameters for the trajectories and the multinomial logit part. Doing this for
different numbers of G allows us to indentify the optimal number of classes.

1.3 Model selection criteria

Optimal number of classes is found by minimizing BIC (2),see equation 8. As
BIC performed best of all IC’s considering class enumeration (3). Where k is
the number of free parameters to be estimated.

BIC=− 2 lnL+ k ln(n) (8)

Wedel and Kamagurka (4) suggest the measure of entropy to quantify the degree
of separation in the estimated posterior probabilities. Entropy is calculated in
the following way:

EG = 1−

∑
i

∑
g

(−p̂igln(p̂ig))

n ln(G)
(9)

Where pik is the posterior probability of respondent i to belong to class k, and
K is the total number of classes. If a respondent has intermediate posterior
probabilities different classes, this indicates that the model is uncertain about
the classification of this respondent. Values of entropy range between 0 and 1,
where 0 indicates classification uncertainty and 1 perfect separation.
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1.4 Tests for model parameters

Wald-tests are used for testing the model parameters. The ML estimate θ̂ is
compared to a reference value θ0, usually 0. Where the assumption is that the
difference is approximately normally distributed and the square of the difference,
see equation 10 below, is compared to a χ2 distribution. The second assumption
is that the standard error of the parameter value is known (while it is actually
estimated). The wald-test is liberal.

(θ̂ − θ0)2

V ar(θ̂)
(10)

1.5 Software

We use Proust-Lima and Jacqmin-Gadda recently developed R package lcmm
for estimation of heterogeneous linear mixed models and latent process hetero-
geneous mixed models. Within this package function hlme estimates latent class
mixed models assuming a gaussian outcome. Their function lcmm extends this
approach to handle non Gaussian quantitative and ordinal outcomes.

A Latent process model and transformation

A.1 Introduction

In (5) Proust-Lima et al. conclude: ”To distinguish the impact of a covariate
on the initial level of a scale from its impact on the change in quantitative
scale scores over time (not only psychometric tests but also scales evaluating
quality of life or activities of daily living), mixed models that account for their
metrologic properties should be preferred over the LMM.” In the long term
liking data there may be varying sensitivity of the liking scale to a change in
the underlying appreciation of the product, this is called curvelinearity. We will
apply a latent process homogeneous mixed model in order to account for this.

A.2 Method

In order to allow for transformations of the response, we can extend this to the
latent process heterogeneous linear mixed model as follows:

h(Yij ; η) = a+ bΛij + εij (11)

With a and b parameters needing to be estimated that replace β0 and the
variance of u0i.

Λij = Zijuig +X2ijβ +X3ijγg (12)

The log-likelihood of interest is the log-likelihood of the outcomes in their natural
scale, and thus includes the Jacobian of the transformation h. It is given by:
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L(y; θ) = L(ŷ; θ) + ln(J(y; θ)) =

N∑
i=1

L(y; θ) +

N∑
i=1

ln(J(yi; θ)) (13)

Where θ is the complete vector of parameters containing the transformation
parameters η = (η1...ηn), the fixed parameters β, class specific parameters γ and
the variance covariance paramters D. The parameters for the transformation are
estimated simultaneously with all the other parameters. The Beta Cumulative
Distribution Function can take very different shapes, including concave convex
and sigmoid. Lcmm uses a four parameter beta transformation.

B Model specification in R

After downloading the lcmm package for R. We can use: library(lcmm) in or-
der to use the functions within the package. Data should be in long format
and should be sorted with respect to the subject variable (This with respect to
keeping track of the class-membership of the respondents.). The model from
section ?? is specified in the following way:
hlme(fixed= liking ∼ Day*Product, random=∼ 1+Day, data= mydataset, sub-
ject=’RespNr’)

The model from section ?? is specified in the following way:
hlme(fixed= liking ∼ Day, mixture=∼ 1 + Day, random=∼ 1 + Day, ng=3,
data= nschin, subject= ’RespNr’, nwg= TRUE)

The model from section ?? is specified in the following way:
hlme(fixed= liking ∼ Day + Product, mixture=∼ 1 + Day, random=∼ 1 + Day,
ng=3, data= nschin, subject= ’RespNr’, nwg= TRUE, classmb=∼neophobia)
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