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superficial adj. ′′sü-p&r-′fi-sh&l [from Latin superficies]
(1) of, or relating to, or located near a surface
(2) concerned only with the obvious or apparent: shallow

[Merriam-Webster]

1 Introduction

A mathematician is interested in many different abstract objects. With these objects often come
maps between them, morphisms in category-theoretical terms. The invertible morphisms of an
object to itself, its automorphisms, are interesting objects of study in themselves. Surfaces form
one of the most intuitively accessible collections of mathematical objects. Since they are 2-
dimensional, we may fully apply our imagination to them. In this thesis, we wish to study the
automorphisms of a given surface. This can be done using only point-set topology, but other
structure is often brought in, creating a mixture of point-set and differential topology as well as
hyperbolic geometry. After introducing some fundamental concepts in section 1, we will study
isotopies between automorphisms, mainly in the differentiable category, in section 2. In section
3 we will look at the function spaces of automorphisms and define the mapping class group of a
surface (MCG for short), discussing some basic results about it. Section 4 gives a short overview
of some hyperbolic geometry. Then in sections 5 and 6 we will present the (extended) Nielsen re-
alization problem, asking how we can realize mapping classes by concrete automorphisms while
respecting the group structure, and gather the results that have been obtained on this problem.
Finally, section 7 will provide two representations of the mapping class group.

1.1 The basic objects

To begin with, we will not be working with all surfaces. For the sake of simplicity, we will restrict
ourselves to connected closed orientable surfaces. It so happens that these are surprisingly easily
classified up to homeomorphism. A nice presentation of this result can be found in Massey
[28] or Munkres [34]. We can characterize all these surfaces by a single number, their genus
g = 1 − 1

2
χ, which tells us “how many holes they have”. Here, χ is the Euler characteristic of

the surface. We call the surface with g holes Σg. The first few are depicted below to get clear on
the idea.

Σ0 Σ1 Σ2
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etc.

Σ3

Figure 1. Connected closed orientable surfaces.

Furthermore, we have to decide on the category we want to work in. We could choose to use
only the topology of the surface and view it as a topological manifold, or we could introduce a
piecewise linear structure (we get a so-called PL-manifold) or a Cr-differentiable structure for
some r ∈ N ∪ {∞}. For a given manifold the following implications hold:

Cr-differentiable =⇒ PL =⇒ topological.

These implications can not in general be reversed. In dimensions ≥ 4 there are topological
manifolds which can not be given any PL-structure. Or a given topological manifold can be
equipped with more than one possible PL or differentiable structure up to isomorphism in the
PL or differentiable category respectively. Luckily, these problems do not arise for surfaces.
It was proved early in the twentieth century that every surface possesses a unique PL and C∞-
differentiable structure, up to isomorphism. A consequence was also that a surface is triangulable
and any two triangulations have a common refinement.

Though this structure is canonical, different categories have different sets of (auto)morphisms,
so the choice of category is still important. According to what category of surface we choose,
we distinguish between the collections of homeomorphisms Homeo(Σg), PL-homeomorphisms
PL(Σg) and diffeomorphisms Diffr(Σg) of a surface to itself, although in the last case I will
mainly use r = ∞ without indication. In principle I will continue to use the word automorphism
when I wish to remain indeterminate on the category under discussion.

A further possibility would be to look at a complex structure (also called conformal structure)
on our surfaces. However, a surface admits many complex structures, as evinced already by the
classical modular problem for the torus. The problem of looking at the auto-biholomorphism
group of a given Riemann surface has a different flavor than in the above-mentioned categories,
and we will not go into it. Some special kinds of conformal structure will be discussed in section
4, though.

Two important concepts that will star throughout our discussion are homotopy and isotopy.
Given topological spacesX,Y , two maps f, g : X → Y are said to be homotopic if there is a map
F : X×I → Y such that F (·, 0) = f and F (·, 1) = g. If moreover f and g are homeomorphisms
onto their images, they will be called isotopic if there exists a homotopy F : X × I → Y
between them such that for every t ∈ [0, 1], F (·, t) : X → Y is also a homeomorphism onto its
image. For differentiable maps f and g, we will speak of a differentiable isotopy if the map F
is differentiable. The set of homotopy classes of morphisms from X to Y is often denoted by
[X,Y ].
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1.2 Applications

The theory of automorphisms of surfaces is important when studying 3-dimensional manifolds.
An important tool in classifying these is a Heegaard splitting. This means separating the mani-
fold into two handlebodies (the closed orientable surfaces imbedded in 3-space as shown above,
together with the part of space bounded by it). It turns out that every closed orientable 3-manifold
has a Heegaard splitting. So to classify these manifolds, it is useful to know how one can con-
struct new 3-manifolds by glueing two handlebodies of the same genus together along their
boundary, which is a closed orientable surface. This boils down to studying how you can map
a surface to itself, which is what we are concerned with. In classifying surface bundles over a
given manifold, the situation is similar: we need information on what automorphisms the fiber
has. And in the field of string theory, surface automorphisms also seem to arise.

1.3 Algebraic information on surfaces

An algebraic object that is frequently used in the study of topological spaces is the first homotopy
group or fundamental group of a surface, π1(Σg). There are also higher homotopy groups (i.e.
π2, π3, π4, . . .) but we will have no need for them. To be precise, the fundamental group is defined
using a base point as

π1(Σg, p) := [(I, ∂I), (Σg, p)].

This is the group of homotopy classes of maps (I, ∂I) → (Σg, p), meaning such a map is from
I → Σg and maps ∂I = {0, 1} to p. The two groups π1(Σg, p1) and π1(Σg, p2) obtained by
using two different base points are isomorphic. An isomorphism is given by conjugating a loop
based at p2 by a path from p1 to p2. Such an isomorphism is not canonical, however, since there
is no canonical path from p1 to p2, not even up to homotopy. The fundamental group of a closed
orientable surface can be calculated using a cut-and-paste diagram; this is a polygon together
with its interior, of which the surface is a quotient space by identifying edges in pairs. The
fundamental group can actually be used in this way to prove the classification of closed surfaces
(see Munkres [34] chapter 12).

It turns out that π1(Σg, p) is generated by the homotopy classes of loops α1, β1, . . . , αg, βg,
as illustrated below for Σ3, and that an explicit group presentation is given by

π1(Σg, p) ∼= 〈α1, β1, . . . , αg, βg | [α1, β1] · [α2, β2] · · · [αg, βg] = 1〉.

Figure 2. Loops generating π1(Σ3, p).
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Another useful set of algebraic objects for any topological space X is the collection of its homol-
ogy groups H0(X), H1(X), H2(X), . . .. We will not explain the definition of a homology group;
Bredon [5] gives a good introduction to homology theory. For a closed orientable surface Σg,
Hn(Σg) = 0 for n ≥ 3, and H2(Σg) ∼= H0(Σg) ∼= Z. The most interesting homology group for
Σg is the first homology group H1(Σg). This group is canonically isomorphic to the abelianized
fundamental group (for any topological space). For Σg, we may regard the loops αi and βi gen-
erating π1(Σg, p) as 1-cycles representing homology classes. These homology classes therefore
generate H1(Σg). Also, the relation in the above presentation of π1(Σg) becomes trivial when
we allow the elements to commute (which is by definition the case if we work in the abelianized
fundamental group). Thus we see that

H1(Σg) ∼= Z2g

and that (α1, β1, . . . , αg, βg) can function as a basis for H1(Σg), viewing this group as a Z-
module. This situation is pictured below, (ab)using the same letters as above, this time for ho-
mology classes.

Figure 3. Homology classes generating H1(Σ3).

1.4 Notation

We use the notations H ⊆ G, H < G and H C G when H is a subset, subgroup and normal
subgroup of G, respectively.

Given maps f, g : X → Y , let us write f 'h g if they are homotopic and f 'i g if they are
isotopic. If these maps are C1-differentiable, f t g will mean f and g are transverse maps. This
is to say that for all x1, x2 ∈ X such that f(x1) = g(x2) =: y, we have the (not necessarily
direct) sum

Tx1
f(Tx1

X) + Tx2
g(Tx2

X) = Ty(Y ).

A closed curve will be a map γ : S1 → Σg or a map γ : I → Σg with γ(0) = γ(1). These
definitions will be used interchangeably in the way which suits the application best. A (closed)
curve will be called simple if the map S1 → Σg is injective. If γ is a path from p to q (that is,
γ(0) = p and γ(1) = q) and δ is a path from q to r, the concatenation of these paths will be
written as γ ∗ δ and defined by

γ ∗ δ(t) :=

{
γ(2t) for 0 ≤ t ≤ 1

2

δ(2t− 1) for 1
2
≤ t ≤ 1

.
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For a path γ from p to q, the reverse path from q to p will be written as γrev and defined by

γrev(t) := γ(1 − t).

We will denote the closed unit disc by D2.
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2 Curves on surfaces and isotopies between automorphisms

This section leads up to a basic result about the automorphisms of closed orientable surfaces:
homotopic automorphisms are isotopic. In the process, we get a very tangible criterion to decide
when two surface automorphisms are isotopic. Also, the road to this result showcases a few nice
techniques in surface topology. I feel, therefore, it is a good starting point for our investigation.
Most of the lemmata in this section can be found in Casson and Bleiler [7], Epstein [11] and
Stillwell [40] in some form or other, though only Epstein works towards the same conclusion,
and does so in the PL category. (I have not been able to find a source which does the proof
consciously and correctly in the differentiable category!) Readers might like to compare the
versions of several lemmata and their proofs using differential topology (here) as opposed to
hyperbolic geometry (Casson and Bleiler).

Remark. Whether the main result holds for a larger collection of manifolds than just surfaces
seems to be largely an open problem. In the literature, I could only find an analogous result for
(3-dimensional) Seifert fibered space, and nothing for higher dimensions. As will be clear, the
techniques used in the present section would not be applicable to higher dimensions.

For our treatment we will use the tools of transversality and tubular neighbourhoods. Thus we are
actually obliged to work in the differentiable category. Without special mention, all maps in this
section will thus be C∞-differentiable. At the end this condition will be dispensed with to obtain
the main result in the topological category. We start by introducing two seemingly unconnected
notions for curves on surfaces, both illustrated in the figure below.

Definition 2.1 The minimal intersection number of two simple closed curves γ1, γ2 on a surface
is defined as Imin(γ1, γ2) := min{|δ1 ∩ δ2| : δ1 'h γ1, δ2 'h γ2}. A set of curves {γ1, . . . , γn} is
said to have minimal intersection when |γi ∩ γj| = Imin(γi, γj) for all 1 ≤ i < j ≤ n. A 2-gon
between γ1 and γ2 is a disc D embedded in the surface such that ∂D consists of two arcs that
are part of γ1 and γ2, respectively.

Figure 4. The two curves on Σ1 shown to the left have minimal intersection, while the two
curves on Σ2 shown to the right clearly do not. We also see an embedded 2-gon there.

Surprisingly, these two notions are related.
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Lemma 2.2 Two smooth transverse simple closed curves γ and δ on any surface Σ have minimal
intersection if and only if there is no embedded 2-gonD between them with int(D)∩(γ∪δ) = ∅.

Remark. Transversality is essential here. First of all, non-transverse curves could coincide on
an interval or touch but not cross, not bounding a disc in either situation. Second, a worse thing
might occur: the curve δ could spiral towards a point p on γ, crossing γ an infinite number of
times before reaching p, and then continue in a similar fashion by spiraling outwards, crossing
γ an infinite number of times again. Any 2-gon between γ and δ would contain a smaller one,
as can be seen from the image. In contrast, transverse curves have a discrete set of intersections
points. Because the curves are closed, their number must be finite.

γ

δ

Figure 5. An infinite spiraling family of intersections.

Proof. (=⇒) Suppose there was an embedded 2-gon of the required kind between the curves γ
and δ. Then it is clear we could construct a homotopy for one of the curves which would dissolve
these intersections, as shown below. Therefore the curves would not have minimal intersection.

γ1

γ2

−−→
γ1

Figure 6. Dissolving the grey 2-gon shown on the left between the curves γ and δ.

(⇐=) We take the nice contrapositive proof from Hass & Scott [16, lemma 3.1]. Consider the
universal cover π : Σ̃ → Σ. We know that Σ̃ is either S2 or R2 (see Epstein’s corollary 1.8). We
prove there are lifts γ̃, δ̃ : R → Σ̃ of γ, δ between which there is a 2-gon. By the Jordan curve
theorem, it is enough to prove these lifts have at least two intersection points. When Σ̃ ∼= S2,
this fact is clear because there are lifts that intersect, and these must intersect an even number of
times, since any lift to S2 of a simple closed curve yields a periodic curve. When Σ̃ ∼= R2, the
reasoning is the same if one of the lifts is periodic. Otherwise, view γ as a curve from I → Σ
with γ(0) = γ(1) 6∈ γ ∩ δ and lift it to γ̃ : I → Σ̃. This lift meets every fiber over γ ∩ δ exactly
once, so |γ ∩ δ| = |γ̃ ∩ π−1(δ)|. Suppose γ̃ intersects every component of π−1(δ) only once.
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Any loop γ ′ 'h γ is homotopic to a loop γ ′′ through γ(0) with |γ ′′ ∩ δ| = |γ ′ ∩ δ|. And γ ′′

lifts to a curve from γ̃(0) to γ̃(1). Because all components of π−1(δ) separate R2, this lift must
intersect each component that γ̃ intersects. But then |γ ′ ∩ δ| = |γ ′′ ∩ δ| ≥ |γ ∩ δ|, contradicting
our assumption that |γ ∩ δ| was not minimal.

So we have proved there is an embedded 2-gon between some lifts γ̃, δ̃ : R → Σ̃. If its
interior still contains points of, say, π−1(γ), then some component γ̃2 of π−1(γ) must enter and
exit it through δ̃ — it can not intersect γ̃, since γ is simple. So then our old 2-gon contains a
smaller one, between γ̃2 and δ̃. This procedure of finding smaller 2-gons can be continued only
a finite number of times, since all components of π−1(γ) and π−1(δ) are pairwise transverse. So
there is a 2-gonB between some components γ̃ and δ̃ with interior disjoint from π−1(γ)∪π−1(δ).

We now show that B homeomorphically projects to an embedded 2-gon with interior disjoint
from γ ∪ δ. Call the two vertices of our 2-gon (the points of γ̃ ∩ δ̃ ∩ B) x and y. Suppose
we have a non-trivial element g ∈ π1(Σ) ∼= Deck(Σ̃/Σ) for which g · B ∩ B 6= ∅. Since
int(B)∩ (γ̃ ∪ δ̃) = ∅, g must map some point of ∂B to ∂B. Because the set {p ∈ ∂B|g · p ∈ B}
is closed, g must map a point of {x, y} to this same set. Deck transformations act freely, so we
must have, say, g ·x = y. It follows that g fixes γ̃ and δ̃ setwise, because no other components of
a π−1(γ) and π−1(δ) contain either x or y. Thus γ and δ both represent g as an element of π1(Σ)
and intersect in a single point. On an orientable surface this is a contradiction because the mod
2 self-intersection number I2(γ, γ) is zero (see Guillemin & Pollack [15]). On a non-orientable
surface, this is contrary to assumption, because the curves would have minimal intersection, since
Imin(γ, δ) ≥ 1 if I2(γ, δ) = 1. We conclude that g ·B∩B = ∅ and that π|Bn

is a homeomorphism
onto its image. �

We can use this lemma to prove that we can disentangle two curves, so that they have minimal
intersection, by means of an ambient isotopy.

Lemma 2.3 For any two smooth simple closed curves γ1 and γ2 on a surface Σ there is an
isotopy J : Σ× I → Σ such that J(·, 0) = idΣ and J(·, 1) ◦ γ1 has minimal intersection with γ2.

Proof. To start with, there exists an isotopy J0 : S1 × I → Σ such that J0(·, 0) = γ1 and
(J0(·, 0) ◦ γ1) t γ2 (by Bredon [5], chapter II, corollary 15.6), and this may be extended to
an ambient isotopy J1 : Σ × I → Σ such that J1(·, 0) = idΣ and (J1(·, 1) ◦ γ1) t γ2 by the
isotopy extension theorem (see Hirsch [17], chapter 8). Now suppose that the curves do not
have minimal intersection. From the previous lemma, we now know that there is an embedded
2-gon between γ1 and γ2 with interior disjoint from these curves. It is obvious that we can find a
neighbourhood of this 2-gon which looks like the left figure in the previous proof. We may then
dissolve this 2-gon by means of an isotopy J2 which is the identity outside this neighbourhood
and ‘pushes γ2 across γ1’, obtaining the situation shown in the right figure above. In this way,
we reduce the number of points in γ1 ∩ γ2 by two. By compactness and transversality, the two
curves intersect each other only a finite number of times, so this procedure can be iterated until
minimal intersection is attained by the sequence of isotopies J1, J2, . . . , Jk. �

Definition 2.4 A closed curve on a surface is called essential if it is not nullhomotopic.
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The following general lemma of surface topology comes up regularly.

Lemma 2.5 Two disjoint homotopic essential simple closed curves on a compact orientable
surface Σ bound an annulus.

Proof. We subdivide our curves and consider them as 1-chains A0 and B0. These are homolo-
gous, because they are homotopic (by assumption). So there is a 2-chainN0 with ∂N0 = A0−B0.
We may choose N0 so that it includes any point on the surface at most once in its image by sub-
division. This 2-chain forms a finite triangulation of part of the surface, which we view as a
compact orientable simplicial complex with the 1-simplices of A0 and B0 as its two boundary
components.

We now determine the Euler characteristic χ(N0). To this end we construct a sequence of
simplicial complexesN0, N1, N2, . . .with corresponding boundary sequencesA0, A1, A2, . . . and
B0, B1, B2, . . . by steps of three types, applied successively in no specific order. (I) Whenever
Nk contains a 2-simplex with exactly one of its sides belonging to Ak − Bk, we cut away this
2-simplex and named side to obtain Nk+1. We add the other two sides and their common point
to Ak to form Ak+1. (II) If Nk contains a 2-simplex with exactly two of its sides belonging to
Ak − Bk, we cut away this simplex, named sides and their common point to obtain Nk+1. Then
we add the third side to Ak to obtain Ak+1. (III) And if Nk contains a 2-simplex with three of its
sides in Ak −Bk, we cut away this simplex and all its sides from Nk, and from Ak we delete the
sides and the points that do not occur in other 1-simplices of Ak. We do not alter Bk, that is we
set Bk+1 := Bk. The procedure is illustrated below.

�

Ak

type I
−−−−−−−→

�

Ak+1

�

Ak

type II
−−−−−−−→

Ak+1

�

�

�

�

�

�

�

type III
−−−−−−−−→

�

�

�

�

�

Figure 7. Changing the simplicial complex Nk to Nk+1 by one of three kinds of alterations.

It is easy to check (for all three types of steps) that χ(Nk+1) = χ(Nk) and that Ak+1 stays a non-
trivial 1-cycle. As long as there are 2-simplices in Nk, we can continue this process, because
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there will be a 2-simplex with at least one side in Ak − Bk. As there are finitely many simplices
in N0, after a finite number of steps we will be left with a complex without 2-simplices, which
must be equal to B0

∼= S1. This shows that χ(N0) = χ(S1) = 0.
The classification of compact orientable surfaces (see Massey [28]) tells us a surface with

two boundary components and Euler characteristic zero is an annulus. �

From this lemma it now follows that we can freely manipulate (pairs of) essential simple closed
curves within their homotopy classes, using ambient isotopies. In particular, homotopic essential
simple closed curves on a surfaces are isotopic.

Lemma 2.6 On an orientable surface Σ, two smooth essential simple closed curves γ, δ are
homotopic if and only if they are ambient isotopic. We can generalize this to pairs of simple
closed curves under additional conditions. If (γ1, γ2) and (δ1, δ2) are ordered pairs of essential
simple closed curves with minimal intersection, γ1 6'h γ2, γ1 6' γ2rev, δ1 6'h δ2, δ2 6' δ2rev and
γi 'h δi for i = 1, 2, then there is an ambient isotopy which moves one pair to the other.

Proof. If two curves are ambient isotopic, they are certainly homotopic. The same holds for
pairs of curves which already fullfill the side conditions.

Now for the non-trivial direction. We first tackle the problem for single curves. Notice that
Imin(γ, δ) = 0: there is a homotopy H : S1 × I → Σ that moves γ to δ. After performing this
homotopy, we can make γ disjoint from δ by a small homotopy inside a tubular neighbourhood
of δ.1 By lemma 2.3, we can now make the curves disjoint by an ambient isotopy. Assume this
has been done. We invoke lemma 2.5 to conclude that γ and δ are the boundary curves of an
annulus S1 × I .

Giving S1 × I a product orientation enables us to say that γ and δ both wind around the
annulus either to the right or to the left. Suppose they differed in direction. Then, because
they are homotopic, γ 'h γrev, whence [γ]2 = 1 ∈ π1(Σg). But the fundamental group of an
orientable surface does not contain elements of order 2, or of any finite order, for that matter, see
Epstein [11] lemma 4.3. Therefore, γ and δ wind around the annulus in the same direction. We
can thus construct an ambient isotopy between the two curves using collars on both sides of the
annulus. This is geometrically obvious and proves our theorem for single curves.

Now for the generalization to pairs of curves. We have just proved we can move γ1 to δ1
by an ambient isotopy, so we start by doing that. Next we wish to push across 2-gons to ensure
γ2 ∩ δ2 = ∅, as in lemma 2.3. However, we want to keep γ1 fixed as a set, since it is already
in place. Because γ1 has minimal intersection with γ2 and δ2, whenever it intersects some 2-gon
between γ2 and δ2, it crosses this 2-gon from γ2 to δ2 (or the other way around, and this may
happen several times). Therefore we can indeed keep it fixed as set by ‘pushing carefully’. We
are now in a situation where γ1 = δ1 and γ2 ∩ δ2 = ∅. This is shown in the figure on the left:

1Such a neighbourhood exists by the Tubular Neighbourhood Theorem, see Bredon [5] chapter II, theorem 11.14.
Notice that we use the orientability of the surface here, for on a non-orientable surface, the normal bundle of δ in Σ
might not have a nowhere zero section. Indeed, in that case we would have Imin(γ, δ) = 1.
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−−→

Figure 8. An isotopy across an annulus, keeping a set of disjoint curves across it fixed.

We know the pair (γ2, δ2) bounds an annulus. Furthermore, both γ2 and δ2 have minimal inter-
section with γ1 = δ1. Since γ1 is not homotopic to γ2 or its reverse, it is not contained in the
annulus. This implies that if γ1 intersects the annulus between γ2 and δ2 at all, it does so by
crossing it a finite number of times, over disjoint paths. We can therefore move γ2 across this
annulus to δ2 with an ambient isotopy that keeps γ1 fixed as a set, and only moves points in a
neighbourhood of the annulus. The result is shown above on the right. With this sequence of
isotopies we achieve our goal. �

Remark. The preceding lemma can not be generalized straightforwardly to n-tuples of curves
for n ≥ 3. One could suspect the following holds. Given are two n-tuples (γ1, . . . , γn) and
(δ1, . . . , δn) of essential, pairwise non-homotopic, pairwise minimally intersecting simple closed
curves on a compact orientable surface Σ. If γi 'h δi for i = 1, . . . , n, then there is an ambient
isotopy J : Σ × I → Σ with J(·, 0) = idΣ and J(γi(S

1), 1) = δi(S
1) for i = 1, . . . , n. But

this is not true. It is true an ambient isotopy could be constructed which freed every γi from its
corresponding δi by pushing carefully across 2-gons. But we could encounter an insurmountable
obstacle, as shown in the following picture:

Figure 9. It is impossible in general to construct an ambient isotopy positioning three curves
at will. In this particular instance this can be concluded from the fact that the only intersection
point between γ1 and γ2 lies to the right of γ3, but to the left of δ3 on our orientable surface.

In view of this problem, if we want to generalize the lemma, we have to impose a restriction
preventing these kinds of intersections. For this we introduce the following concept.

Definition 2.7 A closed essential 1-submanifold of a compact orientable surface is a finite union
of disjoint essential simple closed curves {γ1, . . . , γn} such that γi 6'h γj, (γj)rev for i 6= j. Two
closed essential 1-submanifoldsN1 = {γ1, . . . , γn} andN2 = {δ1, . . . , δn} are called homotopic
if for every γi there is a unique δj homotopic to it.
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If we restrict ourselves to closed essential 1-submanifolds, the following result is almost trivial.

Lemma 2.8 If two closed essential 1-submanifolds N and M of a compact orientable surface Σ
are homotopic, there is an ambient isotopy that moves one to the other. This can be generalized
to pairs (N1, N2) and (M1,M2) of transverse closed essential 1-manifolds. Suppose Ni 'h Mi,
all curves of N1 (M1) have minimal intersection with all curves of N2 (M2) and no curve of N1

(M1) is homotopic to a curve of N2 (M2) or its reverse. Then there is an ambient isotopy moving
one pair to the other.

Proof. For the single submanifold case, we simply compose isotopies for each component,
keeping all previously moved components γi of N fixed while working on one. This is possible
because these components all have a tubular neighbourhood disjoint from any γj that has not
been put in place yet. (We could cut these from the surface in every step, actually making this
into an induction argument.)

In the case of pairs of submanifolds, we first move N1 into position as in the last paragraph.
Then N2 can then also be dealt with componentwise, using the same subtlety as in lemma 2.6.
We do not encounter the problematic situation mentioned above, because all the curves of N2 are
disjoint. This completes the demonstration. �

We need two more ingredients for our main result.

Theorem 2.9 Between any two diffeomorphisms h1 and h2 of the disc D2 that either both pre-
serve or both reverse orientation, there is a differentiable isotopy.

In the topological category, the proof is relatively straightforward. It is enough to prove that,
given a homeomorphism h which preserves orientation, we can construct an isotopy to the
identity. First, we use an isotopy to make sure that h(0) = 0 by extending an isotopy of
{h(0)} × I → D2 moving h(0) back to 0 along a path, to an isotopy J1 : D2 × I → D2.
Second, we may rotate the whole disc around 0 by an isotopy J2, so we assume that h(0, 0) = 0
and h(1, 0) = (1, 0). Now the action of h on S1 may be described by the angle function
θ(x) = arg(h(x)) − arg(x), where we choose arg in [0, 2π). This θ is a continuous function
S1 → R because of the assumption h(1, 0) = (1, 0). We therefore use the isotopy

J3(p, t) :=

{
ρ−tθ(p/||p||)(p) if p 6= (0, 0)

(0, 0) if p = (0, 0)

on the whole disc, where ρφ denotes rotation around the origin by an angle φ. We may thus also
assume that h|S1 is the identity. In our fourth and last step, the famous Alexander trick gives us
an isotopy J4 between our map h and the identity:

J3(p, t) :=

{
t · h

(
p
t

)
for ||p|| < t

p for ||p|| ≥ t

This proof can be generalized to any dimension. The Alexander trick, however, is not adaptable
to the differentiable category. The proof of the differentiable version is highly non-trivial, even
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in dimension 2, and can be found in either a famous paper by Smale [39] or one of Munkres [31].
The higher-dimensional differentiable version was proven by Cerf [8] for n ≥ 6.

Definition 2.10 A set of curves on a closed orientable surface is said to bind the surface or fill
the surface if the complement of the curves is a disjoint union of open discs.

For g ≥ 1 there exist two transverse closed essential 1-submanifolds N1 and N2 with minimal
intersection that bind Σg. An example that is easy to verify is the pair N1 = {γ1, . . . , γ2g−1},
N2 = {δ} shown below for Σ3. One can actually find two essential curves which have minimal
intersection and bind the surface. But in my opinion the greater generality of the lemma on 1-
submanifolds is more enlightening than using two cleverly constructed curves, whose supposed
minimal intersection would be far from obvious.

Figure 10. Two closed essential 1-submanifolds that bind Σ3.

At last we are in a position to prove our main theorem, at least in the differentiable category.

Theorem 2.11 Two diffeomorphisms of a closed orientable surface Σg are (topologically) ho-
motopic if and only if they are differentiably isotopic.

Proof. We prove the non-trivial implication. Let h1 and h2 be the diffeomorphisms. Supposing
that g ≥ 1, we use a pair (N1, N2) of transverse closed essential 1-submanifolds binding the
surface. Our diffeomorphisms are by assumption homotopic, so h1(Ni) 'h h2(Ni). Lemma 2.8
therefore implies there is an ambient isotopy J1 : Σg × I → Σg moving the former pair into the
latter. The two diffeomorphisms h̃1 : p 7→ J1(h1(p), 1) and h2 agree on N1 ∪N2. Moreover, the
complement of h̃1(N1 ∪N2) = h2(N1 ∪N2) consists of disjoint discs. The closure of these open
discs are thus closed discs on whose boundary h̃1 and h2 agree. So lemma 2.9 tells us that these
maps restricted to such a disc are (differentiably) isotopic. We can glue together the isotopies for
the separate discs to form an isotopy J2 : Σg × I → Σg which ‘adjusts’ all their interiors. The
composition

J(p, t) :=

{
J1(p, 2t) for 0 ≤ t ≤ 1

2

J2(p, 2t− 1) for 1
2
≤ t ≤ 1

is then our sought after isotopy.
The case of S2 = Σ0 has to be treated separately, because on S2 there are no essential curves.

So we look at the image h1(γ) of some simple closed curve γ. We can not use lemma 2.6, but
h1(γ) can be made disjoint from h2(γ) by an ambient isotopy, because of lemma 2.3. (Or we
could simply say that the complement of h2(γ) is open and not empty, so h1(γ) can be moved
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to some open disc in this complement.) By the Schönflies Theorem (see Bredon [5], chapter
IV, theorem 19.11) the curves h1(γ) and h2(γ) bound an annulus. We can therefore move h1(γ)
to either h2(γ) or h2(γ)rev by an ambient isotopy. Assume this has been done. Lemma 2.9
assures that we can now adjust h1 by an ambient isotopy on the two remaining discs which form
S2 − h1(γ) so that h1 equals either h2 or a ◦ h2, where a is the antipodal map. But the latter
possibility would imply that h2

∼=h a ◦ h2, which is impossible (see for example Birman [4],
Theorem 4.4). �

Remark. We can generalize theorem 2.11 to a (connected) compact orientable surface Σ that
is not the disc D2 or the annulus S1 × I . We know from the classification of compact orientable
surfaces that Σ ∼= Σg − {int(D1), . . . , int(Dn)}, where Di

∼= D2 is a disc embedded in the
surface. A diffeomorphism of Σ permutes the boundary circles B1, . . . , Bn. Any Bi is essential
in Σ, otherwise it would bound a disc and we would be dealing with D2. If i 6= j, then Bi 6'h Bj

in Σ, otherwise the two essential curves Bi and Bj would bound an annulus by lemma 2.5 and
we would have Σ ∼= S1 × I . Two homotopic diffeomorphisms h1, h2 must therefore permute the
boundary components in the same way. The isotopies between them on each component may be
extended to an isotopy of Σ by the isotopy extension theorem, so we may assume h1 = h2 on
∂Σ.

We now choose a set of curves binding Σg that avoid B1, . . . , Bn. Looking back at the lem-
mata used to prove theorem 2.11, we notice that we can perform them while keepingD1, . . . , Dn,
and thus ∂Σ, fixed. Only theorem 2.9 can not be applied straight away, because now we are deal-
ing with some D2 − {int(Di1), . . . , int(Dik)}. However, choosing a set of cuts, we may divide
this surface up into discs. These cuts are moved by h1 and h2 to new cuts with the same end-
points. using a differentiable isotopy, we may move the one set to the other, thus again reducing
the problem to isotopies on discs.

Figure 11. Cuts dividing up D2 − {int(Di1), . . . , int(Dik)}.

The most important knowledge gained from the proof of theorem 2.11 is that the isotopy class of
an automorphism is determined by what is does to a set of curves that bind the surface. Together
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with the next result, this is foundational to the definition of the mapping class group we will
encounter in the next section.

The extension of the main theorem to the topological category is tricky. A direct proof in this
category does not seem to exist, which is not unreasonable, considering some of the awful things
a general homeomorphism might do. The obvious strategy is therefore to use a result about more
well-behaved automorphisms.

Epstein [11] proves that every surface homeomorphism is isotopic to a PL-homeomorphism.
He also proves that two homotopic PL-homeomorphisms are PL-isotopic. This establishes our
result independent of the category.

Theorem 2.12 Given two automorphisms of a closed orientable surface Σg in either the topolog-
ical, PL or Diffr-category. They are isotopic in this category if and only if they are topologically
homotopic. �

We desire an extra result, which will be important in the next section, namely:

Theorem 2.13 Every homeomorphism of a surface Σ is isotopic to a C∞-diffeomorphism.

Proof. We may assume by Epstein’s theorem that the homeomorphism h is piecewise-linear.
We metrize Σ and denote the distance function by d. By a result of Munkres [32, implied by
theorem 6.3] for any continuous function ε : Σ → R+ there is a diffeomorphism k such that

d(h(x), k(x)) < ε(x).

We now smoothly triangulate the surface by the simplicial complex S. Let {σ0
i }i∈I0 , {σ1

i }i∈I1 ,
{σ2

i }i∈I2 denote the cells, the upper index indicating the dimension of the simplices. We choose
ε in the following way:

ε(p) :=
1

2
· inf {length(γ) : γ an essential closed curve through p} .

Fix an ε-approximation k. To construct an isotopy from h to k, first, we move a 0-simplex h(σ0
i )

to k(σ0
i ) by an ambient isotopy on the ball Bε(h(σ0

i ))(h(σ
0
i )) keeping the boundary fixed. These

isotopies may then be combined to an isotopy of Σ by using the identity outside these discs.
Assuming this has been done, we proceed to do the same for the 1-simplices h(σ1

i ), keeping
the 0-simplices fixed. This is possible because h(σ1

i ) and k(σ1
i ) are homotopic relative to their

endpoints after our first isotopy, due to our choice of ε. After this step, we may do the same for
the 2-simplices, using the Alexander trick. �
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3 The structure of Homeo(Σg) and the MCG

3.1 Function spaces

The collections Homeo(Σg), PL(Σg) and Diffr(Σg) of automorphisms of a surface Σg are all
subsets of the set C(Σg,Σg) of continuous maps from Σg to itself. For any topological spaces
X,Y , we may topologize the sets C(X,Y ) and Homeo(X). These or any of their subspaces
are called function spaces. Since we are dealing with spaces that might also be endowed with
a PL-structure or differential structure, we consider them as nested spaces, although below we
will define a topology on Diffr(Σg) that is different from the subspace topology:

Diffr(Σg) ⊂ Homeo(Σg) ⊂ C(Σg,Σg) or PL(Σg) ⊂ Homeo(Σg) ⊂ C(Σg,Σg).

But the automorphisms exhibit more structure. They naturally form a group under composition
of maps, with idΣg

functioning as the unit element. For the topologies used in our discussion,
they are topological groups with this multiplication. There are quite a few topologies on function
spaces, and for a proper discussion of a few well-known ones, I refer the reader to Munkres [34]
and Hirsch [17].

The topology that is of greatest interest to us is the compact-open topology. For any two
topological spaces X and Y the compact-open topology is defined on C(X,Y ). It is generated
by the subbasis of all sets

B(K,V ) := {f ∈ C(X,Y ) |f(K) ⊆ V },

where K ⊆ X is compact and V ⊆ Y is open. The fact that Σg is compact and metrizable
simplifies things immensely. If we put a metric on Σg, we can use theorems 46.7 and 46.8 from
Munkres [34], which claim:

Theorem 3.1 Let X and Y be topological spaces. If X is compact and Y is a metric space, then
the uniform topology, the topology of compact convergence and the compact-open topology on
C(X,Y ) coincide. Moreover, they are induced by the sup-metric

dC(X,Y )(f, g) := sup
x∈X

dY (f(x), g(x)).

Note that the topology on C(Σg,Σg) does not depend on the metric chosen on Σg.
The most useful feature of the compact-open topology is the following. With this topology,

a (continuous) path γ from f1 to f2 in C(Σg,Σg) corresponds to a homotopy H : Σg × I → Σg

between f1 and f2 given by H(p, t) := γ(t)(p). If γ lies in Homeo(Σg), then the corresponding
homotopy is actually an isotopy.

Remark. Contrast this with a coarser topology, such as the topology of pointwise convergence.
With this topology, a continuous family of Dehn twists (to be defined in section 3.4) that stays
fixed outside an annulus whose width shrinks to zero, connects two non-isotopic homeomor-
phisms. This is something we do not want to happen.
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If the surface has been given a Cr-differentiable structure (r ∈ N∪{∞}), we may also use the Cr-
topology on Diffr(Σg). Actually, this topology comes in two flavors, namely the weak topology
Cr

W and the strong topology Cr
S (also called fine topology or Whitney topology). We define them

on Cr(Σg,Σg). The Cr
W topology is generated by the following subbasis. Let f ∈ Cr(Σg,Σg) be

a differentiable map, (φ, U) and (ψ, V ) be charts on Σg and K ⊂ U be a compact set such that
f(K) ⊂ V . For ε > 0 we define the weak subbasis element N r

W (f ; (φ, U), (ψ, V ), K, ε) to be
{
g ∈ Cr(Σg,Σg) : sup

x∈φ(K)

wwww
∂|µ|(ψfφ−1)

∂xµ

(x) −
∂|µ|(ψgφ−1)

∂xµ

(x)

wwww < ε for |µ| ≤ r

}
,

where ∂|µ|/∂xµ signifies the partial derivative with multi-index µ = (i1, . . . , is) of length |µ| = s.
For the strong topology Cr

S we require a locally finite atlas Φ = {(Ui, φi)}i∈I , a family
K = {Ki}i∈I of compact subsets with Ki ⊂ Ui, a family of charts Ψ = {(Vi, ψi)}i∈I such that
f(Ki) ⊂ Vi and a family of positive numbers ε = {εi}i∈I . This time, we give a basis, using the
strong basis element N r

S(f ; Φ,Ψ, K, ε), defined by
{
g ∈ Cr(Σg,Σg) : sup

x∈φi(Ki)

wwww
∂|µ|(ψifφ

−1
i )

∂xµ

(x) −
∂|µ|(ψigφ

−1
i )

∂xµ

(x)

wwww < εi for |µ| ≤ r and i ∈ I

}
.

In our case, both the domain and range space of the function space are compact. One can easily
see that the weak and strong topology then coincide. For complete details on these topologies,
see Hirsch [17] and Munkres [33].

The Cr-topology is much finer than the compact-open topology restricted to Diff r(Σg). To
construct a path inside Diffr(Σg) between two diffeomorphisms in the Cr-topology, we need
more than a continuous family of Cr-diffeomorphisms, a simple but necessary observation.

Example. We can take the C∞-diffeomorphism s : D2 → D2 given by

s(x, y) =

(
cos b(x2+y2

2
) − sin b(x2+y2

2
)

sin b(x2+y2

2
) cos b(x2+y2

2
)

)(
x
y

)
,

where b : R → R is a C∞ function with b(x) = 0 for x ≥ 1 and b(x) = π/2 for x ≤ 0. This is a
kind of swirl:

D2

s−−−−−−→

D2

Figure 12. A swirl map on a small disc. A few radii and their images are drawn.
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Now consider a point p on a metrized Σg, and some disc D2
u(p) of radius u. For every t ∈

[0, u] we can construct the C∞-diffeomorphism st by applying our swirl s to D2
t (p) and keeping

points outside this disc fixed. Cleary, in the compact-open topology, this family of maps forms
a continuous path from idΣg

to su. However, in the Cr-topology (for any r ≥ 1) this is not so,
because for the first derivatives we see:

dp(st) =

(
0 −1
1 0

)
for t > 0, while dp(s0) =

(
1 0
0 1

)
.

This can not be remedied by adjusting the expansion speed of the disc. It suffers from the same
defect as the Alexander trick in this respect. The Cr-topology is the unique topology such that a
path in Diffr(Σg) is continuous if and only if the isotopy corresponding to it is C r-differentiable.
Remember that a differentiable isotopy from h1 to h2 is a Cr-differentiable map J : Σg×(−ε, 1+
ε) → Σg such that J(·, t) = h1 for t ≤ 0 and J(·, t) = h2 for t ≥ 1; we require more than just
for the maps J(·, t) to be diffeomorphisms.

The above example might presently suggest that this Cr-topology is too fine for the study of
isotopy classes of maps in the topological category. However, we have seen in section 2 that any
two diffeomorphisms that act in the same way on the homotopy classes of curves on the surface
can be joined by a differentiable isotopy, so the Cr-topology does not separate Diffr(Σg) into too
many components. We will formulate this more precisely below.

3.2 The mapping class group

With either the compact-open topology or an even finer one, all function spaces under discussion
become infinite-dimensional spaces (in terms of the Lebesgue covering dimension). This says in
effect that there are so many ways to slightly alter a given automorphism, that we can not even
begin to describe the possible alterations succinctly, by any finite number of parameters that is. In
order to obtain useful information on the group structure of automorphisms, we therefore want to
study homeomorphisms up to isotopy/homotopy. Thus we look at the path components of these
spaces, the path component of the identity being the prime example.

Lemma 3.2 In a topological group G the path component G0 of the identity is a normal sub-
group.

Proof. To prove that G0 < G, we remark that if g ∈ G0, then there is a path γ from 1 to g.
Obviously g−1γ, defined by (g−1γ)(t) := g−1γ(t) is a path from g−1 to 1, so that g−1 ∈ G0 as
well. If g1, g2 ∈ G0 with paths γ1, γ2 from 1 to g1, g2 respectively, the product path γ1γ2 defined
by (γ1γ2)(t) := γ1(t)γ2(t) is a path from 1 to g1g2, and so g1g2 ∈ G0. This proves that G0 is a
subgroup of G.

To show that G0 C G, we take g ∈ G and h ∈ G0. There is a path γ from 1 to h, and it is
obvious that the path gγg−1 defined by (gγg−1)(t) := gγ(t)g−1 is a path from 1 to ghg−1. So
ghg−1 ∈ G0, which is precisely what we need to prove. �

The path components of a topological group G are thus the cosets of G0. Also, the quotient
group G/G0 is well-defined. For our specific objects of study, we therefore define the mapping

18



class group of Σg to be

MCG(Σg) := Homeo(Σg)/Homeo0(Σg).

We could hope for some extra topological structure on MCG(Σg) coming from Homeo(Σg), but
alas, the induced quotient topology is discrete.

Lemma 3.3 Homeo0(Σg) is an open subgroup of Homeo(Σg) in the compact-open topology.

Proof. It is enough to show that every point of Homeo0(Σg) has an open neighbourhood
contained in Homeo0(Σg). Without loss of generality, we may prove this for idΣg

only, since we
are working in a topological group. This means we have to show that there exists an ε0 > 0 such
that d(h, 1) < ε0 =⇒ h 'i 1.

Choose a finite set of curves that bind the surface such as in theorem 2.11 and any suitable
Riemannian metric, for example one induced from R3 by some embedding. For any of the
binding curves there is an ε0 such that all its ε0-neighbourhoods are annuli. Because there is
a finite number of curves, this ε may be chosen so that it satisfies this condition for all curves
simultaneously. Therefore, as d(x, h(x)) < ε for all x, h fixes the homotopy classes of these
curves, and by the same reasoning as in theorem 2.11, we conclude h 'i 1. �

Remark. The mapping class group can be defined for all topological spaces, and I do not know
if it may not sometimes inherit a non-trivial topology. The above lemma can be generalized to
compact manifolds by using a triangulation. We have seen this technique applied to surfaces in
theorem 2.13.

In one of the differentiable categories, denote it by Diff∞(Σg), we could attempt the same con-
struction and define

MCGd(Σg) := Diff(Σg)/Diff0(Σg).

using the Cr-topology on Diff(Σg). Do we end up with a different group? By theorem 2.11,
if h ∈ Homeo0(Σg) is differentiable, then it is differentiably isotopic to idΣg

, so Diff0(Σg) =
Homeo0(Σg) ∩ Diff(Σg). Consider the natural projection

π|Diff(Σg) : Diff(Σg) → Homeo(Σg)/Homeo0(Σg).

If h1, h2 ∈ Diff(Σg) are in the same coset of Diff0(Σg), then h2 = h1h for some h ∈ Diff0(Σg) <
Homeo0(Σg), so π|Diff(Σg)(h2) = π|Diff(Σg)(h1h) = π|Diff(Σg)(h1). Thus the projection factors
through to a group homomorphism

π̄ : Diff(Σg)/Diff0(Σg) −→ Homeo(Σg)/Homeo0(Σg).

Suppose that π̄(h ·Diff0(Σg)) = 0. This means h ∈ Homeo0(Σg), which implies h ∈ Diff(Σg)∩
Homeo0(Σg) = Diff0(Σg). So π̄ is injective. Because of theorem 2.13, π|Diff(Σg) is surjective, so
π̄ is surjective as well. This shows that

MCGd(Σg) ∼= MCG(Σg).
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The analogous result holds in the PL category as well. Note that for higher dimensional man-
ifolds this would not be true and we would have to distinguish carefully between MCG(M),
MCGPL(M) and MCGd(M), if either of the latter two is even defined.

Returning to surfaces, we remark that just like in the topological category, we do not inherit
any topological structure on MCGd(Σg).

Lemma 3.4 The group Diffr
0(Σg) is an open subgroup of Diffr(Σg) in the Cr-topology.

Proof. As in the preceding lemma, it is enough to construct a neighbourhood of the identity that
is contained in Diffr

0(Σg). We construct this neighbourhood as the intersection U ∩ Diff r(Σg),
where U is a neighbourhood of idΣg

in Homeo(Σg) (with the compact-open topology), which is
contained in Homeo0(Σg). Such a U exists by the previous lemma. Because the Cr

S-topology is
finer than the compact-open topology, this is an open neighbourhood of idΣg

in Diff(Σg) with the
Cr

S-topology. But by theorem 2.12, any h ∈ U ∩ Diff r(Σg) must then be differentiably isotopic
to idΣg

, implying that this neighbourhood is contained in Diff r
0(Σg) �

A very common subgroup of the mapping class group is the group MCG+(Σg) < MCG(Σg)
of orientation-preserving automorphism isotopy classes of Σg. Some authors even completely
restrict their attention to this subgroup and call that MCG(Σg). We will not adhere to this
practice.

The structure of MCG(Σg) can be derived from that of MCG+(Σg) by a semi-direct prod-
uct. Every Σg can be imbedded in R3 in a such that there is a mirroring symmetry (see the
figure below). This gives an orientation-reversing involution (that is, an automorphism of or-
der 2) σ for Σg. The subgroup {1, σ} < MCG(Σg) acts on MCG+(Σg) by conjugation and
{1, σ} ∩ MCG+(Σg) = {1}. Moreover, MCG+(Σg) C MCG(Σg) since for an orientation pre-
serving automorphism h and any automorphism g, ghg−1 is orientation preserving. From the
above we conclude that MCG(Σg) ∼= MCG+(Σg) o Z2, with multiplication (g1, h1) · (g2, h2) =
(g1ch1

(g2), h1h2) for g1, g2 ∈ MCG+(Σg) and h1, h2 ∈ {1, σ}, where ch1
is the conjugation

action with the element h1.

Figure 13. An orientation-reversing involution of Σg.
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3.3 The MCG of the sphere and the torus

The simplest surfaces are S2 = Σ0 and T 2 = Σ1. For these, the mapping class group is still
tractable. A presentation can be given without a lot of effort. The case of S2 follows from a little
algebraic topology combined with our previous reasoning.

Theorem 3.5 A homeomorphism h : S2 → S2 is isotopic either to id or the antipodal map
a. These maps themselves are not isotopic. Therefore, MCG(S2) = {id, a} ∼= Z2. and
MCG+(S2) = {1}.

We give two proofs.

Proof. As in the proof of 2.11, look at a simple closed curve γ and h ◦ γ. By an isotopy we
can make sure that the latter is moved to either γ or γrev. By adjusting the remaining discs of
S2, we have an isotopy to either id or a. These maps are not isotopic since their degree differs:
deg(id) = 1 while deg(a) = −1. (See Bredon [5], chapter IV corollary 6.12.) �

Proof. Note that S2 = ∂D3. We can extend the homeomorphism h to one of D3 by defining:

h̃(x) =

{
h
(

x
||x||

)
||x|| if x 6= 0

0 if x = 0
.

From the Alexander lemma (accomplishing the same as lemma 2.9 in the topological category)
we know that h is isotopic to either the identity or x 7→ −x, and that these maps are not isotopic,
for the latter is orientation reversing and the former orientation preserving. Since any isotopy of
h can be extended in the same way as the map itself to D3 and any isotopy of D3 restricted to S2

is an isotopy of S2, the result follows. �

The torus is a little more complicated. We use its universal cover to discover its mapping class
group. A variation on this proof can be found in Stillwell [40].

Theorem 3.6 MCG(T 2) ∼= GL2(Z) and MCG+(T 2) ∼= SL2(Z).

Proof. The curves α1 and β1 defined in section 1.3 actually bind the surface in the case of T 2.
As seen in theorem 2.11, this means that the isotopy class of an automorphism h : T 2 → T 2

is uniquely determined by the homotopy classes [h ◦ α1] and [h ◦ β1]. Consider the universal
covering π : R2 → T 2 and choose coordinates such that α̃1(t) = (t, 0) and β̃1(t) = (0, t) are
lifts of α1 and β1, respectively. For any automorphism h there is a unique lift h̃ : R2 → R2 of h
fixing (0, 0). The above-mentioned homotopy classes are uniquely determined by the endpoints
of h̃ ◦ α̃1 and h̃ ◦ β̃1, both lying in Z2. We take the unique linear map L : R2 → R2 with
L((1, 0)) = h̃ ◦ α̃1(1) and L((0, 1)) = h̃ ◦ β̃1(1). As h is invertible, so is h̃, and therefore L. It
follows that L maps Z2 to itself, implying L ∈ GL2(Z). Since elements of GL2(Z) commute
with Deckπ(R2), L induces an automorphism of T 2 (isotopic to h). But in fact, every element of
GL2(Z) projects down to T 2, we have a group isomorphism from MCG(T 2) to GL2(Z). �
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The dynamics of (isotopy classes of) toral automorphisms gives rise to a further classification.
We have three different types of orientation preserving mapping classes. Fixing a correspondence
between MCG+(T 2) and SL2(Z), the ‘linear’ element Ah of each mapping class [h] is one of
three kinds, determined by the trace of the Ah. The behaviour is best understood by looking at
the action of the corresponding element of SL2(Z) on R2. Of course, the type does not depend
on the particular correspondence chosen.

1. | tr(Ah)| < 2: this means Ah is periodic. Moreover, A12
h = 1;

2. | tr(Ah)| = 2: implies that there is a simple closed curve which is fixed setwise (but the
map is not periodic). Ah is called reducible.

3. | tr(Ah)| > 2: in this case there is an irrational number λ > 0 and two transverse dense
immersions of R in T 2 such that Ah is expanding by a factor λ along one of these and
contracting by a factor λ along the other. We call Ah Anosov.

In contrast to these first few cases, the mapping class group of higher genus surfaces is much
more complex, and has been an active area of research in the past 40 years. A lot of progress has
been made, of which I can present only a small part. But first we look at an interesting class of
automorphisms.

3.4 Dehn twists

Consider an oriented surface Σg. We describe a family of automorphisms called Dehn twists.
They can be defined in Diff(Σg), but we will not bother and just use homeomorphisms, focussing
on the essentials.

Definition 3.7 Let γ be a simple closed curve on Σg, and consider a tubular neighbourhood N
of γ. Take an orientation preserving homeomorphism i : A → N , where A is the annulus plane
parametrized in polar coordinates by

{(r, θ) : 1 ≤ r ≤ 2, θ ∈ R/2πZ}.

and is given the standard orientation. Then the automorphism Dγ,N,i is defined by

Dγ(p) :=

{
i ◦D ◦ i−1 if p ∈ N

p if p 6∈ N
,

where D : A
∼
→ A is given by

(r, θ) 7→ (r, θ + 2π(r − 1)).

This map is called a left handed Dehn twist around γ. A right handed Dehn twist around γ is the
inverse of a left handed twist.
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r=1

r=2

γ

δ

Dγ◦δ

θ

Figure 14. A left handed Dehn twist about a simple closed curve γ. On the left the action on
the annulus is illustrated in the plane. An arc δ running straight across the annulus is mapped
to a spiral that winds around the annulus once (dashed lines). The Dehn twist is most readily
visualized as in the illustration on the right. We cut open the surface along γ, take the loose
ends in both hands, twist one end a full turn to the left (with respect to the orientation indicated
by (v1, v2)) and glue the surface back together along γ.

Our description suggests that N and i are not very important. And indeed this is so for our
purposes, as we are interested in isotopy classes.

Lemma 3.8 The isotopy class of a Dehn twist Dγ,N,i does not depend on the choice of N and i,
and homotopic closed curves give isotopic twists.

Proof. First, suppose we have Dγ,N,i1 and Dγ,N,i2 . It is sufficient to prove that i1 ◦D ◦ i−1
1 'i

i2 ◦ D ◦ i−1
2 , keeping the boundaries of N fixed, or equivalently that D ◦ (i−1

2 ◦ i1) ◦ D
−1 'i

(i−1
2 ◦ i1) as maps from A → A, keeping ∂A fixed. An isotopy is given in polar coordinates by

J(r, θ, t) := E ◦ (i−1
2 ◦ i1) ◦ E

−1(r, θ, t), where E : A
∼
→ A is defined to be

E(r, θ, t) :=

{
(r, θ + 2π(r − 1)/t) if r ≤ 1 + t

(r, θ) if r > 1 + t
.

Now suppose we have two tubular neighbourhoods N1, N2 of γ. There is a tubular neighbour-
hood N3 ⊆ N1∩N2 and both N1 and N2 can be deformed to N3 by an ambient isotopy, implying
there is also an isotopy J : Σg × I → Σg such that J(·, 0) = id and J(N1, 1) = N2. It follows
that K : Σg × I → Σg given by K(p, t) := Dγ,J(N1,t)(p) is an isotopy from Dγ,N1

to Dγ,N2
. (We

may omit mention of the specific maps i here, by the previous step.)
Lastly, if γ1 'h γ2, there is an ambient isotopy J : Σg × I → Σg with J(·, 0) = idΣg

and
J(γ, 1) = γ2 by lemma 2.6. Having chosen a tubular neighbourhood N of γ1 we may choose
J(N, 1) as a tubular neighbourhood for γ2. We now see that Dγ2,J(N,1) = J(·, 1)Dγ1,NJ(·, 1)−1

and that the mapK(p, t) := J(p, t)Dγ1,N(p)J(p, t)−1 is an isotopy between these, demonstrating
our last claim. �

23



Remark. Because of the previous lemma, we will write a Dehn twist as Dγ . Sometimes, we
will also loosely refer to the isotopy class of some Dγ as a Dehn twist. Actually, [Dγ] also does
not depend on the direction of γ, that is, [Dγ] = [Dγrev ]. This is immediate, because we may still
choose the same N and i.

Dehn twist are intuitively accessible examples of non-trivial automorphisms. Although he in-
troduced them in the 1920s, Max Dehn published about them for the first time only in 1938
(see [9]). He proved that these twists are very powerful: they actually generate the whole group
MCG+(Σg) of orientation preserving homeomorphisms of a surface. In his paper, he constructed
a concrete set of 2g(g− 1) twists that accomplish this. In the 1960s, Raymond Lickorish revived
interest in Dehn twists and found a generating set with only 3g−1 twists (see Lickorish [24] and
[25], and also Birman [4] and Ivanov [20] for simplified proofs). For this reason, Dehn twists are
also referred to as Lickorish twists by some, but we will stick to using the inventor’s name. The
number of twist generators was cut down to 2g + 1 by Humphries [19], who also proved this is
the minimum number of Dehn twists which can generate MCG+(Σg).

Theorem 3.9 (Dehn, Lickorish, Humphries) Let α1, . . . , αg, β1, . . . , βg and γ1, . . . , γg−1 be
the 3g − 1 curves on Σg (g ≥ 1) shown in the figure below. These generate MCG+(Σg), and in
fact α3, . . . , αg can be left out to obtain a set of 2g + 1 generators. This is the minimum number
of Dehn twists that can generate MCG+(Σg).

Figure 15. Lickorish’ set of twist generators for Σg.

3.5 Presentations of the MCG

After the work of Lickorish, attempts were made to find other generating sets of MCG+(Σg).
One of the most recent results of these efforts has been the article [6] by Brendle and Farb. They
have obtained the following.

Theorem 3.10 (Brendle, Farb) For every g ≥ 1, the group MCG+(Σg) is generated by 3 tor-
sion elements (i.e. elements of finite order).

Theorem 3.11 (Brendle, Farb) For g ≥ 3, the group MCG+(Σg) is generated by 6 involutions
(i.e. elements of order 2).

A generator set is one thing, a presentation something else. For MCG+(Σ2), one was found by
Birman in 1973, see [4]. After groundbreaking work by Hatcher and Thurston, the first explicit
presentations for MCG+(Σg) (g ≥ 3) was found in the early 1980s by Harer and Wajnryb. An
overview of this work can be found in the expository article [42] by Wajnryb.
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All the presentations mentioned use some set of Dehn twists as generators, although not the one
mentioned in the previous subsection.

Theorem 3.12 (Wajnryb) The group MCG+(Σg) (g ≥ 2) admits the finite presentation gen-
erated by elements {b2, b1, a1, e1, a2, e2, . . . , ag−1, eg−1, ag} representing the Dehn twists around
the curves in the following figure

Figure 16. Wajnryb’s set of twist generators for Σg.

with the following relations:

xyx = yxy for consecutive elements x, y in the list

xy = yx for non-consecutive elements in the list

b2a2b2 = a2b2a2

b2b1 = b1b2

(b1a1e1a2)
5 = b2a2e1a1b

2
1a1e1a2b2

d3a1a2a3 = d1,2d1,3d2,3

dg commutes with b1a1e1a2 · · · ag−1eg−1agageg−1ag−1 · · · e1a1b1

where

d1,2 = (a2e1a1b1)
−1b2(a2e1a1b1)

d1,3 = t2d1,2t
−1
2

d2,3 = t1d1,3t
−1
1

d2 = d1,2

di = (b2a2e1b
−1
1 t2t3 · · · ti−1)di−1(b2a2e1b

−1
1 t2t3 · · · ti−1)

−1 for i = 3, 4, . . . , g

ti = eiaiai+1ei for i = 1, 2, . . . , g − 1

A special case of this presentation is Birman’s presentation for MCG+(Σ2).

Theorem 3.13 The group MCG+(Σ2) admits the presentation with generators g1, . . . , g5 and
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relations

gigj = gjgi (|i− j| ≥ 2, 1 ≤ i, j ≤ 5)

gigi+1gi = gi+1gigi+1 (1 ≤ i ≤ 4)

(g1g2g3g4g5)
6 = 1

(g1g2g3g4g
2
5g4g3g2g1)

2 = 1

[g1g2g3g4g
2
5g4g3g2g1, gi] = 1 (1 ≤ i ≤ 5)

where g1 = [Dα1
], g2 = [Dβ1

], g3 = [Dγ1
], g4 = [Dβ2

] and g5 = [Dα2
]. See Birman [4], theorem

4.8.

The element g1g2g3g4g
2
5g4g3g2g1 is isotopic to a rotation over π around a longitudinal symmetry

axis in the standard embedding we have seen before of Σ2:

Figure 17. The hyperelliptic involution of Σ2.

This mapping class has order 2 and is called the hyperelliptic involution. A special property that
sets it apart is that it commutes with all gi. Because these generate MCG+(Σ2), the hyperelliptic
involution commutes with the whole group. We remark that higher genus surfaces have trivial
center.
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4 Geometric structure

4.1 Enter hyperbolic geometry

One of the main tools that is used in studying surfaces and their automorphisms is hyperbolic
geometry. To apply this tool we put extra structure on a (topological) surface. Their are several
possible approaches. One is to introduce a Riemannian metric of constant curvature. The other
is to define a geometric structure, which is the route we will take. This does not eliminate the
need for Riemannian geometry, but we tidily sweep it under the carpet. All of this is to be found
in Benedetti & Petronio [3]. We take the Poincaré disc model as a definition.

Definition 4.1 Hyperbolic n-space Hn is int(Dn) ⊂ Rn as a smooth manifold. For vx, wx ∈
TxHn we define the inner product

〈vx, wx〉 :=
4

(1 −
∑n

i=1 x
2
i )

2

n∑

i=1

viwi,

making Hn into a smooth Riemannian manifold.

With this metric, the distance between two points x, y ∈ Hn can be calculated to be

d(x, y) = arccosh

(
1 +

2||x− y||2

(1 − ||x||2)(1 − ||y||)2

)
.

Fixing y, we see that as x approaches the boundary Sn of Hn, d(x, y) → ∞. Contrary to
Euclidean appearances, the boundary is infinitely far away, and the embedding in Rn by which we
defined hyperbolic n-space is certainly no isometric embedding! Geodesics in Hn are segments
of Euclidean circles orthogonal to Sn or of lines through the origin. Angles between curves may
be measured as between Euclidean curves, as can be gleaned directly from the definition of the
metric. In other words, the embedding of Hn in Rn is conformal. The sphere Sn−1 is variously
called the ‘sphere at infinity’, ‘sphere of directions’ or ‘boundary’ of Hn and denoted by ∂Hn.
Although it does not belong to Hn properly, it is extremely useful in hyperbolic geometry. We
will encounter it again in section 7.

Figure 18. The hyperbolic plane H2 with a few lines drawn in it.
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Definition 4.2 A local isometry f : M → N between smooth Riemannian manifolds is a smooth
map such that for all p ∈M and tangent vectors v, w ∈ Tp:

〈Tf(v), T f(w)〉f(p) = 〈v, w〉p.

An isometry is a local isometry that is bijective.

Local isometries are exactly the (locally) distance-preserving maps from one Riemannian mani-
fold to another. It is easy to see an isometry is automatically a diffeomorphism. We denote the
group of isometries from a Riemannian manifold to itself by Isom(M). For example, for R2 with
the usual metric, these are the affine maps x 7→ Ax + b, where A ∈ O(2). We now introduce a
general concept of structure on a manifold, which we will then apply to the hyperbolic plane.

Definition 4.3 Given is some manifold Xn with a group of homeomorphisms G acting on it. A
local G-map is a map ξ : V → W between open sets of X such that every x ∈ V has a neigh-
bourhood on which ξ is the restriction of an element ofG. An (X,G)-structure on a manifoldM n

is a maximal atlas {(Ui, φi)}i∈I on M , where φi : Ui
∼

−→ U ′
i ⊆ X is a homeomorphism between

open sets, such that for any two charts φi, φj , the map φj ◦ φ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) is

a local G-map.

An example is a differentiable structure, which can be thought of as an (Rn,Diff(Rn))-structure.
We are interested in geometric structures, meaning we use some Riemannian manifold and its
isometries. In particular, a spherical structure is an (Sn, Isom(Sn))-structure, a Euclidean or
flat structure is an (Rn, Isom(Rn))-structure and a hyperbolic structure is an (Hn, Isom(Hn))-
structure. These terms are often used as adjectives for some manifold. We will for example
speak of a hyperbolic surface (Σg,H), meaning a surface Σg with a hyperbolic structure H.

It turns out that a closed (orientable) surface can be fitted with exactly one of the three latter struc-
tures. The sphere S2 is spherical (no wonder), T 2 is flat, and Σg is hyperbolic for g ≥ 2.2 This
should immediately raise our interest in these hyperbolic structures if we want to study surfaces.
Any complete connected (X,G)-manifold M is isometric to X/π1(M), where π1(M) ≤ G op-
erates freely and properly discontinuously on X . The simplest example of this is T 2 ∼= R2/Z2,
where π1(T

2) ∼= Z2 acts by translations on R2. More interesting still, any surface Σg for g ≥ 2,
equipped with a hyperbolic structure, is isometric to H2/Γ for some Γ ∼= π1(Σg), Γ < Isom(H2).

The orientation preserving isometries of H2 fall into three categories.

1. an elliptic isometry has a fixed point in Hn. It is best described as a (hyperbolic) rotation
around this point;

2In terms of Riemannian geometry, the three geometric structures we defined exhaust the possibilities for a
Riemannian metric with constant Gauss curvature. A hyperbolic surface has Gauss curvature −1, a flat surface 0
and a spherical surface +1. Any closed surface can be fitted with a constant curvature metric and then scaled to one
of these types. In three dimensions, the situation is much more difficult, and only in the 1970s has William Thurston
been able to shed light on it.
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2. a parabolic isometry has one fixed point on ∂Hn. It moves points around on so-called
horospheres through this fixed point. In our model, a horosphere is a euclidean sphere
touching ∂Hn;

3. a hyperbolic isometry has two fixed points on ∂Hn. From a euclidean perspective, one
of these, p, is repelling, the other, q, attracting. Points are moved towards q along curves
which are equidistant from the (unique) geodesic with end points p and q, which is called
the axis of the isometry.

All the covering transformations of a hyperbolic surface (Σg,H) ∼= H2/Γ are in fact isometries
of hyperbolic type. This in fact already shows that a torus can not support a hyperbolic structure,
because its fundamental group is Z2, and two isometries of hyperbolic type along different axes
do not commute.

4.2 Thurston’s classification of surface automorphisms

We have seen that every mapping class of the torus contains a canonical element, given by a
matrix in GL2(Z). This was explained in subsection 3.3. In terms of their dynamics, such
automorphisms fall into three distinct classes.

Thurston solved the problem whether the same can be done for higher genus. The hyperbolic
nature of these surfaces makes it much harder, but it turns out there are still three types of be-
haviour. Thurston’s work was widely circulated as a preprint before being published in concise
form in [41]. A more introductory text to this material is Casson & Bleiler [7]. In Fathi et al. [12],
a detailed exposition can be found.

Theorem 4.4 Let Σg be a surface of genus at least two and let h : Σg → Σg be a homeomor-
phism. Then the isotopy class of h contains a homeomorphism k satisfying one of the following:

1. k is periodic and it is an isometry of (Σg,H) for some hyperbolic structure H;

2. k is pseudo-Anosov: it leaves a pair of transverse measured foliations with finitely many
singular points on Σg invariant. (This means that points in the same leaf get mapped to
the same leaf.) On one of them it is expanding by an irrational factor λ, on the other it is
contracting by this factor;

3. k is reducible: there is an essential closed 1-submanifold on Σg that is left invariant and
a power of k fixes this submanifold pointwise. The complement of this submanifold is a
surface with finitely many components C1, . . . , Cn, for which holds: if ki(Cj) = Cj , then
ki|Cj

is of type 1 or 2.

For example, a Dehn twist Dγ is reducible. The cases are not completely mutually exclusive.
A periodic homeomorphism may fix some essential closed 1-submanifold. Pseudo-Anosov be-
haviour and periodicity preclude each other.
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5 The Nielsen realization problem

We now discuss a famous problem on surface automorphisms. The problem is easy enough to
state, but we first give a historical introduction.

An automorphism h : Σg → Σg almost induces an automorphism of the fundamental group
of the surface. The variability resides in the fact that the fundamental group is defined using a
base point p, and h need not keep this fixed. In general h induces the group isomorphism

h∗ : π1(Σg, p) → π1(Σg, h(p)),

[ζ] 7→ [h ◦ ζ]

but the latter group is not canonically isomorphic to the former. For a path γ from h(p) to p there
is the path isomorphism

γ∗ : π1(Σg, h(p)) → π1(Σg, p).

[ζ] 7→ [γrev ∗ ζ ∗ γ]

Note that a path isomorphism γ∗ is an inner automorphism of π1(Σg, p) if γ is a loop from p
to p, for then γ∗ : [ζ] 7→ [γrev ∗ ζ ∗ γ] = [γ]−1 · [ζ] · [γ]. From this it follows that for two
different choices of paths γ1, γ2 from h(p) to p the path isomorphisms γ1∗ and γ2∗ differ by an
inner automorphism of π1(Σg, p), since γ2∗ = (γ1rev ∗ γ2)∗γ1∗ and γ1rev ∗ γ2 is a loop from p to
p. Now since Inn(π1(Σg, p)) C Aut(π1(Σg, p)), the quotient group

Out(π1(Σg, p)) := Aut(π1(Σg, p))/ Inn(π1(Σg, p)),

called the outer automorphism group of the fundamental group, is defined. And because of the
foregoing remarks, h induces a well-defined element of this group by setting

ν : Homeo(Σg) → Out(π1(Σg, p))

h 7→ γ∗ ◦ h∗ mod Inn(π1(Σg, p))

for some path γ from h(p) to p. Indeed, ν is a group homomorphism. Given two homeomor-
phisms h1, h2 : Σg → Σg, we choose paths γi from hi(p) to p for i = 1, 2 and δ from h2 ◦ h1(p)
to h1(p). Then

ν(h2 ◦ h1) = (δ ∗ γ1)∗ ◦ (h2 ◦ h1)∗

= γ1∗ ◦ δ∗ ◦ h2∗ ◦ h1∗

= (γ1∗ ◦ δ∗ ◦ h2∗ ◦ γ1rev∗) ◦ (γ1∗ ◦ h1∗)

= (((h2 ◦ γ1rev) ∗ δ ∗ γ1)∗ ◦ h2∗) ◦ (γ1∗ ◦ h1∗)

= (γ2∗ ◦ h2∗) ◦ (γ1∗ ◦ h1∗)

= ν(h2)ν(h1)

where we used h2∗ ◦ γ1rev∗([ζ]) = [h2 ◦ (γ1 ∗ ζ ∗ γ1rev)] = [(h2 ◦ γ1) ∗ h2 ◦ ζ ∗ (h2 ◦ γ1rev)] =
[(h2 ◦ γ1rev)rev ∗ h2 ◦ ζ ∗ (h2 ◦ γ1rev)] = (h2 ◦ γ1rev)∗◦h2∗([ζ]) in the fourth step. The diagram
below might assist in the visualization of this computation.
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�p � h2 ◦ h1(p)

�
h1(p)

�

h2(p)

γ1

h2 ◦ γ1
γ2

δ

Figure 19. A visual aid in understanding that ν is a homomorphism.

The name ν is given in honour of Jakob Nielsen. In the 1920s, he became interested in the con-
verse problem. Is every element of Out(π1(Σg)) induced by a concrete element of Homeo(Σg)?
He was able to prove this is indeed so in [35]. He then investigated the more general question of
what subgroups of Out(π1(Σg, p)) can be represented by subgroups of Homeo(Σg). This turns
out to be very difficult and is our main concern in the rest of this text. We want to specify more
precisely where the problem resides.

To get clear on this we consider automorphisms h1, h2 : Σg → Σg that are homotopic, say
by H : Σg × I → Σg. We can define the path δ from h1(p) to h2(p) by δ(t) := H(p, t). For
any loop ζ from p to p, the loop h2 ◦ ζ is homotopic to δrev ∗ (h1 ◦ ζ) ∗ δ because h1 'h h2. Put
otherwise, h2∗ = δ∗ ◦ h1∗. From this it follows that for paths γi from hi(p) to p:

γ2∗ ◦ h2∗ = γ2∗ ◦ δ∗ ◦ h1∗ = (δ ∗ γ2)∗ ◦ h1∗ = γ1 ◦ h1∗ mod Inn(π1(Σg, p)).

So in fact ν factors through to MCG(Σg) and induces a map

ν̄ : MCG(Σg) → Out(π1(Σg, p))

[f ] 7→ γ∗ ◦ f∗ mod Inn(π1(Σg, p))

For ν̄ the following strong result emerged from results of Baer [1] and [2], Dehn, and Nielsen.
The first complete proof was written up by Mangler [26].

Theorem 5.1 (Baer-Dehn-Nielsen) ν̄ : MCG(Σg)
∼

−→ Out(π1(Σg)) for all g ≥ 1.

This result implies that the problem of representing subgroups of Out(π1(Σg, p)) — that is, find-
ing a set of automorphisms that induce the subgroup — is equivalent to representing subgroups
of MCG(Σg). This representation problem is called the

Generalized Nielsen realization problem. Which subgroups H ≤ MCG(Σg) admit a repre-
sentation in Homeo(Σg) ? That is, for which H can we find a map σ : H → Homeo(Σg) such
that π0 ◦ σ = 1, where π0 : Homeo(Σg) → MCG(Σg) is the canonical projection. Rephrased in
the language of homological algebra: does the short exact sequence

0 // Homeo0(Σg) // Homeo(Σg) π0

// MCG(Σg) //

σ

ee 0
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split, and if not, by what subgroupsH ′ < Homeo(Σg) andH < MCG(Σg) may we replace these
terms so that it does?

We may replace Homeo(Σg) by PL(Σg) or Diff(Σg) to make it even harder, or even demand
that our representation preserves a geometric structure. Note that we are not allowed to use
more than one automorphism in each isotopy class. The adjective ‘generalized’ is used because
Nielsen concentrated on finite subgroups, probably for simplicity. The difficulty already men-
tioned above thus resides in finding concrete automorphisms which together have the demanded
group structure of their isotopy classes. We say the problem is solvable for H ≤ MCG(Σg) if a
representation exists. If the problem is solvable for H , then the same goes for all H ′ ≤ H .
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6 Partial solutions to the Nielsen realization problem

We now give a summary of the results that have been obtained on the Nielsen realization problem.
Because of the variety and difficulty of techniques used, I can only sketch some proofs, and I do
not claim to understand all details of every paper cited. But let us start with some positive results.

6.1 Positive results

The sphere. For the sphere the Nielsen realization problem is no problem at all. The whole of
MCG(S2) can be represented by the concrete group {id, a} where a : x 7→ −x is the antipodal
map (in the standard embedding S2 → R3).

The torus. We recall that MCG(T 2) ∼= GL2(Z). As a matter of fact, the Nielsen realization
problem is solvable for the whole of GL2(Z). We know that this group acts on the universal
cover R2 of T 2, and since each element respects the equivalence classes under the identification
(x, y) ∼ (x+m, y + n) (m,n ∈ Z), this action descends to an action on the torus.

The fact that T 2 has a Euclidean structure plays an important role. We were able to construct a
realization using linear maps. In terms of differential geometry, these are geodesic maps. For
g ≥ 2, can we find a ‘natural’ action of MCG(Σg) on H2 ∼= Σ̃g descending to an action on Σg?
If we interpret natural here as being by geodesic maps, we will not succeed. A geodesic map of
H2 must already be an isometry. And although a surface of genus at least 2 can carry infinitely
many hyperbolic structures, the isometry group of any closed hyperbolic surface is finite (see
Kobayashi [23] theorem III.2.2 or Zieschang [43] theorem 15.21). So there is no nice realization
of an infinite subgroup of mapping classes by geodesic maps, like on the torus. For example, a
Dehn twist can not be realized in this way on a hyperbolic surface.

Cyclic subgroups. Cyclic subgroups are the easiest subgroups we can try to represent in any
mapping class group. If H ≤ MCG(Σg) is infinite cyclic, then any automorphism in a class
[g] that generates H has infinite order. They all solve the problem. For a finite cyclic subgroup
H ∼= Z/nZ the problem boils down to the question: if a homeomorphism h satisfies hn 'i 1, is
there a homeomorphism h̃ 'i h for which h̃n = 1? Nielsen proved that this is indeed the case
for orientation preserving homeomorphisms in [37], using hyperbolic isometries. Thus we arrive
at the result:

Theorem 6.1 Cyclic subgroups of MCG+(Σg) can be represented in Diff+(Σg).

Finite solvable groups. Fenchel extended Nielsen’s previously obtained result to finite solvable
subgroups of MCG+(Σg), also using hyperbolic geometry, see [13]. His results are explained in
chapter 3 of Zieschang [43].

Group extensions of π1(Σg) admitting a splitting. Eckmann and Müller [10] proved that the
problem is solvable for an even greater number of finite groups of mapping classes, but their
criterium is a little more difficult. The key theorem is of a group-theoretic nature. They prove
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that the groups π1(Σg) are characterized algebraically by two properties: they have to be PD2-
groups, meaning they have to obey a property reminiscent of Poincaré-duality, and they have
to split over a finitely generated subgroup. They then prove a theorem on virtual PD2-group
(i.e. groups containing a PD2-group as a subgroup of finite index), which allows them to conclude
the following.

Theorem 6.2 Let G be a finite effective group extension of π1(Σg) (g ≥ 2) which splits over a
finitely generated subgroup. ThenG can be realized as a group of isometries acting cocompactly,
freely, and properly discontinuously on H2.

Here a finite group extension of a groupA is a groupB such thatACB and [B : A] is finite. Such
an extension induces a conjugation action of B upon A by setting, for any b ∈ B, cb : a 7→ bab−1

for all a ∈ A. The extension is called effective if this conjugation action is the identity on
A only when b ∈ A. We apply the theorem as follows. Given a finite H < MCG(Σg) ∼=
Out(π1(Σg)) for some g ≥ 2, we can construct a finite effective extension GB π1(Σg) such that
ξ : G/π1(Σg) → Out(π1(Σg)) given by ξ([g]) = [x 7→ gxg−1] maps G/π1(Σg) isomorphically
onto H . If G splits over a finitely generated subgroup, we can then realize it by isometries
of H2 according to their theorem. But since π1(Σg) C G, this action descends to an action of
H ∼= G/π1(Σg) on Σg

∼= H2/π1(Σg).
Whether the group G splits is a technical issue. For instance, this is ensured if the first Betti

number β1(G) is positive. We need not even know what the Betti number of a group is; it can be
computed with the aid of the character χ(h) = tr(µ̄(h)) of the representation in first homology
that we will encounter in section 7. According to Eckmann and Müller:

β1(G) =
1

|H|

∑

h∈H

χ(h).

Remark. Any subgroup H ∼= Zn generated by a collection of Dehn twists {[Dγ1
], . . . , [Dγn

]}
with Imin(γi, γj) = 0 for all i, j is also representable just by taking any representatives of [Dγi

]
and their products. The same goes for any free (non-abelian) subgroup. The essential problem is
finding automorphisms having suitable relations in the group theoretical sense.

6.2 Finite groups in general

Steven Kerckhoff finally proved in [21] that the Nielsen realization problem is solvable for all
finite subgroups of MCG(Σg), thus also overcoming the restriction to MCG+(Σg). Just as the
previous results on higher genus surfaces, his proof depends on hyperbolic geometry, but in a
new way. Continuing to use hyperbolic geometry was no lucky guess. Kerckhoff and others
had proved that if the Nielsen realization problem were solvable for a finite group of mapping
classes, it had to be solvable for this finite group by using isometries with respect to a suitable
hyperbolic metric. The question is therefore: how do we find the right hyperbolic metric. For
this, Kerckhoff used a structure called the Teichmüller space.
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Definition 6.3 The Teichmüller space T (Σg) of a topological surface Σg is the quotient set of
the collection {(Σg,H) : H is a hyperbolic structure on Σg} by the relationship

(Σg,H1) ∼ (Σg,H2) :⇐⇒ ∃h : (Σg,H1)
∼

−→ (Σg,H2), h 'i 1Σg
.

The Teichmüller space of Σg can be given a metric structure and thereby topologized. It turns out
to be isometric (as a metric space) to R6g−6, see Benedetti & Petronio [3]. A mapping class of Σg

also induces a homeomorphism on T (Σg), and Kerckhoff proved that a finite group of mapping
classes must have a common fix point. This fix point gives the hyperbolic structure that solves
the problem for the given subgroup of MCG(Σg).

Theorem 6.4 Every finite subgroup H < MCG(Σg) can be represented in Diff(Σg). Moreover,
H can be represented as a group of isometries with respect to some hyperbolic metric on Σg.

Remark. We might ask what the finite subgroups of MCG(Σg) actually are. We have already
seen that such a subgroup is the isometry group of some hyperbolic surface. By a theorem
of Hurwitz (Zieschang [43] theorem 15.21, already cited above), such an isometry group can
contain at most 84(g − 1) elements and this bound is sharp. So this is the maximum order of
any finite subgroup of MCG(Σg). Another notable result has been that every periodic element
of MCG(Σg) has order at most 4g + 2, see Nielsen [36].

6.3 Groups with two ends / virtually cyclic groups

The Nielsen realization problem is also solvable for infinite groups with two ends. This is stated
in the Kirby problem list [22] without reference, and I was not able to find the result in the
literature. But first, although a very simple description of the mysterious sounding concept of
“groups with two ends” will shortly be given, I nonetheless only discovered this after having
ploughed through some literature, the results of which I do not wish to deprive the reader of.

The concept of an end of a group derives from the idea of an end of a topological space.
This idea was developed by Freudenthal in the 1930s while working on compactifications. Some
spaces (e.g. R) can be separated by leaving out a compact subset, others (e.g. R2) can not. An
end is more or less one of the components if we are allowed to cut away a large compact subset.
To be exact:

Definition 6.5 An open end neighbourhood of a non-compact topological space X is an open
set U ⊆ X containing, for some compact ∅ ⊂ K ⊆ X , a component of X −K. An end of X is
an equivalence class of nested sequences U1 ⊃ U2 ⊃ · · · of connected open end neighbourhoods
such that ∩∞

i=1Ūi = ∅, where

U1 ⊃ U2 ⊃ · · · ∼ V1 ⊃ V2 ⊃ · · ·

when for all Ui there is a Vj such that Ui ⊆ Vj and for all Vi there is a Uj such that Vi ⊆ Uj .
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We are interested in a numerical invariant, namely the number of ends a space has. For the
intuition, R and a cylinder have two ends, Rn has one end for n ≥ 2, and Σg − {p1, . . . , pk} has
k ends. What we want to do is transport this concept to finitely generated groups and define for
any such group its number of ends. To accomplish this, we give a definition of the number of
ends of a locally finite graph. Rest assured this definition gives the same result gotten by suitably
topologizing the graph and counting equivalence classes of ends as defined above.

Definition 6.6 Given a connected graph X , where each vertex is incident to only finitely many
edges, the number of ends ofX is the supremum in N∪{∞} of the number of infinite components
into which X can be separated by removing a finite number of edges.

To get from groups to graphs, we introduce the Cayley graph of a group.

Definition 6.7 The Cayley graph C(G, T ) of a group G with generator set T is the group whose
vertices are the elements of G and whose edges are (g, gt) for any g ∈ G and t ∈ T ∪ T −1. (For
an order 2 element t one usually constructs two edges between g and gt = gt−1.)

If the group is finitely generated, the Cayley graph is locally finite. We topologize it using a
metric. We identify each edge with [0, 1] and define the distance between two points as the
minimal length of an arc between them (this minimum exists). The Cayley graph of a group is
connected, since any element g ∈ G can be written as a word in T ∪T −1, and this word is a recipe
for a path from 1 to g. We therefore define the number of ends e(G) of a finitely generated group
G to be the number of ends of its Cayley graph C(G, T ) for some finite generating set T . The
Cayley graph may depend on T , but its number of ends does not. Moreover, while a topological
space and a graph can have any number of ends, there are only a limited number of possibilities
for groups. In fact, e(G) ∈ {0, 1, 2,∞}, see Hopf [18] for both of these last two claims.

Another result from [18] is that groups with two ends are exactly the groups that are virtually
Z (also virtually infinite cyclic), meaning they have a finite index subgroup isomorphic to Z. Still
more is known, compare Scott & Wall [38, theorem 5.12]:

Theorem 6.8 Let G be a finitely generated group. The following are equivalent.

1. e(G) = 2;

2. G has an infinite cyclic subgroup of finite index;

3. G has a finite normal subgroup H with quotient G/H either Z or Z2 ∗ Z2;

4. Either G is a semi-direct product H o Z for some finite H C G or G is an amalgamated
free product G1 ∗H G2 of finite groups such that [G1 : H] = [G2 : H] = 2 and H CG.

How do we use this knowledge to realize the mapping classes of a group with two ends G <
MCG(Σg)? We could try to use the two possible specific forms of G as given in 4. of our
theorem. In case G is an amalgamated free product G1 ∗H G2, realizing it reduces to realizing
both G1 and G2 such that the realizations coincide on H = G1 ∩ G2. If we can do that, we can
then realize a word in G1 ∗H G2 by the product of the realizations of its letters (in G1 and G2),
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and all group relations will be satisfied. However, I do not know how to solve the problem in this
way.

There is a more successful attack on the problem that only makes use of the information that
ZCG. Thurston [private communication] says that the following fact is true and can be found in
[41]. Suppose we consider the classification of surface automorphisms by dynamical behaviour,
as seen in section 4. If any automorphism h is in canonical form (periodic, reducible or pseudo-
Anosov) and a mapping class g normalizes 〈[h]〉, which is to say that

g[h]g−1 ∈ {[h], [h]−1},

then there is an automorphism hg ∈ g that normalizes 〈h〉 exactly:

hghh
−1
g ∈ {h, h−1}.

What I actually need to finish the proof is the extra knowledge that this normalizing element is
unique. Under this assumption, suppose we are given a group G < MCG(Σg) and a subgroup
Z = 〈[h0]〉 < G where ord([h0]) = ∞. We may assume that h0 ∈ Homeo(Σg) is a canonical
representative of its mapping class. Because 〈[h0]〉 is normal in G, conjugation with an element
g acts as a group isomorphism of this subgroup. Therefore every element g ∈ G obeys

g[h0]g
−1 = [h0] or g[h0]g

−1 = [h0]
−1,

so we may choose the representative of hg ∈ g to be the unique element that normalizes h0

exactly. This gives us a candidate for a realization. We must check whether the relations of
G (besides these conjugations) hold for our realization. These relations can very generally be
written as g1g2 = g3 for g1, g2, g3 ∈ G. We prove that such a relation is realized correctly
using the actions of the hgi

on h0. There are three possible combinations of these actions. For
brevity we only tackle the case hgi

h0h
−1
gi

= h0 for i = 1, 2, 3, the others are analogous. We have
hg1

hg2
'i hg3

. Also,

h0 = hg1
(hg2

h0h
−1
g2

)h−1
g1

= (hg1
hg2

)h0(hg1
hg2

)−1 and also h0 = hg3
h0h

−1
g3
.

Because the exactly normalizing element is unique in its mapping class, we conclude that

hg1
hg2

= hg3
.

So indeed we have a realization, on the assumption of a unique normalizing element.

6.4 Negative results

Cohomological obstructions. Morita gave the first negative result on the Nielsen realization
problem in his complicated 1987 paper [29]. There he proved that for g ≥ 18, there is no
representation of MCG+(Σg) in Diff+(Σg). Afterwards, he improved his methods and got the
same result — in fewer pages — for all g ≥ 5 in 2001, see [30].
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His proofs use oriented surface bundles. An oriented surface bundle is a principal fiber bundle
π : E → M of oriented manifolds, with fiber Σg and an action φ : E × Diff+(Σg) → E which
preserves fibers. The structure group of an oriented surface bundle is Diff+(Σg). We will call
such a bundle a Σg-bundle.

Definition 6.9 A characteristic class of a Σg-bundle is a map α that yields, for some abelian
group A and some k ∈ Z, an element α(π) ∈ Hk(M,A) when we give a Σg-bundle π : E →M
as input, such that for a bundle map between Σg-bundles

E1
f̃ //

π1

��

E2

π2

��
M1 f

// M2

we have α(π1) = f ∗(α(π2)).3

Now Morita comes up with a whole bunch of characteristic classes {ei}i∈N for a Σg-bundle, as
follows. For a Σg-bundle π : En+2 → Mn, consider the subbundle of the tangent bundle of E
called the vertical bundle ξ : F → E of π, defined as the kernel of π∗ : TE → TM . This is a
2-dimensional real vector bundle over E. Its Euler class is

χ(ξ) := (ıFE)∗D(ıFE)∗([E]) ∈ H2(E,Z),

where [E] ∈ Hn+2(E,Z) is the fundamental class and D : Hn+2(F,Z) → H2(F,Z) is the
Poincaré-Lefschetz duality map. He then uses the Gysin homomorphism (integration along the
fiber)

Gysπ : H2(i+1)(E,Z) → H2i(M,Z)

and defines
ei := Gys(χ(ξ)i+1) ∈ H2i(M,Z).

The main part of his paper is devoted to proving that these classes are non-trivial. On the other
hand, he proves that for the natural projection p : Diff+(Σg) → MCG+(Σg), the induced map
p∗ : H∗(MCG+(Σg),Q) → H∗(Diff+(Σg),Q) on group cohomology annihilates ei for i ≥ 3,
which is to say p∗(ei) = 0. But this implies there can not be a map s : MCG+(Σg) → Diff+(Σg)
for which p ◦ s = 1MCG(Σg), since this would entail 0 = s∗ ◦ p∗(ei) = 1H∗(MCG(Σg),Q)(ei) = ei

for i ≥ 3, contradicting the non-triviality of these characteristic classes.

Decompositional obstructions. In his recent paper [27] (of which only a preprint is available
yet), Marković proves that for g ≥ 6, MCG+(Σg) can not be realized in Homeo+(Σg). This
is more general than Morita’s result, which can not be generalized to the topological category;

3In category-theoretical terms a characteristic class is a natural transformation between the functor bDiff+(Σg) :
Top → Set which associates to a topological space X the set of all Σg-bundles over it and the functor H∗ : Top →
Set which associates to a topological space X the set of all its cohomology classes.
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Thurston proved that no cohomological obstructions exist there. Marković employs a wholly
different technique, using suitable decompositions of a surface. I will present a short sketch of
his paper, which might function as a guidance when reading his work. Note that at some points,
I use different notation which I think is clearer.

Definition 6.10 An upper semi-continuous decomposition of a surface Σ is a partition S of Σ
into closed, connected subsets, such that

1. no S ∈ S separates Σ;

2. for a sequence (Sn)∞n=1 of elements of S with Hausdorff limit S0, there is an S ∈ S such
that S0 ⊆ S.

Here a sequence of closed and bounded subsets (Sn)∞n=1 of a metric space X is said to have
Hausdorff limit S0 if this sequence converges to the closed and bounded set S0 in the power set
2X equipped with the Hausdorff metric. The second condition is equivalent to the condition

2.′ for every S ∈ S and every open U ⊃ S, there is an open set V such that U ⊃ V ⊃ S and
V is a union of elements of S.

Definition 6.11 A closed connected subset S of a surface Σ is called acyclic if there is an open
disc U in Σ containing S, such that U − S is homeomorphic to an annulus. (This is equivalent
to the general definition that the homology H̃∗(S) = 0.)

For an upper semi-continuous decomposition S, we define Sac to be the union of acyclic elements
of S. It turns out that every component of Sac is a subsurface of Σg.

Definition 6.12 Let G ≤ Homeo+(Σg) be a group of homeomorphisms. We call an upper semi-
continuous decomposition of Σg admissible for G if

1. for all f ∈ G and all S ∈ S we have f(S) = S;

2. for any S ∈ S, every point in a frontier component of Σg − S is a limit of points from
Σg − S belonging to acyclic elements of S.

We can define a partial order on the collection S(G) of all admissible decompositions for a given
group G ≤ Homeo+(Σg) by setting Sα ≤ Sβ if every element of Sα is contained in an element
of Sβ . Marković proves that, given two admissible decompositions S1 and S2 of Σg for G, there
is a common lower bound S1 ∩S2 ∈ S(G). The collection S(G) is thus a directed set. Also, any
chain in this partial order has a lower bound. He uses these facts to prove:

Theorem 6.13 For every G ≤ Homeo(Σg) the partial order (S(G),≤) has a smallest element.
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Proof. By Hausdorff’s maximal principle, which is equivalent to the axiom of choice, any chain
in S(G) can be extended to a maximal chain. So let us start with a chain of one random element
of S(G) and extend it to a maximal chain. Now we take the lower bound S of this chain (which
exists in S(G), as mentioned above) and show that this is our smallest element. Here the fact
that S(G) is a directed set comes in. Taking any element T, we can form S ∩ T ∈ S(G), and
S ∩ T ≤ S. But since our chain was maximal, we must have S ∩ T = S, otherwise we could
simply adjoin S ∩T to our chain to get a longer one. But this implies S = S ∩T ≤ T. Since T

was chosen without any restriction, S is the smallest element of our partial order. �

Admissible decompositions are a concrete, yet refined tool to study realizations of groups of
homeomorphisms. A random homeomorphism might not fix any small set of Σg setwise, so the
minimal admissible decomposition would simply be the trivial one: S = {Σg}. However, if the
homeomorphisms obey certain relations, as the realizations of subgroups of MCG+(Σg) must, a
small admissible decomposition contains valuable information. A first hint at the connection is
a theorem that Marković proves:

Theorem 6.14 If S is an admissible decomposition for h : Σg
∼

−→ Σg, such that Sac = Σg, then
f 'i 1.

Marković considers a particular kind of homeomorphism of Σg. He starts with an Anosov home-
omorphism A of T 2 which has a fixed point; one of the ‘linear’ elements gotten from GL2(Z) as
described in subsection 3.3 will do. Out of this, he creates a homeomorphism of a subsurface

T := T 2 − int(D2) ⊂ Σg

by a blow up procedure. He then extends this to a homeomorphism AΣg
of Σg. Now, using a

smart covering space of Σg and a string of lemmata, he proves that any homeomorphism h 'i

AΣg
admits a decomposition S(h) such that Sac(h) contains a subsurface isotopic to T .

Figure 20. The subsurface T , on which AΣg is the blow up of an Anosov map of the torus.

Moreover, given any homeomorphism k isotopic to a homeomorphism which is the identity on
T , and such that k also commutes with h, suprisingly, S(h) is an admissible composition for k
too. Assuming we have a realization

σ : MCG+(Σg) → Homeo(Σg)
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of MCG+(Σg), [k] and [h] commute, because there are representatives in their classes which are
the identity on complementary subsets of Σg, and these representatives commute. This implies
that σ([k]) and σ([h]) must also commute.

Next, Marković looks at Dehn twists. Denote the smallest admissible decomposition of a
homeomorphism in the isotopy class of a twist Dα by S(Dα). Then for any homeomorphism h:

S(Dh◦α) = h(S(Dα)).

Also, Sac(Dα) contains only one component that is non-planar, and this is a subsurface of Σg

with two ends, both homotopic to α. Denote its complement by Bα. If we have two loops α and
β with Imin(α, β) = 0, then [Dα] and [Dβ] commute. It follows that their realizations must also
commute, so σ([Dβ])(Bα) = Bα.

Now we look at the surface Σg (g ≥ 3), which can be represented as in the following figure:

Figure 21. Marković picture of Σg as g − 1 handles attached to a torus (for the case g = 4).

There is the obvious rotation ρ taking αi to αi+1 (i ∈ Zg−1). Choosing a complex structure on
Σg, we can conjugate σ([ρ]) to a conformal map by a homeomorphism isotopic to 1, according
to a theorem of Hurwitz. (This uses that ρ has finite order.) Without loss of generality, we can
therefore assume that σ([ρ]) is conformal, by conjugating the whole realization.

We choose a closed annulusAα around αwhich containsBα, and such that σ([ρ])(Aα) = Aα.
Then we transfer the whole situation to the complex plane by a conformal map, sending Aα to
an annulus A(0, r, r′) around 0 with radii r′ > r. Now we analyze what the homeomorphisms
σ(Dαi

), restricted to Aα and conjugated to A(0, r, r′), do for i = 1, . . . , g − 1. Marković con-
structs a small closed set E ⊃ ∂A(0, r, r′) ∩ Bα1

such that the sets Ri(E) are mutually disjoint,
where R is the rotation of order g − 1 of A(0, r, r′). And then he constructs a connected subset
H ⊂ E ∩ ∂A(0, r, r′), say in the circle of radius r, that has to contain points from at least g − 5
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sets Ri(E). Considering the length of the set (interval) H , this leads to an impossibility when

2πr
g − 5

g − 1
≥ 2πr

1

g − 1
,

which is the case if g ≥ 6.
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7 Different representations of the MCG

Besides looking at realizations of a group of mapping classes as a group of concrete automor-
phisms, we can also consider wholly different realizations. We treat two of these. They might
come in handy in future attempts to find the realizations we are after.

7.1 A matrix representation using H1(Σg)

We devise a representation of MCG(Σg), being a realization by linear maps on some vector
space, by means of the first homology group H1(Σg). This seems more natural than dawdling
with the fundamental group, because it is in line with the free homotopy of curves that homotopic
homeomorphims induce.

Any h ∈ Homeo(Σg) induces a chain map h∆ : ∆(Σg) → ∆(Σg) and hence a map h∗ ∈
Aut(H1(Σg)). The map

µ : Homeo(Σg) → Aut(H1(Σg))

h 7→ h∗

is a homomorphism, since H1(Σg) is a functorial object over Σg. The homotopy theorem of
homology theory is exactly the statement that if h1 and h2 are homotopic, then (h1)∗ = (h2)∗.
Thus µ factors to

µ̄ : MCG(Σg) → Aut(H1(Σg)).

[h] 7→ h∗

Alas, it is not injective, so we have no faithful representation. For example, take the Dehn twist
about any simple closed separating curve δ. (This means that Σg−δ has two components.) Many
such curves exist that are not nullhomotopic, so the Dehn twist around one is not isotopic to the
identity. However, the curve is nullhomologous, because a triangulation of one of the separated
components yields a 2-chain of which γ is the boundary (in the homological sense). Since the
chain group is commutative, every effect the map induced on it by the Dehn twist Dδ could have
would be to map c 7→ c+ kδ for some k ∈ Z and any 1-chain c. However, this action is annulled
in homology, so (Dδ)∗ = 1H1(Σg).

To make this representation more explicit, we choose the basis (α1, β1, . . . , αg, βg) for H1(Σg)
(see the introduction). The image µ̄(MCG+(Σg)) is generated by the images of the Dehn twists
around αi, βi and γi as defined in section 3.4. With respect to our basis these twists map to the
following matrices:
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µ̄(Dαi
) =




1 0
0 1

. . .

1 1
0 1

. . .

1 0
0 1




µ̄(Dβi
) =




1 0
0 1

. . .

1 0
1 1

. . .

1 0
0 1




µ̄(Dγi
) =




1 0
0 1

. . .

1 1 0 1
0 1 0 0
0 −1 1 −1
0 0 0 1

. . .

1 0
0 1




A simple computation yields that for any one of the above matrices, call it A, we have

AT ΩA = Ω, where Ω is the 2g × 2g block diagonal matrix with blocks

(
0 1
−1 0

)
.

Thus the image µ̄(MCG+(Σg)) is contained in the group of integral symplectic matrices Sp2g(Z).
To generate the whole of MCG(Σg), we need to add one orientation-reversing automorphism,
for example the involution σ shown at the end of section 3.2. It is easy to see that σ sends αi to
αg−i and βj to −βg−j , so we have

µ̄(σ) =




1 0
0 −1

. .
.

1 0
0 −1

. .
.

1 0
0 −1




which is an antisymplectic matrix, obeying

µ̄(σ)T Ωµ̄(σ) = −Ω.
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7.2 A realization in Homeo(ST(Σg))

We now treat a construction that is of interest to us because it enables us to construct a faithful
realization of MCG(Σg) in Homeo(ST(Σg)). Here ST(Σg) is the unit tangent bundle (also called
Spherical Tangent bundle) of Σg, which is the subbundle of TΣg of tangent vectors of length 1.
To speak sensibly about the length of tangent vectors, we must be working on a surface with
a Riemannian metric, which we will implicitly assume henceforth. The treatment is based on
Gromov [14] and Casson & Bleiler [7], the general facts about hyperbolic geometry used can be
found in Benedetti & Petronio [3].

To every point p ∈ Hn and tangent vector vp ∈ Tp(H
n) corresponds a unique point ∂(vp) ∈

∂Hn (the boundary at infinity). This point is the intersection point of the geodesic ray defined
by (p, vp) with Sn−1 ⊂ Rn, confer section 4. Gromov attributes the following simple but useful
remark to Cheeger. An orthonormal 2-frame (vp,1, vp,2) at a point p ∈ Hn gives us a triplet of
points on ∂Hn. We set

Ch : St2(H
n) −→ ∂3(Hn)

(vp,1, vp,2) 7→ (∂(−vp,1), ∂(vp,1), ∂(vp,2)).

This is a differentiable map from the Stiefel manifold St2(Hn) of orthonormal 2-frames in Hn

to ∂3(Hn), which is the set of triples (x1, x2, x3) with x1, x2, x3 ∈ ∂Hn and xi 6= xj for i 6=
j. This map has a differentiable inverse: for a triple (x1, x2, x3) ∈ ∂3(Hn) there is a unique
geodesic l between x1 and x2, and a unique perpendicular from x3 onto l, which give us a pair
(vp,1, vp,2) that map to (x1, x2, x3) under Ch. Thus Ch is a diffeomorphism, the so-called Cheeger
diffeomorphism.

Now any closed connected hyperbolic n-manifold M has a universal cover M̃ , which has a
unique hyperbolic structure that makes the projection a local isometry. And a simply connected
complete hyperbolic manifold is known to be homeomorphic to Hn. So we have M = Hn/Γ,
where Γ ∼= π1(M) is the group of deck transformations of the cover π : M̃ → M , acting by
isometries. We now invoke a general result whose proof can be found in [3], Propositions C.1.2
and C.1.8.4

Lemma 7.1 Let h : Mn →Mn be a homeomorphism of a closed orientable hyperbolic manifold
and h̃ : Hn → Hn a lift to the universal cover. Then h̃ has a unique continuous extension to
Hn ∪ ∂Hn and the restriction of this extension to ∂Hn is a homeomorphism of ∂Hn. �

The action of an element of Γ on H2 can be viewed as a special case of this, namely a lift of idM .
Thus this action extends to the boundary ∂Hn and hence to ∂3(Hn) by defining γ((x1, x2, x3)) :=
(γx1, γx2, γx3) for any γ ∈ Γ and (x1, x2, x3) ∈ ∂3(Hn). Our map Ch can now be defined on
St2(M) by taking a lift of an orthonormal frame to St2(H

n) with the covering map Tπ (which is
locally a bundle isomorphism of St2(H

n) → St2(M)) and then applying the Cheeger diffeomor-
phism. Since any two lifts differ by an element of Γ — which acts on St2(H

n) by the tangent

4The result is stated there for quasi-isometries, a class of maps to which the lifts of homeomorphisms of compact
connected orientable hyperbolic manifolds belong.
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maps of its elements — the image in ∂3(Hn) is defined up to the action of Γ on this space and
we get the Cheeger diffeomorphism

Ch : St2(M)
∼

−→ ∂3(Hn)/Γ.

The Cheeger diffeomorphism comes in handy when we have a homeomorphism h : M → M .
The homeomorphism lifts to the universal cover Hn, as mentioned before, but not uniquely. A
lift h̃ is determined by the image h̃(p) ∈ π−1(h(p)) of a single point p ∈ Hn. Because of the
previous lemma, any lift induces a unique map on ∂Hn, and two lifts differ by an action of Γ,
which also extends to the boundary sphere. Thus h induces a unique (i.e. independent from the
choice of lift) map ĥ from ∂3(Hn)/Γ → ∂3(Hn)/Γ. The Cheeger diffeomorphism implies that
this is equivalent to an induced map

ĥ : St2(M)
∼

−→ St2(M).

We can define the map C : Homeo(M) → Homeo(St2(M)) by h 7→ ĥ. This map is a group
homomorphism. Given homeomorphisms h1, h2 : M →M with lifts to Hn chosen as h̃1 and h̃2,
we can choose h̃2h1 := h̃2h̃1 as a lift of h2h1. By lemma 7.1 the extensions to ∂Hn obey the same
law, from which it is immediate that ĥ2h1 = ĥ1ĥ2. We will now prove that the homomorphism
C only depends on the homotopy class of h.

Lemma 7.2 Let h1, h2 : M →M be homotopic homeomorphisms of a closed orientable hyper-
bolic manifold. For any lift h̃1 of h1 there is a lift h̃2 of h2 to the universal cover Hn that extends
to the same map on ∂Hn.

Proof. Let H : M × I → M be a homotopy between h1 and h2. This homotopy can be lifted
to the universal cover with one point prescribed. If we choose the lift H̃ : Hn × I → Hn so that
H̃(p, 0) = h̃1(p), then H̃(·, 0) = h̃1 will hold, since lifts for h1 are uniquely determined by the
choice of one image point. The map H̃(·, 1) is a lift of h2, and we now show this is the desired
lift. As H is uniformly continuous with respect to the hyperbolic metric on M , the hyperbolic
lengths of the paths H̃(p, ·) are uniformly bounded. Therefore the Euclidean distance (in the
Poincaré model of Hn) between H̃(p, 0) and H̃(p, 1) tends to 0 as p tends to ∂Hn. Hence the
induced maps on ∂Hn are the same. �

The map ĥ is by construction independent of the choice of lift of h. This means that for homo-
topic homeomorphisms h1, h2, we may freely choose the lifts as in the foregoing proof, whence
the induced maps ĥ1 and ĥ2 are seen to be equal. That is, the homomorphism C factors through
to

C̄ : MCG(M) → Homeo(St2(M)).

In the special case of a closed orientable hyperbolic surface Σg (g ≥ 2), the space St2(Σg) has
two components. If we orient Σg, we may distinguish these as positively and negatively oriented
frames and accordingly write St2(Σg) = St2,+(Σg) q St2,−(Σg). For the sake of concreteness,
imagine Σg = H2/Γ with H2 the standard Poincaré disc, and regard right-hand frames to be
positively oriented.
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Likewise, the space ∂3(H2) splits as ∂3
+(H2)q ∂3

−(H2), where the two component names de-
note the spaces of triples (x1, x2, x3) ∈ ∂3(H2) that lie in counterclockwise and clockwise order,
respectively. Since our surface is orientable, the group Γ consists only of orientation preserving
isometries, and so the homeomorphisms it induces on ∂H2 have the same property. The ac-
tion of Γ on ∂3(H2) therefore preserves (counter)clockwiseness and the resulting quotient space
∂3(H2)/Γ splits as ∂3

+(H2)/Γ q ∂3
−(H2)/Γ and the Cheeger diffeomorphism maps St2,+(Σg) to

∂3
+(H2)/Γ and St2,−(Σg) to ∂3

−(H2)/Γ.
In dimension 2 a tangent vector uniquely determines a positively oriented orthonormal 2-

frame with this tangent vector as the first of the pair. In the same way, it uniquely determines a
negatively oriented orthonormal 2-frame. This gives us canonical diffeomorphisms

Fr+ : ST(Σg) → St2,+(Σg)

Fr− : ST(Σg) → St2,−(Σg).

For a homeomorphism h : Σg → Σg we would like to construct an induced homeomorphism h̄ :
ST(Σg) → ST(Σg), like we did above for St2(M), with the same nice properties: independence
under isotopy and preservation of the group structure. In order to do this, we would like to restrict
the induced homeomorphism on St2(Σg) to one of its components, but this can not always be
done. The map h can be lifted to H2 and then extended to ∂H2 and thereby to ∂3(H2). But this
action can only be restricted to ∂3

+(H2) or ∂3
−(H2) if h̃ is orientation preserving, which is the case

exactly when h is. We must then also choose to which component we restrict. An orientation
reversing h̃ leads to a swap of the components of ∂3(H2), giving two restricted maps back and
forth. The figure below gives an overview of the situation.

ST(Σg)

h̄

		

∼

Fr−

!!DD
DD

DD
DD

Fr+

∼}}zz
zz

zz
zz

St2(Σg)

Ch ∼

��

= St2,+(Σg)

Ch ∼

��

q St2,−(Σg)

Ch ∼

��
∂3(H2)/Γ = ∂3

+(H2)/Γ

ĥ

JJ 88
q ∂3

−(H2)/Γ

ĥ

JJ

ĥ

ff

Figure 22. The maps ĥ for orientation preserving h have been drawn with solid arrows in the
figure, the ones for orientation reversing h are dashed. We want to induce a map h̄ on ST(Σg).

Remark. It might have occurred to the reader that there is a simpler way to induce a homeo-
morphism from ST(Σg) → ST(Σg), namely the normalized differential

vp 7→ Tp(h)(vp)/||Tp(h)(vp)|| for vp ∈ ST(Σg).

But of course this map depends on this precise mapping of directions and would not allow fac-
torization through to MCG(Σg).
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The problem of reconciling the induced maps ĥ for orientation reversing hwith the induced maps
for orientation preserving h is not easily solved. Reconsidering the problem from the viewpoint
of St2(Σg), we might look at the restriction ĥ|St2,+(Σg) : St2,+(Σg) → St2,−(Σg) of a map induced
on the whole of St2(Σg). We could try to compose it with some fixed homeomorphism, e.g. the
canonical frame mirroring map m : St2,−(Σg) → St2,+(Σg) given by (v1, v2) 7→ (v1,−v2). Or
we could ‘square’ the map by composing it with ĥ|St2,−(Σg) to obtain (ĥ ◦ ĥ)|St2,+(Σg). In both
cases we end up with induced maps on St2,+(Σg), but the group structure is not preserved.
The only sensible thing to do is to restrict our attention to orientation preserving homeomor-
phisms. (In Kirby’s problem list [22], this is not stated clearly.) We still have to make the choice
which component to use, giving two distinct induced maps. If we choose St2,+(Σg), we can lift
h̃ to

h̄ := Fr−1
+ ◦ĥ ◦ Fr+ : ST(Σg)

∼
−→ ST(Σg).

Obviously, the induced maps h̄ depend only on the isotopy class of h and obey the group law
h2h1 = h̄2h̄1. Moreover, for different isotopy classes, the induced maps are different, proving
that we have a faithful group realization. For suppose that ĥ1 = ĥ2 : ∂3

+(H2)/Γ → ∂3
+(H2)/Γ.

Let c be an oriented simple closed curve on Σg and c̃ an oriented lift of this curve to H2. If c̃ has
endpoints p1, p2 ∈ ∂H2 (and is oriented from p1 to p2), then h̃1(pi) = γ(h̃2(pi)) for i = 1, 2 and
a certain γ ∈ Γ, because h1 and h2 induce the same action on pairs (even triplets) of points on
∂H2 up to an action of Γ. This means that h̃1 ◦ c̃ and γ ◦ h̃2 ◦ c̃ have the same ordered pair of
endpoints, but these are lifts of h1 ◦ c and h2 ◦ c, respectively. This implies that the latter two
curves are homotopic, see Casson & Bleiler [7, lemma ???]. Remember our closed curve c was
arbitrary. From the proof of theorem 2.11 it follows that h1 'i h2.

One more remark on orientations. The space ∂3(H2) is orientable, because it is a subspace of
∂H2×∂H2×∂H2 and this space inherits a canonical product orientation from ∂H2. Since Γ acts
freely on ∂3(H2) by orientation preserving diffeomorphisms, St2(Σg) ∼= ∂3(H2)/Γ is orientable
as well, inheriting an orientation (induced locally, if you will, from the total space ∂3(H2) of this
covering). And this means the same goes for ST(Σg), being homeomorphic to a component of
St2(Σg).

Now if h : Σg → Σg is orientation preserving, so is h̃ : H2 ∪ ∂H2 → H2 ∪ ∂H2, whence also
h̃ : ∂3(H2) → ∂3(H2) and h̃ : ∂3

+(H2)/Γ → ∂3
+(H2)/Γ. To induce h̄ : ST(Σg) → ST(Σg), we

conjugate this last map with Ch ◦Fr+. But this implies that h̄ is also orientation preserving, since
the degree deg of maps between connected orientable topological manifolds satisfies deg(g◦f) =
deg(g) deg(f), and for a homeomorphism h we have deg(h) ∈ {−1, 1}, indicating whether the
homeomorphism is orientation preserving (deg(h) = 1) or orientation reversing (deg(h) = −1).
Summarizing, we have proved the following theorem.

Theorem 7.3 (Cheeger, Gromov) An orientation preserving homeomorphism h : Σg → Σg

of closed oriented hyperbolic surfaces induces an orientation preserving homeomorphism h̄ :
ST(Σg) → ST(Σg). The map

S : Homeo+(Σg) → Homeo+(ST(Σg))

given by h 7→ h̄ is a group homomorphism that factors through to the faithful realization

S̄ : MCG+(Σg) → Homeo+(ST(Σg)).
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