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Chapter 1

Introduction

A.L. Hodgkin and A.F. Huxley wrote a series of five papers concerned with
the flow of electric current through the surface membrane of a nerve fibre,
based on their experiments with giant squid axons. In their final paper,
written in 1952, A Quantitative Description of Membrane Current and its
Application to Conduction and Excitation in Nerve, [11], they summarized
all of the results and put them into mathematical models. In 1963 they won
the Nobel Prize in Physiology or Medicine for their research.
In 1961 R. FitzHugh reduced the system from four dynamic variables to
two by projection, while retaining the properties of physiological interest, in
his paper Impulses and Physiological States in Theoretical Models of Nerve
Membrane [7]. A similar result was achieved by J. Nagumo et al. in An
Active pulse transmission line simulating nerve axon, [16], in 1962.

1.1 Hodgkin and Huxley

We will give a brief overview of the research by Hodgkin and Huxley, so
that we have some understanding of the biological background. Between
the inside and outside of a cell there is always a potential difference, due
to the distribution of ions and the permeability of the cell-membrane. An
inactive cell has, relative to outside the cell, a negative resting potential.
The cell will undergo an action potential when it is depolarized. This is a
temporary change in potential difference over the membrane. A.L. Hodgkin
and A.F. Huxley did experiments to get a grip on this action potential.
Basically, the electrical behavior of the membrane can be represented by
the electrical circuit shown in figure 1.1, from [11].
It follows from their research that the total membrane current density (I)
can be modeled as the sum of the capacity current density CM dV

dt and the
ionic current Ii,

I = CM
dV

dt
+ Ii,
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Figure 1.1: An electrical circuit that represents the electrical behavior of
the membrane.

where V is the displacement of the membrane potential from its resting
value and CM the membrane capacity. We can split the ionic current into
components carried by sodium ions (INa), potassium ions (IK) and other
ions (Il), where l stands for leakage.

Ii = INa + IK + Il

They showed that the individual ionic currents can be expressed in terms of
ionic conductances (gNa, gK and ḡl)

INa = gNa(V − VNa),
IK = gK(V − VK),
Il = ḡl(V − Vl),

where VNa, VK and Vl are the resting potentials for each of the ions. In Figure
1.1 the resistances come from these conductances: RNa = 1/gNa;RK =
1/gK ;Rl = 1/gl. Furthermore they make some assumptions on the sodium
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and potassium conductances, based on the results of their experiments.

dn

dt
= αn(V )(1− n)− βn(V )n, gK = ḡKn

4,

dm

dt
= αm(V )(1−m)− βm(V )m, gNa = ḡNam

3h,

dh

dt
= αh(V )(1− h)− βh(V )h.

Here ḡK and ḡNa are constants, n represents the potassium activation, m
the sodium activation and h the sodium inactivation, (0 ≤ n,m, h ≤ 1).
The α’s and β’s are constants that vary with V .

αn(V ) = 0.01(V + 10)/(exp
V + 10

10
− 1),

βn(V ) = 0.125 exp(V/80),

αm(V ) = 0.1(V + 25)/(exp
V + 25

10
− 1),

βm(V ) = 4 exp(V/18),
αh(V ) = 0.07 exp(V/20),

βh(V ) = 1/(exp
V + 30

10
+ 1).

Putting it all together we find the four-dimensional system of differential
equations by Hodgkin and Huxley.

I = CM
dV

dt
+ ḡKn

4(V − VK) + ḡNam
3h(V − VNa) + ḡl(V − Vl),

with
dn

dt
= αn(V )(1− n)− βn(V )n,

dm

dt
= αm(V )(1−m)− βm(V )m,

dh

dt
= αh(V )(1− h)− βh(V )h.

These equations are supplemented by suitable initial conditions.

1.2 FitzHugh and Nagumo

In FitzHugh’s first article in 1960 on the Hodgkin-Huxley equations, [6], he
used a quasi steady state approximation, setting

{
∂
∂th = 0
∂
∂tn = 0

(1.1)
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Figure 1.2: Numerical solutions of the Hodgkin-Huxley equations

From figure 1.2 from [6], we see that this is not a very good approximation.
It was only used to get a better understanding of the complete sytem, since
it is very difficult to consider all the variables at once.
In his second article on the Hodgkin-Huxley equations, [7], one year later he
noted that the phase space (V,m, n, h) can be divided into two subsystems
(V,m), the fast variables, and (n, h), the slow variables. Then he eliminated
one dimension from each of the two planes by linear projection.That is, he
noted that the curves of n and −h had the same shapes, see Figure 1.2, so
he replaced them by their average w = 0.5(n− h), by projecting along lines
of constant w onto the line n + h = 0.85. The (V,m)-plane was projected
similarly along lines of constant u, with u = V − 36m. For a more detailed
description, one should consult the paper by R. FitzHugh [7]. The resulting
FitzHugh-Nagumo equations are the following:

∂

∂t
u = I + u(u− α)(1− u)− w,

∂

∂t
w = ε(u− γw).

Here the model has been made dimensionless and α, ε and γ are constants
with 0 < α < 1 and ε ¿ 1. This system is a model for the homogeneous
(with respect to the current) situation, i.e. the membrane potential is en-
forced to be space-homogeneous. For the general case, one may think of a
chain of coupled homogeneous elements, but now the potential can ”diffuse”
through the membrane, to neighboring elements. Along a membrane ions
and hence potential diffuse along the axon. Accordingly we add a diffusion
term, a∆u, a > 0. Only to the first equation because only the u-variable
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contains the potential V . The current I is now a function of position.

∂

∂t
u = a∆u+ I + u(u− α)(1− u)− w,

∂

∂t
w = ε(u− γw).

We will treat the case where I = 0. That is, we there is no external electric
forcing on the axon.
We can consider these equations in a more general and abstract form.

∂tU1(t) = a∆U1(t) + p3(U1(t)) + c1U2(t),
∂tU2(t) = c2U1(t) + c3U2(t).

Here p3 is a cubic polynomial and c1, c2 and c3 are constants. Note that
the partial differential equations are now considered as ordinary differen-
tial equations and differentiation with respect to spatial coordinates as an
operation, i.e. a∆ is an operator.

1.3 Outline of this thesis

This thesis is a mix of general, abstract results and results that apply to the
FitzHugh-Nagumo equations. We will study this two-dimensional system,
considered as an explicit example of a nonlinear evolutionary equation,

∂tU(t) = AU(t) + F (t, U(t))

in a Banach space of (essentially) functions over a physical domain Ω ⊂ Rn.
These FitzHugh-Nagumo equations, or more generally, reaction-diffusion
equations,

∂tU(t) = a∆U(t) + F (t, U(t)),

have been studied thoroughly on bounded domains with suitable boundary
conditions, e.g. Dirichlet, Neumann. The situation on unbounded domains
however seems less well-documented, in particular the full space Rn. More-
over, various techniques that work for bounded domains do not directly
apply to the unbounded case. An obstruction that is often encountered is
that the inclusions Lp(Ω) ⊂ Lp

′
(Ω), if p > p′, that hold for bounded Ω, do

not hold in unbounded domains.
Our first objective has been to collect various results from different sources
that cover this case. As a starting point we used [18]. J. Rauch and J.
Smoller studied the FitzHugh-Nagumo equations in their article. They prove
local and global existence for these equations, however, at close inspection,
it turns out that they only prove it for these equations in a Banach space of
continuous bounded functions. Essentially they circumvent in this way the
problem that the non-linearity F generally does not map the Banach space
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in which one wants to situate the solutions, into itself. We are interested in
Lp-spaces as the Banach spaces to find the solutions. Since the FitzHugh-
Nagumo equations come from biology and many examples of evolutionary
equations from physics or chemistry it is natural to consider these Lp-spaces.
Solutions should be bounded, L∞(Rn), and volumes or densities have to be
integrable, L1(Rn), and so on. We use the theory presented in [12], where K.
Ito and F. Kappel prove a theorem that ensures the existence and unique-
ness of local (in time) so called mild solutions, using semigroups. We have
reformulated their result and reproved it in what we feel is a more trans-
parent way. These mild solutions are coupled to the variation of constants
formula,

U(t) = T (t)φ+
∫ t

0
T (t− s)F (s, U(s))ds.

Therefore our second objective has been to make use of this variation of
constants formula as much as possible to obtain all of our results.
With this approach we try not to put to many regularity conditions on the
solutions such as differentiability.
This thesis consists of three parts. In the first part, Chapter 2, the homo-
geneous differential equation,

∂tU(t) = AU(t),

is solved. What makes this section interesting is that we investigate in detail
and exploit properties of the heat semigroup in the Fréchet space of Schwartz
functions. Moreover, we pause to identify the domain of the infinitesimal
generator of this semigroup, A = a∆, in Lp(Rn) for 1 < p < ∞. Although
it is already known that, for 1 < p < ∞, this domain is the Sobolev space
W 2,p(Rn), the proof is not easy to find in literature. So in this chapter we
will construct the proof and we will show that the heat-semigroup is the
one being generated by a∆. The precise characterisation of the domain in
L1(Rn) seems to be unknown.
In Chapter 3 the nonlinearly perturbed system,

∂tU(t) = AU(t) + F (t, U(t)),

is considered. Here we will prove the local-existence-and-uniqueness-theorem
from [12] using the Picard-Banach fixed point theorem. From this theorem
we establish the existence of evolutionary operators Ŝ(t, s), such that for an
initial condition φ we have

U(t;φ) = Ŝ(t, 0)φ and Ŝ(t, s)Ŝ(s, σ) = Ŝ(t, σ) when σ ≤ s ≤ t.

We then apply this result in Chapter 4 to the FitzHugh-Nagumo equations
and find conditions on the Lp-spaces, such that there exists a local mild
solution.
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In the final part, Chapter 5, three methods for global solutions are presented.
The first two are standard methods, based on the Lipschitz continuity of
the nonlinearity. The third is a new method that can be used to prove
global existence of positive solutions. In that case the state spaces are
assumed to be Banach lattices, since one needs a partial ordering to define
positivity and a relationship between ordering and norm, to obtain a-priori
estimates. Unfortunately, time limitations prevented us from establishing
global existence in the spaces identified in Chapter 4, using any of these
methods.

1.4 Introduction of notation

Before we start, first a few conventions including the three types of topolog-
ical vector spaces that we will use most throughout this thesis.

• R+: The nonnegative real numbers: R+ = {x ∈ R|x ≥ 0} = [0,∞).

• N and N0: The positive integers: N = {1, 2, 3, . . . } and N0 = N ∪ {0}.
• ∂i denotes partial derivatives with respect to the i-th variable.

• Dα: For partial derivatives we write Dα =
∏n
i=1 ∂

αi
i , where α =

(α1, . . . , αn) ∈ Nn0 is a multi-index.

• Lp(Ω, X): The Lp-spaces consist of equivalence classes of measurable
functions ϕ : Ω → X, where Ω is a measure space and X a Banach
space, such that

‖ϕ‖Lp(Ω,X) =
(∫

Ω
‖ϕ‖pXdµ

)1/p

<∞.

For X = R, we write Lp(Ω) and

‖ϕ‖Lp(Ω) =
(∫

Ω
|ϕ|pdµ

)1/p

.

• W k,p(Rn): For 1 ≤ p ≤ ∞, and k ∈ N0, the Sobolev space W k,p(Rn)
is defined to be the subspace of Lp(Rn) consisting of all ϕ ∈ Lp(Rn)
such that for all α ∈ Nn0 with |α| ≤ k, Dαϕ ∈ Lp(Rn) (in the sense of
distributions). W k,p(Rn) is a Banach space with respect to the norm

‖ϕ‖k,p =
∑

α∈Nn
0 |α|≤k

‖Dαϕ‖p. (1.2)

• S(Rn): The Schwartz space, see Section 2.1.
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Chapter 2

Solutions to the heat
equation

As a preparation for treating the FitzHugh-Nagumo equations we consider
the following partial differential equation on Rn × R+:

{
∂
∂tU(x, t) = a∆U(x, t), t > 0, x ∈ Rn,
U(x, 0) = φ(x), x ∈ Rn. (2.1)

Here and in any similar equation a is positive. This equation is called the
heat equation. We can also consider it as an abstract ordinary differential
equation: {

∂tU(t) = a∆U(t),
U(0) = φ,

(2.2)

where U(t) is in a suitable Banach space, or, more general, a Fréchet space,
of functions on Rn. In section 2.1 we will solve the heat equation in the
Fréchet space S(Rn), which is not a Banach space. This abstract differential
equation is a particular example of the following.

{
∂tU(t) = AU(t)
U(0) = φ

(2.3)

Here A is an operator on a Banach space X and the function U is supposed
to take values in X. The first theorem solves the differential equation (2.3).

Theorem 2.1. Let X a Banach space and A a linear operator on X.
Assume that A generates a C0-semigroup (T (t))t≥0. If φ ∈ D(A), the
domain of A, then the differential equation (2.3) has a unique solution
U : R+ → D(A) ∈ C1(R+, X). The solution is given by U(t) = T (t)φ
for all t ∈ R+.

Proof. Since φ ∈ D(A), U(·) = T (·)φ ∈ C1(R+, X) has values in D(A),

∂tU(t) = ∂tT (t)φ = AT (t)φ = AU(t)
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and clearly U(0) = φ. For the uniqueness, let V be a solution and define
Wt(s) = T (t− s)V (s) for 0 ≤ s ≤ t <∞, then

∂sWt(s) = ∂s[T (t− s)V (s)] = −T (t− s)AV (s) + T (t− s)AV (s) = 0.

Thus Wt(s) is constant and V (t) = Wt(t) = Wt(0) = T (t)V (0) = T (t)φ.

We will use this result by J.A. Goldstein, see [9], to solve (2.3) on Lp(Rn)
in Section 2.3. First we solve (2.1) in S(Rn). We will find a similar result in
this Fréchet space as we do in the case where X is a Banach space.

2.1 The heat semigroup in S(Rn)

A Schwartz function is a rapidly decreasing smooth function, i.e. the Schwartz
space S(Rn) consists of functions ϕ ∈ C∞(Rn) satisfying

lim
|x|→∞

P (x)Dαϕ(x) = 0

for each polynomial P and each multi-index α ∈ Nn0 . Note that this condition
is equivalent to the condition

sup
x∈Rn

|P (x)Dαϕ(x)| <∞.

We can define a family of norms on S(Rn)

‖ϕ‖α,β = sup
x∈Rn

|xαDβϕ(x)| α, β ∈ Nn0

Using these norms we can define a complete metric on S(Rn)

dS(ϕ,ψ) =
∞∑

m=1

2−m‖ϕ− ψ‖(m)/(1 + ‖ϕ− ψ‖(m))

where ‖ · ‖(m), m = 1, 2, . . . is an enumeration of {‖ · ‖α,β|α, β ∈ Nn0}.
Hence, (S(Rn), dS) is a Fréchet space, i.e. a topological vector space with a
complete metric, that is translation invariant, i.e. dS(ϕ,ψ) = dS(ϕ−ψ,0) for
all ϕ,ψ ∈ S(Rn). This metric is not very convenient to work with, however
it is clear that

ϕk → ϕ in (S(Rn), dS) if and only if ‖ϕk − ϕ‖α,β → 0 for all α, β ∈ Nn0 .

It is well known that the Fourier transformation F : S(Rn) → S(Rn) is a
linear homeomorphism, where F is given by:

F [ϕ](z) = (2π)−n/2
∫

Rn

eix·zϕ(x)dx.
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We define convolution by

(ϕ ∗ ψ)(x) =
∫

Rn

f(x− y)g(y)dy.

A very convenient result follows if we combine this with Fourier transforma-
tion.

F [ϕ ∗ ψ] = (2π)n/2F [ϕ]F [ψ] (2.4)

An other convenient property of the Schwartz space is that it is dense in
Lp(Rn) for all 1 ≤ p <∞. All of these results on the Schwartz space can be
found in [9].
We have chosen the Schwartz-space because then Fourier transformation
is a linear homeomorphism, which makes it easy to solve the differential
equation. Define for t > 0 and x ∈ Rn the map

Ea(t) : x 7→ Ea(t, x) = (4πat)−n/2e−|x|
2/(4at).

For t = 0, Ea(0, x) = δ(x), the delta-distribution. We can prove the follow-
ing proposition, solving the heat equation in S(Rn).

Proposition 2.2. The partial differential equation (2.1) with initial condi-
tion φ ∈ S(Rn) has as its unique solution in S(Rn)

U(x, t) = Ea(t) ∗ φ(x), x ∈ Rn, t ≥ 0.

Proof. Let F [U(·, t)](z) the Fourier transform of U(·, t) with respect to x.
Since

F [∆ϕ](z) = −|z|2F [ϕ](z),

where |z|2 = z2
1 + · · · + z2

n, for all ϕ ∈ S(Rn), the differential equation
transforms into

{
∂
∂tF [U(·, t)](z) = −a|z|2F [U(·, t)](z)
F [U(·, 0)](z) = F [φ](z)

This equation is easily solved

F [U(·, t)](z) = F [φ](z)e−a|z|
2t

Using equation (2.4) and the following result:

If ϕ(x) = e−α|x|
2
, then F [ϕ](z) = (2α)−n/2e−|z|

2/(4α),

we find

F [U(·, t)](z) = F [φ](z)e−a|z|
2t = F [φ](z)F [(2at)n/2e−|·|

2/(4at)](z)

= (2π)−n/2F [φ ∗ (2π)n/2Ea(t)](z) = F [Ea(t) ∗ φ](z).

From this it follows, since Fourier transformation is a homeomorphism on
S(Rn), that U(·, t) = Ea(t) ∗ φ.
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The so-called heat kernel Ea(t) that we have found defines a linear semigroup
on S(Rn), i.e. the family of linear operators (Ta(t))t≥0 given by

Ta(t)ϕ = Ea(t) ∗ ϕ for t > 0 and (2.5)
Ta(0)ϕ = ϕ (2.6)

is a semigroup on S(Rn). It is also strongly continuous. Let us check the
claims for semigroups:

1. T (t)T (s)ϕ = T (t+ s)ϕ for all ϕ ∈ S(Rn).
Ea(t) ∈ S(Rn) for all a, t > 0, so they have Fourier transforms:

F [Ea(t)](z) = (2π)−n/2e−a|z|
2t (2.7)

From (2.7) we derive that

F [Ea(t) ∗ Ea(s)](z) =(2π)n/2F [Ea(t)](z)F [Ea(s)](z)

=(2π)n/2(2π)−n/2e−a|z|
2t · (2π)−n/2e−a|z|

2s

=(2π)−n/2e−a|z|
2(t+s)

=F [Ea(t+ s)](z)

So Ea(t) ∗Ea(s) = Ea(t+ s) and

T (t)T (s)ϕ = Ea(t) ∗ (Ea(s) ∗ ϕ) = (Ea(t) ∗ Ea(s)) ∗ ϕ
= Ea(t+ s) ∗ ϕ = T (t+ s)ϕ

2. Ta(t) is a continuous operator on S(Rn).
Since Fourier transformation is a homeomorphism F : S(Rn) → S(Rn)
and F [Ea(t) ∗ ϕ](z) = e−a|z|2tF [ϕ](z), it suffices to show that Mt :
S(Rn) → S(Rn) : ϕ 7→ Êa,tϕ, where Êa,t(z) = e−a|z|2t, is continu-
ous. So we have to show that dS(Mtϕ,Mtψ) → 0 if dS(ϕ,ψ) → 0, or
equivalently

‖Mtϕ−Mtψ‖α,β → 0 if dS(ϕ,ψ) → 0 for all α, β ∈ Nn0
If ϕ,ψ ∈ S(Rn) then it is easily checked that

‖ϕψ‖α,β ≤
∑

γ+δ=β

‖ϕ‖α,γ‖ψ‖0,δ

In this case we get

‖Mtϕ−Mtψ‖α,β = ‖Êa,t(ϕ− ψ)‖α,β ≤
∑

γ+δ=β

‖Êa,t‖α,γ‖ϕ− ψ‖0,δ

Êa,t is a Schwartz function, so ‖Êa,t‖α,γ < ∞. ‖ϕ − ψ‖0,δ → 0 since
dS(ϕ,ψ) → 0 so we conclude ‖Mtϕ−Mtψ‖α,β → 0.
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So (Ta(t))t≥0 is a semigroup on S(Rn). Now we will show that it is strongly
continuous.

Proposition 2.3. (Ta(t))t≥0 is a strongly continuous semigroup on S(Rn).

Proof. Let ϕ ∈ S(Rn). We have to show that

lim
t↓0

dS(Ta(t)ϕ− ϕ) = 0

This is equivalent to

‖Ta(t)ϕ− ϕ‖α,β = sup
x∈Rn

|xαDβ(Ta(t)ϕ− ϕ)(x)| → 0 as t ↓ 0,

for all α, β multi-indexes. Because Fourier transformation is a homeomor-
phism on S(Rn) this is equivalent to

sup
z∈Rn

|zαDβF [Ta(t)ϕ− ϕ](z)| → 0 as t ↓ 0.

We calculate the Fourier transform

F [Ta(t)ϕ− ϕ](z) = (e−a|z|
2t − 1)F [ϕ](z)

So we have to show that for all multi-indexes α and β

sup
z∈Rn

|zαDβ((e−a|z|
2t − 1)F [ϕ](z))| → 0 as t ↓ 0,

i.e zαDβ((e−a|z|2t − 1)F [ϕ](z)) converges uniformly to 0 as t ↓ 0. For the
derivative we use the product-rule

Dβ((e−a|z|
2t − 1)F [ϕ](z)) =

∑

γ+δ=β

Dγ(e−a|z|
2t − 1)DδF [ϕ](z) =

(e−a|z|
2t − 1)DβF [ϕ](z)) +

∑

γ+δ=β,γ 6=0

tPγ(z, t)e−a|z|
2tDδF [ϕ](z)

with Pγ(z, t) a polynomial.
To show that zα(e−a|z|2t − 1)DβF [ϕ](z) converges uniformly to 0 we show

that e−a|z|2t−1
1+|z|2 converges uniformly to 0, since zα(1 + |z|2)DβF [ϕ](z) is uni-

formly bounded. The Mean Value Theorem yields
∣∣∣∣∣
e−a|z|2t − 1

t

∣∣∣∣∣ ≤ max
0≤θ≤t

∣∣∣∣
d

dτ
e−a|z|

2τ |τ=θ
∣∣∣∣ = a|z|2.

From this it follows that
∣∣∣∣∣
e−a|z|2t − 1

1 + |z|2

∣∣∣∣∣ ≤
a|z|2t

1 + |z|2 ≤ at for all z ∈ Rn.
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Hence e−a|z|2t−1
1+|z|2 → 0 uniformly on Rn as t ↓ 0. The function z → te−a|z|2t

converges uniformly in Rn to 0 as t ↓ 0, since supz∈Rn |te−a|z|2t| = t. The

highest power of zi in Pγ(z, t) is γi, so
∣∣∣Pγ(z,t)

1+zγ

∣∣∣ is uniformly bounded on Rn

and so is zα(1 + zγ)DδF [ϕ](z). So the summation also converges uniformly.

In a Banach space a strongly continuous linear semigroup (T (t))t≥0 has a
generator AT . This generator is defined by

ATϕ = lim
t↓0

Ta(t)ϕ− ϕ

t

S(Rn) is not a Banach space, but we can still calculate this limit. Usually
the domain of the generator is not the entire space. However, for (Ta(t))t≥0

the domain of the generator Aa is all of S(Rn).

Lemma 2.4. For all ϕ ∈ S(Rn)

lim
t↓0

Ta(t)ϕ− ϕ

t
= a∆ϕ.

Proof. Let ϕ ∈ S(Rn) We have to show that

lim
t↓0

dS(
Ta(t)ϕ− ϕ

t
, a∆ϕ) = 0

So, as in Proposition 2.3, we will show that zαDβF [Ta(t)ϕ−ϕ
t − a∆ϕ](z)

converges uniformly to 0. We calculate the Fourier transform

F [
Ta(t)ϕ− ϕ

t
− a∆ϕ] =

e−a|z|2t − 1
t

F [ϕ] + a|z|2F [ϕ]

We differentiate again with the product-rule

Dβ((
e−a|z|2t − 1

t
+ a|z|2)F [ϕ](z)) =

(
e−a|z|2t − 1

t
+ a|z|2)DβF [ϕ](z)−

n∑

i=1

2azi(e−a|z|
2t − 1)Dβ−eiF [ϕ](z)+

n∑

j=1

(4a2z2
j te

−a|z|2t − 2a(e−a|z|
2t − 1))Dβ−2ejF [ϕ](z)+

∑
0≤k,l≤n

k 6=l

4a2zkzlte
−a|z|2tDβ−ek−elF [ϕ](z) +

∑
γ+δ=β
|γ|≥2

+tPγ(z, t)e−a|z|
2tDδF [ϕ](z).

With Pγ(z, t) a polynomial with
∣∣∣Pγ(z,t)

1+zγ

∣∣∣ uniformly bounded on Rn. In

Proposition 2.3 we have already seen that (e−a|z|2t−1)ϕ(z) and te−a|z|2tϕ(z)
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converge to 0 in S(Rn) for all ϕ ∈ S(Rn). So, what is left to prove is uniform

convergence of zα( e
−a|z|2t−1

t + a|z|2)DβF [ϕ](z) as t ↓ 0. Again we use the
Mean Value Theorem.

∣∣∣∣∣
e−a|z|2t + a|z|2t− 1

t

∣∣∣∣∣ ≤ max
0≤θ≤t

∣∣∣∣
d

dτ
{e−a|z|2τ + a|z|2τ}|τ=θ

∣∣∣∣

= | − a|z|2(e−a|z|2t − 1)| = a|z|2(1− e−a|z|
2t)

= a|z|2t(1− e−a|z|2t

t
) ≤ a|z|2ta|z|2 = a2|z|4t.

So we conclude that 1
a2|z|4 ( e

−a|z|2t−1
t + a|z|2) converges uniformly to 0 and

since zαa2|z|4DβF [ϕ](z) is uniformly bounded this concludes the proof.

In the following section we will show that the definition of the linear operator
Ta(t) by convolution, (2.6), extends to Lp(Rn) and W k,p(Rn). It follows that
(Ta(t))t≥0 is a semigroup on Lp(Rn) for 1 ≤ p ≤ ∞ and on W k,p(Rn) for
1 ≤ p ≤ ∞ and k ∈ N. It is strongly continuous on Lp(Rn) for 1 < p < ∞
and on W 2,p(Rn) for 1 < p <∞ and k ∈ N.

2.2 The heat semigroup in Lp(Rn) and W k,p(Rn)

Proposition 2.6 shows that (Ta(t))t≥0 is also a semigroup on Lp(Rn) and
W k,p(Rn). For W k,p(Rn) we need that DαTa(t)ϕ = Ta(t)Dαϕ for all ϕ ∈
W k,p(Rn) and |α| ≤ k.

Proposition 2.5. 1. If ϕ ∈ S(Rn) and α ∈ Nn0 , then DαTa(t)ϕ = Ta(t)Dαϕ.
2. If ϕ ∈ W k,p(Rn), and |α| ≤ k, then DαTa(t)ϕ = Ta(t)Dαϕ in the sense
of distributions.

Proof. Let ϕ ∈ S(Rn), then for all x ∈ Rn

DαTa(t)(x)ϕ = Dα

∫

Rn

Ea(t, y)ϕ(x− y)dy =
∫

Rn

Ea(t, y)Dα
xϕ(x− y)dy

= Ta(t)Dαϕ(x)

Now take ϕ ∈ W k,p(Rn), |α| ≤ k and ψ ∈ D ⊂ S(Rn). Since all functions
are in Lp(Rn) or Lq(Rn), with 1

p + 1
q = 1 and sufficiently differentiable,

we define 〈·, ·〉, by 〈ϕ,ψ〉 = 〈ϕ,ψ〉p,q = 〈Tϕ, ψ〉D′,D. Now we can use the
following properties:

• 〈Dαϕ,ψ〉 = (−1)|α|〈ϕ,Dαψ〉
• 〈Ta(t)ϕ,ψ〉 = 〈ϕ, Ta(t)ψ〉, since Ta(t)ϕ = Ea(t) ∗ ϕ and Ea(t) is even.
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The result follows:

〈DαTa(t)ϕ,ψ〉 = (−1)|α|〈Ta(t)ϕ,Dαψ〉 = (−1)|α|〈ϕ, Ta(t)Dαψ〉
= (−1)|α|〈ϕ,DαTa(t)ψ)〉 = 〈Dαϕ, Ta(t)ψ〉
= 〈Ta(t)Dαϕ,ψ〉 = 〈Ta(t)Dαϕ,ψ〉.

Proposition 2.6. (Ta(t))t≥0 is a linear semigroup on Lp(Rn) for 1 ≤ p ≤ ∞
and on W k,p(Rn) for 1 ≤ p ≤ ∞ and k ∈ N.

Proof. Proposition C.2 shows that Ta(t)ϕ ∈ Lp(Rn) for all t ≥ 0 if ϕ ∈
Lp(Rn) and Proposition C.1 reveals that ‖Ea(t)‖1 ≤ 1 for all t > 0. Young’s
Convolution Inequality, Lemma A.1, then shows

‖Ta(t)ϕ‖p = ‖Ea(t) ∗ ϕ‖p ≤ ‖Ea(t)‖1‖ϕ‖p ≤ ‖ϕ‖p.

Then, for W k,p(Rn)

‖Ta(t)ϕ‖k,p = ‖Ea(t) ∗ ϕ‖k,p =
∑

|α|≤k
‖Dα(Ea(t) ∗ ϕ)‖p

=
∑

|α|≤k
‖Ea(t) ∗ (Dαϕ)‖p ≤ ‖Ea(t)‖1

∑

|α|≤k
‖Dαϕ‖p

= ‖Ea(t)‖1‖ϕ‖k,p ≤ ‖ϕ‖k,p

To show that (Ta(t))t≥0 is also a strongly continuous semigroup on Lp(Rn)
for 1 ≤ p <∞ we use that the embedding S(Rn) ↪→ Lp(Rn) is continuous.

Lemma 2.7. S(Rn) embeds continuously into Lp(Rn) for 1 ≤ p ≤ ∞.

Proof. For p = ∞ there is nothing to prove, since ‖ · ‖∞ = ‖ · ‖0,0.
For 1 ≤ p < ∞. Let ϕ, {ϕk}∞k=0 ⊂ S(Rn) such that ϕk → ϕ in S(Rn) as
k →∞. Now the result follows:

‖ϕk − ϕ‖pp =
∫

Rn

|ϕk(x)− ϕ(x)|pdx

≤
∫

Rn

| 1
1 + |x|2 |

p|(1 + |x|2)(ϕk(x)− ϕ(x))|pdx

≤ ‖ 1
1 + | · |2 ‖

p
p‖(1 + | · |2)(ϕk − ϕ)‖p∞ <∞.

Now we can prove the strong continuity on W k,p(Rn) and thus also for
Lp(Rn), since Lp(Rn) = W 0,p(Rn).
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Proposition 2.8. (Ta(t))t≥0 is a C0-semigroup on W k,p(Rn) for 1 ≤ p <∞
and k ∈ N0.

Proof. What is left to prove is the strong continuity, i.e.

lim
t→0

‖Ta(t)ϕ− ϕ‖k,p = 0 for all ϕ ∈W k,p(Rn)

So we take ϕ ∈ W k,p(Rn) and ε > 0. S(Rn) is dense in W k,p(Rn), so
there is a ψ ∈ S(Rn) such that ‖ψ − ϕ‖k,p ≤ ε/3. Lemma 2.7 shows that
R+ → Lp(Rn) : t 7→ Ta(t)ψ is continuous. Dαψ ∈ S(Rn) and

‖Ta(t)ψ − ψ‖k,p =
∑

|α|≤k
‖Dα(Ta(t)ψ − ψ)‖p =

∑

|α|≤k
‖Ta(t)Dαψ −Dαψ‖p,

hence R+ → W k,p(Rn) : t 7→ Ta(t)ψ is also continuous. So there exists a
δ > 0 such that ‖Ta(t)ψ − ψ‖k,p ≤ ε/3 for all 0 ≤ t ≤ δ. The triangle-
inequality gives us

‖Ta(t)ϕ− ϕ‖k,p ≤ ‖Ta(t)ϕ− Ta(t)ψ‖k,p + ‖Ta(t)ψ − ψ‖k,p + ‖ψ − ϕ‖k,p
Ta(t) is a linear operator, so Ta(t)ϕ − Ta(t)ψ = Ta(t)(ϕ − ψ) and using
Proposition 2.5 and Young’s convolution inequality, Lemma A.1, we find

‖Ta(t)(ϕ− ψ)‖k,p ≤
∑

|α|≤k
‖DαTa(t)(ϕ− ψ)‖p =

∑

|α|≤k
‖Ta(t)Dα(ϕ− ψ)‖p

=
∑

|α|≤k
‖Ea(t) ∗Dα(ϕ− ψ)‖p

≤
∑

|α|≤k
‖Ea(t)‖1‖(Dα(ϕ− ψ)‖p

= ‖Ea(t)‖1‖ϕ− ψ‖k,p ≤ ‖ϕ− ψ‖k,p ≤ ε/3

So
‖Ta(t)ϕ− ϕ‖k,p ≤ ε/3 + ε/3 + ε/3 = ε

And this concludes the proof.

2.3 The generator and its domain in Lp(Rn)

We have found the C0-semigroup on Lp(Rn). We now want to verify that
its generator is indeed a∆ in Lp(Rn). If it is generated by a∆ on a suitable
domain we can use Theorem 2.1 to solve the differential equation (2.3).
In this section we will show that the generator of (Ta(t))t≥0 is given by
Aaϕ := ATaϕ = a∆ϕ for all function ϕ ∈ D(Aa). This domain is the Sobolev
space W 2,p(Rn), for 1 < p < ∞. Although this seems to be considered
common knowledge, the proof is hard to find in literature. The value of
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this section is therefore to bring together the results and arguments needed
to come to this conclusion. In [1] elliptic operators on Rn, such as ∆,
are considered. P. Cannarsa and V. Vespri prove some results that are
closely related to our situation, such as: There exists a unique solution
U ∈W 1,p(Rn) of (λ− a∆)U = f if f ∈ Lp(Rn) for 1 < p <∞ and Reλ ≥ C
for some constant C. Unfortunately we can not use their approach to solve
our problem. The proof that we will present consists of showing the following
inclusions:

W 2,p(Rn) ⊂ D(Aa) for 1 ≤ p <∞, (2.8)
D(Aa) ⊂ {ϕ ∈ Lp(Rn)|∆ϕ ∈ Lp(Rn)} for 1 ≤ p <∞, (2.9)

{ϕ ∈ Lp(Rn)|∆ϕ ∈ Lp(Rn)} ⊂W 2,p(Rn) for 1 < p <∞. (2.10)

From these inclusions it follows that

D(Aa) = W 2,p(Rn),

provided that 1 < p <∞. Inclusion 2.10 is not trivial at all. It follows from
a delicate theorem on singular integrals from the book by E.M. Stein, [20],
here stated in Theorem 2.16. In the following proposition the results are
gathered.

Theorem 2.9. The generator Aa of the semigroup (Ta(t))t≥0 on Lp(Rn),
for 1 < p < ∞ is given by Aaϕ = a∆ϕ (in the sense of distributions) and
its domain D(Aa) is the Sobolev space W 2,p(Rn).

Inclusion (2.10) is only valid for 1 < p <∞. For the cases p = 1 and p = ∞
we have the following results from [20]:

1. When n = 1 inclusion (2.10) holds for p = 1 and for p = ∞.

2. When n > 1 the inclusion does not hold in the case p = 1 neither in
the case p = ∞

At the end of this section we will have proven Theorem 2.9. We will first
prove, in Lemma 2.10 that S(Rn) ⊂ D(Aa). Next we show, in Lemma
2.11, since S(Rn) is dense in W 2,p(Rn), that for every ϕ ∈ W 2,p(Rn) there
exists a sequence {ϕk}∞k=1 ⊂ S(Rn) such that, in Lp(Rn), ϕk → ϕ and
∆ϕk → ∆ϕ. Then we combine these two lemmas in Lemma 2.12 to prove
the first inclusion, (2.8).

Lemma 2.10. S(Rn) ⊂ D(Aa) and Aaϕ = a∆ϕ for all ϕ ∈ S(Rn).
Note that here S(Rn) is considered as a subset of Lp(Rn).
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Proof. Define the family of operators as in Lemma 2.7 by

G(t) =
Ta(t)− I

t
t > 0,

G(0) = a∆.

According to Lemma 2.4 t 7→ G(t)ϕ : [0, ε] → S(Rn) is continuous for all
ϕ ∈ S(Rn). Hence, Lemma 2.7, it is continuous from [0, ε] to Lp(Rn). So
the limit exists and the result follows.

Lemma 2.11. For all ϕ ∈ W 2,p(Rn), 1 ≤ p < ∞ there exists a sequence
{ϕk}∞k=1 ⊂ S(Rn) such that ϕk → ϕ in Lp(Rn) and ∆ϕk → ∆ϕ in Lp(Rn).

Proof. Let ϕ ∈ W 2,p(Rn). Since S(Rn) is dense in W 2,p(Rn) there exists
a sequence {ϕk}∞k=1 ⊂ S(Rn) such that ϕk → ϕ in W 2,p(Rn) and thus in
Lp(Rn).
ϕ 7→ ∆ϕ is a continuous linear mapping from W 2,p(Rn) to Lp(Rn), since

‖∆ϕ‖Lp ≤
∑

|α|≤2

‖Dαϕ‖Lp = ‖ϕ‖W 2,p

So we also have ∆ϕk → ∆ϕ in Lp(Rn).

Lemma 2.12. Let 1 ≤ p < ∞, then W 2,p(Rn) ⊂ D(Aa) and Aaϕ = a∆ϕ
for all ϕ ∈W 2,p(Rn).

Proof. Define the following graphs:

G1 = {(ϕ, a∆ϕ)|ϕ ∈ S(Rn)}
G2 = {(ϕ, a∆ϕ)|ϕ ∈W 2,p(Rn)}
GAa = {(ϕ,Aaϕ)|ϕ ∈ D(Aa)}

Lemma 2.11 implies G2 ⊂ G1, with G1 the closure in Lp(Rn) × Lp(Rn).
Lemma 2.10 implies G1 ⊂ GAa . GAa is closed in Lp(Rn)× Lp(Rn) because
the generator of a C0-semigroup is a densely defined closed operator. So
G1 ⊂ GAa and thus

G2 ⊂ G1 ⊂ GAa . (2.11)

So W 2,p(Rn) ⊂ D(Aa) and Aaϕ = a∆ϕ for all ϕ ∈W 2,p(Rn).

Since S(Rn) is a subset of D(Aa), dense in Lp(Rn) and invariant under
the semigroup (Ta(t))t≥0, Proposition A.3 implies that S(Rn) is a core for
(Aa, D(Aa)) in Lp(Rn). This means that the closure of S(Rn) with respect
to the graph norm is the domain D(Aa). And this implies G1 = GAa . As a
corollary we can prove inclusion (2.9) in Lemma 2.14. To prove this result
we need the following lemma. (For explanation of notation for distibutions,
consult Appendix A.)
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Lemma 2.13. Let {ϕk}∞k=1 ⊂ S(Rn) a sequence and assume there exist
functions ϕ,ψ ∈ Lp(Rn) such that ϕk → ϕ in Lp(Rn) and ∆ϕk → ψ in
Lp(Rn). Then ∆ϕ = ψ in the sense of distributions.

Proof. Let χ ∈ D, then

〈∆Tϕ, χ〉D′,D = 〈Tϕ,∆χ〉D′,D = 〈ϕ,∆χ〉p,q = lim
k→∞

〈ϕk,∆χ〉p,q
= lim

k→∞
〈Tϕk

,∆χ〉D′,D = lim
k→∞

〈∆Tϕk
, χ〉D′,D

= lim
k→∞

〈T∆ϕk
, χ〉D′,D = lim

k→∞
〈∆ϕk, χ〉p,q = 〈ψ, χ〉p,q

= 〈Tψ, χ〉D′,D.

Lemma 2.14. For all ϕ ∈ D(Aa) Aaϕ = a∆ϕ in the sense of distributions
and consequently D(Aa) ⊂ {ϕ ∈ Lp(Rn)|∆ϕ ∈ Lp(Rn)}.
Proof. For all ϕ ∈ D(Aa) there exists a sequence {ϕk}∞k=1 ⊂ S(Rn), such
that ‖ϕ − ϕk‖Aa → 0, since S(Rn) is a core of (Aa, D(Aa)). So ϕk → ϕ
in Lp(Rn) and a∆ϕk → Aaϕ in Lp(Rn). Because ϕk ∈ S(Rn), Lemma 2.4
shows Aaϕk = a∆ϕk. Thus according to Lemma 2.13 Aaϕ = a∆ϕ.
Aa is a map from D(Aa) ⊂ Lp(Rn) to Lp(Rn). So if ϕ ∈ D(Aa) then
ϕ ∈ Lp(Rn) and Aaϕ = a∆ϕ ∈ Lp(Rn)
Inclusion (2.10), as mentioned before, is the hardest to prove. The case
p = 2 can easily be obtained through Fourier transformation, Lemma 2.15.
The general result for 1 < p <∞ will be proven in Theorem 2.19.

Lemma 2.15. If ϕ ∈ L2(Rn) and ∆ϕ ∈ L2(Rn) then ϕ ∈W 2,2(Rn).

Proof. Assume ϕ ∈ L2(Rn) and ∆ϕ ∈ L2(Rn). We have to prove that
Dαϕ ∈ L2(Rn) for all |α| ≤ 2. However, since F [Dαϕ](z) = (−iz)αF [ϕ](z)
and F : L2(Rn) → L2(Rn) is a linear homeomorphism it suffices to prove
that

zαF [ϕ] ∈ L2(Rn) for all |α| ≤ 2

1. |α| = 1
Let 1 ≤ j ≤ n. Use that z2

j ≤ |z|2 ≤ 1 + |z|4 for z ∈ Rn, then

‖zjF [ϕ]‖2
2 =

∫

Rn

|zjF [ϕ]|2dz ≤
∫

Rn

(|F [ϕ]|2 + |z|4|F [ϕ]|2)dz

≤ ‖F [ϕ]‖2
2 + ‖F [∆ϕ]‖2

2 <∞
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2. |α| = 2
Let 1 ≤ i, j ≤ n. Use that z4

i ≤ |z|4 and z2
i z

2
j ≤ z4

i + z4
j ≤ |z|4 for

i 6= j, then

‖zizjF [ϕ]‖2
2 =

∫

Rn

|zizjF [ϕ]|2dz =
∫

Rn

z2
i z

2
j |F [ϕ]|2dz

≤
∫

Rn

|z|4|F [ϕ]|2dz ≤ ‖F [∆ϕ]‖2
2 <∞

To understand the theorem presented in [20] that we will use we will first
introduce the Bessel potential and the potential space. The Bessel potential
Jα, α > 0 is defined for ϕ ∈ Lp(Rn), 1 ≤ p ≤ ∞ by

Jα(ϕ) = Gα ∗ ϕ
with F [Gα](x) = (2π)−n/2(1 + |x|2)−α/2. In [20] it is proven that such a
Gα exists and that Gα ∈ L1(Rn). So the convolution is defined and Jα
maps Lp(Rn) into Lp(Rn). The definition of the potential space makes use
of this Bessel potential. The potential space Lpα(Rn), α > 0, 1 ≤ p ≤ ∞ is
the subspace of Lp(Rn) consisting of all ϕ that can be written in the form
ϕ = Jα(ψ), ψ ∈ Lp(Rn). The Lpα-norm of ϕ is defined to be the Lp-norm
of ψ, i.e.

‖ϕ‖Lp
α

= ‖ψ‖p, if ϕ = Jα(ψ). (2.12)

The definition of the norm is consistent, because Jα : Lp(Rn) → Lp(Rn) is
injective, see [20]. The following theorem connects the potential spaces to
the Sobolev spaces.

Theorem 2.16 (Stein,[20]). If 1 < p < ∞ and k ∈ N0 then Lpk(Rn) =
W k,p(Rn) and the norms, (2.12) and (1.2), are equivalent.

The Bessel potential J2 is the inverse operator of I −∆ on Schwartz func-
tions, i.e.

Lemma 2.17. For all ϕ ∈ S(Rn)
(I −∆)J2(ϕ) = ϕ = J2((I −∆)ϕ).

Proof. We use, as always for Schwartz functions, Fourier-transformation.

F [(I −∆)J2(ϕ)](x) =F [(I −∆)(G2 ∗ ϕ)](x)

=(1 + |x|2)(2π)n/2(2π)−n/2(1 + |x|2)−1F [ϕ](x)
=F [ϕ](x), and

F [ϕ](x) =(2π)n/2(2π)−n/2(1 + |x|2)−1(1 + |x|2)F [ϕ](x)
=F [G2 ∗ (I −∆)ϕ](x)
=F [J2((I −∆)ϕ)](x).
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So, putting it all together, we find

F [(I −∆)J2(ϕ)] = F [ϕ] = F [J2((I −∆)ϕ)].

The result follows since ϕ ∈ S(Rn).
With the use of this result on S(Rn), we can prove a similar result for Lp(Rn).

Lemma 2.18. If 1 ≤ p ≤ ∞ and ϕ,∆ϕ ∈ Lp(Rn), then J2((I −∆)ϕ) = ϕ
in the sense of distributions.

Proof. Let ψ ∈ D a test function and ϕ ∈ Lp(Rn) such that ∆ϕ ∈ Lp(Rn),then

〈TJ2((I−∆)ϕ), ψ〉D′,D = 〈J2((I −∆)ϕ), ψ〉p,q = 〈G2 ∗ ((I −∆)ϕ), ψ〉p,q
= 〈(I −∆)ϕ,G2 ∗ ψ〉p,q = 〈(I −∆)ϕ,J2(ψ)〉p,q
= 〈T(I−∆)ϕ,J2(ψ)〉D′,D = 〈(I −∆)Tϕ,J2(ψ)〉D′,D
= 〈Tϕ, (I −∆)J2(ψ)〉D′,D = 〈Tϕ, ψ〉D′,D

Here we used that G2 is even, so 〈G2 ∗ ϕ,ψ〉p,q = 〈ϕ,G2 ∗ ψ〉p,q for all
ϕ ∈ Lp(Rn), ψ ∈ Lq(Rn) and that ψ ∈ D ⊂ S(Rn), so (I − ∆)J2(ψ) = ψ,
according to Lemma 2.3.

Now we have prepared ourselves to prove inclusion (2.10).

Theorem 2.19. If ϕ ∈ Lp(Rn), ∆ϕ ∈ Lp(Rn) and 1 < p < ∞, then
ϕ ∈W 2,p(Rn).

Proof. Assume ϕ,∆ϕ ∈ Lp(Rn), then, according to Lemma 2.18 J2((I −
∆)ϕ) = ϕ, so ϕ ∈ Lp2. And thus, Theorem 2.16, ϕ ∈W 2,p(Rn).

Theorem 2.19 was the third and final inclusion that we needed to prove.
So it follows that D(Aa) = W 2,p(Rn), 1 < p < ∞. In Lemma 2.14 it was
shown that a∆ is the generator in Lp(Rn) of the semigroup (Ta(t))t≥0. This
concludes the proof of Theorem 2.9. Now we can combine this result with
Theorem 2.1 and Corollary 2.20 follows, solving the homogeneous problem
in Lp(Rn), provided that 1 < p <∞.

Corollary 2.20. Let 1 < p < ∞, then the differential equation (2.3),
with initial condition U(0) = φ ∈ W 2,p(Rn) has a unique solution U ∈
C1(R+, L

p(Rn)). It is given by

U(t) = Ta(t)φ, t ≥ 0.
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Chapter 3

Well-posedness for abstract
semilinear Cauchy problems

Theorem 2.1 showed that the homogeneous problem can be solved uniquely
if we choose the initial condition in the domain of the operator A and as-
sume that A is the generator of a strongly continuous semigroup. To solve
the inhomogeneous problem we prove a theorem that requires seven more
conditions. This theorem is of course applicable to the homogeneous prob-
lem, since the extra seven conditions are all satisfied by F ≡ 0. Let us state
the inhomogeneous problem that we will consider in this chapter.

Problem 3.1. Let X and Y be Banach spaces such that X embeds continu-
ously and densely into Y . We identify X with its image. Let (T (t))t≥0 be a
strongly continuous semigroup on Y with generator (A,D(A)). We consider
the following abstract semilinear Cauchy problem in Y :

∂tU(t) = AU(t) + F (t, U(t)), t > 0, (3.1)
U(0) = φ. (3.2)

In this equation F (t, ·) is a map from X to Y , continuous for almost all t.
We choose the initial condition φ ∈ X.

In most of the results on local well-posednessA is the generator of an analytic
semigroup. In this chapter we deal, apparently, with the more general case,
where A is only assumed to generate a C0-semigroup. However, it is not
clear whether Conditions 3 and 4 below, that we use to solve the problem,
imply that (T (t))t≥0 is an analytic semigroup.
What also needs our attention is that in general X $ Y . For all t ≥ 0
F (t,X) ⊂ Y , so we also find that in general F (t,X) * X. One way to treat
this is to find a subspace X ′ of X that is also a Banach space, such that
F (t,X ′) ⊂ X ′. Here we do not try to find such a subspace. Instead, we
will put conditions on the map Ψp,t, that is associated with the semigroup.
In [18], the conditions are such that F (t,X) ⊂ X, since J.Rauch and J.
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Smoller consider a smooth function F and X consists of bounded continuous
functions. For Lp-spaces a nonlinear function typically maps a function out
of Lp(Rn), so we can not simply use their results for our case. Here we
present a theory following K. Ito and F. Kappel, [12], and S.C. Hille, [10],
taking a semigroup perspective.
Following [12], we can define a solution of (3.1),(3.2) on [0, τ ] in X in a
classical sense and in a more general sense. The generalized solution is
called a mild solution.

Definition 3.2.

1. A classical solution of (3.1),(3.2) on [0, τ ] in X is a function U(·;φ) ∈
C1((0, τ), X) ∩ C([0, τ ], X), with U(t;φ) ∈ D(A) for t > 0 such that
(3.1) and (3.2) are satisfied.

2. A mild solution of (3.1),(3.2) on [0, τ ] in X is a function U(·;φ) ∈
C([0, τ ], X) that satisfies the Variation of Constants Formula

U(t, φ) = T (t)φ+
∫ t

0
T (t− s)F (s, U(s))ds, 0 ≤ t ≤ τ. (3.3)

Under certain conditions, the mild solutions in Theorem 3.6 are even classical
solutions, see [12]. The Variation of Constans Formula can be derived from
the differential equation. Assume U is a classical solution, then

∂s[T (t− s)U(s)] = −T (t− s)AU(s) + T (t− s)∂sU(s)
= −T (t− s)AU(s) + T (t− s)AU(s) + T (t− s)F (s, U(s))
= T (t− s)F (s, U(s)).

We integrate this from s = 0 to s = t,
∫ t

0
∂s[T (t− s)U(s)]ds =

∫ t

0
T (t− s)F (s, U(s))ds.

From this the formula follows

T (0)U(t)− T (t)U(0) =
∫ t

0
T (t− s)F (s, U(s)ds.

T (0)U(t) = U(t) and U(0) = φ, so we get

U(t) = T (t)φ+
∫ t

0
T (t− s)F (s, U(s))ds

So, if U is a classical solution of (3.1),(3.2), then it is also a mild solution.
However, if U is a mild solution of (3.1),(3.2), it does not need to be a
classical solution, since it does not need to be differentiable. So, a mild

27



solution is a generalization of a classical solution.
A solution of (3.1), (3.2) depends on the initial condition φ. However, most
of the time there is no confusion about what this condition is, so we will
write U(·) instead of U(·, φ). In Theorem 3.6 the existence and uniqueness of
mild solutions will be shown under certain conditions. Before we state these
conditions we will first define a continuous linear map Ψp,t from Lp([0, t], Y )
to Y , for 1 ≤ p ≤ ∞ and t > 0:

Ψp,t : Lp([0, t], Y ) → Y : ϕ 7→
∫ t

0
T (t− s)ϕ(s)ds (3.4)

Since (T (t))t≥0 is strongly continuous on Y , the map T : [0, t] → L(Y ) is
strongly measurable. According to Lemma B.4 it then follows that, because
ϕ ∈ Lp([0, t], Y ) is measurable, the map s 7→ T (t−s)ϕ(s) is measurable from
[0, t] to Y . Because ‖T (t)‖L(X) ≤ Meωt, Proposition A.4, for some M ≥ 1
and ω ∈ R, we see that

∫ t
0 ‖T (t − s)ϕ(s)‖Y ds < ∞ for all ϕ ∈ Lp([0, t], Y ).

So according to Theorem B.7, s 7→ T (t − s)ϕ(s) is Bochner integrable and
definition 3.4 makes sense. If there exists a 1 ≤ p ≤ ∞ such that the map
s 7→ F (s, U(s)) is in Lp([0, t], Y ), then (3.3) can be written as

U(t) = T (t)φ+ Ψp,t [F (·, U(·))] .

F defines a Nemytskii-mapping NF from functions U : R+ → X to functions
NF (U) : R+ → Y

NF (U)(t) := F (t, U(t)).

Using this notation, (3.3) becomes

U(t) = T (t)φ+ Ψp,t [NF (U)] , 0 ≤ t ≤ τ.

With this rewritten Variation of Constants Formula we also rewrite the
definition of a mild solution. Note that this definition can only be used
if there exists a 1 ≤ p ≤ ∞ such that NF (U) ∈ Lp([0, t], Y ) for all U ∈
C([0, t], X). The conditions listed below ensure this.

Definition 3.3. A mild solution of (3.1),(3.2) on [0, τ ] in X is a function
U(·;φ) ∈ C([0, τ ], X) that satisfies

U(t) = T (t)φ+ Ψp,t [NF (U)] , 0 ≤ t ≤ τ. (3.5)

We will now state the conditions under which local existence and uniqueness
of mild solutions will be proven.

1. X, the domain of F (t, ·), is independent of t and invariant under the
semigroup (T (t))t≥0, and

2. The restriction of (T (t))t≥0 to X, (T (t)|X)t≥0, is a strongly continuous
semigroup on X.
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3. There exist 1 ≤ p < ∞ and T > 0 such that Ψp,t(Lp([0, t], Y )) ⊂ X,
for all t ∈ (0, T ] and

4. There exists an M > 0 such that ‖Ψp,t‖Y,X ≤ M for all t ∈ (0, T ],
where ‖Ψp,t‖Y,X := ‖Ψp,t‖L(Lp([0,t],Y ),X). This norm makes sense in
view of Lemma 3.4.

5. F : [0, T ]×X → Y is a generalized Carathéodory function.

6. NF maps L∞([0, T ], X) into L∞([0, T ], Y ), and

7. NF : L∞([0, T ], X) → L∞([0, T ], Y ) is locally Lipschitz continuous.

If X = Y , the local existence and uniqueness of a mild solution can be
proven under weaker conditions, i.e. Conditions 1 through 4 are auto-
matically satisfied. So we assume that X is a proper subset of Y . The
map Ψp,t : Lp([0, t], Y ) → Y is continuous. According to Condition 3
the image is contained in X. The following lemma shows that the map
Ψp,t : Lp([0, t], Y ) → X is continuous as well.

Lemma 3.4. Let X,Y and Z be Banach spaces, such that X embeds contin-
uously into Y . We identify X with its image. Let L : Z → Y be a linear and
continuous map with L(Z) ⊂ X. Then the map L : Z → X is continuous

Proof. Let {zn}∞n=1 ⊂ Z a sequence for which there exists a z0 ∈ Z and a
x0 ∈ X such that ‖zn − z‖Z → 0 and ‖Lzn − x0‖X → 0 as n → ∞. Since
X embeds continuously into Y there exists a constant C > 0 such that
‖ξ1−ξ2‖Y ≤ C‖ξ1−ξ2‖X for all ξ1, ξ2 ∈ X. So it follows that ‖Lzn−x0‖Y ≤
C‖Lzn − x0‖X → 0 as n→∞. L is a linear and continuous map from Z to
Y , so in particular it is closed. Thus Lz0 = x0. Consequently L : Z → X
is closed and linear and thus, according to the Closed Graph Theorem,
continuous.

It follows that, if 1 ≤ p < ∞, the mapping Ψp with Ψpϕ(t) := Ψp,tϕ is a
continuous map from Lp([0, T ], Y ) into C([0, T ], X).

Lemma 3.5. If Conditions (3) and (4) are satisfied, then Ψp is a continuous
mapping from Lp([0, T ], Y ) into C([0, T ], X).

Before we prove this lemma we first derive the following property of Ψp,t.
For 0 < h ≤ t < t+ h ≤ T and ϕ ∈ Lp([0, T ], Y ) with 1 ≤ p <∞

Ψp,t+hϕ = T (t)Ψp,hϕ+ Ψp,tϕ(·+ h). (3.6)

Ψp,t+hϕ =
∫ h

0
T (t+ h− s)ϕ(s)ds+

∫ t+h

h
T (t+ s− h)ϕ(s)ds

= T (t)
∫ h

0
T (h− s)ϕ(s)ds+

∫ t

0
T (t− s)ϕ(s+ h)ds

= T (t)Ψp,hϕ+ Ψp,tϕ(·+ h).
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Because it is a linear continuous operator and thus closed, it follows from
Theorem B.8 that T (t) can be put in front of the integral.

Proof. (Lemma 3.5) We will only prove right-hand continuity. Left-hand
continuity can be proven analogously. Let ϕ ∈ Lp([0, t], Y ). Condition (3)
implies that Ψp,tϕ ∈ X for all 0 ≤ t ≤ T . We first prove continuity in t = 0.
Let 0 < h ≤ T , then it follows from Condition (4) that

‖Ψp,hϕ‖X = ‖Ψp,hϕh‖X ≤M‖ϕh‖Lp([0,T ],Y ) = M‖ϕ‖Lp([0,h],Y ) → 0 as h ↓ 0

where we have defined ϕh(t) = ϕ(t) for 0 ≤ t ≤ h and ϕh(t) = 0 elsewhere.
Now for 0 < t < T . Take h such that 0 < h ≤ t < t+h ≤ T . From equation
(3.6) we obtain

Ψp,t+hϕ−Ψp,tϕ = T (t)Ψp,hϕ+ Ψp,t(ϕ(·+ h)− ϕ).

Using Condition (4) again we see that

‖Ψp,t(ϕ(·+ h)− ϕ)‖X ≤M‖ϕ(·+ h)− ϕ‖Lp([0,T ],Y ) → 0 as h ↓ 0.

Note that we use here the strong continuity of the right translation semi-
group in Lp(R+, Y ) for 1 ≤ p <∞. This strong continuity does not hold for
p = ∞. We have already shown that ‖Ψp,hϕ‖X → 0 as h ↓ 0. This proves
the right-hand continuity.

Now we are prepared to prove the main theorem of this chapter.

Theorem 3.6. The semilinear Cauchy problem in Y , Problem 3.1, has a
unique local mild solution in X if the conditions 1 through 7 are satisfied,
i.e.

1. For any γ0 > 0 there exist constants τ = τ(γ0), 0 < τ ≤ T , and
γ = γ(γ0) ≥ 0 such that for all φ ∈ X with ‖φ‖X ≤ γ0 there exists
a mild solution U(·;φ) ∈ C([0, τ ], X) of (3.1),(3.2) on [0, τ ] such that
‖U(t;φ)‖X ≤ γ for 0 ≤ t ≤ τ .

2. For all φ ∈ X and τ > 0 there exists at most one mild solution U ∈
C([0, τ ], X) such that U(0) = φ.

3. For any γ > 0 and τ > 0 there exists a constant C = C(γ, τ) such that

‖U(·, φ1)− U(·, φ2)‖C([0,τ ],X) ≤ C‖φ1 − φ2‖X
for mild solutions U(·;φj) ∈ C([0, τ ], X) with ‖U(t, φj)‖ ≤ γ, 0 ≤ t ≤
τ , (j = 1, 2).

Theorem 11.2 in [12] deals with a slightly different and a more general differ-
ential equation. The conditions here are equivalent to the conditions they
use. We will present a proof that makes use of the Picard-Banach Fixed
Point Theorem.
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Theorem 3.7 (Picard-Banach Fixed Point Theorem). [9] Let M be
a complete metric space with metric d. Let 0 < θ < 1 and let S : M → M
satisfy

d(Snx, Sny) ≤ θd(x, y)

for some positive integer n and for all x, y ∈M . Then S has a unique fixed
point in M .

Proof. [Theorem 3.6] Conditions 1 and 2 together with Proposition A.4 show
that there exist ω ∈ R and M1 ≥ 1 such that ‖T (t)‖L(X) ≤ M1e

ωt for all
t ≥ 0. We define M0 = max0≤t≤T M1e

ωt, where T is defined by Conditions
3 and 4. Choose γ = 2M0γ0 and let τ ≤ T . Let φ be such that ‖φ‖X ≤ γ0.
We define a metric space

Mτ,γ,φ = {U ∈ C([0, τ ], X)|U(0) = φ, ‖U‖∞ ≤ γ}.

The metric is defined by the supremum-norm ‖U‖∞ = supt∈[0,τ ] ‖U(t)‖X :
d(ϕ,ψ) = ‖ϕ− ψ‖∞. Furthermore we define a solution operator

Sτ,γ,φ : Mτ,γ,φ → C([0, τ ], X) : U 7→ U0 + Ψp [NF (U)] ,

where U0(t) = T (t)φ. Mτ,γ,φ is complete because it is a closed subset of
C([0, t], X), hence it is a complete metric space. We will show that Sτ,γ,φ
maps into Mτ,γ,φ and that, if τ is chosen appropriately small, it is a con-
traction , i.e. there exists a 0 < θ < 1 such that ‖Sτ,γ,φU − Sτ,γ,φV ‖∞ ≤
θ‖U − V ‖∞ for all U, V ∈ Mτ,γ,φ. It then follows from the Picard-Banach
Fixed Point Theorem that there exists a fixed point of Sτ,γ,φ, i.e. a mild
solution.
To prove that Sτ,γ,φ maps into Mτ,γ,φ, we show the following

1. U ∈ C([0, τ ], X) implies Sτ,γ,φU ∈ C([0, τ ], X).
Since (T (t)|X)t≥0 is a strongly continuous semigroup on X (Condition
2), U0 is continuous from [0, T ] into X. If U ∈ C([0, τ ], X), then
it is measurable, according to Lemma B.3. Lemma 2.1 in [10] then
implies that NF (U) : [0, τ ] → Y is measurable. U ∈ C([0, τ ], X) ⊂
L∞([0, τ ], X), so Condition 6 implies NF (U) ∈ L∞([0, τ ], Y ). Since
[0, τ ] is bounded we also haveNF (U) ∈ Lp([0, τ ], Y ), for all 1 ≤ p <∞.
Now Lemma 3.5 implies that ΨpNF (U) ∈ C([0, τ ], X), which shows
that Sτ,γ,φU ∈ C([0, τ ], X).

2. U(0) = φ implies Sτ,γ,φU(0) = φ.
Clearly Sτ,γ,φU(0) = U0(0) = φ.

3. ‖U‖∞ ≤ γ implies ‖Sτ,γ,φU‖∞ ≤ γ.
The triangle inequality implies

‖Sτ,γ,φU‖∞ ≤ ‖U0‖∞ + ‖ΨpNF (U)‖∞. (3.7)
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Since U0(t) = T (t)φ we see that

‖U0(t)‖X ≤ ‖T (t)‖L(X)‖φ‖X ≤M0γ0 = γ/2

for all 0 ≤ t ≤ T and thus

‖U0‖∞ ≤ γ/2. (3.8)

For ‖ΨpNF (U)‖∞ we first bound ‖Ψp,tNF (U)‖X for t ∈ [0, τ ].

‖Ψp,tNF (U)‖X ≤ ‖Ψp,t‖Y,X‖NF (U)‖Lp([0,t],Y )

Condition 7 tells us that for all ϕ, ψ ∈ L∞([0, T ], X) such that ‖ϕ‖∞ ≤
γ and ‖ψ‖∞ ≤ γ there exists a constant Lγ > 0 such that

‖NF (ϕ)−NF (ψ)‖∞ ≤ Lγ‖ϕ− ψ‖∞.

This implies that

‖NF (ϕ)‖∞ ≤ ‖NF (ϕ)−NF (0)‖∞ + ‖NF (0)‖∞
≤ Lγ‖ϕ‖∞ + ‖NF (0)‖∞.

Now we can make the following estimation.

‖NF (U)‖pLp([0,t],Y ) =
∫ t

0
‖NF (U)(s)‖pY ds

≤
∫ t

0
(Lγ‖U‖∞ + ‖NF (0)‖∞)pds = Lpt

Here we used that ‖U‖∞ ≤ γ and that there exists a constant K such
that ‖NF (0)‖∞ ≤ K and defined L := γ + K. Consequently, using
Condition 4, we see that

‖Ψp,tNF (U)‖X ≤MLt1/p.

Hence
‖ΨpNF (U)‖∞ ≤MLτ1/p. (3.9)

Now, putting equations (3.7), (3.8) and (3.9) together we find

‖Sτ,γ,φU‖∞ ≤ γ/2 +MLτ1/p.

So if necessary we adapt τ such that Mτ1/p ≤ γ/2. Then we see that

‖Sτ,γ,φU‖∞ ≤ γ.
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To show that Sτ,γ,φ is a contraction we do the following.

‖Sτ,γ,φU(t)− Sτ,γ,φV (t)‖X = ‖Ψp,t{NF (U)−NF (V )}‖X
≤ ‖Ψp,t‖Y,X‖NF (U)−NF (V )‖Lp([0,t],Y )

And because of Condition 7 we have
∫ t

0
‖NF (U)(s)−NF (V )(s)‖pY ds ≤

∫ t

0
Lpγ‖U(s)− V (s)‖pXds

≤
∫ t

0
Lpγ‖U − V ‖p∞ds

≤ Lpγt‖U − V ‖p∞
This is true for all 0 ≤ t ≤ τ , so we also see that

‖Sτ,γ,φU − Sτ,γ,φV ‖∞ ≤MLγτ
1/p‖U − V ‖∞.

If necessary we adapt τ again such that MLγτ
1/p < 1. We define θ =

MLγτ
1/p and find that θ < 1. This concludes the proof of the first statement

in the theorem.
For the second statement, let U and V mild solutions in C([0, τ ], X) of
(3.1),(3.2), such that U(0) = V (0) = φ, with ‖U(t)‖X ≤ γ and ‖V (t)‖X ≤ γ
for all 0 ≤ t ≤ τ . Then it follows from the variation of constants formula
and Condition (4), that for all 0 ≤ t ≤ τ

‖U(t)− V (t)‖pX ≤Mp‖NF (U)−NF (V )‖pLp([0,t],Y )

≤MpLpγ

∫ t

0
‖U(s)− V (s)‖pXds.

Using Gronwall’s Lemma, we find that ‖U(t)−V (t)‖X ≤ 0 for all 0 ≤ t ≤ τ ,
i.e. U ≡ V .
For the third statement let U1(·, φ1) and U2(·, φ2) mild solutions in C([0, τ ], X)
of (3.1),(3.2), such that ‖U1(t)‖X ≤ γ and ‖U2(t)‖X ≤ γ for all 0 ≤ t ≤ τ .
Then

‖U1(t)− U2(t)‖X ≤ ‖T (t)(φ1 − φ2)‖X +M‖NF (U1)−NF (U2)‖Lp([0,t],Y )

≤M0‖(φ1 − φ2)‖X +MLγ

(∫ t

0
‖U1(s)− U2(s)‖pXds

) 1
p

.

Now we use the inequality (a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p ≥ 1.

‖U1(t)−U2(t)‖pX ≤ 2p−1Mp
0 ‖(φ1−φ2)‖pX+2p−1MpLpγ

∫ t

0
‖U1(s)−U2(s)‖pXds.

It then follows from Gronwall that

‖U1(t)− U2(t)‖pX ≤ 2p−1Mp
0 e

2p−1MpLp
γt‖φ1 − φ2‖pX .
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So if we define Cp := 2p−1Mp
0 e

2p−1MpLp
γτ , then we have for all 0 ≤ t ≤ τ ,

that
‖U1(t)− U2(t)‖X ≤ C‖φ1 − φ2‖X .

Hence ‖U1 − U2‖C([0,τ ],X) ≤ C‖φ1 − φ2‖X .

U(t+ s, φ) = U(s, U(t, φ)).

Hence we can define continuous evolutionary operators Ŝ(t, s) : X → X for
t, s ∈ [0, τφ) and s ≤ t, such that U(t;φ) = Ŝ(t, 0)φ. Furthermore

Ŝ(t, t) = I for all t ∈ [0, τφ),

Ŝ(t, s)Ŝ(s, σ) = Ŝ(t, σ) for σ ≤ s ≤ t.

If F does not depend on t ∈ R+ then we can define a strongly continuous
semigroup S, such that U(t;φ) = S(t)φ, by Ŝ(t, s) = S(t− s). Then

S(0) = Ŝ(t, t) = I and

S(t)S(s) = Ŝ(t+ s, t)Ŝ(t, 0) = Ŝ(t+ s, 0) = S(t+ s)

In [12] it is shown that if φ ∈ D(A) and Aφ+F (0, φ) ∈ X the mild solution
satisfies a Lipschitz condition on each compact subinterval of [0, τ). This
Lipschitz condition implies that U(·, φ) is strongly absolutely continuous.
In [14] J. Komura shows that such a function is differentiable almost every-
where. If not X but Y is reflexive, then one can also prove differentiability
of the unique mild solution. In this case the solution is a classical solution,
if φ ∈ D(A) and Aφ+ F (0, φ) ∈ X, see [12].
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Chapter 4

The FitzHugh-Nagumo
equations in an abstract
setting

In this Chapter we will use the theory of the previous section to find Banach
spaces X and Y such that the FitzHugh-Nagumo equations have a unique
local mild solution in X. To see that we can apply Theorem 3.6 to these
equations we write them as follows.

∂tU1(t) = a∆U1(t) + F1(U1(t), U2(t)),
∂tU2(t) = F2(U1(t), U2(t)),

with initial conditions U1(0) = φ1 ∈ X1 and U2(0) = φ2 ∈ X2 and mappings
F1(x, y) = p3(x)+ c1y, with p3 a cubic polynomial and F2(x, y) = c2x+ c3y.
If we write X = X1 ⊕X2, Y = Y1 ⊕ Y2 A = a∆⊕ 0 and T = Ta ⊕ I, we see
that we are dealing with a particular case of Problem 3.1. The mappings
Fi : X → Yi, i = 1, 2, are in this case independent of R+. So, if we can find
Banach spaces X1, X2, Y1 and Y2 such that the conditions for Theorem 3.6
are satisfied, we can prove local existence and uniqueness for the FitzHugh-
Nagumo equations. Now we will go through the seven conditions to find
possible Banach spaces of Theorem 3.6.

• Conditions 1 and 2.
We want to study solutions in Lp(Rn) and in Proposition 2.8 we proved
that (Ta(t))t≥0 is a strongly continuous semigroup on Lp(Rn) for 1 ≤
p < ∞. So Condition 1, Condition 2 and the assumption on the
semigroup on Y in Problem 3.1, i.e. strong continuity, imply that
we may choose Lp-spaces, with 1 ≤ p < ∞, for X1 and Y1 or an
intersection thereof.

• Conditions 3 and 4.
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We can use the following proposition to satisfy Conditions 3 and 4 for
X1 and Y1.

Proposition 4.1. Let t > 0, 1 ≤ q <∞ and 1 ≤ p, r ≤ ∞ such that

q ≤ r,
1
r
>

1
q
− 2
n

and p > [1 +
n

2
(
1
r
− 1
q
)]−1,

then
Ψp,t(Lp([0, t], Lq(Rn))) ⊂ Lr(Rn)

and there exists a constant C = C(n, a, q, r, p), such that for t > 0

‖Ψp,t‖Lq ,Lr ≤ Ct
n
2
( 1

r
− 1

q
)+1− 1

p

The proof can be found in Appendix C. Thus for Condition 3 we have
to find p, q and r that satisfy the conditions of Proposition 4.1. Then
Condition 4 is also satisfied, since ‖Ψp,t‖Lq ,Lr ≤ CT

n
2
( 1

r
− 1

q
)+1− 1

p =: M
for t ∈ (0, T ]. Note that actually Ψp,t(Lp([0, t], Lq(Rn))) ⊂ Lr∩Lq(Rn),
so if we choose X1 = Lr ∩ Lq(Rn) and Y1 ⊂ Lq(Rn) Conditions 3 and
4 are satisfied and X1 embeds continuously into Y1, because of the
following lemma.

Lemma 4.2. Let 1 ≤ p ≤ q ≤ ∞. If ϕ ∈ Lp∩Lq(Rn), then ϕ ∈ Ls(Rn)
for all p ≤ s ≤ q and ‖ϕ‖s ≤ 21/s(‖ϕ‖p + ‖ϕ‖q).

A proof can be found in [10].
The semigroup acting on X2 and Y2 is I, the identity. Therefore we
have to take X2 = Y2, since t 7→ I is a group and Lemma 4.3 in
[10] then implies that Ψp,t is surjective. Now Conditions 3 and 4 are
easily satisfied for the second equation with ‖Ψp,t‖Y2,X2 ≤ T 1/p for all
t ∈ (0, T ].

• Conditions 5, 6 and 7.
For these conditions the only difficulty is the cubic polynomial in F1.
To deal with it we use the following theorem, which is proven in [5] by
D.G. de Figuiredo. Recall that NF (ϕ)(t) := F (ϕ(t)) for ϕ : Ω → R.

Theorem 4.3. Let Ω be an open set of Rm and F : Ω × R → R a
Carathéodory function. Suppose that there exist a constant C > 0, a
function B ∈ Lq(Ω), 1 ≤ q ≤ ∞ and r > 0 such that

|F (t, x)| ≤ C|x|r +B(t)

for all t ∈ Ω and x ∈ R, then NF maps Lqr(Ω) into Lq(Ω) and NF is
continuous and bounded.

36



The other mappings are all of the form x 7→ cx, so these are con-
tinuous and bounded as well. F : R → R is a Carathéodory func-
tion and if we choose X and Y such that F maps X into Y , then
NF : L∞([0, T ], X) → L∞([0, T ], Y ) is Lipschitz continuous.

Theorem 4.3 and the estimate |p3(s)| ≤ c1|s|+ c2|s|3 for all s ∈ R yield that

f ∈ Lp(Rn) implies p3(f) ∈ Lp/3(Rn).
We want p3 to map into Y1 and we need that X1 embeds into Y1. So we let

X1 = Lp1 ∩ Lp′1(Rn),
with 1 ≤ p1 ≤ p′1 <∞. Then p′1 ≥ p1/3, X1 ⊂ Lp1 ∩ Lp1/3(Rn) and

p3(X1) ⊂
⋂

p1≤3q≤p′1
q≥1

Lq(Rn).

We now choose
Y1 = Ls1 ∩ Ls′1(Rn),

with p1 ≤ s1 ≤ s′1 ≤ p′1 and p1 ≤ 3s1 ≤ 3s′1 ≤ p′1. Such a choice for s1 and
s′1 is possible, provided that p′1 ≥ 3p1. The first condition ensures that X1

embeds continuously into Y1, Lemma 4.2, and the second that F 1
1 maps X1

into Y1.
We also need to satisfy Conditions 3 and 4. Proposition 4.1 shows that

Ψp,t(Lp([0, t], Ls1(Rn))) ⊂ Ls1 ∩ Lr(Rn)
for all r ≥ s1 that satisfy

s1 ≤ r,
1
r
>

1
s1
− 2
n

and p > [1 +
n

2
(
1
r
− 1
s1

)]−1,

We want
Ψp,t(Lp([0, t], Ls1(Rn))) ⊂ Lp1(Rn),

so it follows that s1 ≤ p1. And since we already had p1 ≤ s1, we find s1 = p1.
We also want

Ψp,t(Lp([0, t], Ls
′
1(Rn))) ⊂ Lp

′
1(Rn),

so we find an extra condition from Proposition 4.1

1
p′1

>
1
s′1
− 2
n
.

What is left to choose are the spaces X2 and Y2. We have to satisfy the
following conditions: X2 = Y2, X2 embeds continuously into Y1 and X1

embeds continuously into Y2. We define

X2 = Y2 = Lp2 ∩ Lp′2(Rn).
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If we let p2 ≤ p1 ≤ s′1 ≤ p′2 then X2 embeds continuously into Y1 and if we
let p1 ≤ p2 ≤ p′2 ≤ p′1 then X1 embeds continuously into Y2. From this it
follows that p2 = p1 and s′1 ≤ p′2 ≤ p′1.
Let us now summarize the results. We have chosen the following Banach
spaces

X1 = Lp1 ∩Lp′1(Rn), Y1 = Lp1 ∩Ls′1(Rn), X2 = Y2 = Lp1 ∩Lp′2(Rn). (4.1)

The conditions on these spaces are

1 ≤ p1 ≤ s′1 ≤ p′1/3 <∞,
1
p′1

>
1
s′1
− 2
n
, s′1 ≤ p′2 ≤ p′1. (4.2)

Before we state the results in a theorem we first need to check that there
exist such p1, p

′
1, s

′
1, p

′
2 that satisfy the above conditions. Using the following

steps one can find all possible solutions.

1. Choose p1 such that 1 ≤ p1 <∞.

2. Choose p′1 such that p′1 ≥ 3p1, p′1 > n and p′1 <∞.

3. Choose p′2 such that p′2 ≤ p′1, p
′
2 ≥ p1 and p′2 >

p′1n
n+2p′1

.

4. Choose s′1 such that s′1 ≥ p1, s′1 ≤ p′1/3, s′1 >
p′1n
n+2p′1

and s′1 ≤ p′2.

Since s′1 >
p′1n
n+2p′1

is equivalent with 1
p′1

> 1
s′1
− 2

n , the above steps imply
the conditions. Furthermore the conditions in the steps all follow from the
original conditions. This may not be clear at once for p′1 > n and p′2 >

p′1n
n+2p′1

,
so we will show how they can be deduced.

• s′1 ≤ p′1/3 together with 1
p′1
> 1

s′1
− 2

n imply that 1
p′1
> 3

p′1
− 2

n . From

this it follows that − 2
p′1
> − 2

n , or p′1 > n.

• 1
p′1
> 1

s′1
− 2
n is equivalent with s′1 >

p′1n
n+2p′1

. Combining this with s′1 ≤ p′2
we find p′2 ≥ s′1 >

p′1n
n+2p′1

The above steps can only be followed if all conditions are compatible. For
most of the conditions this is clear. We will only show that p′1/3 >

p′1n
n+2p′1

,
using that p′1 > n. This allows one to choose p′2 as in step 3 in view of step
2.

p′1n
n+ 2p′1

<
p′1n

n+ 2n
=
p′1n
3n

= p′1/3

Now the functional-analytic set-up is such that Conditions 1−7 of Theorem
3.6 hold. Then we have the following theorem:

Theorem 4.4. Let X = X1 ⊕X2 as in (4.1) and (4.2). Then the FitzHugh
Nagumo equations as defined at the beginning of this section have unique
mild solutions in X locally in time.
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Chapter 5

Global existence

Now that we have found a local solution the next step is a global (in
time) solution. In [17], J. Rauch proves the existence of global solutions
to the FitzHugh-Nagumo equations. These results, however, only apply to
bounded domains. It is not straightforward to adjust the methods used in
his article so that it can be applied to unbounded domains, due to embed-
dings and particular inequalities, that do not hold there. So we have to
try to find other methods. Remember that we defined a maximal solution
U(·, φ) on the maximal interval of existence [0, τφ). We will use the following
theorem, whose proof follows [19].

Theorem 5.1. Let U(·, φ) be the maximal solution of Problem 3.1 and let
[0, τφ) be the maximal interval of existence. If τφ <∞ then

lim
t↑τφ

‖U(t, φ)‖X = ∞.

Proof. Suppose U(·, φ) is the maximal solution and [0, τφ) the maximal in-
terval of existence and limt↑τφ ‖U(t, φ)‖X 6= ∞. Then we have that

lim inf
t↑τφ

‖U(t, φ)‖X = M ′ <∞.

So there exists a sequence {tn}∞n=0 such that tn < τφ for all n ≥ 0, tn ↑ τφ as
n→∞ and ‖U(tn, φ)‖X ≤M := M ′ + 1 for all n. We define for all n ≥ 0

φn := U(tn, φ).

Since ‖φn‖X ≤ M we can use Theorem 3.6 to see that there exists a τ =
τ(M) > 0, independent of n, such that a unique solution exists for 0 ≤ t ≤ τ
with initial condition φn. Then, because of uniqueness,

U(t, φn) = U(tn + t, φ) for all 0 ≤ t ≤ τ.

From this it follows that, because of maximality, tn + τ ≤ τφ for all n ≥ 0,
but this is a contradiction, since tn ↑ τφ as n→∞.
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So to prove that there exists a global solution we have to find a locally
bounded function T 7→ MT on [0,∞), the so-called a-priori estimate, such
that

‖U(t, φ)‖X ≤MT , (5.1)

for all 0 ≤ t ≤ T and T < τφ. This implies that

lim
t↑a
‖U(t, φ)‖X ≤ sup

t∈[0,a]
MT <∞,

for all finite a. Hence, no blow-up in finite time can occur.
Classically the energy method is used, see [17]. An other way is with Lya-
punov functions, see [19]. Yet an other method is the use of invariant regions,
see [18]. All of these, however, show global existence on a bounded domain
and our goal is to show global existence on an unbounded domain. And the
results are not easily adapted to our case, since for instance the Poincaré
inequality does not hold on an unbounded domain.
In the following sections we will present three different methods to find a
bound as in (5.1). In Section 5.1 we assume that NF is globally Lipschitz
continuous. In Section 5.2 we only use local Lipschitz continuity, but then
we also need to assume that U(t) ∈ L∞(Rn) for all t ≥ 0. And finally in
Section 5.3 we show how to find a bound if U(t) ≥ 0 for all t ≥ 0. Due
to time limitations we did not succeed in applying any of the latter two
methods to the FitzHugh-Nagumo system.

5.1 Global Lipschitz continuity

We assume that F : R+ × X → Y is globally Lipschitz continuous as a
function of x ∈ X, uniformly for t in compact intervals, i.e. for each T > 0
there exists a constant LT such that ‖F (t, x) − F (t, x′)‖Y ≤ LT ‖x − x′‖X
for all t ∈ [0, T ] and x, x′ ∈ X. Now we can easily prove global existence.

Theorem 5.2. Assume that the seven conditions for Theorem 3.6 are sat-
isfied, with T = ∞ and that F is globally Lipschitz continuous as a function
of x ∈ X, uniformly for t in compact intervals. Then the semilinear Cauchy
problem, Problem 3.1, has a unique global mild solution in X.

Proof. We write U(·) for the mild solution. The mild solution is the unique
fixedpoint of the Variation of Constants formula, i.e.

U(t) = T (t)φ+ Ψp,t [NF (U)] for all t ≥ 0.

We will show that ‖U(t)‖X is bounded for all t ≥ 0. We can estimate this
norm as before:

‖U(t)‖X ≤ ‖T (t)‖L(X)‖φ‖X + ‖Ψp,t‖Y,X‖NF (U)‖Lp([0,t],Y ). (5.2)
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Suppose that the maximal interval of existence [0, τφ) of U(·, φ) is finite, i.e.
τφ < ∞. Choose T ≥ τφ and let LT the Lipschitz constant as above. Then
for 0 ≤ s < τφ:

‖NF (U)(s)‖Y = ‖F (s, U(s))‖Y ≤ LT ‖U(s)‖X + ‖F (s, 0)‖Y .

Now we can estimate ‖NF (U)‖Lp([0,t],Y ).

‖NF (U)‖Lp([0,t],Y ) =
(∫ t

0
‖NF (U)(s)‖pY ds

) 1
p

≤
(∫ t

0
(LT ‖U(s)‖X + ‖F (s, 0)‖Y )pds

) 1
p

≤ LT ‖U(·)‖Lp([0,t],X) + t
1
p ‖NF (0)‖Lp([0,t],Y ).

Now we substitute this into inequality (5.2).

‖U(t)‖X ≤‖T (t)‖L(X)‖φ‖X + ‖Ψp,t‖Y,X‖NF (U)‖Lp([0,t],Y )

≤MXe
ωxt‖φ‖X + ‖Ψp,t‖Y,X‖NF (0)‖Lp([0,t],Y )

+ L‖Ψp,t‖Y,X‖U(·)‖Lp([0,t],X)

From this inequality we can also see that, using the inequality (x + y)p ≤
2p−1(xp + yp),

‖U(t)‖pX ≤2p−1Mp
Xe

ωxpt‖φ‖pX + 2p−1‖Ψp,t‖pY,X‖NF (0)‖pLp([0,t],Y )

+ 2p−1Lp‖Ψp,t‖pY,X
∫ t

0
‖U(s)‖pXds

To bound ‖U(t)‖pX we will use Gronwall’s inequality, Lemma B.9. However,
since we do not have any measurability results for the map t 7→ ‖Ψp,t‖Y,X ,
we first use that ‖Ψp,t‖Y,X ≤M for t ∈ (0, T ]. Thus we find:

‖U(t)‖pX ≤2p−1Mp
Xe

ωxpt‖φ‖pX + 2p−1Mp‖NF (0)‖pLp([0,t],Y )

+ 2p−1LpMp

∫ t

0
‖U(s)‖pXds.

Now the bound follows from Gronwall’s inequality:

‖U(t)‖pX ≤2p−1Mp‖NF (0)‖pLp([0,t],Y ) + 2p−1Mp
X‖φ‖pXeωxpte2

p−1LpMpt

+ 22p−2LpM2p

∫ t

0
e2

p−1LpMp(t−s)‖NF (0)‖pLp([0,s],Y )ds,

for 0 ≤ t ≤ τφ. Hence limt↑τφ ‖U(t)‖X < ∞, contradicting the assumption
that τφ <∞.
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For the FitzHugh-Nagumo equations we can not use this theorem since the
cubic polynomial is not globally Lipschitz continuous. It is locally Lipschitz
continuous, so maybe we can prove global existence if we use the theorem
presented in the following section. We included this case to stress the rele-
vance of global Lipschitz continuity of F for global existence of solutions.
Note that if F : R+ × X → Y is globally Lipschitz continuous, uniformly
in t ∈ R+ in compact intervals, it may happen that there is ”blow-up at
infinity”, i.e. limt→∞ ‖U(t)‖X = ∞. If F is globally Lipschitz continuous,
globally on R+, i.e. the Lipschitz constantLT is independent of T , then this
cannot happen.

5.2 Local Lipschitz continuity

If F : R+ ×X → Y is not globally Lipschitz continuous we can still prove
global existence, but in a less general setting. However, it is general enough
for our case. In Problem 3.1 we defined the abstract function F : R+ ×
X → Y . We restrict ourselves now to the case where X and Y are finite
intersections of Lp-spaces over Rn. We write for t ≥ 0, ϕ ∈ X and x ∈ Rn

F (t, ϕ)(x) = f(t, ϕ(x)) (5.3)

with f : R+ × R→ R. A condition that allows us to prove global existence
is U(t) ∈ L∞(Rn) for almost all t ∈ [0, τφ] and we have the a-priori estimate:

‖U(t)‖∞ ≤M(t), (5.4)

for some positive continuous function M on R+ for almost all t ∈ [0, τφ].

Proposition 5.3. Assume that the seven conditions for Theorem 3.6 are
satisfied, with T = ∞. Let X and Y be finite intersections of Lp-spaces over
Rn, 1 ≤ p < ∞, such that X is continuously embedded into Y . Let F be
defined as above and let f be locally Lipschitz continuous in R essentially
uniform on compact sets in R+, with f(t, 0) = 0 for almost all t ≥ 0. Assume
further that U(t) ∈ L∞(Rn) for almost all t ∈ [0, τφ] and satisfies (5.4)
for some continuous function M on [0, τφ]. Then the semi linear Cauchy
problem in Y , Problem 3.1, has a unique global mild solution in X for each
initial value φ ∈ X.

Proof. The proof is essentially the same as the proof of Theorem 5.2. So
it comes down to bound ‖U(t)‖X and we saw that the only difficulty was
‖NF (U)‖Lp([0,t],Y ). Suppose that the mild solution U(t;φ) for initial con-
dition φ has finite time interval [0, τφ) of maximal existence. Let M ′ =
maxt∈[0,τφ]M(t). Since f : R+×R→ R is locally Lipschitz continuous there
exists a constant L depending on τφ and M ′ such that

|f(t, x)− f(t, x′)| ≤ L|x− x′|
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for all x, x′ ∈ Rn such that |x| ≤ M ′ and |x′| ≤ M ′ and for almost all
t ∈ [0, τφ]. From this it follows that for all these bounded x ∈ Rn and for
almost all t ∈ [0, τφ]

|f(t, x)| ≤ |f(t, 0)|+ L|x| = L|x|.

Consequently, using (5.3) and (5.4),

|F (t, U(t))(x)| = |f(t, U(t)(x))| ≤ L|U(t)(x)|,

for almost all t ∈ [o, τφ and for all x ∈ Rn, because we assumed that U(t) ∈
L∞(Rn) and ‖U(t)‖∞ ≤M ′ for almost all t ∈ [0, τφ]. Because Y is the finite
intersection of Lp-spaces it now also follows that

‖F (t, U(t))‖Y ≤ L‖U(t)‖Y ,

for almost all t ∈ [0, τφ]. Since X is a continuously embedded subspace of Y
there exists a constant C > 0 such that for all x ∈ X

‖x‖Y ≤ C‖x‖X .

So it follows that
‖F (t, U(t))‖Y ≤ LC‖U(t)‖X .

Now we can put a bound on ‖NF (U)‖Lp([0,t],Y ), for all 0 ≤ t < τφ:

‖NF (U)‖Lp([0,t],Y ) =
(∫ t

0
‖F (s, U(s))‖pY ds

) 1
p

≤ LC

(∫ t

0
‖U(s)‖pXds

) 1
p

If we put this into inequality (5.2), using that ‖Ψp,t‖Y,X ≤M , we find

‖U(t)‖X ≤Mxe
ωxt‖φ‖X + LCM‖U(·)‖Lp([0,t],X).

Then we use Gronwall’s inequality for ‖U(t)‖pX , 0 ≤ t < τφ :

‖U(t)‖pX ≤ ωxp2p−1Mp
x‖φ‖pX

ωxp− 2p−1LpCpMp
eωxpt−22p−2Mp

x‖φ‖pXLpCpMp

ωxp− 2p−1LpCpMp
e2

p−1LpCpMpt.

Hence no blow-up at t = τφ can occur, contradicting that τφ <∞.

The approach found in [17] is to establish that a solution U(t) ∈ L∞(Ω) for
t > 0 and derive an a-priori estimate of the form (5.4) and the apply the
result that we formulated as Theorem 5.1. Unfortunately this cannot easily
be extended.
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5.3 Global existence of positive solutions

In this final section, we use positivity of solutions to prove global existence.
We will need thatX and Y are Banach lattices such that the partial ordering
is compatible with the embedding, i.e. j : X ↪→ Y is a Riesz homomorphism,
see Appendix D. We also have to put a restriction on the nonlinearity
F : X → Y . The semigroup is assumed to be positive, i.e. y ≥ 0 implies
T (t)y ≥ 0 for all t ≥ 0. Before we prove the main theorem of this section
we first show a useful relation between integration, the supremum and the
partial ordering in a Banach lattice.

Lemma 5.4. Let X a Banach lattice and let ϕ : [0, t] → X be Bochner
integrable, then s 7→ ϕ(s)+ is Bochner integrable for s ∈ [0, t] and

[∫ t

0
ϕ(s)ds

]+

≤
∫ t

0
ϕ(s)+ds.

Proof. Since ϕ : [0, t] → X is Bochner integrable, it follows from Theorem
B.7 that ∫ t

0
‖ϕ(s)‖Xds <∞.

For all s ∈ [0, t], we have that

|ϕ(s)+| ≤ |ϕ(s)+|+ |ϕ(s)−| = |ϕ(s)|.
Hence, since X is a Banach lattice,

‖ϕ(s)+‖X ≤ ‖ϕ(s)‖X .
Consequently ∫ t

0
‖ϕ(s)+‖Xds ≤

∫ t

0
‖ϕ(s)‖Xds <∞

and ϕ(s)+ is Bochner integrable. Then,
∫ t

0
ϕ(s)ds =

∫ t

0
ϕ(s)+ds−

∫ t

0
ϕ(s)−ds. (5.5)

The positive cone X+ is closed in X. Hence both integrals in (5.5) are in
X+ and we conclude

∫ t

0
ϕ(s)ds ≤

∫ t

0
ϕ(s)+ds.

Consequently
[∫ t

0
ϕ(s)ds

]+

≤
[∫ t

0
ϕ(s)+ds

]+

=
∫ t

0
ϕ(s)+ds.
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We will use this result in the following theorem. By a positive solution U(t)
we mean a solution such that U(t) ≥ 0 on its maximal interval of existence.

Theorem 5.5. Assume that the seven conditions for Theorem 3.6 are sat-
isfied, with T = ∞ and (X,≤) and (Y,¹) Banach lattices. Let the dense
embedding j : X ↪→ Y be a Riesz homomorphism and identify X with
j(X) ⊂ Y . Let F : X → Y such that there exist a, b > 0 such that
‖F+(x)‖Y ≤ a + b‖x‖X for all x ∈ X+ and assume that the semigroup
(T (t))t≥0 generated by A is linear, strongly continuous in X and positive.
Then any positive mild solution U(t) in X to the Cauchy problem

∂tU(t) = AU(t) + F (U(t)), t ≥ 0,
U(0) = φ,

exists globally.

Proof. We write U(t) = U(t)+ − U(t)−. We assume that U(t) ≥ 0 for all
t ≥ 0, so U(t)+ = U(t) and U(t)− = 0. A mild solution satisfies the variation
of constants formula,

U(t) = T (t)φ+
∫ t

0
T (t− s)F (U(s))ds.

Since [x + x′]+ ≤ x+ + x′+ for all x, x′ ∈ X, and U(t)+ = U(t) it follows
that

U(t) ≤ [T (t)φ]+ +
[∫ t

0
T (t− s)F (U(s))ds

]+

.

T (t) is a positive and linear operator, so we find

[T (t)φ]+ =
[
T (t)[φ+ − φ−]

]+ = [T (t)φ+ − T (t)φ−]+ ≤ T (t)φ+.

The inequality follows because T (t)φ+ and T (t)φ− are both in X+ and we
have for x, x′ ∈ X+ that

[x− x′]+ ≤ x+ + (−x′)+ = x+.

∫ t
0 T (t − s)F (U(s))ds is a Bochner-integral in Y , with values in j(X). So

if we do not identify X with its image j(X), in X we have to consider
j−1

∫ t
0 T (t− s)F (U(s))ds. If we use Proposition D.1.1 we find that

j

([
j−1

∫ t

0
T (t− s)F (U(s))ds

]+
)

=
[
jj−1

∫ t

0
T (t− s)F (U(s))ds

]†

=
[∫ t

0
T (t− s)F (U(s))ds

]†
.
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Now we can apply Lemma 5.4 to see that
[∫ t

0
T (t− s)F (U(s))ds

]†
¹

∫ t

0
[T (t− s)F (U(s))]† ds.

Consequently,

j

([
j−1

∫ t

0
T (t− s)F (U(s))ds

]+
)
¹

∫ t

0
[T (t− s)F (U(s))]† ds

= jj−1

∫ t

0
[T (t− s)F (U(s))]† ds.

j is a Riesz homomorphism, so from Proposition D.1 we get
[
j−1

∫ t

0
T (t− s)F (U(s))ds

]+

≤ j−1

∫ t

0
[T (t− s)F (U(s))]† ds.

Now we identify X again with its image in Y . Thus we have
[∫ t

0
T (t− s)F (U(s))ds

]+

≤
∫ t

0
[T (t− s)F (U(s))]† ds.

Because (T (t))t≥0 is a positive semigroup we see that
[∫ t

0
T (t− s)F (U(s))ds

]+

≤
∫ t

0
T (t− s)[F (U(s))]†ds.

Now substituting this into the variation of constans formula, we find

U(t) ≤ T (t)φ+ +
∫ t

0
T (t− s)[F (U(s))]†ds.

X is a Banach lattice and all terms are in X+, so it follows that

‖U(t)‖X ≤ ‖T (t)‖L(X)‖φ+‖X + ‖Ψp,t‖Y,X‖[F (U(s))]†‖Lp([0,t],Y ).

Because ‖F+(x)‖Y ≤ a+ b‖x‖X for all x ∈ X+, it follows that

‖U(t)‖X ≤ ‖T (t)‖L(X)‖φ+‖X + ‖Ψp,t‖Y,X
(
at+ bp‖U‖pLp([0,t],X)

)1/p
.

Finally Gronwall’s Inequality bounds ‖U(t)‖pX for all t ≥ 0, using that
‖Ψp,t‖Y,X ≤M , and the inequality : (a+ b)p ≤ 2p−1(ap + bp).

If we apply this result to the FitzHugh-Nagumo equations we get the fol-
lowing result.

Corollary 5.6. Let X and Y be defined as in Theorem 4.4. Then any mild
solution in X to the FitzHugh-Nagumo equations that remains positive exists
globally.
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Proof. We will check the conditions

1. Every Lp-space is a Banach lattice: Let ϕ,ψ ∈ Lp(Rn) and assume
|ϕ| ≤ |ψ|, i.e. |ϕ(x)| ≤ |ψ(x)| for almost all x ∈ Rn then

‖ϕ‖pp =
∫

Rn

|ϕ(x)|pdx ≤
∫

Rn

|ψ(x)|pdx = ‖ψ‖pp.

It follows that also every finite intersection of Lp-spaces is a Banach
lattice. So X1, X2, Y1 and Y2 are Banach lattices. Now X = X1

⊕
X2

becomes a Banach lattice if we define X+ = X+
1

⊕
X+

2 and for x, x′ ∈
X x ≤ x′ if and only if x1 ≤ x′1 and x2 ≤ x′2, with x = x1 ⊕ x2 and
x′ = x′1 ⊕ x′2. And ‖x‖X = ‖x1‖X1 + ‖x2‖X2 .

2. The map F : X → Y is defined by

F (x1 ⊕ x2) = (f(x1) + c1x2, c2x1 + c3x2),

with f(x) = a0x(x − a1)(x − a2). The cubic polynomial is of course
the only part that needs our attention. It is not hard to see that
there exists a constant Cf > 0 such that for all x ≥ 0, f+(x) ≤ Cfx.
Obviously k(x) = Cfx is the tangentline in a1 ≤ x ≤ a2 such that
k(0) = 0. So we have to solve the equation f ′(x)x = f(x). We find
x = x1+x2

2 . Now we put Cf = f ′(x1+x2
2 ). It follows that there exist

a, b > 0 such that ‖F+(x)‖Y ≤ a+ b‖x‖Y for all x ∈ X+.

3. We have to check that the operator T (t) = Ta(t)⊕ I is positive on X
and Y . So we show it for Lp(Rn). Clearly I is a positive operator, so
it suffices to show that Ta(t) is a positive operator. Ea(t, x) > 0 for all
t > 0 and for all x ∈ Rn. Let ϕ ∈ Lp(Rn)+, i.e. ϕ(x) ≥ 0 for almost
all x ∈ Rn, then for all y ∈ Rn we have that Ea(t, x − y)ϕ(x) ≥ 0 for
almost all x ∈ Rn. It then follows that

(Ta(t)ϕ)(x) =
∫

Rn

Ea(t, x− y)ϕ(y)dy ≥ 0,

for almost all x ∈ Rn. So also Ta(t)ϕ ∈ Lp(Rn)+.

4. Finally, the natural embedding of these Lp-spaces is clearly a Riesz
homomorphism. This concludes the proof.
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Chapter 6

Final thoughts

The last year of my study in mathematics I spent working on this thesis.
Finally it is finished. Although, it is sort of open ended, since we were not
able to prove global existence. However, in mathematics you should never
expect to complete a research. There is always more to do, more to exam-
ine, more to discover. For me, though, it is the final step in completing my
master in mathematics. So, for further research, maybe someone else can
continue where I stopped. To conclude, we list four suggestions for further
research.

• Global existence of solutions of the FitzHugh-Nagumo equations on
an unbounded domain has not been proven, yet. The method that
we have described, using the positivity of a solution, might be used
as a starting point. Maybe it is possible to use a similar approach for
non-positive solutions.

• An other unanswered question is whether the presented theory also
holds for Fréchet spaces. In Chapter 2 we have found the heat semi-
group on S(Rn). Furthermore, we can define a generator, in view of
Lemma 2.4. Is it possible to extend the results in Chapter 3 to this
space?

• The domain of the infinitesimal generator ∆ of the heat semigroup in
L1(Rn) is unknown. This is probably not an easy problem to solve.
However, since L1(Rn) is one of those spaces that we are naturally
interested in, it might be worth solving this problem.

• Finally, the projection that FitzHugh used to simplify the Hodgkin-
Huxley equations. How does it work from a functional analytic point
of view and what is the relation between the solutions of the FitzHugh-
Nagumo equations and those of the Hodgkin-Huxley equations?
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Appendix A

Preliminaries for Chapter 2

Semigroups are used throughout this thesis. So in this appendix we will give
a definition of and state some results on semigroups. Some prior knowledge
on distributions is also needed to fully understand Chapter 2. Furthermore,
Young’s convolution inequality is often used in this chapter.

Lemma A.1 (Young’s convolution inequality). Let ϕ ∈ Lp(Rn) and
ψ ∈ Lq(Rn) then

‖ϕ ∗ ψ‖r ≤ ‖ϕ‖p‖ψ‖q
for p, q, r ∈ [1,∞] and 1

p + 1
q = 1 + 1

r . where

(ϕ ∗ ψ)(x) =
∫

Rn

ϕ(x− y)ψ(y)dy

A.1 Semigroups

All statements in this section are proven in [4]. Let’s start with the definition
of a semigroup.

Definition A.2. A semigroup (T (t))t≥0 on a metric space (X, d) is a family
of operators on X that satisfy the following properties

1. T (t) : X → X is continuous with respect to d for all t ≥ 0.

2. T (0) = I.

3. T (t)T (s) = T (t+ s) for all t, s ≥ 0.

It is called a strongly continuous semigroup, or C0-semigroup if for all x ∈ X
t 7→ T (t)x is continuous for t ≥ 0. Note that, using Property 3, continuity
in t = 0 is sufficient for strong continuity.
A Banach space X is a complete metric space with respect to the metric
d(x, y) = ‖x− y‖X . If (T (t))t≥0 is a linear semigroup on a Banach space X,

49



i.e. the operators T (t) are linear, then continuity, Property 1, is equivalent
to boundedness. To a strongly continuous semigroup (T (t))t≥0 on a Banach
space X one may associate an operator AT , the generator of the semigroup,
defined by the following limit:

ATϕ = lim
t→0

T (t)ϕ− ϕ

t

This generator is a densely defined closed operator on X and its domain,
D(AT ), consits of all functions ϕ ∈ X such that the above limit exists. So,
loosely speaking, the generator is the derivative of the semigroup in t = 0.
A similar result holds for t > 0,

d

dτ
T (τ)|τ=tϕ = T (t)ATϕ for all ϕ ∈ D(AT ) and t ≥ 0.

Furthermore, the domain D(AT ) is invariant under the semigroup and the
generator and the semigroup commute:

ATT (t)ϕ = T (t)ATϕ for all ϕ ∈ D(AT ) and t ≥ 0.

A subspace D of the domain D(A) of a linear operator A : D(A) ⊂ X → X
is called a core for A if D is dense in D(A) with respect to the graph norm:
‖x‖A = ‖x‖X + ‖Ax‖X .
Two more results on semigroups that are used in this thesis are the following
propositions.

Proposition A.3. Let (A,D(A)) be the generator of a strongly continuous
semigroup (T (t))t≥0 on a Banach space X. A subspace D of D(A) that is
dense in X and invariant under the semigroup is a core for A.

Proposition A.4. For every strongly continuous semigroup (T (t))t≥0, there
exist constants ω ∈ R and M ≥ 1 such that

‖T (t)‖L(X) ≤Meωt

for all t ≥ 0.

A.2 Distributions

This section is based on [8].
For an open subset Ω of Rn, we define

C∞c (Ω) =
⋃

K⊂Ω compact
C∞c (K)

For a compact subset K of Rn, C∞c (K) is a Fréchet space. The topology is
defined by the norms:

‖ϕ‖α = sup
x∈K

|Dαϕ(x)|,
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for α ∈ Nn0 . Hence a sequence {ϕk}∞k=0 converges in C∞c (K) to ϕ if and only
if {Dαϕk}∞k=0 converges uniformly to Dαϕ. We say that {ϕk}∞k=0 converges
in C∞c (Ω) to ϕ if there exists a compact K ⊂ Ω such that {ϕk}∞k=0 ⊂ K and
the sequence converges to ϕ in C∞c (K). A linear functional T : C∞c (Ω) → R
is called continuous if for each compact K ⊂ Ω, T |C∞c (K) is continuous, i.e. if
ϕk → ϕ in C∞c (K), then Tϕk → Tϕ in R . Now we can define distributions:

Definition A.5. Let Ω ⊂ Rn open. A distribution on Ω is a continuous
linear functional on C∞c (Ω).

Schwartz introduced the notation: D(Ω) for C∞c (Ω), D′(Ω) for the distribu-
tions on Ω, D for C∞c (Rn) and D′ for the distributions on Rn. If F ∈ D′(Ω)
and ϕ ∈ D(Ω), then we write 〈F,ϕ〉D′(Ω),D(Ω)

for the value of F in ϕ. Every
ϕ ∈ Lp(Ω), 1 ≤ p ≤ ∞ defines a distribution on Ω, namely, the functional
Tϕ. For every ψ ∈ D(Ω) it is defined by

〈Tϕ, ψ〉D′(Ω),D(Ω)
:= 〈ϕ,ψ〉p,q,Ω,

where 〈·, ·〉p,q,Ω is defined for ϕ ∈ Lp(Rn) and ψ ∈ Lq(Rn) with 1 ≤ p, q ≤ ∞
and 1

p + 1
q = 1 by

〈ϕ,ψ〉p,q,Ω :=
∫

Ω
ϕ(x)ψ(x)dx.

We write 〈·, ·〉p,q for 〈·, ·〉p,q,Rn . We call two functions ϕ,ψ ∈ Lp(Ω) the same
in the sense of distributions if

〈Tϕ, χ〉D′(Ω),D(Ω) = 〈Tψ, χ〉D′(Ω),D(Ω) for all χ ∈ D(Ω).

The power of distribution theory is the possibility to define derivatives of a
function ϕ ∈ Lp(Ω), even when it is not differentiable in the classical sense.
If ϕ ∈ C |α|(Ω) and ψ ∈ D(Ω) integration by parts yields the following:

∫

Ω
Dαϕ(x)ψ(x)dx = (−1)|α|

∫

Ω
ϕ(x)Dαψ(x)dx

So for a distribution F ∈ D′(Ω) we define the derivative DαF as

〈DαF,ϕ〉D′(Ω),D(Ω) = (−1)|α|〈F,Dαϕ〉D′(Ω),D(Ω)

for all ϕ ∈ D(Ω). Using the last two definitions we come to the following. Let
1 ≤ p ≤ ∞. If ϕ ∈ Lp(Ω), then Dαϕ ∈ Lp(Ω) (in the sense of distributions)
means that there exists a ψ ∈ Lp(Ω) such that

〈Tψ, χ〉D′(Ω),D(Ω) = 〈Tϕ, Dαχ〉D′(Ω),D(Ω) for all χ ∈ D(Ω)

If the derivative exists then (in the sense of distributions) Dαϕ = ψ and the
distributions DαTϕ, TDαϕ and Tψ are the same.
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Appendix B

Preliminaries for Chapter 3

In Chapter 3 we integrate vector valued functions. In this appendix we will
give a precise definition and prove some results that we use in Chapter 3.
For Theorem 3.6 we need generalized Carathéodory functions and Nemitsii
mappings, so we will introduce those. Since we use Gronwall’s lemma in
this theorem we will prove it here.

B.1 Bochner integration of vector valued functions

This section is based on [2]. The following definitions are needed for measure
theory:

Definition B.1. Let (Ω,Σ, µ) a finite measure space and X a Banach space.

1. A function ϕ : Ω → X is called simple if there exist x1, x2, . . . , xn ∈ X
and E1, E2, . . . , En ∈ Σ such that ϕ =

∑n
i=1 xiχEi.

2. A function ϕ : Ω → X is called µ-measurable if there exist a sequence
of simple functions {ϕn}∞n=1 such that

lim
n→∞ ‖ϕn(ω)− ϕ(ω)‖X = 0,

for µ-almost every ω ∈ Ω.

3. A function ϕ : Ω → X is called weakly µ-measurable if for each x∗ ∈
X∗ the function x∗ϕ : Ω → R is µ-measurable.

It is easily verified that the finite sum of measurable functions is measurable
and that the pointwise (almost everywhere) limit of measurable functions
is measurable. Pettis’ Measurability Theorem provides a different criterium
for measurability relating it to separably valued functions. A function ϕ :
Ω → X is called µ-essentially separably valued if there exists E ∈ Σ such
that µ(E) = 0 and ϕ(Ω\E) is a norm-separable subset of X.
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Theorem B.2 (Pettis’ Measurability Theorem). A function ϕ : Ω →
X is µ-measurable if and only if

1. ϕ is µ-essentially separably valued and

2. ϕ is weakly µ-measurable

A proof can be found in [2]. The following lemma shows that a continuous
map from a σ-compact space with a Borel measure to a Banach space is
measurable. We use Pettis’ Measurability Theorem to prove it.

Lemma B.3. Let Ω be a σ-compact space with Borel measure µ and let X
a Banach space. If ϕ : Ω → X is continuous, then it is µ-measurable.

Proof. First we show that ϕ is µ-essentially separably valued.
Ω is σ-compact, so Ω =

⋃∞
i=1 Ωi, with Ωi compact ∀i. Thus

ϕ(Ω) = ϕ(
∞⋃

i=1

Ωi) =
∞⋃

i=1

ϕ(Ωi)

Since ϕ is a continuous function, ϕ(Ωi) is compact for all i, so for every open
cover

ϕ(Ωi) ⊂
⋃

xi∈ϕ(Ωi)

B(xi, ε), with ε ≥ 0

there exists a finite number nε, such that

ϕ(Ωi) ⊂
nε⋃

j=1

B(xi,ε,j , ε).

Now let ε = 1
k , with k ∈ N and define for all i

Vi =
∞⋃

k=1

n 1
k⋃

j=1

xi, 1
k
,j

then
ϕ(Ωi) ⊂ Vi

So if we define

V =
∞⋃

i=1

Vi

then
ϕ(Ω) ⊂ V ,

i.e. ϕ is µ-essentially separably valued.
What is left to prove is that ϕ is weakly µ-measurable. ϕ : Ω → X is
continuous, so x∗ϕ : Ω → R is continuous ∀x∗ ∈ X∗. This implies that
x∗ϕ : Ω → R is Borel-measurable for all x∗ ∈ X∗, and thus ϕ : Ω → X is
weakly µ-measurable.
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In Chapter 3 we integrate the vector valued function s → T (t − s)ϕ(s).
It follows from Lemma B.4 that this function is indeed measurable, since
(T (t))t≥0 is a strongly continuous semigroup and thus strongly measurable,
i.e. a map T from a measure space, (Ω, µ), to L(X), such that for all x ∈ X
the map ω 7→ T (ω)x is µ-measurable from Ω to X. Note that Y = L(X)
is a Banach space with respect to the operator norm. µ-measurability of
T : Ω → Y is usually called uniform µ-measurability. In the following
lemma we will only need strong measurability of T .

Lemma B.4. Let (Ω, µ) a measure space and X a Banach space. If ϕ :
Ω → X is µ-measurable and T : Ω → L(X) is strongly µ-measurable, then

Ω → X : ω 7→ T (ω)ϕ(ω)

is µ-measurable.

To prove this lemma we first show that

Lemma B.5. If ϕ : Ω → X is µ-measurable and ψ : Ω → R is measurable,
then ϕψ : Ω → X is µ-measurable.

Proof. There are simple functions ϕn, ψn n ∈ N and subsets A,A′ ∈ Ω with
µ(A) = µ(A′) = 0 such that

lim
n→∞ϕn(ω) = ϕ(ω) ∀ω ∈ Ω \A and

lim
n→∞ψn(ω) = ψ(ω) ∀ω ∈ Ω \A′.

Let ω ∈ Ω \ (A ∪A′), then

‖ϕnψn(ω)−ϕψ(ω)‖X ≤ ‖ϕn(ω)‖X |ψn(ω)−ψ(ω)|+‖ϕn(ω)−ϕ(ω)‖X |ψ(ω)| → 0

The functions ϕnψn, (n ∈ N) are simple functions, µ(A ∪ A′) = 0 and we
have seen that limn→∞(ϕnψn)(ω) = (ϕψ)(ω) for all ω ∈ Ω \ (A∪A′), so ϕψ
is µ-measurable.

Now we can prove Lemma B.4

Proof. Since ϕ is µ-measurable there exists a sequence {ϕn}∞n=1 of simple
functions such that limn→∞ ‖ϕn(ω)−ϕ(ω)‖X = 0, µ almost everywhere. So

T (ω)ϕ(ω) = lim
n→∞T (ω)ϕn(ω)

µ almost everywhere. If we write

ϕn(ω) =
Nn∑

j=1

xn,jχEn,j (ω)

54



then

T (ω)ϕn(ω) =
Nn∑

j=1

(T (ω)xn,j)χEn,j (ω)

The map Ω → X : ω 7→ T (ω)xn,j is µ-measurable and the map Ω → R :
ω 7→ χEn,j (ω) is measurable, so according to Lemma B.5

Ω → X : ω 7→ (T (ω)xn,j)χEn,j (ω).

is measurable. The finite sum of measurable functions is measurable and
the pointwise limit of measurable functions is measurable, so Ω → X : ω 7→
T (ω)ϕ(ω) is µ-measurable.

We can integrate measurable vector valued functions.

Definition B.6. Let (Ω,Σ, µ) a finite measure space and X a Banach space.
A µ-measurable function f : Ω → X is called Bochner integrable if there
exists a sequence of simple functions {fk}∞k=0 such that

lim
k→∞

∫

Ω
‖fk − f‖Xdµ = 0.

Then for E ∈ Σ the integral is defined by
∫

E
fdµ = lim

k→∞

∫

E
fkdµ.

From [2] we have the following result

Theorem B.7. A µ-measurable function f : Ω → X is Bochner integrable
if and only if ∫

Ω
‖f‖Xdµ <∞.

A final result on vector valued functions that we need is

Theorem B.8. Let T be a closed linear operator with domain in X and
having values in a Banach space Y . If ϕ and Tϕ are Bochner integrable
with respect to µ, then for all E ∈ Σ,

T

(∫

E
ϕdµ

)
=

∫

E
Tϕdµ.

For a proof we refer to [2].
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B.2 Gronwall

The following lemma is a general form of Gronwall’s Lemma.

Lemma B.9 (Gronwall). Let A,B,C and D be real valued continuous
functions on [a, b], such that D(x) ≥ 0 for all x ∈ [a, b]. If

A(x) ≤ B(x) + C(x)
∫ x

a
D(y)A(y)dy for all x ∈ [a, b], (B.1)

then also

A(x) ≤ B(x) + C(x)
∫ x

a
e

R x
y C(z)D(z)dzB(y)D(y)dy for all x ∈ [a, b].

The proof uses the following lemma

Lemma B.10. Let A and B be real valued continuous functions, then the
differential equation

{
dY
dx (x) = A(x)Y (x) +B(x),
Y (x0) = Y0

(B.2)

has a unique solution

Y (x) = Y0e
R x

x0
A(y)dy +

∫ x

x0

e
R x

y A(z)dzB(y)dy.

A proof can be found in every elementary book on differential equations.

Proof. (Gronwall) Define for a ≤ x ≤ b,

E(x) =
∫ x

a
D(y)A(y)dy

and
F (x) = A(x)− C(x)E(x).

It follows from B.1 that F (x) ≤ B(x) for all x ∈ [a, b]. Since A and D are
continuous, E is continuously differentiable and we can deduce the following
differential equation for E:

{
dE
dx (x) = D(x)A(x) = C(x)D(x)E(x) +D(x)F (x),
E(a) = 0

(B.3)

Lemma B.10 now shows that we can write

E(x) =
∫ x

a
e

R x
y C(z)D(z)dzD(y)F (y)dy.
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The result follows if we use F (x) ≤ B(x) and D(x) ≥ 0.

A(x) ≤ B(x) + C(x)E(x)

= B(x) + C(x)
∫ x

a
e

R x
y C(z)D(z)dzD(y)F (y)dy

≤ B(x) + C(x)
∫ x

a
e

R x
y C(z)D(z)dzB(y)D(y)dy.

B.3 Generalized Carathéodory functions and Ne-
mytskii mappings

Let (Ω, µ) a measure space and X and Y Banach spaces. Follwing [10], we
define a generalized Carathéodory function as a function F : Ω × X → Y
such that

1. For each fixed x ∈ X the function F (·, x) : Ω → Y is µ-measurable,
and

2. For almost all fixed ω ∈ Ω the function F (ω, ·) : X → Y is continuous.

Denote by M(Ω, X) the equivalence classes of µ-measurable functions from
Ω to X. With a function ϕ ∈M(Ω, X) we can define an outer superposition
mapping. The mapping NF : M(Ω, X) →M(Ω, Y ), with

NF (ϕ)(ω) := F (ω, ϕ(ω))

is called a Nemytskii mapping.
A Nemytskii mapping maps measurable functions to measurable functions.

Lemma B.11. If F : Ω×X → Y is a generalized Carathéodory function and
ϕ : Ω → X is µ-measurable, then ω 7→ NF (ϕ)(ω) : Ω → Y is µ-measurable

A proof can be found in [10] and for Carathéodory functions, i.e. Ω is an
open subset of Rn and X = Y = R, in [5].
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Appendix C

Estimates on (Ta(t))t≥0

This appendix is based on [10]. In this appendix we will show which
Lp-spaces we can choose such that Conditions 3 and 4 are satisfied for
the FitzHugh-Nagumo equations. In Proposition C.2 we will prove that
Ta(t), t > 0 is a bounded operator from Lq(Rn) into Lr(Rn) if 1 ≤ q ≤ r ≤
∞. We will use this result in Proposition C.3 to find conditions on p, q and
r such that Ψp,t(Lp([0, t], Lq(Rn))) ⊂ Lr(Rn) and ‖Ψp,t‖L(Lq ,Lr) is bounded
for t ∈ (0, T ]. Recall that for t > 0

Ea(t) : x 7→ Ea(t, x) = (4πat)−n/2e−|x|
2/(4at). (C.1)

The following proposition gives a bound for ‖E(n)
a (t)‖s, that we of course

will use in Proposition C.2. To avoid confusion we write E(n)
a (t) if x ∈ Rn.

Proposition C.1. Let 1 ≤ s ≤ ∞, then there exists a constant C =
C(n, a, s), such that

‖E(n)
a (t)‖s ≤ Ct

n
2
( 1

s
−1).

Proof. First, we prove the proposition for Ls(R), 1 ≤ s <∞ .

‖E(1)
a (t)‖ss =

∫

R
(4πat)−s/2e−sx

2/(4at)dx = (4πat)(1−s)/2s−1/2

The result follows with C(1, a, s) = (4πa)
1
2
( 1

s
−1)s−

1
2s . By using the case

n = 1 we obtain

‖E(n)
a (t)‖s ≤

n∏

i=1

‖E(1)
a (t)‖s = C(n, a, s)t

n
2
( 1

s
−1),

where C(n, a, s) = C(1, a, s)n = (4πa)
n
2
( 1

s
−1)s−

n
2s . For L∞(Rn) the proof is

trivial and C(n, a,∞) = (4πa)−
n
2 .
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Proposition C.2. Let 1 ≤ q ≤ r ≤ ∞ and t > 0, then Ta(t) maps Lq(Rn)
continuously into Lr(Rn) and there exists a C = C(n, a, q, r) such that

‖Ta(t)‖L(Lq ,Lr) ≤ Ct
n
2
( 1

r
− 1

q
)
.

Proof. If ϕ ∈ Lq(Rn), 1 ≤ q ≤ ∞ and r ≥ q then there exists a 1 ≤ s ≤ ∞
such that 1

s + 1
q = 1 + 1

r . So by Young’s Convolution Inequality (Lemma
A.1), and Proposition C.1

‖Ta(t)ϕ‖r = ‖Ea(t) ∗ ϕ‖r ≤ ‖Ea(t)‖s‖ϕ‖q ≤ C(n, a, s)t
n
2
( 1

s
−1)‖ϕ‖q.

It follows that Ta(t)ϕ ∈ Lr(Rn) and since 1
s + 1

q = 1 + 1
r we find

‖Ta(t)‖Lq ,Lr ≤ C(n, a, q, r)t
n
2
( 1

r
− 1

q
)

where C(n, a, q, r) = (4πa)
n
2
( 1

r
− 1

q
)(1 + 1

r − 1
q )

n
2
(1+ 1

r
− 1

q
). The map is linear

and bounded, hence continuous.

Proposition C.3 (Proposition 4.1). Let t > 0, 1 ≤ q <∞ and 1 ≤ p, r ≤
∞ such that

q ≤ r,
1
r
>

1
q
− 2
n

and p > [1 +
n

2
(
1
r
− 1
q
)]−1,

then
Ψp,t(Lp([0, t], Lq(Rn))) ⊂ Lr(Rn)

and there exists a constant C = C(n, a, q, r), such that

‖Ψp,t‖L(Lq ,Lr) ≤ Ct
n
2
( 1

r
− 1

q
)+1− 1

p

We will use Hölder’s inequality to prove this result.

Lemma C.4 (Hölder’s Inequality). If p, q ∈ [1,∞], 1
p + 1

q = 1, ϕ ∈
Lp(Rn) and ψ ∈ Lq(Rn), then ϕψ ∈ L1(Rn) and

‖ϕψ‖1 ≤ ‖ϕ‖p‖ψ‖q.

Proof. [Proposition C.3] Let ϕ ∈ Lp([0, t], Lq(Rn)), then, by Proposition
C.2,

‖Ψp,tϕ‖r ≤
∫ t

0
‖Ta(t− s)ϕ(s)‖rds ≤

∫ t

0
C(n, a, q, r)(t− s)

n
2
( 1

r
− 1

q
)‖ϕ(s)‖qds

Since ϕ ∈ Lp([0, t], Lq(Rn)), we can use Hölder’s inequality if C(n, a, q, r)(t−
s)

n
2
( 1

r
− 1

q
) ∈ Lp′([0, t]), where 1

p + 1
p′ = 1. Note that p′ = p

p−1 . Therefore we
need

n

2
(
1
r
− 1
q
)(

p

p− 1
) > −1.
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This inequality implies

1 +
n

2
(
1
r
− 1
q
) > 1− (1− 1

p
) =

1
p
≥ 0, (C.2)

so the conditions under which we can use Hölder’s inequality are

1
r
>

1
q
− 2
n

and

p > [1 +
n

2
(
1
r
− 1
q
)]−1.

Now we use Hölders inequality and find

‖Ψp,tϕ‖r ≤ ‖C(n, a, q, r)(t− s)
n
2
( 1

r
− 1

q
)‖L(p/(p−1))([0,t])‖ϕ‖Lp([0,t],Lq(Rn))

= C(n, a, q, r)t
n
2
( 1

r
− 1

q
)+1− 1

p ‖ϕ‖Lp([0,t],Lq(Rn)).

Note that C = C(n, a, q, r) does not depend on p. This concludes the
proof.
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Appendix D

Preliminaries for Chapter 5:
Riesz spaces

In Section 5.3 the Banach spacesX and Y are assumed to be Banach lattices.
In Banach lattices there exists a partial ordering. So we can define a positive
solution, i.e. U(t) ≥ 0 for all t ≥ 0. Then we can prove global existence. In
this appendix we will introduce Riesz spaces and Banach lattices and prove
a useful result for Riesz homomorphisms. Therefore we first need to define
a lattice and an ordered vectorspace.
A lattice L is a partially ordered set in which any two elements have a
supremum and an infimum. We write ϕ ∨ ψ for the supremum of ϕ and ψ
and ϕ∧ψ for their infimum. A real linear vectors pace L is called an ordered
vectors pace if L is partially ordered such that

• if ϕ,ψ ∈ L then ϕ ≤ ψ implies ϕ+ h ≤ ψ + h for all h ∈ L, and

• ϕ ≥ 0 implies af ≥ 0 for all a ∈ R+.

A real linear vector space is called a Riesz space if it is a lattice and an
ordered vector space.
In a Riesz space we define ϕ+ = ϕ ∨ 0 and ϕ− = ϕ ∧ 0. It follows that
ϕ = ϕ+ − ϕ− and we define |ϕ| = ϕ+ + ϕ−. In a Riesz space we can define
positivity using the positive cone. The positive cone of a Riesz space L is
defined by L+ = {l ∈ L|l ≥ 0}. An operator T on L is called a positive oper-
ator if it maps L+ into itself, i.e. T (L+) ⊂ L+. Similarly a map R : L→M ,
where M is a Riesz space, is called positive, if R(L+) ⊂M+.
A Riesz space can be mapped into an other Riesz space by a Riesz ho-
momorphism: Let (L,≤) and (M,¹) be Riesz spaces. A linear mapping
π : L → M is a Riesz homomorphism if ϕ,ψ ∈ L such that ϕ ∧ ψ = 0
implies π(ϕ) ∧ π(ψ) = 0. A Riesz homomorphism is always a positive map
and the partial ordering is invariant under this map. To be precise:

Proposition D.1. Let (L,≤) and (M,¹) be Riesz spaces, π : L → M a
Riesz homomorphism and let ϕ,ψ ∈ L, then
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1. π(ϕ+) = π(ϕ)+,

2. π(L+) = π(L) ∩M+ and

3. If π is injective, then ϕ ≤ ψ if and only if π(ϕ) ¹ π(ψ).

Proof. The first part can be found in [15]. Then the second part. Every
Riesz homomorphism is positive, see [15], so π(L+) ⊂ M+. Thus π(L+) ⊂
π(L) ∩ M+. Let m ∈ π(L) ∩ M+, then there exists a l ∈ L such that
π(l) = m. Then π(l+) = π(l)+ = m+ = m, since m ∈ M+. So there
exists a l′ = l+ ∈ L+ such that π(l′) = m. Hence m ∈ π(L+) and π(L+) =
π(L) ∩M+. For the third part assume that π(ϕ) ¹ π(ψ), then π(ψ − ϕ) =
π(ψ)− π(ϕ) ∈M+ ∩ π(L) = π(L+). So ψ − ϕ ∈ L+ + ker(π). We assumed
that π is injective, so ψ−ϕ ∈ L+ and thus ϕ ≤ ψ. The other implication is
immediate, see [15].

We can define a seminorm on a Riesz space. A Riesz seminorm is a map
ρ : L→ R+, such that

• ρ(0) = 0, ρ(ϕ+ψ) ≤ ρ(ϕ) + ρ(ψ) and ρ(aϕ) = |a|ρ(ϕ) for all ϕ,ψ ∈ L
and a ∈ R, and

• If ϕ,ψ ∈ L then |ϕ| ≤ |ψ| implies ρ(ϕ) ≤ ρ(ψ).

A norm on L is called a Riesz norm if it is a norm and a Riesz seminorm.
A normed Riesz space is a Riesz space with a Riesz norm. A Banach lattice
is a norm complete Riesz space. Note that in a Banach lattice the positive
cone is closed.
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