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1 Introduction

In practice, financial time series alternate between “quiet periods” and pe-
riods of high activity. The frequency of movements is constant over time,
but the amplitude seems to be time-varying. This phenomenon is known as
volatility clustering. Stochastic volatility processes are used to model the
long-range dependence effect evident in financial time series.

One such process is known as the Linear Generalized autoregressive con-
ditional heteroscedastic (GARCH) model that was introduced by Bollorsev
in 1986 (see [2]). Its typical features are: “a heavy tailed, uncorrelated, but
not independent, time-varying volatility and a long-range dependence effect
present in the volatility”. The properties (not all) and definition of this pro-
cess are treated in Chapter 2.

The main objective of this thesis is to compare continuous-time GARCH
models with discrete-time GARCH models. We will focus on the linear
GARCH case, and mainly research two continuous-time models. The first
model is derived as a limit from a discrete-time model. This will be done
by scaling the parameters properly according to the time-interval, and then
sending this time-interval to zero. We will follow Nelson’s article dated 1990
(see [7]) and give rigorous proofs for the convergence to the continuous-time
model.

The second continuous-time model is an idea of Kliippelberg, Lindner and
Maller in 2004 (see [6]). The construction is given in Chapter 4 and is based
on intuitive reasons. We will replace the “noise” variables by increments of
a (arbitrary) Lévy process. These processes are very flexible, since for any
time increment At any infinitely divisible distribution can be chosen as the
increment distribution over periods of time At. On the other hand, they have
a simple structure in comparison to general semimartingales, as they have
independent strictly stationary increments. In Chapter 5 we will investigate
what happens to the striking features that are so distinctive for the original
discrete process.

Finally, we discuss some recent developments made by Kallsen and Vesen-
mayer in 2009 (see [5]). They have looked into a limit procedure for the
continuous-time model driven by a Lévy process.



2 Linear GARCH process

2.1 The mathematical build-up

The motivation of this section comes completely from [10]. Many different
GARCH-models have been developed in time. In this thesis, we will focus
only on the linear GARCH model. Formally, there are two possibilities for
defining a linear GARCH process. We will explain one possibility, and shortly
mention the other.

Definition 2.1. A GARCH(p, q) process is a martingale difference sequence
X, : © — R relative to a given filtration (F,), i.e. for every n € N holds
X, = W,—W,_y with (W,,)nez., a martingale relative to F,,, and E[W?] < oo
for all n € Zs. Its conditional variance o? := E[X?|F,_,] satisfies for every
necN

02 =B+ 0102 |+ + 00, + MXE e+ AXE (2.1)
where 3,01,...,0,, A\1,..., A, are nonnegative constants.

It is not interesting when the positive square root o, equals zero. So we will
henceforth assume P({o, = 0}) = 0 for all n € N. For the concrete case
GARCH(1,1) we will use sufficient conditions for achieving this.

This makes it possible to define €, := X, /o, for n = 1,2,.... The ran-
dom variable afL is F,_;-measurable and ¢t — +/t is a continuous function
on [0,00). So o, is also F,_j-measurable. The martingale property and the

definition of o2 gives
Vn € N: Eley|Fno1] =0 and Ele2|F,i] = 1.

Often it is assumed that the random variables ¢, are i.i.d. and independent
of ‘/T-n—l-

Conversely, one can also define a linear GARCH process by starting with
a “scaled martingale difference process” ¢, and a predictable process o,,.
Next, the process X, is given by X,, = €,0,. By construction we have that
o2 is the conditional variance of X,,. If the process satisfies (2.1), then it is
called a GARCH(p, q) process.

The abbreviation GARCH stands for “Generalized auto-regressive condi-
tional heteroscedastic”. If the coefficients dy, ..., d, all vanish, then o2 is a

linear function in terms of X2 ,,..., X2 . In this case the model is called an
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ARCH(g)-model, from “auto-regressive conditional heteroscedastic”. Condi-
tional autoregressive can be explained by the fact that o2 = E[X?2|F,_4], so
in the ARCH(g)-model equation (2.1) becomes a conditional autoregressive
relation. Generalized is just added after extending the equation (2.1) by the

2 2
terms 010, 1, ..., 0,0,

For the origin of heteroscedastic we have to look at the characteristics of
a white noise sequence. A white noise series is a discrete time stochastic pro-
cess (Y,,) with the following properties. The series is second order stationary
with mean zero, i.e.

Vn€Zso: Y, €L E[Y,]=0 and ~v(h) :=cov(Yuin Yn) = E[Y, 1Y)

with h € Z>(. Note that v(h) is well-defined, because by stationarity it is
independent of n for a fixed lag h. The distinctive property of a white noise
sequence is given in terms of the auto-covariance function. That is, y(h) = 0
for h # 0 and v(0) := a®. Here, a® is independent of n by stationarity. We
shall speak of a heteroscedastic white noise if the auto-covariances at non-
zero lags vanish, but the variances are possibly time-dependent.

Any martingale difference series (X,,) with finite second moments is a (pos-
sibly heteroscedastic) white noise series. Namely, the conditional expectation
E[X,|F._1] is a version of the orthogonal projection of X,, onto £2(Q, F,,_1,P).
Hence, E[X,,|F,_1] is the least-squares-best JF,,_;-measurable predictor of X,.
So for m < n holds EX, X, = 0, because E[X,,|F,,—1] = 0. In [10] a nec-
essary and sufficient condition is given for when a second order stationary
GARCH(p, q) process exists. Namely,

max(p,q)
> G+ N) <L (2.2)
j=1
2.2 The Markov property

We will henceforth restrict ourself to the simplest non-trivial GARCH-model:
“GARCH(1,1)”, like in [6], with the following assumption.

Assumption 2.2. There holds 6 + A\ > 0, and all €¢; are non-degenerate
random variables with P({e; = 0}) = 0.

We have deleted the unnecessary counter in the parameters. Note that this
implies P({o, = 0}) = 0 for all n € N. It is possible to see (X,,02) as
one process, which under appropriate conditions has the property that it
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is Markovian. We have to mention that only time-homogeneous Markov
processes are considered in my thesis. To prove that it is a Markov process
we use the following Lemmas.

Lemma 2.3. Let h be a random variable and h, a sequence of random vari-
ables, all with (2, F,P) as their measure space. Assume that h, T h as
r — oo. Then for ally € R one has

lim 1y (hr) = L(—ooy)(h).

r—00

Proof. Fix w € Q and define z := h(w). We have to distinguish two cases.

o If 1(_4(2) =0, then z >y and h,(w) > y for r big enough. Hence,

lim 1(_Oo7y](hr(w)) = 0.

T—>00
o If 1(_y(2) =1, then h,(w) < z <y for all 7. Hence,

lim 1(_007y](hr(w)) = 1.

r—00

]

Lemma 2.4. Let b and € be random variables and b, a sequence of random
variables, all with (2, F,P) as their measure space. Assume that for all x € R
we have P({e =b}) =0. If b, T b as r — oo, then one has

1(_00717] (6)

a.

i

lim 1(_oop,](€)

r—00

Moreover, if b, | b as r — 00, then this statement also follows.

Proof. Fix w € (). We start by assuming b, T b as r — o0, and distinguish
two cases.

o If 1(_sop)(e(w)) =0, then e(w) > b(w) > by(w) for all 7. Hence,

lim 1(7oo,bT(w)](e(W)) =0.

r—00

o If 1_wpw)(e(w)) =1, then e(w) < b(w). By assumption we have that
F={w € Q:¢ew)=>5bw)} is anull set. So we may almost surely
assume €(w) < b.(w) < b(w) for r big enough. This yields

lim 1(7oo,bT(w)]<€(w>> =1.

r—00



Next, we assume b, | b as r — oo and keep a w € €} fixed. Again we will
have to distinguish two cases.

o If 1_pw)y(e(w)) = 0, then e(w) > b(w) > b(w) for r big enough.
Hence,

lim 1(_00’1”(“,)](6(&))) =0.

7—00

o If 1(_sopy(e(w)) =1, then e(w) < b(w) < b,(w) for all r. Thus,

lim 1(70071)(0_,)}(6(@0)) = 1.

r—00

]

Before we are going to apply this Lemma in the proof of our upcoming The-
orem, it is convenient to have sufficient conditions on the random variables

e and b for P({e = b}) = 0.

Proposition 2.5. Let € and b be random variables, both with (Q, F,P) as
their measure space. If € is independent of b, and the law A, of € has a density
[ relative to the Lebesgue measure, i.e. 92< = f. Then P({e = b}) = 0.

Proof. Let A, denote the law of b, and A, the (joint) law of the pair (e, b).
By independency holds A, = A, x A,. So we have

P({e=0}) = E[lgy

)
— / Lempy dA, dA,
RJR

_ /R ( /R Loy f(2) d) d(y)

= /RO . dAb(y) = 0.
[]

In the article of Nelson (see [7]) it is stated that the shifted discrete-time
process (W, 0pi1)nez, is a Markov process. It is stated without all the
necessary conditions and claimed without a proof. We will give a full proof
for the fact that our original discrete time process (W, 0y, )nez., is a Markov

process. And from this it analogously follows that also the shifted process is
Markovian.

Theorem 2.6. Let all €, be i.i.d and independent of F,,_1. If the law A, of

€, (independent of n) has a density f relative to the Lebesque measure, i.e.
‘ﬁ;g = f, then (Xn,a,%)nezzo is a (time-homogeneous) Markov process.
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Proof. In this proof we use “The Standard Machinery”. First we take 0,1
to be a simple function, i.e.

m
On+1 = E Ollej
Jj=1

with a; € Ry (recall 0,41 > 0 a.s.) and F; € F,. Without loss of generality
we may assume [ disjunct and U7, F; = Q. Remember that the Borel
o-algebra B(R) x B(R) is generated by the m-system (as in [12])

TR xR) = {(—o00,z] X (—00,y] : z,y € R}.

Choose n € Zsy and A := ((—o00,z], (—00,y]) € (R x R) arbitrary. Almost
surely follows

E[14(Xp1, 0721+1)|]:n] = E[l(fm,m](en—f—lgnﬂ-l) ooy (Ui+1)|~rn]

1(—oo)(€ns105) L1, | Fu] - 1 (oo (0m4s)

NE

:E[

Il
—

I
(= .

E[l(—w7fj]<€n+l>’fn] : 1Fj : 1(—oo,y] (0121+1>
1

<.
Il

[
NE

E[1 (o0, 2 1(ens1)] - 1r; * L-oas) (ns1).

.
Il
-

where we used the independency and JF,-measurability of o,,1. On Ry, we
define the function

go(a) == E[1 (00,21 (€n41)]-
This measurable function is independent of n, because the ¢, ,’s are identi-
cally distributed. Now, the sets [} are disjoint and together with property
(2.1) this gives almost surely

m

E[la(Xos1,00)1Fal = Y 90(@y) - 1y ooy (074)

j=1
= Gu(0nt1) - 1(_0079](072L+1)
= 0u(\/BH 002+ AX2) - L(Cooy (B + 602 + AX2)

= P((Xaw), 02 (w)), A). (2:3)

Here, P; is a transition kernel on (R x R, B(R) x B(R)), which is independent
of n.



Next, take 0,1 to be a (non-negative) measurable function. From [12] we
obtain a sequence of simple functions h, such that h, 1 0,41 and hZ 1 02,
as 7 — oco. Each h, satisfies (2.3) with o,,.; replaced by h,, and an indicator
function is trivially dominated by the measurable constant function 1. The
Dominated Convergence Theorem together with the definition of conditional
expectation then develops

E[LA(X,1,030)1F] = Jim E[Ly(X0, B

— lim P, ( (Xo(w), hi(w)),A>

= lim [E[ 1(Ens)] - Looog) (h20))]
= Jlim Efl (€n+1)] - i 1oy (R ()

Note that Proposition 2.2 gives P({€,4+1 = an+1}) = 0 for all n, because
Ons1 18 Fp-measurable and €, is independent of F,,. So by Lemma 2.3
and Lemma 2.4 we have both point-wise 1(_og 4 (h2(w)) = L(—ooy) (02, (w))

and 1(_oo7h'rz(w)](€n+1) a—s> 1(_007‘7n+z1(w)
vergence holds for positive and negative x. We again apply The Dominated
Convergence Theorem to find

E[la(Xns1, 00 )P = 92(0n1) - Lmoo) (07 41)
= A((Xaw), 2(w), 4). (2.4)
One can check that on B(R) x B(R) the function
mg(A) = E[1a(Xn41,0041) - 1]

is a finite measure for every G' € F,,. So from (2.4) and the Lemma of “The
Uniqueness of Extension, 7-systems” (see [12]) we obtain

1(€nt1) as 7 — oo, where the last con-

VG e F,: Ellg- E[lA(XnH,aiHﬂfn]] — E[1G : Pl((xn(w),og(w)),A)].
Hence, (2.4) holds for all A € B(R) x B(R) and all n € Zx.

For simplicity, we define bR as the space of bounded, Borel measurable func-
tions f : R x R — R. As used before, conditional expectation is defined
trough integrals. So we can apply “The Standard Machinery” for a second
time. One obtains for all n € Z>( and for every f € DR the equality

E[f<Xn+1v 0721+1)|‘Fn] = - f(y)Pl((Xm 0721)7 dy) (25)
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Choose n € Z>y and f € bR arbitrary. We define the transition kernel P
inductively by

Pk(Z7B):/ Pl(y7B)Pk—l(z>dy)a k:2737
R2

Consider the function

zg:RxR — R

T X Ty > E[f(XnJrQa 02+2)|0(Xn+1 = X1, 0'721-5-1 = x2>fn)]a

where o(-) denotes the smallest o-algebra (on ) generated by it is argument.
Note that zy € bR. So, equality (2.5) and the Tower property gives

Elf(Xnt2, 00 2)|F] = E[E[f(Xnt2, 00 i0) | Faia]|Fn]
= E[Zf(Xn+170721+1)|Fn]

= /‘R2 Zf(@/)Pl((Xan?L)?dy)
= /R? R2 f(u)Pl(y7 du)Pl ((Xn’ Ji)’ dy)
=/, F)Pa((Xn, 02), dy).

Induction develops for all f € bR, n € Z>p and k € N

ELf (Xotn, 0 ) (@) Fa] = . F@)Pe((Xn, 7). dy).

]

Remark 2.7. The assumption that all €, are i.i.d and independent of F,_;
can be relaxed. The fact that ¢, is independent of F,,_; and adapted to the
filtration already gives that all ¢, are independent.

Remark 2.8. If F,, = o(€n, €p—1,...) (is equal to o(X,, X,,—1,...)), then one
can prove that all ¢, are i.i.d. implies that ¢, is independent of F,,_;.

Remark 2.9. From equation (2.3) one can deduce that under the same con-
ditions the process (07 )nez., is also a (time-homogeneous) Markov process.

Sometimes it is useful to look at W, instead of X,,, because W,, is a martin-
gale.
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Corollary 2.10. Let all €, be i.i.d and independent of F,,_1. If the law A,
of €, (independent of n) has a density f relative to the Lebesque measure, i.e.
(ZL% = f, then Wy, 0%, ez, 95 a (time-homogeneous) Markov process.

Proof. We will sketch the proof. The set 7(R x R) is defined as in the proof
of Theorem 2.6. Let n € Zsp and A := ((—o0,z],(—00,y]) € 7(R x R).
There holds

E[1a(Wyi1, 0-72z+2>|Fn] = E[la(ent10n11 + Wh, 0721+2)|]:n]
= E[l(—oo,z}(enﬂan—s-l + W) - 1(—oo,y](ai+2>|fn]

= E[l(—ooay} (0721+2) (1(—oo,x](€n+10-n+1) : 1(—00,0}(Wn>

+ Z 1(—oo,x—n](€n+10n+1) : ]-(n—lm](Wn)) |Fn] )

neN
where
Trio =B+ 005+ Mens10nt1 — Wa).

Recall that 0,1 and W,, are both F,-measurable. If we use “The Standard
Machinery” and start with a simple function on the random variable o1,
then analogously as the obtained equation (2.3) we obtain

E[La(Was1, 02001 5] = B (Walw), 02,0@)). 4),  (26)

with P a transition kernel on (R x R, B(R) x B(R)). As in the proof of
Theorem 2.6, we invoke our Lemmas and Proposition to conclude that (2.6)
holds for an arbitrary (non-negative) o,41. The final part of the proof also
follows analogously. O

Remark 2.11. We see that under the same conditions of Theorem 2.6 (and
Corollary 2.10), the process (Wy,, 07 )nez., is not Markovian.

12



3 Continuous-time model 1: Diffusion approx-
imation

3.1 Set-up

Many different parameterizations have been made for the function o2 instead
of (2.1). The GARCH(p, q)- and the ARCH(p)-model are just the most fa-
mous models. In 1990 Nelson published the paper “Arch Models as Diffu-
sion Approximations” (see [7]). Nelson developed conditions under which
our known discrete systems converge in distribution to an It6 process. This
was done by looking at the difference equations of our models, and letting the
length of the time interval go to zero in an “appropriate way”. Obviously,
one of the conditions was given in the fact that the discrete time model is
Markovian.

In this case it is, for reasons mentioned in Remark 2.10, more convenient
to look at W,, instead of X,,. We want to partition the time of the system
GARCH(1, 1) more and more finely. So, for each h > 0 we are going to define
a GARCH(1,1) process (Wyp, 0(2k+1)h)k62207 where the nonnegative parame-
ters 3,4 and A in equation (2.1) are depending on the time interval h. One
must keep in mind how we have defined the original GARCH model. We
have chosen to start from defining a martingale difference sequence X,, and
02 = E[X?2|F,_1], whereupon we defined the noise variable €,. Let us repeat

this with a diffusive scaling for the martingale sequence.
So, for each k € N, h > 0 consider (W, a?kJrl)h)keZZO given by

Wi = W(k—l)h‘F\/EEkhUkh
O-(Qk-f—l)h == 5]1 + 5h0‘£h + )\hfihaih, (31)
with U(2k+1)h = E[ka+1)h|g(k,1)h]. Let ¢, = th/(fkh and (gkh)kezzo as
filtration for the martingale (Win)rez.,- There still holds E[W2,] < oo for
all k € Z>o, and
Vk € N: E[Ekh|g(k71)h] =0 and ]E[Ezh|g(k,1)h] = 1. (32)

Thus, the dependency of h can only be found in the factor v/A and the pa-
rameters [y, 0, and \j,.

We need to assume some properties of the initial distribution.
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Assumption 3.1. For each h > 0 the initial probability law for each h 1is
given by
v(T) :=P[(Wy,01) €T], for any T € B(R?),

d ,
and o} = of with o7 € L*.

So the initial probability law is the same for each h. The time-difference be-
tween Wy, and O'(Qk 1)h does not create a problem for o7. The initial moment
property is important for future reasons. With all the ingredients in place,
we are capable of defining a continuous-time process for each h.

Definition 3.2. Let ~ > 0. The continuous-time GARCH(1, 1), process
(Wi, 07 )iz0 with filtration Fy, := (Fyp)ezo is given by

Win = Wi, Ut2+h,h = U(2k+1)h and Fip =G, t2>0,
where kh <t < (k+ 1)h for a unique k € Z>,.

As already mentioned in the previous chapter, the process is not interesting
when the positive square root o, equals zero. Similar to Assumption 2.2 we
have the following.

Assumption 3.3. There holds for each h > 0
V[(ngh,ag,h) eER x (0,00)] =1

and 6, + A\, > 0. Also, the noise variables €y, are non-degenerate for all

keN, h>0.

3.2 Technical preliminaries

We have just defined a continuous-time GARCH(1, 1);, process. If this pro-
cess obeys certain requirements, then GARCH(1, 1);, converges in distribu-
tion to a Ito process when h | 0. These requirements are based on Theorem
2.1 in [7] and need some preparation to prove. Therefore, in this section we
do some technical preparatory work. We state without proof the following
simple Lemma.

Lemma 3.4. Let (ak)kezzo be sequence in R and a,b € R.

(a) If

Ap+1 = Qay + b, Vk € ZZO,

then
b

k
1_a)a +

. Vk € Zso.

ak:(ao— 11—«

14



(b) If
ar+1 < aay + b, vk € Zzo,
then

b . b
— Z~.
1_a)04 _'_1—05’ Vke >0

A

ar < (ag —

This recursive result is imporant for proving moment properties of our dis-
crete volatility process.

Lemma 3.5. Let R > 0. Let for each h > 0 the random variables €y, with
k € N>, be i.i.d, independent of Gu_1y, with ey, € L2, If the limit is

. Bn
= lim —
b ho h
1-8, —
f = lim On = Mn
R0 h
exist, and
bY: 26

limsup =t < —

o b Efel] - 1

with § € Rsg, B € Rsg, then 3¢® € Ryy, IK € Ry such that for

all k € Nsg, 0 < h < €® and all ||(Wy—1yn,02,)w)|| < R a.s. holds
max(E[o},], E[o},]) < K.

ke NZQ,

Proof. Choose R > 0 arbitrary. By the assumed properties of the noise
variable we have the following relation

E[U(Qkﬂ)h} = B+ (0n + M)E[op,], keN.

We define for each h > 0

Agp = E[Ulz,hL ke NZQ,

and

ayp, = 5h + )\h

c = Eop — O Eo; — L
1— ap, 1— ayp,
By Lemma 3.4 we have
ok Bn
Agp = C-Qp + , k?ENZQ,h>O.
1-— Op,

15



Note that oy, < 1 for h small enough, because 6§ > 0. Also,

l' /Bh _ 5
11m = —.
o1l —ay 0

Thus, by assumption 3.1 there exists a ) > 0 and a certain K € R,
such that
app < KW,

for all 0 < h < e, k € Nsg and all ||[(Wk_1y, oxn) (W)]| < R.
Also by independency we have

2
EazlkJrl)h = E[((ﬁh + o — o (1 = 0 — Ahﬁih)) ]
= B+ 2600 + M)oj, + E[(0n + Mneip)*Elogy), & € Nao.
For h > 0 we define

B2 + 284 (6 + M) KW
1 —E[(on + Anepy)?]

So Lemma 3.4 yields for all £ € N>,

dy,

Elof,] < (Eog—dy) - (E[(0, + Mel)?])) +dn, h>0.  (3.3)
This suggests to take a closer look at dj, and at E[(d, + Anez;,)?).

The numerator of dj, obviously has 82 + 28,(0n, + M\)K = O(h) as h | 0.
For the denominator of d;, we have

1-— E[((Sh -+ )\heih)2] = 1- 5,21 — 25}1)\11 — )\iE[Eih]
= (1= )2 =201 = 8) + 20,0 + AEley] ).

The bad case scenario would be if denominator tends to zero too fast when
h | 0. A sufficient condition to avoid this is as follows

1
lim sup 7 [(1—0n)* — 2(1 = 0n) + 20u M + N Ele]] < 0.
R0
We have 1 — 60, = A\, + h8 + o(h) as h | 0. Hence,
(1 —61)% —2(1 = 6) + 265\ + AE[e},]

= (A +h0)? —2(\, + ho) + 205\, + NiEler,] + o(h)

= A 2000 — 200 — 2\, (A + hO) + N2E[el, ] + o(h)

= MN(E[e,] — 1) — 2h6 + o(h) (3.4)
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as h | 0. Our sufficient condition is given by

\2 20
limsup =t <

Yk eN,.
no  ho o Eley,] -1 =2

Note that independency and non-degeneracy (see Assumption 3.3) of ey,
in combination with Jensen’s inequality gives E[e},] > 1. So the limsup-
condition gives a v > 0, independent of A, such that for A small enough
holds

(Eleby] — A2 < h(26 — 7).

In combination with (3.4) we develop
X (Efedy] — 1) = 200 + o(h) < 7, + o(h)
as h | 0. So there exists a 0 < €@ < e guch that
E[(0n + Anern)?] = 07 + AiE[er,] + 200 M < 1, k € Nuy,
for all 0 < h < €@,

Since e, € L4, inequality (3.3) and Assumption 3.1 give us a 0 < ¢® < ¢
and a certain K® € R. such that

E[Uéh] S K(Q)’

for all 0 < h < €® k € Nxy and all ||(Wy_1yn, 02,]| < R. Finally, take
K = max(KW, K®). O

Lemma 3.6. Let R > 0. Let fi, fa : Q = R be two measurable functions
with bounded expecations and both independent of e, for all k € N>y and
all h > 0. If the conditions of Lemma 3.5 hold and the extra requirement

\2 20
limsup =t <

B I d L% keN
HEINECEAESTEE

then 3e® € Ryy, IN € Roy such that for all k € N>y, 0 < h < €®) and all
(Wi—1yn, o) (W)]| < R a.s. holds E[fi09,] < N and E[fso},] < N.

Proof. The proof is similar to the proof of Lemma 3.5. Hence, it is technical.
Choose R > 0 arbitrary. There holds (please verify) for all A > 0 and k € N>
Elo (6k+1)h]
= E[B; + 034 (3670n + 367 )
+0, (38107 + 681n A + 3BrAnern)
00 (65 + 305 A + 30 Aner, + Aren)]
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and

E[J(8k+1)h]
= E[B) + ain (483 M + 45,0n)
+04, (68 A€, + 65307 + 12556, 1)
+ o (4B Ahenn + 4805 + 128167 A + 128,00\ €,)
0, (A5 A + 66, A€y, + 40N € + NiEon + O1)]-

Lemma 3.5 gives a ¢® > 0 and a K € R such that max(E[o?,], E[o},]) < K
for all 0 < h < €® | k € N5y, Take D := max(E[f,], E[f2]). Now, let us take
a closer look at the sixth and eighth moment.

Sixth moment: We define

b = B+ K366, +367\)
+K(35h5,2; + 65h5h>\h + 35/1)\21[‘3[6%]1)],
a = 8 + 353 + 30N Elers] + M E[eS,]
and
app = E[fiog,] = E[fi] - Elog,), 7 >0, k€ Nxy,

By Lemma 3.4 we have

D-b, , D-b
1_@)04 *

arn < (aon — , k€ Nsg, (3.5)

1 -«
for all 0 < h < ¢®). Note that

b = O(3619;) = O(h)
as h | 0. We have

a = 0 + 36\ + 30\ + A7
+35h}‘/21(E[6éh] —1)+ Ai(E[EZh] —1)
(1 — h6)® + 36,7 (Eley,] — 1) + A3 (E[ed,] — 1) + o(h)
= 1—3h0+ 35\ (Ele},] — 1) + X3 (E[ed,] — 1) + o(h)

as h | 0. Moreover, 1 —a = O(h) + o(h) as h | 0. Since €z, € £% C £® and
the distribution of €, is independent of h,

a < 1—3h8+2h8,0+ o(h)
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as h | 0. This yields,

b
lim sup € R.y, k€N,
hl0 l—« -

So there exists a0 < e® < e and a O] € R such that 0 < o« < 1 and
hmsupm =< (Cp, forall 0 <h < €W k € Nxy.

Hence, inequality (3.5) and Assumption 3.1 gives a N € R.g such that
E[fl ' Ogh] S N(1)7
for all 0 < h < e, k € Nsg and all ||[(Wk_1y, 03,)(w)]| < R.

Eighth moment: Let NY and € be obtained by using fs, as respectively
N® and € were obtained by using f;. We define

¢ = DB+ D K48\, +45,01)

+D - K (653N Eley) + 6570, + 126700 \n)

NO (48,0 [ef,] + 48105 + 128,02\, + 128,00\ Elef,])
€ = (403N + 65, \Eley] + 40\ E[€s] + MElers] + 57)-

and
— E[fga,ih] = E[f,] -E[a,f’h], h >0, k € Nxy.

By Lemma 3.4 we have

dip < (don — 1—_£)fk + 1—_5, k € Nxo, (3.6)

for all 0 < h < €Y. Recall ( from the proof of Lemma 3.5) that E[ey,] > 1.
So here, our lim sup-condition gives a v > 0, independent of h, such that for
h small enough holds

2
(Bleby] ~ )X < h(50 — ). (37)
For the base ¢ follows

£ = (On+ )"+ 603A% (Elery] — 1) + 40,0, (Elep,] — 1) + A, (3 E[e] — 1)
= 1—4h0 + 6857 (E[e,] — 1) + o(h)
< 1 — h(40 + 457y — 4670) + o(h),

as h } 0 due to (3.7). Hence,
1 — &> h(460 + 467y — 4030)
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for h small enough. Also, we have that ¢ = O(N,Sl)4ﬁh5%) = O(h)as h | 0.
This yields

lim sup a
no  1—¢

So there exists a 0 < €® < egf) and a 5 € R such that 0 < £ < 1 and
7L < Oy, forall 0 < h < €® k € Nxy.

eR, ke NZQ,

Inequality (3.6) and Assumption 3.1 gives a N® € R, such that
E[fs - O-Iéh] < N(Q)a

for all 0 < h < €®), k € Nsg and all ||[(Wg_1y, 03,)(w)|| < R.

We conclude by taking N = max(N®, N®)), O

Remark 3.7. The condition in terms of “limsup” can be interpreted as a
restriction on the noise variable €, in combination with A\. Namely, it is
tail can’t be too “fat” and/or the contribution of the noise can’t be too
large. For the standard normal distribution as noise variable, our strongest
condition transforms into lim sup,, % < %0, which is certainly an acceptable
requirement. Also, # > 0 is reasonable if we keep the necessary and sufficient
condition (2.2) for existence of a second order stationary process in mind.

Remark 3.8. Note that for obtaining E[f;0¢,] < N () the weaker assumption

2
lim supy, | ’\h—h < ﬁ was enough. Namely, use a 7 analogous as in (3.7).
kh

We mention that Corollary 2.10 gives, under appropriate conditions, for each
h a collection of (homogeneous) transition kernels (Py)ren for the process
(Whn, O'(Qlﬁ_l)h)kezzo. Let |t/h] denote the integer part of ¢t/h, i.e., the largest
integer k such that k& < ¢/h. Then, according to Definition 3.2, we also have
for each h a collection of (homogeneous) transition kernels (P, );>0 given by

Vit Z 0: Pt,h = pth/hJ- (38)

Henceforth, it is easier that we use the following operator notation for a
measurable function f on R?

Palf)w) = [ 1) Paledy). b0, 520,

with transition kernel P, as in (3.8). And z” denotes the transpose of a
vector z (in R?). The following Lemma gives expressions for the drift en
second moment per unit of time.
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Lemma 3.9. We let the following functions be given on R?

T
9" ) = (v— We-n o))
T
wP(y) = (y— Woemom)) - (y— Wannom)), k€N

Let R > 0 and for each h > 0 the random variables ey, with k € N>y, be
i.i.d, independent of Gy If Vk € N> and h > 0 the law A,,, of ey has
a density with respect to the Lebesque measure, then holds

1 2
il (k) _ Br—02, (1—6,—Ap)
FPa(®@) = (0 Bhoiow )
and
1 (k)
5Phh(w ()

2 0
Okh
= 2 2 4 2 54 _ 5
( 0 /%_%(1_5h_)\h)+0_?(1_5h_)\h)2+%(1‘41))

where © := (W_1y, 0py,) such that ||z|| < R, and where M := Ele},].

Proof. Let R > 0 and h > 0 small enough (such that we can invoke Lemma
3.5). Fix k € N>, such that for our random starting point = (Wy_1)n, 075)
holds ||z|| < R. Let the indexes i and j in the functions gfk) and wgfj) denote
the matrix entry, with 4,5 € {1,2}. Conditioned on information at time
(k — 1)h, the martingale property tells us that

TP @) = 0.

We use Xy; = ogpégn in combination with (3.2) to obtain

Eph,h(gék))(x) — [Bn #h(On hh kh NG k-1)n]
_ Bh_al%h<l_5h_)\h)
h 9

by G(x—1)» measurability of oy,. So we have an expression for the drift per
unit of time. Now, we look at the second moment per unit of time. The
independence property of the noise variables and direct computation tells us
the following

1
EPh h(wﬁ))(x)
2 928,02 op
= O 2Ty, )+ B, + Med, — 121G
2 2 0_2 0—4 A20_4 M - 1
— %——/B’;L kh(l—éh—/\h)vL%(l—5h—>\h)2+%’
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and

X + 02, (6, + \pe2, — 1
L @) = BB ”ﬂ nin =Dy

B+ oin(0n + An — 1)
= ElXin|Gi_
N/ [Xkn|Gir—1)n]
= 0.

]

Remark 3.10. In different notation, the same statements would hold without
existence of a density function. In that case, the process has not shown to
be Markovian, but we could still write the conditional expectation in full.

3.3 Diffusion approximation of GARCH(1,1)

As mentioned, Theorem 2.1 in [7] states conditions (denoted by assumptions
2 through 5 in [7]) under which our discrete Markov process converges in
distribution if the time step h goes to zero. To check the formal setup as
in [7], we notice that the paths of (W, 07, ,)i=0 are right-continuous with
finite left limit is at each ¢ > 0. Let D := D([0,00),R?) be the space of
mappings from [0, c0) into R? that are continuous from the right with finite
left limit is. Endow D with the Skorohod metric in that it becomes a metric
space (see [1]). We can see the GARCH(1, 1), process as a D-valued random
variable. For the Theorem, we need || - || to be the Euclidean norm on R2.

Theorem 3.11. Let for each h > 0 the random variables €y, with k € N>o,
be i.i.d, independent of G—1y, and ex, € L8, Let M :=E[e},]. Assume that
for all k € N>y and h small enough the law A, of exn (independent of k)
15 independent of h and has a density with respect to the Lebesque measure.
Also, assume that the limit is

P
b= 1m% (39)
T B eV
0 = l}ggl - (3.10)
M -1
2 1 2
a® = 1}551 . s (3.11)



exist, and
. A7 - 20
imsup -+ < ———,
o D b 3(M — 1)

with 0,0? € Rsg and B € Rsg. Then, for all t € Rsy we have that

limpyo(Win, 07),) < (Wi, 02), where the process (Wi, 02)i>0 satisfies
¢
Wi = W +/ o2 dBy,
0

t ¢
ol = o} +/ (B — 90§)d3+/ ao?dBy,,
0 0

and
P[(Wy,05) €T) =v(T')  for any T € B(R?),

where (B t)i>0 and (Bay)i>o are two independent Brownian motions. A weak
solution of (Wy,0?) exists and is distributionally unique. Finally, (W;, o)
remains finite in finite time intervals almost surely, i.e., for all T > 0,

B[ sup ||(W,0?)]] < oc] = 1.

0<t<T

Proof. The discrete-time processes {(th,U(QkH)h)keZZO}h will be our main

sequence of interest, because it is Markovian. If the limit result is proved
for this sequence, then follows limy (W p, Uf+h7h) 4 limp, o (Wi, crf,h) for all
t € Rsp. This is justified by the fact that Theorem 2.1 in [7] shows that
the sample paths are continuous with probability 1. This is also seen in our
statement. The stochastic integrals given in this Theorem are continuous-
time processes, because the Brownian Motions are continuous. Also o2 € £!
by Lemma 3.5, so the above Lebesgue-Stieltjes integral is (absolutely) contin-
uous. In other words, once we have proved the limit result for the sequence
{(Wkp, J(Zk ) n)kezs, b the proof is complete. Let us check the four conditions.

Condition 1: Let ¢®, K and ¢®) N be as respectively in Lemma 3.5 and
Lemma 3.6. Choose R > 0 and T" > 0 arbitrary. Fix 0 < h < €®) < )
and fix our random starting point x := (W_1)s, 0%,), for a certain k € N,
such that ||z(w)|| < R almost everywhere. Let our time ¢ be given such that
0 <t <T. Let [ be uniquely given by (I + 1)h <t < (I + 2)h. Without loss
of generality we may assume [ € Zx.

The first part of Condition 1 deals with a technical requirement in terms
of a fourth moment. It implies that the sample paths of the limit process are
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continuous with probability one. This is intuitively seen by the fact that

ooy = 2l) < —illy = all', a€Rog,
So we define the functions
fily) =y —2)l', i=1,2
on R?. We look at
Po(fi)(@) = hWE[e05|G0-1n),
Pup(f2)(@) = E[(ﬂh — (1 =0 — )‘hE[Eih])>4|g(k1)h]'

Because the conditional expectation is defined through integrals, we take ex-
pectations. First, we invoke Lemma 3.5 to obtain E[P, ,(f1)(2)] < h*Ele}, ] K.
Observe that €}, 07, > 0, so

VG € Gpn: 0 <E[lg- Pun(fi)(2)] < W°Eley, | K
and

1
im — < i 4 =
l}}fg hPhﬁ(fl)(:L‘) < l}g}g hE[e,] K =0

Second, for simplicity we define
B(m) = (1 — 5h — )\hGih)m, m € N.
with

E|B(m)| = Z (ZL) (1-— 5h)kA?_kE[€i%m—k)]

k=0
= O(K"2),

as h | 0. We investigate

E[Pun(f2)(z)] = E[By — 48500, B(1) 4 68505, B(2)
—4B3p01, B(3) + 03, B(4)]
< E[B, + 68501, B(2) + 04, B(4)]

We may assume that for all h < €®) that E[B(4)] < D for a certain D € Rx,.
We invoke Lemmas 3.5 and 3.6 to obtain

E[Pun(f2)(@)] < E[B; +68,B(2)K + NB(4)].
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Without loss of generality we have for all h < €® that E[P, ,(f2)(x)] < h2M
1
for a certain M € Rsq. Because (,Bh — o2, (1 =6y, — )\hE[eih})> > 0 follows
VG € Gu-vn: 0 < El[lg Pun(fa(@))] < B*M,

and

1
1 . 0
lim =Py (f2) () < lmAM =0

Note that estimates for E[P, ,(fi(x))], ¢ = 1,2, were independent of ¢ and
holds for all ||z|| < R by our technical Lemmas. So the speed of convergence
to 0 was in both cases independent of ¢ and x. Hence,

lim  sup  Pp(fi(z)) =0, i=1,2.
hi0 ||z|<R,0<t<T

Condition 1 also deals with the drift and the second moment per unit of
time. It requires that the drift and second moment per unit of time converges
uniformly on compact sets to well-behaved functions (of time ¢ and state x).
For ¢t € R>o we define the drift vector

b([w(w,t), s(w,t)],t) = (0 B—0Osw,t))

and diffusion matrix

| slw,t) 0
a([w(w,t),s(w,t)],t) = ( 0 02s(w, )2 ) ,
where w and s are measurable functions

’U}iQXRzO —- R
(w, 1) — wwi)

and

s: QX% RZO — RZO
(w,t) = s(w,1).

Let the functions g (y) and w® (y) be as in Lemma 3.9. Use (3.9), (3.10),
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(3.11) and Lemma 3.5 to obtain

1

lim 3 a1 (2)) = 0
.1 :
lim —Pou(93” (@) = = 0lm Pun(Pu(~ (o) )

.1 .
lim EPt,h(wﬁ)(if)) = 1 By (Pra(e - (o))

)

.1 .
lim 5 Pa(wg () = o lm Puy(Pun(c (Paa(ody) )

hl0
.1 k .1 k
lim 5P (wi(2)) = Tim & Pop(wg (@) = 0.

Note that speed of convergence in the limit is (3.9), (3.10), (3.11) is indepen-
dent of ¢t and = and holds for all ||z|| < R. Hence,

lim  sup  ||Pua(g(2)) = o(We, a7, )l = 0O

hi0 ||z <R0<t<T

lim sup ||Pt,h(w(x))_a([who-tz]?t)H = 0.

hi0 ||z||<RO<t<T

Condition 2: This condition requires that the diffusion matrix a has a
well-behaved matrix square root r. We define the matrix

r([ww,1), s, D), ) ;:( @D 0 )

as(w,t)

where w and s are as before in the proof. Obviously, for all [w(w,t)s(w,t)],t
holds

a([w(w, t), s(w, )], t) = r([w(w, t)s(w,t)], t)r([w(w, t)s(w,t)], t)T.

The function r is measurable, because w and s are. Note that it is continuous
as function from w and s.

Condition 3: The third condition concerns the behavior of the initial distri-
bution of our discrete time process {(Wpp, U(2k+1)h)k6220}h, when taking the
limit. This is not a concern, because Assumption 3.3 tells us that the initial

probability law is given by v for every h > 0.

Condition 4: So far Theorem 2.1 in [7] suggests a limit diffusion of the
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form

th == UtdBl,ta
do} = (B —00})dt + ao}dBay,
P[(Wy,08) €T] = (') for any I' € B(R?).

At this point, there are two things that can go wrong. First, v,a and b may
not uniquely define a limit process. Second, a limit process may not exist,
because when taking together v, a and b may imply that the process explodes
with strict positive probability to infinity in finite time. In [7] one can find
conditions which are sufficient to exclude these possibilities.

It helps to define
V; i=log(o?), t>0.

For our candidate limit diffusion we rewrite
Vi
th = exp(é)dBLt,
P[(Wy,exp(Vp)) €T] = v(I') for any I' € B(R?).

and an application of 1t0’s Lemma gives

L
a3

1
dV, = adBy, + (5 —0)dt — Sd(a’t)

2

— (Bexp(—V;) — 6 — %)dt + adBs,.
So we define a new drift vector ' and diffusion matrix o’ by

V ([w(w, t),o(w,t)],t) == (0 Bexp(—v(w,t) — (0 +%) )

and diffusion matrix

v(wit)
a/([w(w,t),v(w,t)],t) — (exp(o2 ) 2)’

where w is as in condition 1 and 2, and v is a measurable function from
Q x RZO to RZO‘

Recall that a (symmetric) matrix is positive definite if all eigenvalues of
the matrix are positive. Note that the eigenvalues of ¢’ (as function from w
and v) are given by exp(”(%’t)) > 0 and a > 0. Hence, condition B (in the
Appendix of [7]) for distributional uniqueness holds.
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Next, we check the non-explosiveness condition. Take the nonnegative func-
tion
el(w,v), 1] = K + f(w)|w] + f(v) exp(|v]),

where K € Ry and

[ exp(zr) ifz#0
f(x)_{o o

One can check that we have the following identities

Py exp(=) - &5 ifw>0

ow? exp(+) - = ifw <0,

dp explv—23)-(H+1) ifv>0

o exp(f —v)- (=5 —1) ifv <0,

Py expv—2)-(1+ZF -3+ 5) ifv>0
o2 exp(f —v)- 1+ 32+ 3+ ) ifv<0

If we use the definition of the derivative (the difference quotient), then one
also obtains that ¢ is twice differentiable in zero. Note that

I inf N T
ok o((w,v), ) = oo, ,

so @ is a Liapunov function (see [7]). There exists a R > 0 such that for
|lw| > R and |v| > R we have

oAt

T2 < 4

0 )

G_i < sign(v) - exp(|v]) + Cy
92

S5 < o)+,

for certain constants C4, Cs, C5 € R>(, and where sign is the “sign” function.
There holds for |w|, |v| > R

1 v, 0% a? 0o 1 0%
3 eXP(?@ + [Bexp(—v) — (0 + 7)]% tsog3
2

< [Bexp(—v) = (6+ T)lsign(v) - exp(o]) + Cofexp(—v) + zaexp(fo])

1 v « 1
—|—§ exp(i)Cl - 02(9 + 7) —|— 50&03 (312)
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and

D-yp = DK+ Dexp(—)lw|+ Dexp(—)exp(|v]), D € Rs,.

-1 -1
[w] |

lv
One sees that we can pick constants D, K € Ry, independent of ¢ such that

RHS of (3.12) < D - ¢

for all (w,v). By Assumption 3.3, the continous Mapping Theorem (see [1])
gives distributional uniqueness and non-explosiveness for our candidate limit
diffusion. O]

We have seen that a weak solution of the stochastic differential equation
exists. Only, we must check that the assumptions on the parameters are not
conflicting. So that it is not an empty statement. The next example gives
parameters that obey these conditions.

Example 3.12. For each h > 0 let (e )ren be a sequence of independent
standard normal distributed random variables, with (Gx,) the generated fil-
tration. Set the nonnegative constants, dependent of h > 0, as follows

B = Ph
on = 1—Xh/2)Y*—06h
A = Mh/2)V2,

with @ € Rug, 8> 0and 0 < X < V0.
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4 Continuous-time model 2: Noise variables
replaced by increments of a Lévy process

4.1 Motivation for using a Lévy process

We have seen that, under appropriate conditions, the linear GARCH(1,1)
model converges in distribution to a bivariate diffusion process. This was
given in terms of two independent Brownian motions. So if we condition on
the past, then the variance of the displacement, over a small time-interval,
made by o7 is independent of W;. In practice, you want some dependency
between the “direction” X; (determined by W;) and the conditional variance
o?. For instance, in periods of high volatility we maybe want a higher prob-
ability of going downwards than upwards based on experiences. So we want
to loosen this independence property. This is where a Lévy process comes
in place. It will be used as only source of randomness instead of two inde-
pendent Brownian Motions. Namely, the noise variables €; are replaced by
increments of a Lévy process. This construction comes from [6].

To do this, we first look closer at our discrete-time model. Omne has for
n €N
o, = B+don_ + X5,
B+ 5+ )on
= B4+ )(B+[0+ e, plon )
= BA+d+A 1)+ 0+ Ah_ )0+ A5 o) (B + [0+ e _ylon )

: n—1 n-—1 n—1
= Y (TI 6+2d) + a2 [J6+ e, (4.1)
=0 j=i+1 7=0

where HZ_1(5 + Aé?) := 1. Of major importance are conditions under which
the model converges in distribution to finite random variables (i.e. has a
finite stable distribution). Namely, this result will be used to motivate our
continuous-time model. For this, the last term in (4.1) plays a significant
role. Similarly as in [6] we have the following Theorem.

Theorem 4.1. Let alle, be i.i.d. and independent of F,—y. Iflim, o [, (0+
Aé?) 20, then we have lim,_, o o2 252 and lim,, oo X, 4 x for finite ran-
dom variables 0* and X. Also, 02 < B+ (6 + Ae2)o? with o independent of

e1. Conversely, if lim, oo [T, (0 + Aeé?) # 0, then o2 5 o and | X0 RN
as n — oo.
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Proof. In the notation of [3], pick My =1, M; = (6 + A\ej_;) for j =2,3,...
and Q; =1fori=1,2... and Ry = 02(6 + Ae2)/S. Then we have (according
to page 1196 in [3])

2

Tntl . R.(Ro) = ZQZ H M, +R0HM

6 j=i+1

n

S 6 (5;%‘3 H(5+>\e] )

=1 j=i+1 j=

n—1 n—1

— (5+/\6 —0_ (5—1—)\6
5 -

1=0 j=i+1

Similarly as in the article we define

o { Tt =t
n - 1,

n =20,

so that

Zﬂ'k—le
k=1

Zﬁk—l

k=1

k

[[6+ )

k=0 j=1

8

Assumption 2.2 develops that —log(M;) is finite for all ¢ € N. Now it is
justified to use an application of Theorem 2.1 of [3], with lim,, . m, = 0
and @); = 1 for all 7, to conclude

2
n+1 a.s.

B

where Z, is absolutely convergent. All the €,,’s are have the same distributon,

= Z asn — 00,

. s o d
so we derive o2, % 02 £ B+ (0+Ae2)o? asn — oco. By absolute convergence

follows that o2 is a finite random variable, and independence of €, gives that

o? is independent of €2. This gives X, L X asn — oo, with X £ ge; a

finite random variable. If lim,_, [}, (6 + \éF) a;. 0, then Theorem 2.1 of
[3] shows that o, % 00, and then | X0 5 00 as n — oo, O
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Remark 4.2. In [6] there are necessary and sufficient conditions given under
which lim,, o [T, (6 + AeZ) =0 holds. Keeping Assumption 2.2 in mind,
these conditions are as follows

(i) If 6 > 0 and A > 0, then there must hold

E[|log(d + Ae})|] < oo and Elog(d + Aej) < 0. (4.2)
(ii) If § = 0 and A > 0, then either (4.2) or E[(log(A\e?)~] = oo in combina-
tion with
/Ooox</: P{log(\e}) < y}dy)ldIP’{log()\e%) <z} <oo
must hold.

Condition (i) is also known in terms of the top Lyapounov exponent (see [10]).

Theorem 4.1 motivates us to take a closer look at g - Z,,. Note that taking
sums is a special type of integration. Namely,

n—1 n-—1 n n—1
s (TL6+Ad) = 5/ T 6+2e) ds
i=0 j=it1 0 j=[s]+1

= ﬂ/ X ls) 41 108(HAS) ds, (4.3)
0

where both integrations are with respect to the Lebesgue measure on R
(as before |-| denotes the integer part). This suggests replacing the noise
variables €; by increments of a Lévy process. Because, they are strictly sta-
tionary and independent.

We proceed from the representation (4.3). Note that for 0 < s < 1 there
holds

n—1 n—1
> log(0+ M) = (n—1)(log(6) —log(d)) + Y log(d + Ac)
J=ls]+1 J=ls]+1
n—1 )\
= (n—1)log(d)+ Y  log(1+ Se?) (4.4)
j=ls]+1

Henceforth, to avoid dividing by zero we will, on top of Assumption 2.2 and
keeping Remark 4.2 in mind, assume the following.

Assumption 4.3. There holds 0 < § < 1.
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4.2 GARCH(1,1) process driven by a Lévy process

In this section we will derive a continuous-time GARCH(1,1) process. As in
our original discrete setup, a single source of randomness suffices. The jumps
of a (any) Lévy process shall replace the noise variables.

Let (Lt)i>0 be a (cadlag) Lévy process on R with jumps AL, := Ly — Ly,
a filtration (F;) which satisfies the “usual conditions”, and v as it is Lévy
measure. For future reasons we will assume the following.

Assumption 4.4. The Lévy process L does not jump at the starting point,
1.€. ALO =0.

We recall some of it is properties (see [13]). There holds

/ (z* A 1)vh(de) < oo, (4.5)
R\{0}
by the Lévy-1t6 decomposition. Since L is cadlag,

Z AL,

0<s<t,
[ALs|>e

is a finite sum for all € > 0, and the set

is at most countable. The random measure pu” associated with the jumps
AL, is a Poisson random measure on R>y x R\ {0} with intensity measure
Leb ® vF. A measurable function f is called p’-integrable if for for every
t>0,

/ / z)| ph(ds, dr) Z |f(ALS)| - Liar, 20y < 00,
(0] JR\{0}

s<t

almost surely. It is a fact that a measurable function f is p’-integrable if
and only if [p o, (If| A1) dvt < oo.

With (4.3) and (4.4) in mind, we define a cadlag process (X¢)i>0 by

—X, = tlog(d) + > _ log(1+ %(ALS)Z).

0<s<t
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Note that
A
— X, =tlog(d) + > log(1+ S(AL)") - Liar.20 (4.6)
0<s<t

holds, so it is in fact a countable sum. This will be used to define our
continuous-time volatility process. We see that only § > 0 is allowed. Thus
our continuous-time GARCH does not contain a continuous-time ARCH as
a submodel. Suppose we want to accommodate the case 6 = 0, then we have
to go back to (4.3) and X; should be taken as

“Xi= = 3 log(MAL)) arsp £ 20.

0<s<t

Note that this is only a well-defined (Lévy) process, if L is compound Poisson.

Let us state some facts of X; (result from [6]).

Proposition 4.5. The process (X;)i>o is a Lévy process of bounded variation

with drift b = —log 6, Gaussian component a = 0 and Lévy measure v~ given
by

v*((0,00)) = 0
and

v ((—o0, —2]) = vE({y € R : Jy| > v/(e* — 1)§/A}) for x> 0.

Proof. Observe that the process ) log(143(AL,)?) is of bounded varia-
tion, because it is increasing in ¢. The process X; inherit is the Levy property
of L;. That it only makes negative jumps is clear. Use properties of a Poisson
process to obtain for x > 0

X (

—00, —1] = E[Z 1{_1og(1+§(AL5)2g_x}]

0<s<1

= E| Z 1{IALS\2\/(6”*1)§}]

0<s<1

S (TR ERV (G

Particularly, there holds

A
lz| AT v¥(dz) = / log(1 + y?) vh(dy) < oo,
/R\{O} i</} 0

by (4.5). The Lévy-Ito decomposition gives that (X;):>o is a Lévy process of
bounded variation with drift b = — log ¢ and Gaussian component a = 0. [
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Remark 4.6. The fact that fR\ ) |z| A1 ¥ (dz) < oo shows that the countable
sum o, log(1 + 2(AL,)?) is absolutely convergent.

Remark 4.7. Tt is worth mentioning that X; is a cadlag semimartingale, be-
cause any Lévy process is a semimartingale (see [8]).

Analogously to (4.1) we define the following continuous-time volatility pro-
cess.

Definition 4.8. Let 5 > 0 and let 0 be a finite random variable independent
of (Lt)i>0. A left-continuous with finite right limit is (called caglad) volatility
process (02);>0 is given by

ol = 6/ Xt Xeds 47X oo, t>0.

Note that the Lebesgue-Stieltjes integral in the definition is well-defined, be-
cause X; is a process of bounded variation as stated in Proposition 4.5.

For s <t we look at

X+ X, = (t—s)log(6)+ > log(l+ % ALU)Q),

s<u<t

so o? can be written as

t
o2 = 5( / o (1=5) 08O+ Tog (143 (AL)? du) X 2
0

= ﬁ/étsn 1—|— AL))du—i—e X o,

s<u<t

Here, one sees the resemblance with (4.3) when it is combined with (4.4).

We want to define a continuous-time process (G;) similar to the martingale
difference sequence (X,,) in the discrete case.

Definition 4.9. We define a COGARCH process (G;):>o as the cadlag pro-
cess satisfying the stochastic differential equation

t
Gt:/USdLS, tZO, G(]:O
0
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This is well-defined by [8], because from Remark 4.7 it follows that o; is a
caglad semimartingale. Observe that G; only jumps if L, does, so AG; =
0:AL;. Recalling from the discrete case that X,, = 0,¢€,, one might suggest
that for small A > 0 the process G, — G; will in some sense take the place
of X,,.

So fare we have only defined the continuous-time volatility process in com-
bination with the COGARCH process. This was based on intuitive rea-
sons. The question that arises is:“Is this definition the right choice based
on hard mathematical reasons”? As in the discrete case we want some kind
of regressive- and feedback-relation for the volatility process. Moreover, the
conditional variance of the difference COGARCH process must in some sense
be equal to o,. We will observe all this in the next chapter together with
some further results from [6].
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5 Behaviour of the continuous-time model driven
by a Lévy process

5.1 The volatility process

In Chapter 4 we defined stochastic differential equations defining process
G; and o;. This Chapter will investigate these processes, so that it can
truly can be called a continuous-time GARCH process. We will research if
the distinguish features in the discrete case are also present in G; and oy.
Therefore, we have to derive a stochastic differential equation for 7 (result
from [6]). We shall need the following.

Lemma 5.1. There holds

t
A
~X¢ _ ~X, ~X - 2
e —1+1og6/oe du—i—g E e (ALg)=.

0<s<t

Proof. We want to use It6’s famous formula (see [4]). Therefore

A
— X _ tlogd 1 Z(AL 2
X = e [+ 2ALY)

0<5<1
K
—_— 6 tSt,

where K; := tlogd and Sy := []o .o, (1 + 3(AL,)?) for ¢ > 0. For the
application of the formula we define the function f(k,s) := e*s, which is
infinite continuously differentiable in all it is arguments. Hence, [t0’s formula
for non-continuous semimartingales develops

e = f(KmSt)
t t
= e X4 / efu s, dK, + / e ds,
0 0

+ Z(eKSSS K S KM S AK, — estAss)

s<t

t t
= 1+10g5/ e_X*Ldu+/ 18 q( H (1+%(ALS)2)
0

0 0<s<u

+ Z <6KSASS — eKSASS>

s<t

t t
= 1+log5/ eX”du+/ e d( ] (1+%(AL5)2), (5.1)
0 0

0<s<u
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where we used that K, is continuous. First we restrict ourselves to jumps only
bigger than some € > 0. So we replace S, by S& = Ho;;g;, (14 2(ALy)?).
Then, there are only a finite number of jumps (bigger than €), say m, on the
interval (0,¢]. We denote these jump times by ¢y, ts,...,¢,. Observe that, in
this case, we have for the integrator in latter integral that the function value
is given by

131
— 1
t A
On (=, 4] :+ (1+2AL%)
2 5 h
A A
On ((t1,t2] - (1+—AL?1)(1+5AL?2>

J

- A A
On ((tp_1,tn] H(1+5ALfg)(1+EALi).
k=1

Let 1 be the Lebesgue-Stieltjes measure associated with Sz(f), and we define
the funtion g, (u) := Y31 Lt () - €180 + 11047 (w) - €198 with ¢y = 4.

Thus,
t
/eK“ dSqSE) = / gn dp
0 R>o

e A A
T (14 SALL)(GALL) + -
+€t;10g6ﬁ(1 + AALQ )AAL2

et K S tn

= % > e (AL

0<s<t,
ALg>e

Therefore, (5.1) and (4.6) tell us

t
A
-X -X . X _ 2
et = 1+1lo 5/6 vdu + lim — e s (AL,
8d | ewéoéq (ALy)
ALg>e

t
A
_ —Xu —X,- 2
= 1+10g5/oe du~|—g E e (ALg)=.

0<s<t
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The previous lemma will be of use in our next theorem. We are going
to denote [X,Y]; as the covariation of two semimartingales (perhaps non-
continuous) X; and Y;.

Theorem 5.2. The process (02)1>o satisfies the stochastic differential equa-
tion

t
o2 :5t+10g5/0 o'?ds+§ Z o2(ALg)? +og, t>0

0<s<t

Proof. We define V, = e=Xt and W, = f(f eXsds for t > 0. Integration by
parts gives

Vil
t t
- / V:e* dWs + / Ws*dvts + [V, W]t
0 0+

+

t s t s~ .

— / eXsd(/ eXvdy) +/ (/ eXv du) d(e ) + [e_X‘,/ eXeds],
o+ 0 o+ Jo 0
t s t s .

= / e d(/ eXvdy) +/ (/ eXv du) d(e **) + [eX‘,/ eXeds],,
0+ 0 ot Jo 0

because the integrator w is continuous. Note that X, is cadlag so all the
integrals are well-defined. By associativity of the stochastic integral and
(4.6) we have for the first term

t s t
/eXsd(/ eXvdy) = /e_Xs Xeds
0+ 0 0+
¢
= /eXSeXSds
o+

= {,

and for the last term we do some rewriting to conclude

. t .
X / Kodsl, = | / X Al (5), / eXeds),
0 0 0

t
= / 1 d[l[t,oo);s] = 0.
0
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Definition 4.8 and our previous result develop
t
ol = 5/ e Xt ds + e Ko
0

t s
= - (t—i—/ (/ eXv du)e s e d(eiXS)) +eXtg2
o+ Jo

+

t s
= G- (t—l—/ (/ e X=X du)es- d(e‘Xs)> + e Mol
o+ Jo

+

+

t
= [t —I—/ (02 —e N od)eXs d(e™™) + e Mo
0

t
= 5t+/ oleXs de™®) + ok, t>0.
0

We use lemma 5.1 and assumption 4.4 to obtain
U§+
t
= oo + Bt+ / oleXs=d(e )
0

t t
A
= oo +ﬁt+log6/ oleNsm e d8+/ eXsm e N d(g Z o2(AL,)?)
0 0

0<s<t

t
= o +6t+10g5/ o? ds—I—% Z o2(AL,)?,
0

0<s<t

because X; has only countable many discontinuities by (4.6). Assumption
4.4 gives the final answer

t
afzog+ﬂt+10g5/ o’ ds+§ Z o2(AL,)%.
0

0<s<t

]

In resemblance, for the discrete-time model we have (write o, to indicate
that we are in the discrete case)

oy —0n =B~ (1=08)an + Aosen, n € L,

n-n?

which by summation yields
n—1 n—1
o2 =pBn—(1 —5)203 +)\Zaize?+a§.
i=0 =0
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Thus, the continuous-time model has the same feedback and autoregressive
relation as in the discrete case, only the parameters are shifted. If we use for
both models the same starting distribution, then

A

(0,A) = (log(0) + 1, W

)

where 9, A denote the variables in the discrete-case. This property should not
be taken lightly. These feedback and autoregressive properties are important
features of the volatility process.

5.2 The COGARCH process

As mentioned before, we need some conditional variance relation for G; and
our volatility process o;. For studying our defined COGARCH process (G;)
we need some notation. Let (b,a? v’) be the characteristic triplet for our
(arbitrary) Lévy process L;. For t > 0 we define

B, = ZALS Apeciarg<1y, 0<e<l,
s<t
C, = 13&)1(37576 _EB,),
Ay = b+ Y ALdgar, 1y
M, = aW, —sl-StC't, W, a Brownian Motion,

such that the Lévy-Ito decomposition tells us
Lt - At+Mt, tZO

Here, A; is of bounded variation and M; is the Brownian motion plus a
martingale part (see [13]). Note that the covariation process of C; is given
by

C,C], = leig)l ;(ALS)2 “Leciarg<1y, 0<e<l.

Theorem 5.3. There holds

li var(Gyen — G| Fr)
im
R10 h

=(a®*+c)o? as, t>0,

is independent of t.

where ¢ := limy, —[C"C']H;? L
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Proof. Let t > 0 be given. Recall [W, W], =1, so

[G-aG.]t = [L-vL.]t
- [M-a M.]t
a’t +[C,C],.

This is well-defined, because C; € £? is a martingale. The conditional vari-
ance of Gy, — Gy is defined by

var(Goyn — Gi|Fr) = E[(Gt+h - Gt)2|]-"t] - (E[Gt+h - Gt|}}])2.
We have
E[Gin — Gi|F]

t+h
_ E[/ oo dAL|F)]
t

t+h t+h
— E[b . / Og d8|ft] +E[/ Og d(z ALu1{|ALu\>1})|~Ft]
t t

u<s

The number of jumps bigger than 1 are finite. So for h > 0 small enough
follows

t+h
E[Gt+h - Gt|ft] = ]E[b . / Og dS'E],
t
and using the definition of the Lebesgue-Stieltjes integral we obtain

o (ElGeon — GUF)?

i . =0 a.s.

Through the It6 isometry we develop
t+h
mmm—@wmzzwd’amuﬂm
tt+h t+h
_ ]E[(/ oo dM.)2IF] + E[(/ oo dAL)|F
fﬁ-&-h t t+h
=EM ﬁﬂMMMH+M/ o, dAY|F)
tt+h t+h !
= ]E[/ a’o? ds —i—/ o2 d[C,C],|F]
' t+h '
+E[( / oo dA2|F.
t
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Hence,
VaI'(Gt+h — Gt ’.B)

. 2 2
l}%l - = (a” +c)o; as.,

where ¢ = limy, g w Note that ¢ is independent of ¢, because the

increments of a Lévy process are strictly stationary. ]

In the discrete case we had that the conditional variance of X,, was equal to
E[X?|F,_1] = 02. Keeping in mind that the time difference is h instead of
1, the conditional variance of Gy, — G; corresponds, for small h, up to a
constant a? + ¢ compared to the discrete case.

5.3 Further results

This section we will state some further results, concerning the COGARCH
and corresponding volatility process, that are obtained in [6]. It will con-
firm even more that this model preservers all stylized features of the discrete
model. In Remark 4.2 necessary and sufficient conditions where given under
which 02 and X,, converge in distribution to respectively finite random vari-
ables 0 and X. For X,,, it was a consequence of the convergence of o2 to
a finite random variable. The next theorem tells us a convergence result for
the continuous-time process.

Theorem 5.4. Suppose

A
/log(l + (SyQ)uL(dy) < —logé. (5.2)
R
Then o? 4 0%, ast — oo, for a finite random variable o2, satisfying

o2 < ﬁ/ e XudL.
0

Conversely, if (5.2) does not holds, then o? 5 0 ast — oo,
Proof. See [6]. O

Note that (5.2) incorporates the requirement that the integral is finite, be-
cause 0 < § < 1 by Assumption 4.3. Also, the proof shows that the above
improper integral exists as a finite random variable a.s. In comparison with
condition (i) in Remark 4.2, condtion (5.2) differs only in the measure used
for the integration, which can be explained by the difference of the noise
variables.
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We have that o2 is Markovian and further that, if the process is started

at 02 £ o2, then it is strictly stationary.

Theorem 5.5. The squared volatility process (62);>0 is a homogeneous Markov

process. Moreover, if the limit o2, in Theorem 5.4 exists and op 4 o2 inde-
pendent of (Ly)i>o, then (o2)>0 is strictly stationary.
Proof. See [6] O

For the process G; = fg osdLg, t > 0, note that for any 0 < y < t,

+

t
Gt:Gy+/ O'SdLs, tZO
Y

Here, (05)y<s<¢ depends on the past until time y only through o,, and the
integrator is independent of this past. From the previous Theorem we thus
obtain:

Corollary 5.6. The bivariate process (oy, Gy)i>o is Markovian. If (02)i>o is
the strictly stationary version of the process with o3 2 o2, then (Gy)io is a
process with strictly stationary increments.

Thus as in the discrete case the processes (0¢)i>0 and (o, Gt )0 are Markov
process (when started in o2 ).

As was mentioned after we defined GG; and what Theorem 5.3 confirms, we
have to look at the moments of the increments of Gy in arbitrary time inter-
vals. Consequently, for » > 0 set

Ggr) = Gt+r - Gt-
There exists the following result.

Theorem 5.7. Suppose (L;)i>o is a quadratic pure jump process with EL? <
0o, EL; = 0, and logE[e™*'] < 0. Let (67);>0 be the strictly stationary

volatility process with o} 2L 52 Then foranyt >0 and h >r >0,

E[G"] = o0,
(M21 _ pr 2
E[(G;7)] = WELU
cov(Ggr), Gg?h) = 0.
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Proof. See [6]. O

This uncorrelated property is concordance with the discrete-time model.
Note also that E[(Ggr))z] is independent of ¢. Here, L; is a pure jump process.

So Theorem 5.3 yields (G\") ~ ro? for 7 small.
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6 Recent developments

Our COGARCH in combination with the corresponding volatility process is
a continuous-time variant of the original GARCH process. At least, we have
suggested that this is the case. We have derived a continuous-time process,
which captures all the same stylized facts that are present in the discrete-time
GARCH. Just like the bivariate diffusion model, we want to approximate our
new process arbitrarily close to a GARCH process. In other words, we want
to have a limit result as before.

Recently, in the paper of Kallsen and Vesenmayer (see [5]) it is shown
that (Gy,02);>0 can indeed be obtained as a limit in law of a sequence of
GARCH(1, 1) models. In contrast to our diffusion approximation, this result
is obtained by a different limiting procedure. Whereas the diffusion result is
developed through rescaling the size of the innovations, Kallsen and Vesen-
mayer apply some sort of random thinning. This is done by decreasing the
probability of the nontrivial innovations. Here, the differential characteristics
of a semimartinale X play an important role. If the characteristics converge,
and some other condition holds, then the corresponding sequence of processes
also converges weakly. They also conjecture, by a heuristical argument, that
the bivariate diffusion process and the COGARCH process (in combination
with his volatility process) are probably the only continuous-time limit is of
GARCH.
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7 Conclusion

We started bij looking into the discrete GARCH model. There we investi-
gated the Markov property and what conditions are needed. In many articles
it was stated that it was Markov without proof and without assuming con-
ditions that were seen necessary in our analysis. After that, we have studied
two different continuous-time models. First, we have derived a result us-
ing diffusion approximation. In the limit we obtained a Itd process that
has a weak solution to the stochastic differential equation. This solution was
unique in law, existsed and was continuous in probability. In addition to Nel-
son, we have completely proved and stated all necessary assumptions needed
to achieve this. The stochastic differential equation was given in terms of
two independent Brownian Motions. The “direction” and the conditional
variance of the displacement, over a small time-interval, is determined by
these two independent Brownian Motions. Also, jumps are not present in
the bivariate diffusion.

In our second model we relaxed this independence property and made jumps
possible, because sometimes one needs some dependency between the direc-
tion and the volatility. This was done by replacing the noise variables by
increments of a Lévy process, and we acquired a continuous-time volatility
process of bounded variation. Next to that, we defined a continuous-time
GARCH (called COGARCH) process as a solution of a stochastic differen-
tial equation. This COGARCH process only jumps if the corresponding Lévy
process does. For the volatility process we proved that the same important
feedback and autoregressive properties hold. If we condition it on the past,
then the the COGARCH process is in some sense equal to the volatility
process. It is worth mentioning that this is a property that is given in the
original definition of the linear GARCH model. Also, some other important
properties stayed intact in the continuous case, such as uncorrelated incre-
ments and the Markov property for the volatility process. Also the bivariate
process was Markovian when started in the strictly stationary distribution
given by o2 .

Finally, we have given an important feature of the COGARCH process in
combination with his volatility process. Namely, it is shown by Kallsen
and Vesenmayer (see [5]) that the COGARCH process (in combination with
the volatility process) can be obtained as limit in law of a sequence of
GARCH(1, 1) models.
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