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1 Introduction

In practice, financial time series alternate between “quiet periods” and pe-
riods of high activity. The frequency of movements is constant over time,
but the amplitude seems to be time-varying. This phenomenon is known as
volatility clustering. Stochastic volatility processes are used to model the
long-range dependence effect evident in financial time series.

One such process is known as the Linear Generalized autoregressive con-
ditional heteroscedastic (GARCH) model that was introduced by Bollorsev
in 1986 (see [2]). Its typical features are: “a heavy tailed, uncorrelated, but
not independent, time-varying volatility and a long-range dependence effect
present in the volatility”. The properties (not all) and definition of this pro-
cess are treated in Chapter 2.

The main objective of this thesis is to compare continuous-time GARCH
models with discrete-time GARCH models. We will focus on the linear
GARCH case, and mainly research two continuous-time models. The first
model is derived as a limit from a discrete-time model. This will be done
by scaling the parameters properly according to the time-interval, and then
sending this time-interval to zero. We will follow Nelson’s article dated 1990
(see [7]) and give rigorous proofs for the convergence to the continuous-time
model.

The second continuous-time model is an idea of Klüppelberg, Lindner and
Maller in 2004 (see [6]). The construction is given in Chapter 4 and is based
on intuitive reasons. We will replace the “noise” variables by increments of
a (arbitrary) Lévy process. These processes are very flexible, since for any
time increment ∆t any infinitely divisible distribution can be chosen as the
increment distribution over periods of time ∆t. On the other hand, they have
a simple structure in comparison to general semimartingales, as they have
independent strictly stationary increments. In Chapter 5 we will investigate
what happens to the striking features that are so distinctive for the original
discrete process.

Finally, we discuss some recent developments made by Kallsen and Vesen-
mayer in 2009 (see [5]). They have looked into a limit procedure for the
continuous-time model driven by a Lévy process.
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2 Linear GARCH process

2.1 The mathematical build-up

The motivation of this section comes completely from [10]. Many different
GARCH-models have been developed in time. In this thesis, we will focus
only on the linear GARCH model. Formally, there are two possibilities for
defining a linear GARCH process. We will explain one possibility, and shortly
mention the other.

Definition 2.1. A GARCH(p, q) process is a martingale difference sequence
Xn : Ω → R relative to a given filtration (Fn), i.e. for every n ∈ N holds
Xn = Wn−Wn−1 with (Wn)n∈Z≥0

a martingale relative to Fn, and E[W 2
n ] <∞

for all n ∈ Z≥0. Its conditional variance σ2
n := E[X2

n|Fn−1] satisfies for every
n ∈ N

σ2
n = β + δ1σ

2
n−1 + · · ·+ δpσ

2
n−p + λ1X

2
n−1 + · · ·+ λqX

2
n−q, (2.1)

where β, δ1, . . . , δp, λ1, . . . , λq are nonnegative constants.

It is not interesting when the positive square root σn equals zero. So we will
henceforth assume P({σn = 0}) = 0 for all n ∈ N. For the concrete case
GARCH(1,1) we will use sufficient conditions for achieving this.

This makes it possible to define εn := Xn/σn for n = 1, 2, . . .. The ran-
dom variable σ2

n is Fn−1-measurable and t 7→
√
t is a continuous function

on [0,∞). So σn is also Fn−1-measurable. The martingale property and the
definition of σ2

n gives

∀n ∈ N : E[εn|Fn−1] = 0 and E[ε2n|Fn−1] = 1.

Often it is assumed that the random variables εn are i.i.d. and independent
of Fn−1.

Conversely, one can also define a linear GARCH process by starting with
a “scaled martingale difference process” εn and a predictable process σn.
Next, the process Xn is given by Xn = εnσn. By construction we have that
σ2
n is the conditional variance of Xn. If the process satisfies (2.1), then it is

called a GARCH(p, q) process.

The abbreviation GARCH stands for “Generalized auto-regressive condi-
tional heteroscedastic”. If the coefficients δ1, . . . , δq all vanish, then σ2

n is a
linear function in terms of X2

n−1, . . . , X
2
n−q. In this case the model is called an
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ARCH(q)-model, from “auto-regressive conditional heteroscedastic”. Condi-
tional autoregressive can be explained by the fact that σ2

n = E[X2
n|Fn−1], so

in the ARCH(q)-model equation (2.1) becomes a conditional autoregressive
relation. Generalized is just added after extending the equation (2.1) by the
terms δ1σ

2
n−1, . . . , δpσ

2
n−p.

For the origin of heteroscedastic we have to look at the characteristics of
a white noise sequence. A white noise series is a discrete time stochastic pro-
cess (Yn) with the following properties. The series is second order stationary
with mean zero, i.e.

∀n ∈ Z≥0 : Yn ∈ L2, E[Yn] = 0 and γ(h) := cov(Yn+h, Yn) = E[Yn+hYn]

with h ∈ Z≥0. Note that γ(h) is well-defined, because by stationarity it is
independent of n for a fixed lag h. The distinctive property of a white noise
sequence is given in terms of the auto-covariance function. That is, γ(h) = 0
for h 6= 0 and γ(0) := a2. Here, a2 is independent of n by stationarity. We
shall speak of a heteroscedastic white noise if the auto-covariances at non-
zero lags vanish, but the variances are possibly time-dependent.

Any martingale difference series (Xn) with finite second moments is a (pos-
sibly heteroscedastic) white noise series. Namely, the conditional expectation
E[Xn|Fn−1] is a version of the orthogonal projection ofXn onto L2(Ω,Fn−1,P).
Hence, E[Xn|Fn−1] is the least-squares-best Fn−1-measurable predictor ofXn.
So for m < n holds EXnXm = 0, because E[Xn|Fn−1] = 0. In [10] a nec-
essary and sufficient condition is given for when a second order stationary
GARCH(p, q) process exists. Namely,

max(p,q)∑
j=1

(δj + λj) < 1. (2.2)

2.2 The Markov property

We will henceforth restrict ourself to the simplest non-trivial GARCH-model:
“GARCH(1,1)”, like in [6], with the following assumption.

Assumption 2.2. There holds δ + λ > 0, and all εi are non-degenerate
random variables with P({εi = 0}) = 0.

We have deleted the unnecessary counter in the parameters. Note that this
implies P({σn = 0}) = 0 for all n ∈ N. It is possible to see (Xn, σ

2
n) as

one process, which under appropriate conditions has the property that it
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is Markovian. We have to mention that only time-homogeneous Markov
processes are considered in my thesis. To prove that it is a Markov process
we use the following Lemmas.

Lemma 2.3. Let h be a random variable and hr a sequence of random vari-
ables, all with (Ω,F ,P) as their measure space. Assume that hr ↑ h as
r →∞. Then for all y ∈ R one has

lim
r→∞

1(−∞,y](hr) = 1(−∞,y](h).

Proof. Fix ω ∈ Ω and define z := h(ω). We have to distinguish two cases.

• If 1(−∞,y](z) = 0, then z > y and hr(ω) > y for r big enough. Hence,

lim
r→∞

1(−∞,y](hr(ω)) = 0.

• If 1(−∞,y](z) = 1, then hr(ω) ≤ z ≤ y for all r. Hence,

lim
r→∞

1(−∞,y](hr(ω)) = 1.

Lemma 2.4. Let b and ε be random variables and br a sequence of random
variables, all with (Ω,F ,P) as their measure space. Assume that for all x ∈ R
we have P({ε = b}) = 0. If br ↑ b as r →∞, then one has

lim
r→∞

1(−∞,br](ε)
a.s.
= 1(−∞,b](ε).

Moreover, if br ↓ b as r →∞, then this statement also follows.

Proof. Fix ω ∈ Ω. We start by assuming br ↑ b as r → ∞, and distinguish
two cases.

• If 1(−∞,b(ω)](ε(ω)) = 0, then ε(ω) > b(ω) ≥ br(ω) for all r. Hence,

lim
r→∞

1(−∞,br(ω)](ε(ω)) = 0.

• If 1(−∞,b(ω)](ε(ω)) = 1, then ε(ω) ≤ b(ω). By assumption we have that
F = {ω′ ∈ Ω : ε(ω′) = b(ω′)} is a null set. So we may almost surely
assume ε(ω) < br(ω) ≤ b(ω) for r big enough. This yields

lim
r→∞

1(−∞,br(ω)](ε(ω)) = 1.

7



Next, we assume br ↓ b as r → ∞ and keep a ω ∈ Ω fixed. Again we will
have to distinguish two cases.

• If 1(−∞,b(ω)](ε(ω)) = 0, then ε(ω) > br(ω) ≥ b(ω) for r big enough.
Hence,

lim
r→∞

1(−∞,br(ω)](ε(ω)) = 0.

• If 1(−∞,b(ω)](ε(ω)) = 1, then ε(ω) ≤ b(ω) ≤ br(ω) for all r. Thus,

lim
r→∞

1(−∞,b(ω)](ε(ω)) = 1.

Before we are going to apply this Lemma in the proof of our upcoming The-
orem, it is convenient to have sufficient conditions on the random variables
ε and b for P({ε = b}) = 0.

Proposition 2.5. Let ε and b be random variables, both with (Ω,F ,P) as
their measure space. If ε is independent of b, and the law ∆ε of ε has a density
f relative to the Lebesgue measure, i.e. d∆ε

dLeb
= f . Then P({ε = b}) = 0.

Proof. Let ∆b denote the law of b, and ∆ε,b the (joint) law of the pair (ε, b).
By independency holds ∆ε,b = ∆ε ×∆b. So we have

P({ε = b}) = E[1{ε=b}]

=

∫
R

∫
R

1{ε=b} d∆ε d∆b

=

∫
R

(∫
R

1{x=y}f(x) dx
)
d∆b(y)

=

∫
R

0 · d∆b(y) = 0.

In the article of Nelson (see [7]) it is stated that the shifted discrete-time
process (Wn, σn+1)n∈Z≥0

is a Markov process. It is stated without all the
necessary conditions and claimed without a proof. We will give a full proof
for the fact that our original discrete time process (Wn, σn)n∈Z≥0

is a Markov
process. And from this it analogously follows that also the shifted process is
Markovian.

Theorem 2.6. Let all εn be i.i.d and independent of Fn−1. If the law ∆εn of
εn (independent of n) has a density f relative to the Lebesgue measure, i.e.
d∆εn

dLeb
= f , then (Xn, σ

2
n)n∈Z≥0

is a (time-homogeneous) Markov process.
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Proof. In this proof we use “The Standard Machinery”. First we take σn+1

to be a simple function, i.e.

σn+1 =
m∑
j=1

αj1Fj

with αj ∈ R>0 (recall σn+1 > 0 a.s.) and Fj ∈ Fn. Without loss of generality
we may assume Fj disjunct and ∪mj=1Fj = Ω. Remember that the Borel
σ-algebra B(R)× B(R) is generated by the π-system (as in [12])

π(R× R) = {(−∞, x]× (−∞, y] : x, y ∈ R}.

Choose n ∈ Z≥0 and A := ((−∞, x], (−∞, y]) ∈ π(R× R) arbitrary. Almost
surely follows

E[1A(Xn+1, σ
2
n+1)|Fn] = E[1(−∞,x](εn+1σn+1) · 1(−∞,y](σ

2
n+1)|Fn]

= E[
m∑
j=1

1(−∞,x](εn+1αj)1Fj |Fn] · 1(−∞,y](σ
2
n+1)

=
m∑
j=1

E[1(−∞, x
αj

](εn+1)|Fn] · 1Fj · 1(−∞,y](σ
2
n+1)

=
m∑
j=1

E[1(−∞, x
αj

](εn+1)] · 1Fj · 1(−∞,y](σ
2
n+1),

where we used the independency and Fn-measurability of σn+1. On R>0 we
define the function

gx(α) := E[1(−∞, x
α

](εn+1)].

This measurable function is independent of n, because the εn+1’s are identi-
cally distributed. Now, the sets Fj are disjoint and together with property
(2.1) this gives almost surely

E[1A(Xn+1, σ
2
n+1)|Fn] =

m∑
j=1

gx(αj) · 1Fj · 1(−∞,y](σ
2
n+1)

= gx(σn+1) · 1(−∞,y](σ
2
n+1)

= gx(
√
β + δσ2

n + λX2
n) · 1(−∞,y](β + δσ2

n + λX2
n)

=: P1

((
Xn(ω), σ2

n(ω)
)
, A
)
. (2.3)

Here, P1 is a transition kernel on (R×R,B(R)×B(R)), which is independent
of n.
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Next, take σn+1 to be a (non-negative) measurable function. From [12] we
obtain a sequence of simple functions hr such that hr ↑ σn+1 and h2

r ↑ σ2
n+1

as r →∞. Each hr satisfies (2.3) with σn+1 replaced by hr, and an indicator
function is trivially dominated by the measurable constant function 1. The
Dominated Convergence Theorem together with the definition of conditional
expectation then develops

E[1A(Xn+1, σ
2
n+1)|Fn] = lim

r→∞
E[1A(Xn+1, h

2
r)|Fn]

= lim
r→∞

P1

((
Xn(ω), h2

r(ω)
)
, A
)

= lim
r→∞

[
E[1(−∞, x

hr(ω)
](εn+1)] · 1(−∞,y](h

2
r(ω))

]
= lim

r→∞
E[1(−∞, x

hr(ω)
](εn+1)] · lim

r→∞
1(−∞,y](h

2
r(ω))

Note that Proposition 2.2 gives P({εn+1 = σn+1}) = 0 for all n, because
σn+1 is Fn-measurable and εn+1 is independent of Fn. So by Lemma 2.3
and Lemma 2.4 we have both point-wise 1(−∞,y](h

2
r(ω)) → 1(−∞,y](σ

2
n+1(ω))

and 1(−∞, x
hr(ω)

](εn+1)
a.s.→ 1(−∞, x

σn+1(ω)
](εn+1) as r → ∞, where the last con-

vergence holds for positive and negative x. We again apply The Dominated
Convergence Theorem to find

E[1A(Xn+1, σ
2
n+1)|Fn] = gx(σn+1) · 1(−∞,y](σ

2
n+1)

= P1

((
Xn(ω), σ2

n(ω)
)
, A
)
. (2.4)

One can check that on B(R)× B(R) the function

mG(A) := E[1A(Xn+1, σ
2
n+1) · 1G]

is a finite measure for every G ∈ Fn. So from (2.4) and the Lemma of “The
Uniqueness of Extension, π-systems” (see [12]) we obtain

∀G ∈ Fn : E
[
1G · E[1A(Xn+1, σ

2
n+1)|Fn]

]
= E

[
1G · P1

((
Xn(ω), σ2

n(ω)
)
, A
)]
.

Hence, (2.4) holds for all A ∈ B(R)× B(R) and all n ∈ Z≥0.

For simplicity, we define bR as the space of bounded, Borel measurable func-
tions f : R × R → R. As used before, conditional expectation is defined
trough integrals. So we can apply “The Standard Machinery” for a second
time. One obtains for all n ∈ Z≥0 and for every f ∈ bR the equality

E[f(Xn+1, σ
2
n+1)|Fn] =

∫
R2

f(y)P1

(
(Xn, σ

2
n), dy

)
. (2.5)
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Choose n ∈ Z≥0 and f ∈ bR arbitrary. We define the transition kernel Pk
inductively by

Pk(z, B) =

∫
R2

P1(y,B)Pk−1(z, dy), k = 2, 3, . . . .

Consider the function

zf : R× R → R
x1 × x2 7→ E[f(Xn+2, σ

2
n+2)|σ

(
Xn+1 = x1, σ

2
n+1 = x2,Fn

)
],

where σ(·) denotes the smallest σ-algebra (on Ω) generated by it is argument.
Note that zf ∈ bR. So, equality (2.5) and the Tower property gives

E[f(Xn+2, σ
2
n+2)|Fn] = E

[
E[f(Xn+2, σ

2
n+2)|Fn+1]|Fn

]
= E[zf (Xn+1, σ

2
n+1)|Fn]

=

∫
R2

zf (y)P1

(
(Xn, σ

2
n), dy

)
=

∫
R2

∫
R2

f(u)P1(y, du)P1

(
(Xn, σ

2
n), dy

)
=

∫
R2

f(y)P2

(
(Xn, σ

2
n), dy

)
.

Induction develops for all f ∈ bR, n ∈ Z≥0 and k ∈ N

E[f(Xn+k, σ
2
n+k)(ω)|Fn] =

∫
R2

f(y)Pk
(
(Xn, σ

2
n), dy

)
.

Remark 2.7. The assumption that all εn are i.i.d and independent of Fn−1

can be relaxed. The fact that εn is independent of Fn−1 and adapted to the
filtration already gives that all εn are independent.

Remark 2.8. If Fn = σ(εn, εn−1, . . .) (is equal to σ(Xn, Xn−1, . . .)), then one
can prove that all εn are i.i.d. implies that εn is independent of Fn−1.

Remark 2.9. From equation (2.3) one can deduce that under the same con-
ditions the process (σ2

n)n∈Z≥0
is also a (time-homogeneous) Markov process.

Sometimes it is useful to look at Wn instead of Xn, because Wn is a martin-
gale.
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Corollary 2.10. Let all εn be i.i.d and independent of Fn−1. If the law ∆εn

of εn (independent of n) has a density f relative to the Lebesgue measure, i.e.
d∆εn

dLeb
= f , then (Wn, σ

2
n+1)n∈Z≥0

is a (time-homogeneous) Markov process.

Proof. We will sketch the proof. The set π(R×R) is defined as in the proof
of Theorem 2.6. Let n ∈ Z≥0 and A := ((−∞, x], (−∞, y]) ∈ π(R × R).
There holds

E[1A(Wn+1, σ
2
n+2)|Fn] = E[1A(εn+1σn+1 +Wn, σ

2
n+2)|Fn]

= E[1(−∞,x](εn+1σn+1 +Wn) · 1(−∞,y](σ
2
n+2)|Fn]

= E
[
1(−∞,y](σ

2
n+2)

(
1(−∞,x](εn+1σn+1) · 1(−∞,0](Wn)

+
∑
n∈N

1(−∞,x−n](εn+1σn+1) · 1(n−1,n](Wn)
)
|Fn
]
,

where
σ2
n+2 = β + δσ2

n+1 + λ(εn+1σn+1 −Wn).

Recall that σn+1 and Wn are both Fn-measurable. If we use “The Standard
Machinery” and start with a simple function on the random variable σn+1,
then analogously as the obtained equation (2.3) we obtain

E[1A(Wn+1, σ
2
n+2)|Fn] =: P̃1

((
Wn(ω), σ2

n+1(ω)
)
, A
)
, (2.6)

with P̃1 a transition kernel on (R × R,B(R) × B(R)). As in the proof of
Theorem 2.6, we invoke our Lemmas and Proposition to conclude that (2.6)
holds for an arbitrary (non-negative) σn+1. The final part of the proof also
follows analogously.

Remark 2.11. We see that under the same conditions of Theorem 2.6 (and
Corollary 2.10), the process (Wn, σ

2
n)n∈Z≥0

is not Markovian.
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3 Continuous-time model 1: Diffusion approx-

imation

3.1 Set-up

Many different parameterizations have been made for the function σ2 instead
of (2.1). The GARCH(p, q)- and the ARCH(p)-model are just the most fa-
mous models. In 1990 Nelson published the paper “Arch Models as Diffu-
sion Approximations” (see [7]). Nelson developed conditions under which
our known discrete systems converge in distribution to an Itô process. This
was done by looking at the difference equations of our models, and letting the
length of the time interval go to zero in an “appropriate way”. Obviously,
one of the conditions was given in the fact that the discrete time model is
Markovian.

In this case it is, for reasons mentioned in Remark 2.10, more convenient
to look at Wn instead of Xn. We want to partition the time of the system
GARCH(1, 1) more and more finely. So, for each h > 0 we are going to define
a GARCH(1, 1) process (Wkh, σ

2
(k+1)h)k∈Z≥0

, where the nonnegative parame-

ters β, δ and λ in equation (2.1) are depending on the time interval h. One
must keep in mind how we have defined the original GARCH model. We
have chosen to start from defining a martingale difference sequence Xn and
σ2
n = E[X2

n|Fn−1], whereupon we defined the noise variable εn. Let us repeat
this with a diffusive scaling for the martingale sequence.

So, for each k ∈ N, h > 0 consider (Wkh, σ
2
(k+1)h)k∈Z≥0

given by

Wkh = W(k−1)h +
√
hεkhσkh

σ2
(k+1)h = βh + δhσ

2
kh + λhε

2
khσ

2
kh, (3.1)

with σ2
(k+1)h = E[X2

(k+1)h|G(k−1)h]. Let εkh = Xkh/σkh and (Gkh)k∈Z≥0
as

filtration for the martingale (Wkh)k∈Z≥0
. There still holds E[W 2

kh] < ∞ for
all k ∈ Z≥0, and

∀k ∈ N : E[εkh|G(k−1)h] = 0 and E[ε2kh|G(k−1)h] = 1. (3.2)

Thus, the dependency of h can only be found in the factor
√
h and the pa-

rameters βh, δh and λh.

We need to assume some properties of the initial distribution.
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Assumption 3.1. For each h > 0 the initial probability law for each h is
given by

ν(Γ) := P
[
(W0, σ

2
h) ∈ Γ

]
, for any Γ ∈ B(R2),

and σ2
h

d
= σ2

0 with σ2
h ∈ L4.

So the initial probability law is the same for each h. The time-difference be-
tween Wkh and σ2

(k+1)h does not create a problem for σ2
0. The initial moment

property is important for future reasons. With all the ingredients in place,
we are capable of defining a continuous-time process for each h.

Definition 3.2. Let h > 0. The continuous-time GARCH(1, 1)h process
(Wt,h, σ

2
t+h,h)t≥0 with filtration Fh := (Ft,h)t≥0 is given by

Wt,h = Wkh, σ2
t+h,h = σ2

(k+1)h and Ft,h = Gkh, t ≥ 0,

where kh ≤ t < (k + 1)h for a unique k ∈ Z≥0.

As already mentioned in the previous chapter, the process is not interesting
when the positive square root σt,h equals zero. Similar to Assumption 2.2 we
have the following.

Assumption 3.3. There holds for each h > 0

ν[(W0,h, σ
2
0,h) ∈ R× (0,∞)] = 1

and δh + λh > 0. Also, the noise variables εkh are non-degenerate for all
k ∈ N, h > 0.

3.2 Technical preliminaries

We have just defined a continuous-time GARCH(1, 1)h process. If this pro-
cess obeys certain requirements, then GARCH(1, 1)h converges in distribu-
tion to a Itô process when h ↓ 0. These requirements are based on Theorem
2.1 in [7] and need some preparation to prove. Therefore, in this section we
do some technical preparatory work. We state without proof the following
simple Lemma.

Lemma 3.4. Let (ak)k∈Z≥0
be sequence in R and α, b ∈ R.

(a) If
ak+1 = αak + b, ∀k ∈ Z≥0,

then

ak = (a0 −
b

1− α
)αk +

b

1− α
, ∀k ∈ Z≥0.
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(b) If
ak+1 ≤ αak + b, ∀k ∈ Z≥0,

then

ak ≤ (a0 −
b

1− α
)αk +

b

1− α
, ∀k ∈ Z≥0.

This recursive result is imporant for proving moment properties of our dis-
crete volatility process.

Lemma 3.5. Let R ≥ 0. Let for each h > 0 the random variables εkh, with
k ∈ N≥2, be i.i.d, independent of G(k−1)h with εkh ∈ L4. If the limit is

β := lim
h↓0

βh
h

θ := lim
h↓0

1− δh − λh
h

exist, and

lim sup
h↓0

λ2
h

h
<

2θ

E[ε4kh]− 1
, k ∈ N≥2,

with θ ∈ R>0, β ∈ R≥0, then ∃ε(3) ∈ R>0, ∃K ∈ R>0 such that for
all k ∈ N≥2, 0 < h ≤ ε(3) and all ||(W(k−1)h, σ

2
kh)(ω)|| ≤ R a.s. holds

max(E[σ2
kh],E[σ4

kh]) < K.

Proof. Choose R ≥ 0 arbitrary. By the assumed properties of the noise
variable we have the following relation

E[σ2
(k+1)h] = βh + (δh + λh)E[σ2

kh], k ∈ N.

We define for each h > 0

ak,h := E[σ2
k,h], k ∈ N≥2,

and

αh := δh + λh

c := Eσ2
0 −

βh
1− αh

= Eσ2
h −

βh
1− αh

.

By Lemma 3.4 we have

ak,h = c · αkh +
βh

1− αh
, k ∈ N≥2, h > 0.

15



Note that αh < 1 for h small enough, because θ > 0. Also,

lim
h↓0

βh
1− αh

=
β

θ
.

Thus, by assumption 3.1 there exists a ε(1) > 0 and a certain K(1) ∈ R>0

such that
ak,h ≤ K(1),

for all 0 < h ≤ ε(1), k ∈ N≥2 and all ||(W(k−1)h, σkh)(ω)|| ≤ R.

Also by independency we have

Eσ4
(k+1)h = E[

(
(βh + σ2

kh − σ2
kh(1− δh − λhε2kh)

)2

]

= β2
h + 2βh(δh + λh)σ

2
kh + E[(δh + λhε

2
kh)

2]E[σ4
kh], k ∈ N≥2.

For h > 0 we define

dh :=
β2
h + 2βh(δh + λh)K

(1)

1− E[(δh + λhε2kh)
2]
.

So Lemma 3.4 yields for all k ∈ N≥2

E[σ4
kh] ≤ (Eσ4

0 − dh) ·
(
E[(δh + λhε

2
kh)

2]
)k

+ dh, h > 0. (3.3)

This suggests to take a closer look at dh and at E[(δh + λhε
2
kh)

2].

The numerator of dh obviously has β2
h + 2βh(δh + λh)K = O(h) as h ↓ 0.

For the denominator of dh we have

1− E[(δh + λhε
2
kh)

2] = 1− δ2
h − 2δhλh − λ2

hE[ε4kh]

= −
(

(1− δh)2 − 2(1− δh) + 2δhλh + λ2
hE[ε4kh]

)
.

The bad case scenario would be if denominator tends to zero too fast when
h ↓ 0. A sufficient condition to avoid this is as follows

lim sup
h↓0

1

h

[
(1− δh)2 − 2(1− δh) + 2δhλh + λ2

hE[ε4kh]
]
< 0.

We have 1− δh = λh + hθ + o(h) as h ↓ 0. Hence,

(1− δh)2 − 2(1− δh) + 2δhλh + λ2
hE[ε4kh]

= (λh + hθ)2 − 2(λh + hθ) + 2δhλh + λ2
hE[ε4kh] + o(h)

= λ2
h + 2λhhθ − 2hθ − 2λh(λh + hθ) + λ2

hE[ε4kh] + o(h)

= λ2
h(E[ε4kh]− 1)− 2hθ + o(h) (3.4)
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as h ↓ 0. Our sufficient condition is given by

lim sup
h↓0

λ2
h

h
<

2θ

E[ε4kh]− 1
, k ∈ N≥2.

Note that independency and non-degeneracy (see Assumption 3.3) of εkh
in combination with Jensen’s inequality gives E[ε4kh] > 1. So the lim sup-
condition gives a γ > 0, independent of h, such that for h small enough
holds

(E[ε4kh]− 1)λ2
h < h(2θ − γ).

In combination with (3.4) we develop

λ2
h(E[ε4kh]− 1)− 2hθ + o(h) < γh + o(h)

as h ↓ 0. So there exists a 0 < ε(2) ≤ ε(1) such that

E[(δh + λhε
2
kh)

2] = δ2
h + λ2

hE[ε4kh] + 2δhλh < 1, k ∈ N≥2,

for all 0 < h ≤ ε(2).

Since εkh ∈ L4, inequality (3.3) and Assumption 3.1 give us a 0 < ε(3) ≤ ε(2)

and a certain K(2) ∈ R>0 such that

E[σ4
kh] ≤ K(2),

for all 0 < h ≤ ε(3), k ∈ N≥2 and all ||(W(k−1)h, σ
2
kh|| ≤ R. Finally, take

K = max(K(1), K(2)).

Lemma 3.6. Let R ≥ 0. Let f1, f2 : Ω → R≥0 be two measurable functions
with bounded expecations and both independent of εkh, for all k ∈ N≥2 and
all h > 0. If the conditions of Lemma 3.5 hold and the extra requirement

lim sup
h↓0

λ2
h

h
<

2θ

3(E[ε4kh]− 1)
and εkh ∈ L8, k ∈ N≥2,

then ∃ε(5) ∈ R>0, ∃N ∈ R>0 such that for all k ∈ N≥2, 0 < h ≤ ε(5) and all
||(W(k−1)h, σ

2
kh)(ω)|| ≤ R a.s. holds E[f1σ

6
kh] ≤ N and E[f2σ

8
kh] ≤ N .

Proof. The proof is similar to the proof of Lemma 3.5. Hence, it is technical.
Choose R ≥ 0 arbitrary. There holds (please verify) for all h > 0 and k ∈ N≥2

E[σ6
(k+1)h]

= E[β3
h + σ2

kh(3β
2
hδh + 3β2

hλh)

+σ4
kh(3βhδ

2
h + 6βhδhλh + 3βhλ

2
hε

4
kh)

+σ6
kh(δ

3
h + 3δ2

hλh + 3δhλ
2
hε

4
kh + λ3

hε
6
kh)]
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and

E[σ8
(k+1)h]

= E[β4
h + σ2

kh(4β
3
hλh + 4β3

hδh)

+σ4
kh(6β

2
hλ

2
hε

4
kh + 6β2

hδ
2
h + 12β2

hδhλh)

+σ6
kh(4βhλ

3
hε

6
kh + 4βhδ

3
h + 12βhδ

2
hλh + 12βhδhλ

2
hε

4
kh)

+σ8
kh(4δ

3
hλh + 6δ2

hλ
2
hε

4
kh + 4δhλ

3
hε

6
kh + λ4

hε
8
kh + δ4

h)].

Lemma 3.5 gives a ε(3) > 0 and a K ∈ R>0 such that max(E[σ2
kh],E[σ4

kh]) ≤ K
for all 0 < h < ε(3), k ∈ N≥2. Take D := max(E[f1],E[f2]). Now, let us take
a closer look at the sixth and eighth moment.

Sixth moment: We define

b := β3
h +K(3β2

hδh + 3β2
hλh)

+K(3βhδ
2
h + 6βhδhλh + 3βhλ

2
hE[ε4kh)],

α := δ3
h + 3δ2

hλh + 3δhλ
2
hE[ε4kh] + λ3

hE[ε6kh]

and
ak,h := E[f1σ

6
k,h] = E[f1] · E[σ6

k,h], h > 0, k ∈ N≥2,

By Lemma 3.4 we have

ak,h ≤ (a0,h −
D · b
1− α

)αk +
D · b
1− α

, k ∈ N≥2, (3.5)

for all 0 < h ≤ ε(3). Note that

b = O(3βhδ
2
h) = O(h)

as h ↓ 0. We have

α = δ3
h + 3δ2

hλh + 3δhλ
2
h + λ3

h

+3δhλ
2
h(E[ε4kh]− 1) + λ3

h(E[ε6kh]− 1)

= (1− hθ)3 + 3δhλ
2
h(E[ε4kh]− 1) + λ3

h(E[ε6kh]− 1) + o(h)

= 1− 3hθ + 3δhλ
2
h(E[ε4kh]− 1) + λ3

h(E[ε6kh]− 1) + o(h)

as h ↓ 0. Moreover, 1− α = O(h) + o(h) as h ↓ 0. Since εkh ∈ L6 ⊂ L8 and
the distribution of εkh is independent of h,

α < 1− 3hθ + 2hδhθ + o(h)
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as h ↓ 0. This yields,

lim sup
h↓0

D · b
1− α

∈ R>0, k ∈ N≥2.

So there exists a 0 < ε(4) ≤ ε(3) and a C1 ∈ R such that 0 < α < 1 and
lim suph↓

D·b
1−α < C1, for all 0 < h ≤ ε(4), k ∈ N≥2.

Hence, inequality (3.5) and Assumption 3.1 gives a N (1) ∈ R>0 such that

E[f1 · σ6
kh] ≤ N (1),

for all 0 < h ≤ ε(4), k ∈ N≥2 and all ||(W(k−1)h, σ
2
kh)(ω)|| ≤ R.

Eighth moment: Let N
(1)
∗ and ε

(4)
∗ be obtained by using f2, as respectively

N (1) and ε(4) were obtained by using f1. We define

q := D · β4
h +D ·K(4β3

hλh + 4β3
hδh)

+D ·K(6β2
hλ

2
hE[ε4kh] + 6β2

hδ
2
h + 12β2

hδhλh)

N (1)
∗
(
4βhλ

3
hE[ε6kh] + 4βhδ

3
h + 12βhδ

2
hλh + 12βhδhλ

2
hE[ε4kh]

)
,

ξ := (4δ3
hλh + 6δ2

hλ
2
hE[ε4kh] + 4δhλ

3
hE[ε6kh] + λ4

hE[ε8kh] + δ4
h).

and
dk,h = E[f2σ

8
k,h] = E[f2] · E[σ8

k,h], h > 0, k ∈ N≥2.

By Lemma 3.4 we have

dk,h ≤ (d0,h −
q

1− ξ
)ξk +

q

1− ξ
, k ∈ N≥2, (3.6)

for all 0 < h ≤ ε
(4)
∗ . Recall ( from the proof of Lemma 3.5) that E[ε4kh] > 1.

So here, our lim sup-condition gives a γ > 0, independent of h, such that for
h small enough holds

(E[ε4kh]− 1)λ2
h < h(

2

3
θ − γ). (3.7)

For the base ξ follows

ξ = (δh + λh)
4 + 6δ2

hλ
2
h(E[ε4kh]− 1) + 4δhλ

3
h(E[ε6kh]− 1) + λ4

h(δ
4
hE[ε8kh]− 1)

= 1− 4hθ + 6δ2
hλ

2
h(E[ε4kh]− 1) + o(h)

< 1− h(4θ + 4δ2
hγ − 4δ2

hθ) + o(h),

as h ↓ 0 due to (3.7). Hence,

1− ξ > h(4θ + 4δ2
hγ − 4δ2

hθ)
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for h small enough. Also, we have that q = O(N
(1)
∗ 4βhδ

3
h) = O(h) as h ↓ 0.

This yields

lim sup
h↓0

q

1− ξ
∈ R, k ∈ N≥2,

So there exists a 0 < ε(5) ≤ ε
(4)
∗ and a C2 ∈ R such that 0 < ξ < 1 and

q
1−ξ < C2, for all 0 < h ≤ ε(5), k ∈ N≥2.

Inequality (3.6) and Assumption 3.1 gives a N (2) ∈ R>0 such that

E[f2 · σ8
kh] ≤ N (2),

for all 0 < h ≤ ε(5), k ∈ N≥2 and all ||(W(k−1)h, σ
2
kh)(ω)|| ≤ R.

We conclude by taking N = max(N (1), N (2)).

Remark 3.7. The condition in terms of “lim sup” can be interpreted as a
restriction on the noise variable εkh in combination with λ. Namely, it is
tail can’t be too “fat” and/or the contribution of the noise can’t be too
large. For the standard normal distribution as noise variable, our strongest

condition transforms into lim suph↓0
λ2
h

h
< 1

3
θ, which is certainly an acceptable

requirement. Also, θ > 0 is reasonable if we keep the necessary and sufficient
condition (2.2) for existence of a second order stationary process in mind.

Remark 3.8. Note that for obtaining E[f1σ
6
kh] ≤ N (1) the weaker assumption

lim suph↓0
λ2
h

h
< θ

E[ε4kh]−1
was enough. Namely, use a γ analogous as in (3.7).

We mention that Corollary 2.10 gives, under appropriate conditions, for each
h a collection of (homogeneous) transition kernels (P̃kh)k∈N for the process
(Wkh, σ

2
(k+1)h)k∈Z≥0

. Let bt/hc denote the integer part of t/h, i.e., the largest

integer k such that k ≤ t/h. Then, according to Definition 3.2, we also have
for each h a collection of (homogeneous) transition kernels (P̃t,h)t≥0 given by

∀t ≥ 0 : Pt,h := P̃hbt/hc. (3.8)

Henceforth, it is easier that we use the following operator notation for a
measurable function f on R2

Ps,h(f)(x) :=

∫
R2

f(y) Ps,h(x, dy), h ≥ 0, s ≥ 0,

with transition kernel Ps,h as in (3.8). And xT denotes the transpose of a
vector x (in R2). The following Lemma gives expressions for the drift en
second moment per unit of time.
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Lemma 3.9. We let the following functions be given on R2

g(k)(y) =
(
y − (W(k−1)h, σ

2
kh)
)T

w(k)(y) =
(
y − (W(k−1)h, σ

2
kh)
)T · (y − (W(k−1)h, σ

2
kh)
)
, k ∈ N.

Let R ≥ 0 and for each h > 0 the random variables εkh, with k ∈ N≥2, be
i.i.d, independent of G(k−1)h. If ∀k ∈ N≥2 and h > 0 the law ∆εkh of εkh has
a density with respect to the Lebesgue measure, then holds

1

h
Ph,h(g

(k)(x) =
(

0
βh−σ2

kh(1−δh−λh)

h

)
,

and

1

h
Ph,h(w

(k)(x))

=

(
σ2
kh 0

0
β2
h

h
− 2βhσ

2
kh

h
(1− δh − λh) +

σ4
kh

h
(1− δh − λh)2 +

λ2
hσ

4
kh(M−1)

h

)
,

where x := (W(k−1)h, σ
2
kh) such that ||x|| ≤ R, and where M := E[ε4kh].

Proof. Let R ≥ 0 and h > 0 small enough (such that we can invoke Lemma
3.5). Fix k ∈ N≥2 such that for our random starting point x = (W(k−1)h, σ

2
kh)

holds ||x|| ≤ R. Let the indexes i and j in the functions g
(k)
i and w

(k)
i,j denote

the matrix entry, with i, j ∈ {1, 2}. Conditioned on information at time
(k − 1)h, the martingale property tells us that

1

h
Ph,h(g

(k)
1 )(x) = 0.

We use Xkh = σkhεkh in combination with (3.2) to obtain

1

h
Ph,h(g

(k)
2 )(x) =

E[βh + σ2
kh(δh + λhε

2
kh − 1)|G(k−1)h]

h

=
βh − σ2

kh(1− δh − λh)
h

,

by G(k−1)h measurability of σkh. So we have an expression for the drift per
unit of time. Now, we look at the second moment per unit of time. The
independence property of the noise variables and direct computation tells us
the following

1

h
Ph,h(w

(k)
1,1)(x)

=
β2
h

h
− 2βhσ

2
kh

h
(1− δh − λh) +

σ4
kh

h
E[(δh + λhε

2
kh − 1)2|G(k−1)h]

=
β2
h

h
− 2βhσ

2
kh

h
(1− δh − λh) +

σ4
kh

h
(1− δh − λh)2 +

λ2
hσ

4
kh(M − 1)

h
,
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1

h
Ph,h(w

(k)
2,2)(x) = E[X2

kh|G(k−1)h]

= σ2
kh

and

1

h
Ph,h(w

(k)
1,2(x)) = E[

Xkh(βh + σ2
kh(δh + λhε

2
kh − 1)√

h
|G(k−1)h]

=
βh + σ2

kh(δh + λh − 1)√
h

E[Xkh|G(k−1)h]

= 0.

Remark 3.10. In different notation, the same statements would hold without
existence of a density function. In that case, the process has not shown to
be Markovian, but we could still write the conditional expectation in full.

3.3 Diffusion approximation of GARCH(1, 1)

As mentioned, Theorem 2.1 in [7] states conditions (denoted by assumptions
2 through 5 in [7]) under which our discrete Markov process converges in
distribution if the time step h goes to zero. To check the formal setup as
in [7], we notice that the paths of (Wt,h, σ

2
t+h,h)t≥0 are right-continuous with

finite left limit is at each t > 0. Let D := D([0,∞),R2) be the space of
mappings from [0,∞) into R2 that are continuous from the right with finite
left limit is. Endow D with the Skorohod metric in that it becomes a metric
space (see [1]). We can see the GARCH(1, 1)h process as a D-valued random
variable. For the Theorem, we need || · || to be the Euclidean norm on R2.

Theorem 3.11. Let for each h > 0 the random variables εkh, with k ∈ N≥2,
be i.i.d, independent of G(k−1)h and εkh ∈ L8. Let M := E[ε4kh]. Assume that
for all k ∈ N≥2 and h small enough the law ∆εkh of εkh (independent of k)
is independent of h and has a density with respect to the Lebesgue measure.
Also, assume that the limit is

β := lim
h↓0

βh
h

(3.9)

θ := lim
h↓0

1− δh − λh
h

(3.10)

α2 := lim
h↓0

M − 1

h
λ2
h (3.11)
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exist, and

lim sup
h↓0

λ2
h

h
<

2θ

3(M − 1)
,

with θ, α2 ∈ R>0 and β ∈ R≥0. Then, for all t ∈ R≥0 we have that

limh↓0(Wt,h, σ
2
t,h)

d
= (Wt, σ

2
t ), where the process (Wt, σ

2
t )t≥0 satisfies

Wt = W0 +

∫ t

0

σ2
s dB1,s,

σ2
t = σ2

0 +

∫ t

0

(β − θσ2
s)ds+

∫ t

0

ασ2
sdB2,s,

and
P[(W0, σ

2
0) ∈ Γ] = ν(Γ) for any Γ ∈ B(R2),

where (B1,t)t≥0 and (B2,t)t≥0 are two independent Brownian motions. A weak
solution of (Wt, σ

2
t ) exists and is distributionally unique. Finally, (Wt, σ

2
t )

remains finite in finite time intervals almost surely, i.e., for all T > 0,

P[ sup
0≤t≤T

||(Wt, σ
2
t )|| <∞] = 1.

Proof. The discrete-time processes {(Wkh, σ
2
(k+1)h)k∈Z≥0

}h will be our main
sequence of interest, because it is Markovian. If the limit result is proved

for this sequence, then follows limh↓0(Wt,h, σ
2
t+h,h)

d
= limh↓0(Wt,h, σ

2
t,h) for all

t ∈ R≥0. This is justified by the fact that Theorem 2.1 in [7] shows that
the sample paths are continuous with probability 1. This is also seen in our
statement. The stochastic integrals given in this Theorem are continuous-
time processes, because the Brownian Motions are continuous. Also σ2

t ∈ L1

by Lemma 3.5, so the above Lebesgue-Stieltjes integral is (absolutely) contin-
uous. In other words, once we have proved the limit result for the sequence
{(Wkh, σ

2
(k+1)h)k∈Z≥0

}h the proof is complete. Let us check the four conditions.

Condition 1: Let ε(3), K and ε(5), N be as respectively in Lemma 3.5 and
Lemma 3.6. Choose R ≥ 0 and T ≥ 0 arbitrary. Fix 0 < h ≤ ε(5) ≤ ε(3),
and fix our random starting point x := (W(k−1)h, σ

2
kh), for a certain k ∈ N,

such that ||x(ω)|| ≤ R almost everywhere. Let our time t be given such that
0 ≤ t ≤ T . Let l be uniquely given by (l + 1)h ≤ t < (l + 2)h. Without loss
of generality we may assume l ∈ Z≥0.

The first part of Condition 1 deals with a technical requirement in terms
of a fourth moment. It implies that the sample paths of the limit process are
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continuous with probability one. This is intuitively seen by the fact that

1(a,∞)(||y − x||) ≤
1

a4
||y − x||4, a ∈ R>0.

So we define the functions

fi(y) := |(y − x)i|4, i = 1, 2

on R2. We look at

Ph,h(f1)(x) = h2E[ε4khσ
4
kh|G(k−1)h],

Ph,h(f2)(x) = E[
(
βh − σ2

kh(1− δh − λhE[ε2kh])
)4

|G(k−1)h].

Because the conditional expectation is defined through integrals, we take ex-
pectations. First, we invoke Lemma 3.5 to obtain E[Ph,h(f1)(x)] ≤ h2E[ε4kh]K.
Observe that ε4khσ

4
kh ≥ 0, so

∀G ∈ G(k−1)h : 0 ≤ E[1G · Ph,h(f1)(x)] ≤ h2E[ε4kh]K

and

lim
h↓0

1

h
Ph,h(f1)(x) ≤ lim

h↓0
hE[ε4kh]K = 0

Second, for simplicity we define

B(m) := (1− δh − λhε2kh)m, m ∈ N.

with

E|B(m)| =
m∑
k=0

(
m

k

)
(1− δh)kλm−kh E[ε

2(m−k)
kh ]

= O(hm
1
2 ),

as h ↓ 0. We investigate

E[Ph,h(f2)(x)] = E[β4
h − 4β3

hσ
2
khB(1) + 6β2

hσ
4
khB(2)

−4βhσ
6
khB(3) + σ8

khB(4)]

≤ E[β4
h + 6β2

hσ
4
khB(2) + σ8

khB(4)]

We may assume that for all h ≤ ε(5) that E[B(4)] ≤ D for a certain D ∈ R≥0.
We invoke Lemmas 3.5 and 3.6 to obtain

E[Ph,h(f2)(x)] ≤ E[β4
h + 6β2

hB(2)K +NB(4)].
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Without loss of generality we have for all h ≤ ε(5) that E[Ph,h(f2)(x)] ≤ h2M

for a certain M ∈ R≥0. Because
(
βh − σ2

kh(1− δh − λhE[ε2kh])
)4

≥ 0 follows

∀G ∈ G(k−1)h : 0 ≤ E[1G · Ph,h(f2(x))] ≤ h2M,

and

lim
h↓0

1

h
Ph,h(f2)(x) ≤ lim

h↓0
hM = 0.

Note that estimates for E[Ph,h(fi(x))], i = 1, 2, were independent of t and
holds for all ||x|| ≤ R by our technical Lemmas. So the speed of convergence
to 0 was in both cases independent of t and x. Hence,

lim
h↓0

sup
||x||≤R,0≤t≤T

Pt,h(fi(x)) = 0, i = 1, 2.

Condition 1 also deals with the drift and the second moment per unit of
time. It requires that the drift and second moment per unit of time converges
uniformly on compact sets to well-behaved functions (of time t and state x).
For t ∈ R≥0 we define the drift vector

b
(
[w(ω, t), s(ω, t)], t

)
:=

(
0 β − θs(ω, t)

)
and diffusion matrix

a
(
[w(ω, t), s(ω, t)], t

)
:=

(
s(ω, t) 0

0 α2s(ω, t)2

)
,

where w and s are measurable functions

w : Ω× R≥0 → R
(ω, t) 7→ w(ω, t)

and

s : Ω× R≥0 → R≥0

(ω, t) 7→ s(ω, t).

Let the functions g(k)(y) and w(k)(y) be as in Lemma 3.9. Use (3.9), (3.10),
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(3.11) and Lemma 3.5 to obtain

lim
h↓0

1

h
Pt,h(g

(k)
1 (x)) = 0

lim
h↓0

1

h
Pt,h(g

(k)
2 (x)) = β − θ lim

h↓0
Ph,h(Ph,h(· · · (σ2

kh) · · · ))

lim
h↓0

1

h
Pt,h(w

(k)
1,1(x)) = lim

h↓0
Ph,h(Ph,h(· · · (σ2

kh) · · · ))

lim
h↓0

1

h
Pt,h(w

(k)
2,2(x)) = α2 lim

h↓0
Ph,h(Ph,h(· · · (Ph,h(σ4

kh) · · · ))

lim
h↓0

1

h
Pt,h(w

(k)
1,2(x)) = lim

h↓0

1

h
Pt,h(w

(k)
2,1(x)) = 0.

Note that speed of convergence in the limit is (3.9), (3.10), (3.11) is indepen-
dent of t and x and holds for all ||x|| ≤ R. Hence,

lim
h↓0

sup
||x||≤R,0≤t≤T

||Pt,h(g(x))− b([Wt, σ
2
t ], t)|| = 0

lim
h↓0

sup
||x||≤R,0≤t≤T

||Pt,h(w(x))− a([Wt, σ
2
t ], t)|| = 0.

Condition 2: This condition requires that the diffusion matrix a has a
well-behaved matrix square root r. We define the matrix

r
(
[w(ω, t), s(ω, t)], t

)
:=

( √
s(ω, t) 0

0 αs(ω, t)

)
,

where w and s are as before in the proof. Obviously, for all [w(ω, t)s(ω, t)], t
holds

a
(
[w(ω, t), s(ω, t)], t

)
= r
(
[w(ω, t)s(ω, t)], t

)
r
(
[w(ω, t)s(ω, t)], t

)T
.

The function r is measurable, because w and s are. Note that it is continuous
as function from w and s.

Condition 3: The third condition concerns the behavior of the initial distri-
bution of our discrete time process {(Wkh, σ

2
(k+1)h)k∈Z≥0

}h, when taking the
limit. This is not a concern, because Assumption 3.3 tells us that the initial
probability law is given by ν for every h > 0.

Condition 4: So far Theorem 2.1 in [7] suggests a limit diffusion of the
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form

dWt = σtdB1,t,

dσ2
t = (β − θσ2

t )dt+ ασ2
t dB2,t,

P[(W0, σ
2
0) ∈ Γ] = ν(Γ) for any Γ ∈ B(R2).

At this point, there are two things that can go wrong. First, ν, a and b may
not uniquely define a limit process. Second, a limit process may not exist,
because when taking together ν, a and b may imply that the process explodes
with strict positive probability to infinity in finite time. In [7] one can find
conditions which are sufficient to exclude these possibilities.

It helps to define
Vt := log(σ2

t ), t > 0.

For our candidate limit diffusion we rewrite

dWt = exp(
Vt
2

)dB1,t,

P[(W0, exp(V0)) ∈ Γ] = ν(Γ) for any Γ ∈ B(R2).

and an application of Itô’s Lemma gives

dVt = αdB2,t + (
β

σ2
s

− θ)dt− 1

2
d(α2t)

= (β exp(−Vt)− θ −
α2

2
)dt+ αdB2,t.

So we define a new drift vector b′ and diffusion matrix a′ by

b′
(
[w(ω, t), v(ω, t)], t

)
:=

(
0 β exp(−v(ω, t))− (θ + α2

2
)
)

and diffusion matrix

a′
(
[w(ω, t), v(ω, t)], t

)
:=

(
exp(v(ω,t)

2
) 0

0 α

)
,

where w is as in condition 1 and 2, and v is a measurable function from
Ω× R≥0 to R≥0.

Recall that a (symmetric) matrix is positive definite if all eigenvalues of
the matrix are positive. Note that the eigenvalues of a′ (as function from w

and v) are given by exp(v(ω,t)
2

) > 0 and α > 0. Hence, condition B (in the
Appendix of [7]) for distributional uniqueness holds.
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Next, we check the non-explosiveness condition. Take the nonnegative func-
tion

ϕ[(w, v), t] = K + f(w)|w|+ f(v) exp(|v|),

where K ∈ R>0 and

f(x) =

{
exp(−1

|x| ) if x 6= 0

0 if x = 0.

One can check that we have the following identities

∂2ϕ

∂w2
=

{
exp(−1

w
) · 1

w3 if w > 0
exp( 1

w
) · −1

w3 if w < 0,

∂ϕ

∂v
=

{
exp(v − 1

v
) · ( 1

v2 + 1) if v > 0
exp( 1

v
− v) · (− 1

v2 − 1) if v < 0,

∂2ϕ

∂v2
=

{
exp(v − 1

v
) · (1 + 2

v2 − 2
v3 + 1

v4 ) if v > 0
exp( 1

v
− v) · (1 + 2

v2 + 2
v3 + 1

v4 ) if v < 0.

If we use the definition of the derivative (the difference quotient), then one
also obtains that ϕ is twice differentiable in zero. Note that

lim
||(w,v)||→∞

inf
0≤t≤T

ϕ((w, v), t) =∞, T > 0,

so ϕ is a Liapunov function (see [7]). There exists a R > 0 such that for
|w| ≥ R and |v| ≥ R we have

∂2ϕ

∂w2
≤ C1

∂ϕ

∂v
≤ sign(v) · exp(|v|) + C2

∂2ϕ

∂v2
≤ exp(|v|) + C3,

for certain constants C1, C2, C3 ∈ R≥0, and where sign is the “sign” function.
There holds for |w|, |v| ≥ R

1

2
exp(

v

2
)
∂2ϕ

∂w2
+ [β exp(−v)− (θ +

α2

2
)]
∂ϕ

∂v
+

1

2
α
∂2ϕ

∂v2

≤ [β exp(−v)− (θ +
α2

2
)]sign(v) · exp(|v|) + C2β exp(−v) +

1

2
α exp(|v|)

+
1

2
exp(

v

2
)C1 − C2(θ +

α2

2
) +

1

2
αC3 (3.12)
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and

D · ϕ = DK +D exp(
−1

|w|
)|w|+D exp(

−1

|v|
) exp(|v|), D ∈ R≥0.

One sees that we can pick constants D,K ∈ R>0 independent of t such that

RHS of (3.12) ≤ D · ϕ

for all (w, v). By Assumption 3.3, the continous Mapping Theorem (see [1])
gives distributional uniqueness and non-explosiveness for our candidate limit
diffusion.

We have seen that a weak solution of the stochastic differential equation
exists. Only, we must check that the assumptions on the parameters are not
conflicting. So that it is not an empty statement. The next example gives
parameters that obey these conditions.

Example 3.12. For each h > 0 let (εkh)k∈N be a sequence of independent
standard normal distributed random variables, with (Gkh) the generated fil-
tration. Set the nonnegative constants, dependent of h > 0, as follows

βh = βh

δh = 1− λ(h/2)1/2 − θh
λh = λ(h/2)1/2,

with θ ∈ R>0, β > 0 and 0 ≤ λ <
√
θ.
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4 Continuous-time model 2: Noise variables

replaced by increments of a Lévy process

4.1 Motivation for using a Lévy process

We have seen that, under appropriate conditions, the linear GARCH(1,1)
model converges in distribution to a bivariate diffusion process. This was
given in terms of two independent Brownian motions. So if we condition on
the past, then the variance of the displacement, over a small time-interval,
made by σ2

t is independent of Wt. In practice, you want some dependency
between the “direction” Xt (determined by Wt) and the conditional variance
σ2
t . For instance, in periods of high volatility we maybe want a higher prob-

ability of going downwards than upwards based on experiences. So we want
to loosen this independence property. This is where a Lévy process comes
in place. It will be used as only source of randomness instead of two inde-
pendent Brownian Motions. Namely, the noise variables εj are replaced by
increments of a Lévy process. This construction comes from [6].

To do this, we first look closer at our discrete-time model. One has for
n ∈ N

σ2
n = β + δσ2

n−1 + λX2
n−1

= β + (δ + λε2n−1)σ2
n−1

= β + (δ + λε2n−1)(β + [δ + λε2n−2]σ2
n−2)

= β(1 + δ + λε2n−1) + (δ + λε2n−1)(δ + λξ2
n−2)(β + [δ + λε2n−3]σ2

n−3)
...

= β
n−1∑
i=0

( n−1∏
j=i+1

(δ + λε2j)
)

+ σ2
0

n−1∏
j=0

(δ + λε2j), (4.1)

where
∏n−1

n (δ+ λε2n) := 1. Of major importance are conditions under which
the model converges in distribution to finite random variables (i.e. has a
finite stable distribution). Namely, this result will be used to motivate our
continuous-time model. For this, the last term in (4.1) plays a significant
role. Similarly as in [6] we have the following Theorem.

Theorem 4.1. Let all εn be i.i.d. and independent of Fn−1. If limn→∞
∏n

i=1(δ+

λε2i )
a.s.
= 0, then we have limn→∞ σ

2
n

d
= σ2 and limn→∞Xn

d
= X for finite ran-

dom variables σ2 and X. Also, σ2 d
= β + (δ + λε21)σ2 with σ2 independent of

ε1. Conversely, if limn→∞
∏n

i=1(δ + λε2i )
a.s.

6= 0, then σ2
n

P→∞ and |Xn|
P→∞

as n→∞.
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Proof. In the notation of [3], pick M1 = 1, Mj = (δ + λε2j−1) for j = 2, 3, . . .
and Qi = 1 for i = 1, 2 . . . and R0 = σ2

0(δ+λε20)/β. Then we have (according
to page 1196 in [3])

σ2
n+1

β
:= Rn(R0) =

n∑
i=1

Qi

n∏
j=i+1

Mj +R0

n∏
j=1

Mj

=
n∑
i=1

n∏
j=i+1

(δ + λε2j−1) +
σ2

0(δ + λε20)

β

n∏
j=2

(δ + λε2j−1)

=
n−1∑
i=0

n−1∏
j=i+1

(δ + λε2j) +
σ2

0

β

n−1∏
j=0

(δ + λε2j)

Similarly as in the article we define

πn :=

{ ∏n
j=1 Mj, n = 1, 2, . . . ,

1, n = 0,

so that

Z∞ :=
∞∑
k=1

πk−1Qk

=
∞∑
k=1

πk−1

=
∞∑
k=0

k∏
j=1

(δ + λε2j).

Assumption 2.2 develops that − log(Mi) is finite for all i ∈ N. Now it is
justified to use an application of Theorem 2.1 of [3], with limn→∞ πn

a.s.
= 0

and Qi = 1 for all i, to conclude

σ2
n+1

β

a.s.→ Z∞ as n→∞,

where Z∞ is absolutely convergent. All the εn’s are have the same distributon,

so we derive σ2
n+1

a.s.→ σ2 d
= β+(δ+λε21)σ2 as n→∞. By absolute convergence

follows that σ2 is a finite random variable, and independence of εn gives that

σ2 is independent of ε21. This gives Xn
d→ X as n → ∞, with X

d
= σε1 a

finite random variable. If limn→∞
∏n

i=1(δ + λε2i )
a.s.

6= 0, then Theorem 2.1 of

[3] shows that σn
P→∞, and then |Xn|

P→∞ as n→∞.
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Remark 4.2. In [6] there are necessary and sufficient conditions given under
which limn→∞

∏n
i=1(δ + λε2i )

a.s.
= 0 holds. Keeping Assumption 2.2 in mind,

these conditions are as follows

(i) If δ > 0 and λ ≥ 0, then there must hold

E[| log(δ + λε21)|] <∞ and E log(δ + λε21) < 0. (4.2)

(ii) If δ = 0 and λ > 0, then either (4.2) or E[(log(λε21)−] =∞ in combina-
tion with∫ ∞

0

x
(∫ x

0

P{log(λε21) < y}dy
)−1

dP{log(λε21) ≤ x} <∞

must hold.

Condition (i) is also known in terms of the top Lyapounov exponent (see [10]).

Theorem 4.1 motivates us to take a closer look at β · Z∞. Note that taking
sums is a special type of integration. Namely,

β
n−1∑
i=0

( n−1∏
j=i+1

(δ + λε2j)
)

= β

∫ n

0

n−1∏
j=bsc+1

(δ + λε2j) ds

= β

∫ n

0

e
∑n−1
j=bsc+1

log(δ+λε2j ) ds, (4.3)

where both integrations are with respect to the Lebesgue measure on R≥0

(as before b·c denotes the integer part). This suggests replacing the noise
variables εj by increments of a Lévy process. Because, they are strictly sta-
tionary and independent.

We proceed from the representation (4.3). Note that for 0 ≤ s < 1 there
holds

n−1∑
j=bsc+1

log(δ + λε2j) = (n− 1)(log(δ)− log(δ)) +
n−1∑

j=bsc+1

log(δ + λε2j)

= (n− 1) log(δ) +
n−1∑

j=bsc+1

log(1 +
λ

δ
ε2j). (4.4)

Henceforth, to avoid dividing by zero we will, on top of Assumption 2.2 and
keeping Remark 4.2 in mind, assume the following.

Assumption 4.3. There holds 0 < δ < 1.
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4.2 GARCH(1,1) process driven by a Lévy process

In this section we will derive a continuous-time GARCH(1,1) process. As in
our original discrete setup, a single source of randomness suffices. The jumps
of a (any) Lévy process shall replace the noise variables.

Let (Lt)t≥0 be a (càdlàg) Lévy process on R with jumps ∆Lt := Lt − Lt− ,
a filtration (Ft) which satisfies the “usual conditions”, and νL as it is Lévy
measure. For future reasons we will assume the following.

Assumption 4.4. The Lévy process L does not jump at the starting point,
i.e. ∆L0 = 0.

We recall some of it is properties (see [13]). There holds∫
R\{0}

(x2 ∧ 1)νL(dx) <∞, (4.5)

by the Lévy-Itô decomposition. Since L is càdlàg,∑
0≤s≤t,
|∆Ls|≥ε

∆Ls

is a finite sum for all ε > 0, and the set

{t ≥ 0 : ∆Lt 6= 0}

is at most countable. The random measure µL associated with the jumps
∆Lt is a Poisson random measure on R≥0 × R \ {0} with intensity measure
Leb ⊗ νL. A measurable function f is called µL-integrable if for for every
t ≥ 0, ∫

(0,t]

∫
R\{0}

|f(x)| µL(ds, dx) =
∑
s≤t

|f(∆Ls)| · 1{∆Ls 6=0} <∞,

almost surely. It is a fact that a measurable function f is µL-integrable if
and only if

∫
R\{0}(|f | ∧ 1) dνL <∞.

With (4.3) and (4.4) in mind, we define a càdlàg process (Xt)t≥0 by

−Xt := t log(δ) +
∑

0≤s≤t

log(1 +
λ

δ
(∆Ls)

2).
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Note that

−Xt = t log(δ) +
∑

0≤s≤t

log(1 +
λ

δ
(∆Ls)

2) · 1{∆Ls 6=0} (4.6)

holds, so it is in fact a countable sum. This will be used to define our
continuous-time volatility process. We see that only δ > 0 is allowed. Thus
our continuous-time GARCH does not contain a continuous-time ARCH as
a submodel. Suppose we want to accommodate the case δ = 0, then we have
to go back to (4.3) and Xt should be taken as

−Xt = −
∑

0<s≤t

log(λ(∆Ls)
2)1{∆Ls 6=0}, t ≥ 0.

Note that this is only a well-defined (Lévy) process, if L is compound Poisson.

Let us state some facts of Xt (result from [6]).

Proposition 4.5. The process (Xt)t≥0 is a Lévy process of bounded variation
with drift b = − log δ, Gaussian component a = 0 and Lévy measure νX given
by

νX((0,∞)) = 0

and

νX((−∞,−x]) = νL({y ∈ R : |y| ≥
√

(ex − 1)δ/λ}) for x > 0.

Proof. Observe that the process
∑

0≤s≤t log(1+ λ
δ
(∆Ls)

2) is of bounded varia-
tion, because it is increasing in t. The process Xt inherit is the Levy property
of Lt. That it only makes negative jumps is clear. Use properties of a Poisson
process to obtain for x > 0

νX(−∞,−x] = E[
∑

0<s≤1

1{− log(1+λ
δ

(∆Ls)2≤−x}]

= E[
∑

0<s≤1

1{|∆Ls|≥
√

(ex−1) δ
λ
}]

= νL({y : |y| ≥
√

(ex − 1)
δ

λ
}).

Particularly, there holds∫
R\{0}

|x| ∧ 1 νX(dx) =

∫
{|y|≤
√

(e−1) δ
λ
}

log(1 +
λ

δ
y2) νL(dy) <∞,

by (4.5). The Lévy-Itô decomposition gives that (Xt)t≥0 is a Lévy process of
bounded variation with drift b = − log δ and Gaussian component a = 0.
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Remark 4.6. The fact that
∫
R\{0} |x|∧1 νX(dx) <∞ shows that the countable

sum
∑

0≤s≤t log(1 + λ
δ
(∆Ls)

2) is absolutely convergent.

Remark 4.7. It is worth mentioning that Xt is a càdlàg semimartingale, be-
cause any Lévy process is a semimartingale (see [8]).

Analogously to (4.1) we define the following continuous-time volatility pro-
cess.

Definition 4.8. Let β > 0 and let σ0 be a finite random variable independent
of (Lt)t≥0. A left-continuous with finite right limit is (called càglàd) volatility
process (σ2

t )t≥0 is given by

σ2
t := β

∫ t

0

e−Xt−+Xsds+ e−Xt−σ2
0, t ≥ 0.

Note that the Lebesgue-Stieltjes integral in the definition is well-defined, be-
cause Xt is a process of bounded variation as stated in Proposition 4.5.

For s ≤ t we look at

−Xt− +Xs = (t− s) log(δ) +
∑
s<u≤t

log(1 +
λ

δ
(∆Lu)

2),

so σ2
t can be written as

σ2
t = β

(∫ t

0

e(t−s) log(δ)+
∑
s<u≤t log(1+λ

δ
(∆Lu)2)du

)
+ e−Xt−σ2

0

= β

∫ t

0

δt−s
∏
s<u≤t

(1 +
λ

δ
(∆Lu)

2)du+ e−Xt−σ2
0.

Here, one sees the resemblance with (4.3) when it is combined with (4.4).

We want to define a continuous-time process (Gt) similar to the martingale
difference sequence (Xn) in the discrete case.

Definition 4.9. We define a COGARCH process (Gt)t≥0 as the càdlàg pro-
cess satisfying the stochastic differential equation

Gt =

∫ t

0

σs dLs, t ≥ 0, G0 = 0.
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This is well-defined by [8], because from Remark 4.7 it follows that σt is a
càglàd semimartingale. Observe that Gt only jumps if Lt does, so ∆Gt =
σt∆Lt. Recalling from the discrete case that Xn = σnεn, one might suggest
that for small h > 0 the process Gt+h −Gt will in some sense take the place
of Xn.

So fare we have only defined the continuous-time volatility process in com-
bination with the COGARCH process. This was based on intuitive rea-
sons. The question that arises is:“Is this definition the right choice based
on hard mathematical reasons”? As in the discrete case we want some kind
of regressive- and feedback-relation for the volatility process. Moreover, the
conditional variance of the difference COGARCH process must in some sense
be equal to σt. We will observe all this in the next chapter together with
some further results from [6].
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5 Behaviour of the continuous-time model driven

by a Lévy process

5.1 The volatility process

In Chapter 4 we defined stochastic differential equations defining process
Gt and σt. This Chapter will investigate these processes, so that it can
truly can be called a continuous-time GARCH process. We will research if
the distinguish features in the discrete case are also present in Gt and σt.
Therefore, we have to derive a stochastic differential equation for σ2

t (result
from [6]). We shall need the following.

Lemma 5.1. There holds

e−Xt = 1 + log δ

∫ t

0

e−Xudu+
λ

δ

∑
0<s≤t

e−Xs− (∆Ls)
2.

Proof. We want to use Itô’s famous formula (see [4]). Therefore

e−Xt = et log δ
∏

0<s≤t

(1 +
λ

δ
(∆Ls)

2)

= eKtSt,

where Kt := t log δ and St :=
∏

0<s≤t(1 + λ
δ
(∆Ls)

2) for t ≥ 0. For the

application of the formula we define the function f(k, s) := eks, which is
infinite continuously differentiable in all it is arguments. Hence, Itô’s formula
for non-continuous semimartingales develops

e−Xt = f(Kt, St)

= e−X0 +

∫ t

0

eKuSu dKu +

∫ t

0

eKu dSu

+
∑
s≤t

(
eKsSs − eKs−Ss− −Ks−e

Ks−Ss−∆Ks − eKs−∆Ss

)
= 1 + log δ

∫ t

0

e−Xudu+

∫ t

0

eu log δ d(
∏

0<s≤u

(1 +
λ

δ
(∆Ls)

2)

+
∑
s≤t

(
eKs∆Ss − eKs∆Ss

)
= 1 + log δ

∫ t

0

e−Xudu+

∫ t

0

eu log δ d(
∏

0<s≤u

(1 +
λ

δ
(∆Ls)

2), (5.1)
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where we used that Kt is continuous. First we restrict ourselves to jumps only
bigger than some ε > 0. So we replace Su by S

(ε)
u :=

∏
0<s≤u,
∆Ls>ε

(1 + λ
δ
(∆Ls)

2).

Then, there are only a finite number of jumps (bigger than ε), say n, on the
interval (0, t]. We denote these jump times by t1, t2, . . . , tn. Observe that, in
this case, we have for the integrator in latter integral that the function value
is given by

On (0,
t1
2

] : 1

On (
t1
2
, t1] : (1 +

λ

δ
∆L2

t1
)

On ((t1, t2] : (1 +
λ

δ
∆L2

t1
)(1 +

λ

δ
∆L2

t2
)

...
...

On ((tn−1, tn] :
n∏
k=1

(1 +
λ

δ
∆L2

t−k
)(1 +

λ

δ
∆L2

tn).

Let µ be the Lebesgue-Stieltjes measure associated with S
(ε)
u , and we define

the funtion gn(u) :=
∑n

k=1 1(tk−1,tk](u) · etk log δ + 1[0,t0](u) · etk log δ with t0 = t1
2

.
Thus, ∫ t

0

eKu dS(ε)
u =

∫
R≥0

gn dµ

= et
−
1 log δ(1 +

λ

δ
∆L2

t−1
)(
λ

δ
∆L2

t−2
) + · · ·

+et
−
n log δ

n∏
k=1

(1 +
λ

δ
∆L2

t−k
)
λ

δ
∆L2

tn

=
λ

δ

∑
0<s≤t,
∆Ls>ε

e−Xs− (∆Ls)
2.

Therefore, (5.1) and (4.6) tell us

e−Xt = 1 + log δ

∫ t

0

e−Xudu+ lim
ε↓0

λ

δ

∑
0<s≤t,
∆Ls>ε

e−Xs− (∆Ls)
2

= 1 + log δ

∫ t

0

e−Xudu+
λ

δ

∑
0<s≤t

e−Xs− (∆Ls)
2.
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The previous lemma will be of use in our next theorem. We are going
to denote [X, Y ]t as the covariation of two semimartingales (perhaps non-
continuous) Xt and Yt.

Theorem 5.2. The process (σ2
t )t≥0 satisfies the stochastic differential equa-

tion

σ2
t = βt+ log δ

∫ t

0

σ2
sds+

λ

δ

∑
0<s<t

σ2
s(∆Ls)

2 + σ2
0, t ≥ 0

Proof. We define Vt = e−Xt and Wt =
∫ t

0
eXsds for t > 0. Integration by

parts gives

VtWt

=

∫ t

0+

Vs−dWs +

∫ t

0+

Ws−dVs + [V.,W.]t

=

∫ t

0+

eXs−d(

∫ s

0

eXydy) +

∫ t

0+

(

∫ s−

0

eXu du) d(e−Xs) + [e−X. ,

∫ .

0

eXsds]t

=

∫ t

0+

eXs−d(

∫ s

0

eXydy) +

∫ t

0+

(

∫ s

0

eXu du) d(e−Xs) + [e−X. ,

∫ .

0

eXsds]t,

because the integrator u is continuous. Note that Xt is càdlàg so all the
integrals are well-defined. By associativity of the stochastic integral and
(4.6) we have for the first term∫ t

0+

eXs−d(

∫ s

0

eXydy) =

∫ t

0+

e−Xs−eXsds

=

∫ t

0+

e−XseXsds

= t,

and for the last term we do some rewriting to conclude

[e−X. ,

∫ .

0

eXsds]t = [

∫ t

0

e−Xs d1[t,∞)(s),

∫ .

0

eXsds]t

=

∫ t

0

1 d[1[t,∞), s] = 0.
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Definition 4.8 and our previous result develop

σ2
t+ = β

∫ t

0

e−Xt+Xsds+ e−Xtσ2
0

= β ·
(
t+

∫ t

0+

(

∫ s

0

eXu du)e−Xs−eXs− d(e−Xs)
)

+ e−Xtσ2
0

= β ·
(
t+

∫ t

0+

(

∫ s

0

e−Xs−eXu du)eXs− d(e−Xs)
)

+ e−Xtσ2
0

= βt+

∫ t

0+

(σ2
s − e−Xs−σ2

0)eXs− d(e−Xs) + e−Xtσ2
0

= βt+

∫ t

0

σ2
se
Xs− d(e−Xs) + σ2

0+ , t > 0.

We use lemma 5.1 and assumption 4.4 to obtain

σ2
t+

= σ2
0+ + βt+

∫ t

0

σ2
se
Xs−d(e−Xs)

= σ2
0+ + βt+ log δ

∫ t

0

σ2
se
Xs−e−Xs ds+

∫ t

0

eXs−e−Xs− d(
λ

δ

∑
0<s≤t

σ2
s(∆Ls)

2)

= σ2
0+ + βt+ log δ

∫ t

0

σ2
s ds+

λ

δ

∑
0<s≤t

σ2
s(∆Ls)

2,

because Xt has only countable many discontinuities by (4.6). Assumption
4.4 gives the final answer

σ2
t = σ2

0 + βt+ log δ

∫ t

0

σ2
s ds+

λ

δ

∑
0<s<t

σ2
s(∆Ls)

2.

In resemblance, for the discrete-time model we have (write σn to indicate
that we are in the discrete case)

σ2
n+1 − σ2

n = β − (1− δ)σ2
n + λσ2

nε
2
n, n ∈ Z≥0,

which by summation yields

σ2
n = βn− (1− δ)

n−1∑
i=0

σ2
i + λ

n−1∑
i=0

σ2
i ε

2
i + σ2

0.
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Thus, the continuous-time model has the same feedback and autoregressive
relation as in the discrete case, only the parameters are shifted. If we use for
both models the same starting distribution, then

(δ, λ) 7→ (log(δ) + 1,
λ

log(δ) + 1
),

where δ, λ denote the variables in the discrete-case. This property should not
be taken lightly. These feedback and autoregressive properties are important
features of the volatility process.

5.2 The COGARCH process

As mentioned before, we need some conditional variance relation for Gt and
our volatility process σt. For studying our defined COGARCH process (Gt)
we need some notation. Let (b, a2, νL) be the characteristic triplet for our
(arbitrary) Lévy process Lt. For t ≥ 0 we define

Bt,ε :=
∑
s≤t

∆Ls · 1{ε<|∆Ls|≤1}, 0 < ε < 1,

Ct := lim
ε↓0

(Bt,ε − EBtε),

At := bt+
∑
s≤t

∆Ls1{|∆Ls|>1},

Mt := aWt + Ct, Wt a Brownian Motion,

such that the Lévy-Itô decomposition tells us

Lt = At +Mt, t ≥ 0.

Here, At is of bounded variation and Mt is the Brownian motion plus a
martingale part (see [13]). Note that the covariation process of Ct is given
by

[C., C.]t = lim
ε↓0

∑
s≤t

(∆Ls)
2 · 1{ε<|∆Ls|≤1}, 0 < ε < 1.

Theorem 5.3. There holds

lim
h↓0

var(Gt+h −Gt|Ft)
h

= (a2 + c)σ2
t a.s, t ≥ 0,

where c := limh↓0
[C.,C.]t+h−[C,C]t

h
is independent of t.
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Proof. Let t ≥ 0 be given. Recall [W.,W.]t = t, so

[G., G.]t = [L., L.]t

= [M.,M.]t

= a2t+ [C., C.]t.

This is well-defined, because Ct ∈ L2 is a martingale. The conditional vari-
ance of Gt+h −Gt is defined by

var(Gt+h −Gt|Ft) = E[(Gt+h −Gt)
2|Ft]− (E[Gt+h −Gt|Ft])2.

We have

E[Gt+h −Gt|Ft]

= E[

∫ t+h

t

σs dAs|Ft]

= E[b ·
∫ t+h

t

σs ds|Ft] + E[

∫ t+h

t

σs d(
∑
u≤s

∆Lu1{|∆Lu|>1})|Ft].

The number of jumps bigger than 1 are finite. So for h > 0 small enough
follows

E[Gt+h −Gt|Ft] = E[b ·
∫ t+h

t

σs ds|Ft],

and using the definition of the Lebesgue-Stieltjes integral we obtain

lim
h↓0

(E[Gt+h −Gt|Ft])2

h
= 0 a.s.

Through the Itô isometry we develop

E[(Gt+h −Gt)
2|Ft] = E[(

∫ t+h

t

σs dLs)
2|Ft]

= E[(

∫ t+h

t

σs dMs)
2|Ft] + E[(

∫ t+h

t

σs dAs)
2|Ft]

= E[

∫ t+h

t

σ2
s d[M.,M.]s|Ft] + E[(

∫ t+h

t

σs dAs)
2|Ft]

= E[

∫ t+h

t

a2σ2
s ds+

∫ t+h

t

σ2
s d[C., C.]s|Ft]

+E[(

∫ t+h

t

σs dAs)
2|Ft].
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Hence,

lim
h↓0

var(Gt+h −Gt|Ft)
h

= (a2 + c)σ2
t a.s.,

where c = limh↓0
[C.,C.]t+h−[C,C]t

h
. Note that c is independent of t, because the

increments of a Lévy process are strictly stationary.

In the discrete case we had that the conditional variance of Xn was equal to
E[X2

n|Fn−1] = σ2
n. Keeping in mind that the time difference is h instead of

1, the conditional variance of Gt+h − Gt corresponds, for small h, up to a
constant a2 + c compared to the discrete case.

5.3 Further results

This section we will state some further results, concerning the COGARCH
and corresponding volatility process, that are obtained in [6]. It will con-
firm even more that this model preservers all stylized features of the discrete
model. In Remark 4.2 necessary and sufficient conditions where given under
which σ2

n and Xn converge in distribution to respectively finite random vari-
ables σ2 and X. For Xn, it was a consequence of the convergence of σ2

n to
a finite random variable. The next theorem tells us a convergence result for
the continuous-time process.

Theorem 5.4. Suppose∫
R

log(1 + (
λ

δ
y2)νL(dy) < − log δ. (5.2)

Then σ2
t

d→ σ2
∞, as t→∞, for a finite random variable σ2

∞ satisfying

σ2
∞

d
= β

∫ ∞
0

e−Xtdt.

Conversely, if (5.2) does not holds, then σ2
t

P→∞ as t→∞.

Proof. See [6].

Note that (5.2) incorporates the requirement that the integral is finite, be-
cause 0 < δ < 1 by Assumption 4.3. Also, the proof shows that the above
improper integral exists as a finite random variable a.s. In comparison with
condition (i) in Remark 4.2, condtion (5.2) differs only in the measure used
for the integration, which can be explained by the difference of the noise
variables.
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We have that σ2
t is Markovian and further that, if the process is started

at σ2
0
d
= σ2

∞, then it is strictly stationary.

Theorem 5.5. The squared volatility process (σ2
t )t≥0 is a homogeneous Markov

process. Moreover, if the limit σ2
∞ in Theorem 5.4 exists and σ2

0
d
= σ2

∞, inde-
pendent of (Lt)t≥0, then (σ2

t )t≥0 is strictly stationary.

Proof. See [6]

For the process Gt =
∫ t

0
σsdLs, t ≥ 0, note that for any 0 ≤ y < t,

Gt = Gy +

∫ t

y+

σsdLs, t ≥ 0.

Here, (σs)y<s≤t depends on the past until time y only through σy, and the
integrator is independent of this past. From the previous Theorem we thus
obtain:

Corollary 5.6. The bivariate process (σt, Gt)t≥0 is Markovian. If (σ2
t )t≥0 is

the strictly stationary version of the process with σ2
0
d
= σ2

∞, then (Gt)t≥0 is a
process with strictly stationary increments.

Thus as in the discrete case the processes (σt)t≥0 and (σt, Gt)t≥0 are Markov
process (when started in σ2

∞).

As was mentioned after we defined Gt and what Theorem 5.3 confirms, we
have to look at the moments of the increments of Gt in arbitrary time inter-
vals. Consequently, for r > 0 set

G
(r)
t := Gt+r −Gt.

There exists the following result.

Theorem 5.7. Suppose (Lt)t≥0 is a quadratic pure jump process with EL2
1 <

∞, EL1 = 0, and logE[e−X1 ] < 0. Let (σ2
t )t≥0 be the strictly stationary

volatility process with σ2
0
d
= σ2

∞. Then for any t ≥ 0 and h ≥ r > 0,

E[G
(r)
t ] = 0,

E[(G
(r)
t )2] =

βr

− logE[e−X1 ]
EL2

1,

cov(G
(r)
t , G

(r)
t+h) = 0.
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Proof. See [6].

This uncorrelated property is concordance with the discrete-time model.
Note also that E[(G

(r)
t )2] is independent of t. Here, Lt is a pure jump process.

So Theorem 5.3 yields (G
(r)
t ) ≈ rσ2

t for r small.
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6 Recent developments

Our COGARCH in combination with the corresponding volatility process is
a continuous-time variant of the original GARCH process. At least, we have
suggested that this is the case. We have derived a continuous-time process,
which captures all the same stylized facts that are present in the discrete-time
GARCH. Just like the bivariate diffusion model, we want to approximate our
new process arbitrarily close to a GARCH process. In other words, we want
to have a limit result as before.

Recently, in the paper of Kallsen and Vesenmayer (see [5]) it is shown
that (Gt, σ

2
t )t≥0 can indeed be obtained as a limit in law of a sequence of

GARCH(1, 1) models. In contrast to our diffusion approximation, this result
is obtained by a different limiting procedure. Whereas the diffusion result is
developed through rescaling the size of the innovations, Kallsen and Vesen-
mayer apply some sort of random thinning. This is done by decreasing the
probability of the nontrivial innovations. Here, the differential characteristics
of a semimartinale X play an important role. If the characteristics converge,
and some other condition holds, then the corresponding sequence of processes
also converges weakly. They also conjecture, by a heuristical argument, that
the bivariate diffusion process and the COGARCH process (in combination
with his volatility process) are probably the only continuous-time limit is of
GARCH.
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7 Conclusion

We started bij looking into the discrete GARCH model. There we investi-
gated the Markov property and what conditions are needed. In many articles
it was stated that it was Markov without proof and without assuming con-
ditions that were seen necessary in our analysis. After that, we have studied
two different continuous-time models. First, we have derived a result us-
ing diffusion approximation. In the limit we obtained a Itô process that
has a weak solution to the stochastic differential equation. This solution was
unique in law, existsed and was continuous in probability. In addition to Nel-
son, we have completely proved and stated all necessary assumptions needed
to achieve this. The stochastic differential equation was given in terms of
two independent Brownian Motions. The “direction” and the conditional
variance of the displacement, over a small time-interval, is determined by
these two independent Brownian Motions. Also, jumps are not present in
the bivariate diffusion.

In our second model we relaxed this independence property and made jumps
possible, because sometimes one needs some dependency between the direc-
tion and the volatility. This was done by replacing the noise variables by
increments of a Lévy process, and we acquired a continuous-time volatility
process of bounded variation. Next to that, we defined a continuous-time
GARCH (called COGARCH) process as a solution of a stochastic differen-
tial equation. This COGARCH process only jumps if the corresponding Lévy
process does. For the volatility process we proved that the same important
feedback and autoregressive properties hold. If we condition it on the past,
then the the COGARCH process is in some sense equal to the volatility
process. It is worth mentioning that this is a property that is given in the
original definition of the linear GARCH model. Also, some other important
properties stayed intact in the continuous case, such as uncorrelated incre-
ments and the Markov property for the volatility process. Also the bivariate
process was Markovian when started in the strictly stationary distribution
given by σ2

∞.

Finally, we have given an important feature of the COGARCH process in
combination with his volatility process. Namely, it is shown by Kallsen
and Vesenmayer (see [5]) that the COGARCH process (in combination with
the volatility process) can be obtained as limit in law of a sequence of
GARCH(1, 1) models.
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