
Stochastic model of atoms in a
magneto-optical trap

Jasper de Koning

Bachelor thesis, spring 2005
supervisor: dr. F.M. Spieksma

1



Contents

1 Introduction 2

2 Original model 2
2.1 Mathematical description . . . . . . . . . . . . . . . . . . . . . 2
2.2 First thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 The original distribution of Yt . . . . . . . . . . . . . . . . . . 3

3 Adjusted model 5
3.1 Differences compared to the original model . . . . . . . . . . . 5
3.2 Properties of this Markov chain . . . . . . . . . . . . . . . . . 6
3.3 Approximate with NxN matrix . . . . . . . . . . . . . . . . . 7
3.4 Several observations . . . . . . . . . . . . . . . . . . . . . . . 10

4 Continuous case 11
4.1 Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Lower bound for TC

00 . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Upper bound for TC

00 . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Studying the bounds . . . . . . . . . . . . . . . . . . . . . . . 16

5 Behaviour of π1 at λ = µ = 0 17
5.1 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Linear paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 More extreme paths . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Discussion 20

1



1 Introduction

In today’s world, nanotechnology is one of the most promising fields, both
for research and businesses. A few methods have been developed to control
small amounts of atoms. One of those methods is the so-called Magneto
Optical Trap. In this machine the atoms can be cooled to just a fraction
above zero, thus greatly reducing the motions of the atoms.

In this paper we will study the model that was introduced in the paper:
”Stochastic model for the number of atoms in a magneto-optical trap” written
by A. Rukhin and I. Bebu to study the number of atoms in a trap. We’ll
study this model, and carefully reconsider the assumptions they made, and
obtain an adjusted version of the model.

In the model that was introduced in the original paper, an extra element,
a door, was added to the model to obtain a higher measure of control on the
atoms in the trap. This trap-door checks each T seconds, whether there still
are atoms present in the trap. If no atoms are present in the trap, the door
will open the next T seconds to allow new atoms to enter the trap. If, on
the other hand, atoms are present in the trap, the door will stay closed for
another T seconds. We’ll say that the window size equals T .

2 Original model

2.1 Mathematical description

Since all observations occur each T seconds, we can model this as a Markov
chain in discrete time. For the states we pick the number of atoms that
are in the MOTP. The transition probabilities are given by the modelling
assumptions. In the paper they’re given by the following three stochastic
variables

• Xt the number of atoms in the MOTP at time t

• Yt the number of atoms that leave the trap between time t and t + 1

• Rt the number of atoms that arrive at the trap between time t and t+1.
Because atoms can only enter the trap if it’s empty at the beginning
of the time-interval, Rt only plays a role if the trap is empty.
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The original paper proceeds to tie those formulas together as follows:

Xt+1 =

{
Rt if Xt ≤ Yt

Xt − Yt if Xt > Yt
(1)

Here Rt is Poisson distributed with parameter λ, and the stochastic variable
Yt is also Poisson distributed, but with parameter µXtT .

2.2 First thoughts

When one reviews somebody elses work, one should always start by giving
some positive feedback. So we’ll start by saying that the arrival process Rt is
a natural assumption. For we can take an arrival process Poisson distributed
if the collection it departs from is large, and each item has the same departure
probability. Those demands seem very reasonable in our model, because the
source of the particle beam will definitely contain a large number of atoms.
And it seems reasonable to give each atom of a large group of atoms, who
are likely to be fired, the same chance to depart.

Unfortunately, that is the only part of the equations on which I have
no negative feedback. So we’ll start by looking at some glaring problems.
Firstly: if Xt ≤ Yt then Xt+1 = Rt. This means that if the trap becomes
empty during a time interval, it will be filled with Rt atoms at the beginning
of the next interval. So the trap-door must have been open at the beginning
of this time-interval. And that is strange, because we don’t know whether
the trap is empty, until we’re at the end of the time interval.

Secondly: Yt is Poisson distributed, this means that Yt could be very big.
It could even be a lot bigger than Xt. That would mean there are more atoms
departing the trap in one time interval, then there were at the beginning of
that interval. They have solved this by truncating the Poisson process, but
this does not look like a good solution at all.

Thirdly: for a continuous process to be a Markov process, it should be
memoryless. But if we assume this for the process of the departure of atoms,
we’ll see that we get a very strange distribution which depends on the window
size T .

2.3 The original distribution of Yt

In the last section, we noticed that the distribution of the departures has
some strange attributes. This seems to indicate that we should use another
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distribution. In this section we will study this distribution for two different
window sizes T , and conclude that this distribution does not suffice.

We look at two separate cases. The first has window size T and the second
has window size 2T . Denote these two cases by superscript T and superscript
2T respectively. We will study the expected number of departures for two
time-units in the first model, compared to one time-unit in the second model,
with λ, µ identical in both cases and both starting with Xi atoms in the trap.
Note that this means that in both cases the same amount of time passes.

Further we have to note that Y 2T
i = Y T

i + Ỹ T
i , with Ỹ T

i , Y T
i i.i.d. Poisson

distributed variables with parameter µTXi. We continue by calculating the
difference E(Y 2T

i )− (E(Y T
i ) + E(Y T

i+1)).

E(Y 2T
i )− E(Y T

i + Y T
i+1) = E(Y T

i + Ỹ T
i )− E(Y T

i + Y T
i+1)

= E(Y T
i + Ỹ T

i − Y T
i + Y T

i+1)

= E(Ỹ T
i − Y T

i+1)

> 0.

One could pose that this analysis isn’t complete, since we don’t take into
account that there may depart more than Xi atoms from the trap during the
first or second T seconds. The conclusion however still holds, let’s rewrite
the formulas, by replacing E(Yi) with E(min(Yi, Xi)), this makes sure that
we only count the atoms that leave the trap, and none more. This yields:

E(min(Y 2T
i , Xi))− E(min(Y T

i + Y T
i+1, Xi))

= E(min(Y T
i + Ỹ T

i , Xi))− E(min(Y T
i + Y T

i+1, Xi))

= E(min(Ỹ T
i , Xi − Y T

i ))− E(min(Y T
i+1, Xi − Y T

i ))

=
∞∑

j=0

P (Y T
t = j)(E(min(Ỹ T

i , Xi − Y T
i )−min(Y T

i+1, Xi − Y T
i )|Y T

i = j))

=
Xi∑
j=0

P (Y T
t = j)

[ Xi−j∑
k=0

(P (Ỹ T
i = k)− P (Y T

i+1 = k))k

+P (Ỹ T
i > Xi − j)(Xi − j)− P (Y T

i > Xi − j)(Xi − j)
]

=
Xi∑
j=0

P (Y T
t = j)

Xi−j∑
k=0

(P (Ỹ T
i > k)− P (Y T

i+1 > k))

> 0.
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So there will depart more atoms in the model with window size 2T . So
how longer the time between the opening and closing of the door, the more
atoms depart from the model. This seems highly unlikely, because one would
expect it to be the other way around. It also gives a non-trivial correspon-
dence between the number of atoms that depart from the trap and the time
the door is open. So we can safely conclude that this may be a very poor
choice for this distribution indeed.

3 Adjusted model

3.1 Differences compared to the original model

As we’ve seen in the previous section, the original model had some quite
serious flaws. So it’s time to make the necessary changes. Firstly, we have
to solve the problem with the ”prophetical” door. This can be done quite
easily by tying the equations together a bit differently:

Xt+1 =

{
Rt if Xt = 0
Xt − Yt if Xt 6= 0

Secondly we’ll have to choose another distribution for the departures,
since the Poisson distribution clearly does not suffice. Luckily, we don’t have
to think long which distribution to choose, because we have little choice in
the matter. We have to satisfy the following two demands: 1) the time an
atom spends in the trap should not depend on the window size T ; 2) the
distribution has to be memoryless. This implies that the time spent by an
atom in the trap should have an exponential distribution with parameter µ.

Now we’ve solved the most glaring problems of the original model, it’s
time to see what consequences our adjustments have. First we’ll look what
the distribution of Yt is now, by looking at the process between the moment
the atoms arrive, until the last of these atoms has departed.

We take Si the random variable of the time that atom i spends in the
trap, and X0 the number of atoms that were present in the trap at time 0.
Combining this we get:

P (Yt = j) = P (
X0∑
k=1

1 t<Sk<t+1 = j)
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= P (
Xt∑
k=1

1Sk<t+1|Sj>t = j)

= P (
Xt∑
k=1

1Sk<1 = j),

which is exactly the binomial distribution with parameters Xt and P (S1 <
T ) = 1− e−µT .

To sum it al up, the adjusted model becomes:

Xt+1 =

{
Rt if Xt = 0
Xt − Yt if Xt 6= 0

with:

{
Rt ∼ Poisson(λT )
Yt ∼ binomial(Xt, 1− e−µT )

(2)
Since the distribution of Rt depends on λT and Yt depends on µT , we

can take T = 1 for the rest of this paper, and still get all possible processes.
The transition matrix P for T = 1 becomes:

Pij =


λj

j!
e−λ if i = 0

0 if i 6= 0 and i < j(
i
j

)
(1− e−µ)i−je−µj if i 6= 0 and i ≥ j

(3)

3.2 Properties of this Markov chain

The first thing we notice is that there is no bound on the number of atoms
that arrive in the trap. As a consequence there are countably many states.
This makes examining the chain more complicated. It’s obvious that this
chain is irreducible. So the first thing we have to do now, is to check whether
this Markov chain is positive recurrent. We’ll do this by proving that Foster’s
Criterion applies to this chain, see [2].

We apply Foster’s criterion, with νi = i and M = {0}.
∞∑

j=1

P0jνj = E(Rt)

ε +
∞∑

j=1

Pijνj = ε +
∞∑

j=1

Pijj

= ε + E(Xt − Yt|Xt = i)
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= ε + i− E(Yt|Xt = i)

= ε + i− i(1− e−µi)

= ε + ie−µ

= ε + e−µνi.

If we take ε = 1 − e−µ then Foster’s criterion holds, hence the process has
a stationary distribution. But there is even exponentially fast convergence
to the stationary distribution, because the following equations also hold, see
[2].

∞∑
j=0

Pijνj ≤ µi(1− ε), for i = 1..∞

∞∑
j=0

Pijνj = E(Rt) < ∞, for i = 0.

This was easy. The hard part however, is to find the convergence rate. I
haven’t been able to compute this, but that’s not from a lack of trying, for
this is a notoriously hard problem.

3.3 Approximate with NxN matrix

Now we’ve defined a model, and checked some fundamental properties of it.
We’d like to see how the value π1 behaves for different values of λ and µ. To
do this, we need some way to approximate π1. Because it’s unlikely there
will arrive many more atoms than λ, it’s a logical idea, to look only at the
first N − 1 states of the Markov chain, with N suitable large.

But if we chop al but the first N states from the chain, we won’t have a
Markov chain anymore since P0j > 0, ∀j ≥ N . So we have to modify the
transition probabilities a bit. We put the error εN on top of the P00, and
hope it doesn’t mess up the results too much.

Let us define this error εN =
∑∞

i=N P0i. And since P0j is very small
for j large, we have just reason to assume that this will give a sufficient
approximation. Let’s denote each variable of this chopped Markov chain
with a superscript N in front of that variable. So we’ll get for the transition
matrix:

7



NPij =


P00 + εN if i = j = 0
P0j if i = 0 and ) < j < N
0 if 0 < i < j < N
Pij if i 6= 0 and 0 ≤ j ≤ i < N.

(4)

This obviously is a Markov chain. So now we can look how big the error
is that we’ve introduced, by chopping so many states from the original chain.
We define, given that X0 = i

Tij = min(t|Xt = 0),

and given that X0 = 0,

Ai =
∞∑

t=0

1{Xt=i ,T00>t}.

We know:

πi =
E(Ai)

E(T00)
.

So if we find suitable bounds for both
∣∣∣E(Ai)− E(NAi)

∣∣∣ and∣∣∣E(T00)− E(NT00)
∣∣∣ we’ll have found a bound for

∣∣∣πi − Nπi

∣∣∣. First we’ll have

a look at
∣∣∣E(T00)− E(NT00)

∣∣∣.
E(T00) = 1 +

∞∑
j=1

P0jE(Tj0)

= 1 +
N−1∑
j=1

P0jE(Tj0) +
∞∑

j=N

P0jE(Tj0)

= E(NT00) +
∞∑

j=N

P0j(E(Tj0)− 1)
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This implies:

∣∣∣E(T00)− E(NT00)
∣∣∣ =

∞∑
j=N

P0j(E(Tj0)− 1)

<
∞∑

j=N

P0jj/µ

=
λ

µ

∞∑
j=N−1

P0j

=
λ

µ
(P0N−1 + εN).

Since evidently E(Tj0) < j
λ

+ 1. We’ll denote the error we obtained here
λ
µ
(P0N−1+εN) by ε′N . We’ll proceed with finding a bound for

∣∣∣E(Ai)− E(NAi)
∣∣∣.

E(Ai) =
∞∑

j=0

P0jE(Ai|X0 = j)

=
N−1∑
j=0

P0jE(Ai|X0 = j) +
∞∑

j=N

P0jE(Ai|X0 = j)

= E(NAi) +
∞∑

j=N

P0jE(Ai|X0 = j).

This implies:

∣∣∣E(Ai)− E(NAi)
∣∣∣ =

∞∑
j=N

P0jE(Ai|X0 = j)

<
∞∑

j=N

P0jE(Tj0)

<
∞∑

j=N

P0j(
j

µ
+ 1)

= ε′N + εN .

Now we have those two results, we can easily combine them to obtain a
bound for

∣∣∣πi −N πi

∣∣∣. We do this by applying the following lemma.
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Lemma 1. Suppose
∣∣∣E(Ai)− E(NAi)

∣∣∣ < δ1 and
∣∣∣E(T00)− E(NT00)

∣∣∣ < δ2.

Then
∣∣∣πi −N πi

∣∣∣ < δ1+δ2
E(T00)

.

Proof.

∣∣∣πi −N πi

∣∣∣ =

∣∣∣∣∣ E(Ai)

E(T00)
− E(NAi)

E(NT00)

∣∣∣∣∣
≤

∣∣∣E(NT00)(E(Ai)− E(NAi))
∣∣∣ +

∣∣∣E(NAi)(E(NT00 − E(T00))
∣∣∣

E(T00)E(NT00)

<
E(NT00)δ1 + E(NAi)δ2

E(T00)E(NT00)

<
δ1 + δ2

E(T00)
,

since E(NAi) ≤ E(NT00).

If we apply lemma 1 to the obtained bounds, we get
∣∣∣πi −N πi

∣∣∣ <
2ε′

N+εN

E(T00)
,

so we can choose N such that the error
∣∣∣πi −N πi

∣∣∣ is arbitrarily small. As a
last note we conclude that the stationary distribution is very easily calculated
for this N x N matrix, because the matrix is of the form:

P00 . . . P0,N−1

P10 . . . PN−1,0

Pi0
. . . 0

PN−1,0
. . . 0


This means we start sweeping from the (N − 1)st column, and go upwards
to find the stationary distribution.

3.4 Several observations

Now we’ve found a way to approximate the values of π, we can create a

contour plot of π1. Since the error is smaller than
2ε′

N+εN

E(T00)
we don’t have to

take excessive large value for N , because both ε′N and ε′N are small if we take
N = 2λ + 10.
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In all graphs we use in this paper, we’ll take µ horizontal and λ vertical.
In the contour plots the areas with an higher value have a lighter hue.

We can see some interesting features in this contour plot, first of all there
is a ”long island” at λ ' 0, 7. Secondly we see that there is a large range of
values near λ = µ = 0. And last but not least, there is something interesting
going on near λ at 7 in figure 1. We see that those contour-lines are curved,
which means that the value of π1 is not monotone! A closer look at the values
of πi for λ bigger in figure 2, shows that πi is far from monotonous.

0 2 4 6 8
0

2

4

6

8

Figure 1: A contour plot of π1 for µ ∈ [0, 01..8], π1 for λ ∈ [0, 01..8]

4 Continuous case

4.1 Explanation

It’s always hard to get hard numbers for a Markov chain, since we’ll always
have to work with a large and cumbersome transition matrix. And our tran-
sition matrix isn’t a friendly one, it doesn’t have any nice ”local” properties.
So it’s time to look at this problem from a different angle. We’ve been look-
ing at the Markov chain, but we should not forget that this Markov chain
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Figure 2: A contour plot of π1 for µ ∈ [2..4], λ ∈ [15..20]

2 4 6 8

0.025

0.05

0.075

0.1

0.125
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Figure 3: A line plot of π1 for µ ∈ [1..8], λ = e4
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is based on a continuous departure of atoms. We can get some interesting
results by looking at this continuous model.

We take TC
i0 = maxk Sk, with Si the exponentially distributed time that

atom i remains in the trap. This means that TC
i0 is the random time, the last

atom departing, remains in the trap.
We know that maxi Si is distributed as

∑Xt
i=1 Fi , Fi exponential dis-

tributed with parameter iµ. Combining this with 1 + ln(j) >
∑j

i=1 1/i >
ln(j + 1), we get:

1

µ
(1 + ln(j)) >

j∑
i=1

1

iµ
= E(TC

j0) >
ln(j + 1)

µ
.

Obviously there also is a relation between TC
i0 and Ti0. If we look at a

realization of TC
i0 , we note that the discrete Markov chain reaches 0 at the

end of the time-interval in which the last atom departed. Since the door is
open for 1 time-interval, we get the following formula:

TC
i0 < Ti0 < 1 + TC

i0 . (5)

Now we have found these nice bounds for the time it takes to get from i to
0, we’d like to say something about TC

00. This turns out to be considerably
harder. I’ve tried to approximate it by using standard methods, but although
this yielded a reasonable result, the formula was long and not easy to inter-
pret. It was clear we needed another approach. In the next two sections we’ll
find an upper and lower bound.

4.2 Lower bound for TC
00

We know

E(TC
00) = 1 +

∞∑
i=1

P (Rt = i)E(TC
i0 ) =

∞∑
i=1

P (Rt = i)
i∑

k=1

1

kµ
.

To obtain an upper-bound, we’ll define the following optimisation problem:
Take pi , i ∈ [0..∞], a probability distribution, with the property that

it is non-decreasing on [0..bλc]. This property clearly applies to the Pois-
son distribution. Denote f such a distribution, for which

∑∞
i=1 fi

∑i
k=1

1
kµ

is
minimal.
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It is clear that we want to have as much probability-mass near 0 as pos-
sible, since ln(i) is an increasing function. But we also have to comply with
the non-decreasing part. So the distribution f clearly equals:

fi =

{
1

bλ+1c if 0 ≤ i ≤ bλc
0 otherwise

Now we only have to calculate the value of
∑∞

i=1 fi ln i

E(TC
00) =

∞∑
i=1

P (Rt = i)
i∑

k=1

1

kµ

>
∞∑
i=1

fi

i∑
k=1

1

kµ

=
bλc∑
i=1

1

bλ + 1c

i∑
k=1

1

kµ

=
bλc∑
k=1

1

bλ + 1c

bλc∑
i=k

1

kµ

=
1

bλ + 1c

bλc∑
k=1

bλ + 1c − k

kµ

=
bλc∑
k=1

(
1

kµ
− 1

bλ + 1cµ
)

=
bλc∑
k=1

1

k2µ
+

bλc∑
k=1

1

k2µ
− bλc
bλ + 1cµ

>
1

2µ
ln(λ).

It is easily verified that the difference of the last two terms in the right hand-
side of the last equality is non-negative. This gives us the following very nice
result:

E(T00) > 1 + E(TC
00)

> 1 + 1
2µ

ln(λ).
(6)
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4.3 Upper bound for TC
00

Now we’ve found a satisfying result for the lower-bound it’s time to sink our
teeth in the upper-bound. We’ll do this in similar fashion, but obviously
with another optimisation problem.

Take fi , i ∈ [0..∞], a distribution, with mean λ and maximum value of
g(f) =

∑∞
i=1 fi(1 + ln(i)). We’ll restrict ourselves to λ /∈ N. We now assert

that the following distribution f is an optimal solution for this problem, with

fi =


α if i = bλc
β if i = bλ + 1c
0 otherwise

and αbλc+ βbλ + 1c = λ, α + β = 1 and α, β > 0.
Let s be a different distribution with E(s) = λ. Then there are j, k >

0 such that sbλc−j > 0 and sbλ+1c+k > 0. We can construct a different
distribution b, that yields a higher result under g, in the following manner.

bi =



si − γ if i = bλ− jc
si + γ if i = bλc
si + δ if i = bλ + 1c
si − δ if i = bλ + 1 + kc
si otherwise,

with γ ≤ sbλ−jc , δ ≤ sbλ+1+kc γ, δ > 0 and γj − δk = 0. This clearly
makes b a distribution again with mean λ. We’ll calculate the difference
g(b)− g(s). But before we prove that this indeed yields a higher value, we’ll
introduce a lemma to facilitate the calculation.

Lemma 2. If αj − βk = 0 for α, β, j, k > 0 then α ln(λ− j) + β ln(λ + k) <
(α + β) ln(λ) .

Proof.

(α + β) ln(λ)− (α ln(λ− j) + β ln(λ + k))

> (α + β) ln(λ)− (α ln(λ)(j + 1) + β ln(λ)(k + 1))

= (α + β) ln(λ)− ln(λ)(αj + βk + α + β)

= (α + β) ln(λ)− ln(λ)(α + β)

= 0.
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Hence, to prove that this is indeed a better distribution, we’ll apply this
lemma to g(b)− g(s).

∞∑
i=1

(bi − si) ln(i) = γ(ln bλc − ln bλ− jc) + δ(ln bλ + 1c − ln bλ + k + 1c)

> γ(ln bλ + 1c − ln bλ− j + 1c)
+δ(ln bλ + 1c − ln bλ + k + 1c)

= ln bλ + 1c(γ + δ)− γ ln bλ + 1− jc − δ ln bλ + 1 + kc
> 0.

So g(b) > g(s). And this means that each distribution, apart from f
can be adjusted to give a higher value under g. So f is clearly the optimal
solution. Now we’ll calculate the value of this optimal solution f :∑∞

i=1 fi ln(i) = α ln bλc+ β ln bλ + 1c
= 1 + ln(λ)− α(ln(λ)− ln bλc) + β(ln(λ)− ln bλ + 1c)
> 1 + ln(λ).

Combining all the results, we get:

T00 < 2 +
∑∞

i=1 E(TC
i0 )

< 2 + 1
µ

∑∞
i=0 P (Xt = i)(1 + ln(i))

< 2 + 1
µ
(1 +

∑∞
i=0 P (Xt = i) ln(i))

< 2 + 1
µ
(1 +

∑∞
i=0 fi ln(i))

< 2 + 1
µ
(1 + ln(λ)).

(7)

4.4 Studying the bounds

Now we’ve found those bounds, we want to know their quality. We’ll examine
a plot comparing T00 to the two bounds of TC

00.
The derivation of the lower-bound was obtained considerably faster than

the upper-bound. But this has come at a tremendous price of accuracy.
We’ve lost a lot of information in the optimisation step, because the distri-
bution does not have a mean λ, the standard deviation is way higher than
λ, and the distribution is not increasing between 0 and λ. So there is a lot
of room for better lower-bounds.
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Figure 4: T00 with a lower- and upper-bound, for λ = 3, µ ∈ [0, 01..8]

5 Behaviour of π1 at λ = µ = 0

5.1 Calculation

It’s hard to say something about the behaviour of this function in general,
but we’re able to produce some results for specific values of λ and µ. First
we’ll look at π1 for λ and µ tending to zero. To get some feeling how the
function behaves, we’ve included a plot for these values.

It’s clear that π1 does not exist for λ = µ = 0. So we’ll have a look at
some paths in parameter space leading to 0. To do this, we need a way to
calculate π1. We can do this by approximating the transition matrix P by
the matrix NP introduced in 3.3 , with N = 2. Now we’ve got the matrix

2P =

[
1− λe−λ 1− e−µ

λe−λ e−µ

]
,

we can calculate the solutions 2π0 and 2π1. We obtain

2π0 =
1− e−µ

1− e−µ + λe−λ

2π1 =
λe−λ

1− e−µ + λe−λ
.

(8)

For the error between this formula and the π1, we can calculate, we have:
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Figure 5: A contour plot of π1 for µ ∈ [0, 01..8], λ ∈ [0, 01..8]
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∣∣∣πi −N πi

∣∣∣ < 2δN

E(T00)
< 2δN , with δN = λ

µ

∑∞
j=N−1 P0j = λ

µ
(1− e−λ). Combining

this yields |πi −2 πi| < 2λ
µ

(1− e−λ).

5.2 Linear paths

Since we see some nice straight lines in this picture, we’ll first try a path to
zero, with λ = αµ.

2π1 = lim
µ→0

λe−λ

1− e−µ + λe−λ

= lim
µ→0

αµe−αµ

1− e−µ + αµe−αµ
by l’Hopital

= lim
µ→0

−α2µe−αµ + αe−αµ

e−µ − α2µe−αµ + αe−αµ

= lim
µ→0

αe−αµ

e−µ + αe−αµ

=
α

1 + α
.

Further, we have

|π1 −2 π1| <
2λ

µ
(1− e−λ)

= lim
µ→0

2αµ

µ
(1− e−αµ)

= lim
µ→0

2α(1− e−αµ)

= 0.

So this is the exact value of π1 when following a path to 0, with λ = αµ:

lim
µ→0, λ=α/µ

π1(λ, µ) =
α

1 + α
. (9)

5.3 More extreme paths

If we have a closer look at (9) we see that we can get π1 arbitrarily close to
1, but never quite there. But if we take a path for which µ decreases more
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rapidly than linear as compared to λ, we might get π1 = 1. And if we’d do
this the other way around, we just might get π1 = 0.

So let’s try it with the formula λ3/2 = µ, (taking a square would make
the error to big)

2π1 = lim
λ→0

λe−λ

1− e−µ + λe−λ

= lim
λ→0

λe−λ

1− e−λ3/2 + λe−λ
by l’Hopital

= lim
λ→0

−λe−λ + e−λ

3/2λ1/2e−λ3/2 − λe−λ + e−λ

= lim
λ→0

e−λ

e−λ

= 1.

Calculating the error, we get:

|π1 −2 π1| <
2λ

µ
(1− e−λ)

= lim
λ→0

2λ

λ3/2
(1− e−λ)

= lim
λ→0

2
1− e−λ

λ1/2

= lim
λ→0

2
e−λ

1/2λ−1/2

= lim
λ→0

4e−λλ−1/2

= 0.

So this π1 equals 1 if we walk to λ = µ = 0, along the path λ3/2 = µ. We
will see that this is the only place where π1 reaches 1. If we take λ−3/2 = µ
we get, by executing a virtually identical calculation, that π1 = 0.

6 Discussion

Firstly, we have the island near µ = 0, 77 for λ big. It is not hard to prove
that for µ big, π1 is almost optimal for this value. Due to time-constraints
I haven’t been able to give it a separate section, to discuss it in detail. We
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can note however, that if µ is big, the probability to arrive at Xt = 1 from a
non-empty state gets smaller when µ increases. So we can try to look only
at the probability to get to Xt = 1 from Xt = 0. Furthermore, if µ is big, we
can take E(T00) = 1 + P (Rt > 0) as a reasonable approximation.

We proceed to calculate an estimated value of π1, given by inserting
this two approximations in the formula π1 = EA1/E(T00). Optimising this
formula for given µ, yields an optimal value for λ = 1 + ProductLog( 1

2e
) ∼

0.77.
As stated before, it was very hard to calculate the convergence speed

of π1. In section 3.2 we proved that the convergence speed is exponential,
but we couldn’t give a specific value. We have tried a lot of approaches
to tackle this problem, but in the end we had to give in because of time
constraints. The best approach seems to be to use coupling times. This
still isn’t easy to solve, but by dividing the state-space in two parts (states in
which at least one of both states is zero, and the states where neither is zero),
one gets a nice systems which probably is easy to solve. At the end of the
paper, we have included some plots of the approximate convergence speed,
obtained by taking the second largest eigenvalue of a big NxN matrix. This
clearly doesn’t give an exact value, but it gives a good idea how wildly the
convergence speed fluctuates.

The last point of interest is the calculation of an optimal value for λ
given µ, and vice versa. In the previous sections we have obtained upper
and lower-bounds which give bounds to the area we have to search for the
optimal values. It can be shown that the value of π1 in the vicinity of a λ, µ
cannot change too wildly and is subjected to some constraints. This way we
can get a reasonable approximation for the optimal solutions, complete with
an error margin.

The proof for this construction will not be given in this paper. However,
there is a plot included at the end of the paper, which was obtained using
these methods. The plot shows the optimal value for λ, given µ. The optimal
value for µ, given λ turns out to be µ → 0, which seems logical.
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Figure 6: An approximation of the convergence-speed for π1 with µ ∈
[0, 01..10], λ ∈ [0, 01..10]
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Figure 7: The value of λ for which π1 is maximal, given µ, µ ∈ [0, 01..8]
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