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1 Introduction
A central object of study in algebraic geometry is the abelian variety, which has the structures of
both an abelian group and an algebraic variety. Its one-dimensional examples are precisely elliptic
curves, so one may regard abelian varieties as the generalisation of the concept of elliptic curves
to higher dimensions.

Because of the double structure of abelian varieties, it is natural to ask questions that combine
these two structures. One of these questions is the following statement, posed independently by
Manin and Mumford and proven by Raynaud [35], [36]:

Theorem 1.1 (Raynaud). Let A be an abelian variety over C and let Ator denote its torsion
subgroup. Let Z ⊂ A be an irreducible closed algebraic subvariety such that Z ∩ Ator is Zariski
dense in Z. Then Z is a translate of an abelian subvariety of A.

This conjecture has now been proven (in various ways, see chapter 8), as well as its gener-
alisation to a wider class of commutative group varieties called semiabelian varieties. Still, its
generalisation to families of semiabelian varieties, which is a group scheme X/S over a variety1
such that every fibre is a semiabelian variety, leads to the following conjecture:

Conjecture 1.2. Let X −→ S be a family of semiabelian varieties, and let X0 =
∪
s∈S Xs,tor be

the union of the torsion subgroups of the fibres of X −→ S. Let Z ⊂ X be an irreducible closed
algebraic subvariety such that Z ∩ X0 is Zariski dense in Z. Then Z is contained in a proper
closed subgroup scheme2 of X/S.

This is stated, in a more general way, in [33]. In this article, Pink claims to prove this conjec-
ture from another conjecture regarding the connected mixed Shimura subvarieties (usually named
special subvarieties) of connected mixed Shimura varieties, stated in chapter 8. The definition of
these is quite abstract and complicated, but its importance lies in the fact that one of the main
examples is that of a universal abelian variety, which has all abelian varieties with some extra
given data as subvarieties in a ‘natural’ way. Therefore, theorems about connected mixed Shimura
varieties may give us information about families of abelian and semiabelian varieties.

However, conjecture 1.2 is not true, as a counterexample was found by Bertrand [5]. Neverthe-
less it is not a counterexample to Pink’s general conjecture; the reason for this is that there is a
mistake in Pink’s proof of conjecture 1.2 from his more general conjecture. In this thesis, I explain
the theory on abelian varieties and mixed Shimura varieties necessary to formulate Pink’s general
conjecture. Furthermore, I explain Bertrand’s counterexample, and I classify for which abelian
varieties these counterexamples may occur. In order to do so, I classify the special subvarieties of
universal abelian varieties.

1By a variety over a field k I mean, in this thesis, a seperated, geometrically integral k-scheme of finite type.
2I.e. a closed subvariety X′ of X such that X′

s is a closed subgroup of Xs for every s ∈ imX′.
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2 Definitions
Before I can make any meaningful statements about Shimura varieties, I have to define them first.
The definition of these is a rather complicated affair that requires the theory of Hodge structures,
that also arise in the cohomology of Kähler manifolds, and linear algebraic groups. Before I come
to Shimura varieties, I will first define, and give some essential properties of, Hodge structures and
linear algebraic groups.

2.1 Hodge structures
Let V be a finite-dimensional vector space over R. By GL(V ) I denote the covariant functor
AlgR −→ Grp given by GL(V )(B) = AutB−Mod(B ⊗R V ). This is represented by an R-scheme,
which I also abusively denote as GL(V ).

Let S denote ResC/RGm,C, the Weil restriction from C to R of the multiplicative group over
C. In terms of the functor of points, for every R-algebra B the set S(B) is equal to (B ⊗R C)×.
Then S = SpecR[a, b, (a2+b2)−1], so S is an affine group scheme overR. One has that S(R) = C×

and for any C-algebra B, one has S(B) ∼= B× ×B× via the isomorphism

(B ⊗R C)× −→ B× ×B×

a⊗ z 7→ (az, az̄).

The induced map C× = S(R) −→ S(C) ∼= C× ×C× is given by z 7→ (z, z̄). Furthermore, there
is a natural injective morphism Gm,R −→ S coming from the inclusion map R −→ C.

Definition 2.1. Let V be a finite-dimensional R-vector space. A (mixed) Hodge structure on V
is a morphism h : S −→ GL(V ) of group schemes over R3.

Another way to regard these Hodge structures is given in the following proposition.

Theorem 2.2. Let V be a finite-dimensional R-vector space. Let H be the set of Hodge structures
on V , and let H̃ be the set of decompositions of VC into C-subspaces V p,q indexed by Z2 such
that V p,q = V q,p. Then for any (V p,q)p,q ∈ H̃, the map C× −→ GL(VC), through which z acts as
z−pz̄−q on V p,q, comes from a Hodge structure on V . This gives a bijection H ∼= H̃.

Proof. Take the action of C× on VC as above. For any v ∈ V p,q, one has that z · v = z−pz̄−qv =

z−q z̄−pv̄ = z · v̄, since v̄ ∈ V q,p. This shows that the action commutes with complex conju-
gation, so it comes from an action C× −→ GL(V ). For a basis of eigenvectors of VC for this
action, the action of a + bi is given by a diagonal matrix whose diagonal entries are of the form
(a+ bi)−p(a− bi)−q, which are algebraic in a, b and (a2 + b2)−1. This is still true if one changes
to a basis of VC which is also a basis of V . This shows that this map actually comes from a map
S = SpecR[a, b, (a2 + b2)−1] −→ GL(V ).

3This notion is more split than the usual definition of a mixed Hodge structure as described, for example, in [12], but
this does not matter for our purposes.
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Conversely, consider a Hodge structure h : S −→ GL(V ). The identification S(C) = C××C×

comes from an isomorphism of algebraic groups SC ∼= G2
m,C; hence h gives us a morphism

G2
m,C −→ GL(VC) of algebraic groups over C. This corresponds to a bigrading of VC, i.e. a

decomposition VC =
⊕

p,q V
p,q, such that (a, b) acts on V p,q as a−pb−q.

Now let B be a C-algebra, and let a ∈ B, z ∈ C be such that a ⊗ z ∈ S(B). Suppose (a, z)

corresponds to (x, y) ∈ B××B×, i.e. (az, az̄) = (x, y); then (ā, z) corresponds to (āz, āz̄) = (ȳ, x̄).
This shows that complex conjugation on SC corresponds to complex conjugation and a coordinate
swap on G2

m,C. The map G2
m,C −→ GL(VC) must be invariant under complex conjugation. This

means that for any v ∈ V p,q and any (x, y) ∈ B× ×B× for any B, one has that

(ȳ, x̄) · v̄ = (x, y) · v
= x−py−qv

= x̄−pȳ−q v̄,

which shows that v̄ ∈ V q,p; in other words, the decomposition (V p,q)p,q is an element of H̃. The
composition S(R) −→ S(C)

h−→ GL(VC) lets z ∈ C× act as z−pz̄−q on V p,q, as was to be
shown.

Example 2.3. Let V be a complex vector space. If we regard V as a real vector space, we have a
map C −→ EndR(V ). For every R-algebra B, this induces a map B ⊗C −→ EndB(B ⊗ V ), and
this in turn induces a map (B ⊗C)× −→ AutB(B ⊗ V ). Hence we get a morphism of real linear
algebraic groups S −→ GL(V ), so this defines a Hodge structure on V . Its decomposition into
V p,q is obtained as follows: let I be the R-linear automorphism of V corresponding to complex
multiplication by i. Its minimum polynomial is X2 + 1 ∈ R[X]. This splits into (X + i)(X − i)
in C[X]. As this has distinct roots, I is diagonalisable; then V −1,0 ⊂ VC is the eigenspace for the
eigenvalue i, and V 0,−1 is the eigenspace of eigenvalue −i. Conversely, if V has a Hodge structure
h so that VC = V 0,−1 ⊗ V −1,0, then, for any z1, z2 ∈ C× with z1 + z2 ̸= 0, the endomorphism
h(z1) + h(z2) acts the same as h(z1 + z2) on both V 0,−1 and V −1,0, so h extends to a ring
homomorphism C −→ EndR(V ), which gives V the structure of a complex vector space.

For a Hodge structure h : S −→ GL(V ), I write Wn(VC) =
⊕

p+q≤n V
p,q; this is called the

weight filtration on VC. The Hodge type of V is the set of (p, q) such that V p,q is nonzero. If for
some n it holds that Wk(V ) = 0 for all k < n and Wk(V ) = V for all k ≥ n, then V is said to be
of pure weight n.

A rational Hodge structure is a rational vector space V with a Hodge structure on VR such
that the weight filtration is defined over Q. One writes Q(n) for the one-dimensional rational
vector space (2πi)nQ ⊂ C with the Hodge structure given by VC = V (−n,−n); similarly we define
integral Hodge structures and Z(n). A polarisation of a pure Hodge structure V of weight n is a
morphism of rational Hodge structures

ψ : V ⊗ V −→ Q(−n)
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such that the induced map

ψC : VR × VR −→ R
(x, y) 7→ ψ(x, h(i)y)

is symmetric and positive definite. As ψR is a morphism of Hodge structures one sees that for
every x, y ∈ VR one has

ψ(x, y) = ψ(h(i)x, h(i)y)

= ψ(y, h(i)2x)

= ψ(y, (−1)−nx),

which means that ψ is symmetric if n is even and antisymmetric if n is odd.

2.2 Linear algebraic groups
In this section I will review some theory on linear algebraic groups. A more thorough treatment,
along with definitions and proofs of the various statements, can be found in [7].

Let k be a field of characteristic zero. A linear algebraic group over k is an affine group scheme
over k of finite type. As in ‘ordinary’ group theory, a linear algebraic group P is called solvable if
there exists a chain 0 = P0 ⊂ P1 ⊂ . . . ⊂ Pn = P of normal algebraic subgroups such that every
Pi+1/Pi is commutative.

An important example of a linear algebraic group is the multiplicative group Gm,k over k. In
general, a linear algebraic group P over k is called a torus if there exists a finite separable field
extension k ⊂ l such that Pl ∼= Gn

m,l for some integer n; P is then said to be split over l. An
example is of the Deligne torus S over R, which is split over C but not over R.

Let P be a linear algebraic group over k, let B be a k-algebra, and let g ∈ P (B). Then g can
be regarded as an endomorphism of the B-module B ⊗k OP (P ). One can prove that OP (P ) has
a finite-dimensional P -stable k-linear subspace V that generates OP (P ) as a k-algebra, such that
the induced map P −→ GL(V ) is injective. Any g ∈ P (B) is called unipotent if g− id is nilpotent
as an endomorphism of B ⊗k V ; this does not depend on the choice of V . P is called unipotent
if for every B, and every g ∈ P (B), the element g is unipotent. Every linear algebraic group has
a maximal normal unipotent subgroup, called the unipotent radical. A linear algebraic group is
called reductive if it is connected and its unipotent radical is trivial.

For a linear algebraic group P , its adjoint group P ad is the linear algebraic group P ad =
P/Z(P ). Its derived group P der is the linear algebraic group [P, P ].

The tangent space of P at the origin is denoted LieP ; this has the structure of a Lie algebra.
For any k-algebra B, any g ∈ P (B) acts by conjugation on P (B). This fixes the identity, so
by transport of structure one obtains an action of P (A) on LieP (B). This induces a morphism
P −→ GL(LieP ), called the adjoint action of P . This map factors through the adjoint group of P .
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Now suppose k = R, and let τ be an involution of P , i.e. an endomorphism of P such that
τ2 = id. τ is called a Cartan involution if the set

P τ (R) = {g ∈ P (C) : τ(ḡ) = g}

is compact in the analytic topology.

Now suppose k = Q. A congruence subgroup of P (Q) is a subgroup of the form P (Q) ∩ K,
where K is an open compact subgroup of P (Af )

4. If P is a subgroup of GLn,Q that is defined
over Z, then any subgroup of P (Z) containing the kernel of the map P (Z) −→ P (Z/NZ) for some
N ∈ Z>1 is a congruence subgroup.

Now I have set up the required terminology to define Shimura varieties.

2.3 Shimura varieties
In this section, I define the notion of connected mixed Shimura varieties as defined in [32]. These
are the connected components of usual mixed Shimura varieties, which are defined in [31]; I omit
this generalisation here in order to avoid the language of adèles. In order to proceed, I first need
the notion of a connected mixed Shimura datum. First note that if P is a linear algebraic group
over Q, that P (C) acts on PC by conjugation, so it also acts on Hom(SC, PC). Furthermore, we
say that a linear algebraic group G is an almost direct product of two linear algebraic groups A
and B if G has normal subgroups A′ and B′ such that A′ ∼= A and B′ ∼= B, such that A′ ·B′ = G,
A′ and B′ commute and A′ ∩B′ is finite.

Definition 2.4. A connected mixed Shimura datum is a pair (P,X+) consisting of a linear algebraic
group P over Q and a subset X+ ⊂ Hom(SC, PC) with the following properties:

• There exists an algebraic subgroup UP of the unipotent radical WP of P , such that UP
is normal in P , and X+ is a connected component of an orbit under the action of P (R) ·
UP (C) ⊂ P (C), where Hom(SC, PC) is given the analytic topology;

• The following conditions hold for an x ∈ X+ (or, equivalently, for all x ∈ X+):

1. The composite homomorphism SC x−→ PC −→ (P/UP )C is defined over R;
2. The adjoint representation of SC on LiePC induces a rational Hodge structure whose

type is a subset of

{(1,−1), (0, 0), (−1, 1), (0,−1), (−1, 0), (−1,−1)};

3. The weight filtration of LieP coming from the Hodge structure above is given by

Wn(LieP ) =


0, if n < −2;
LieUP , if n = −2;
LieWP , if n = −1;
LieP, if n ≥ 0;

4Here Af denotes the finite adèles over Q.
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4. The conjugation τ by x(i) induces a Cartan involution on (P/WP )
ad
R ;

5. P/P der is an almost direct product of a Q-split torus with a torus T of compact type
defined over Q, i.e. T (R) is compact when given the analytic topology;

6. P possesses no proper normal subgroup P ′ defined over Q such that x factors through
P ′
C ⊂ PC.

Because of condition 3 and the connectedness of P , which follows from condition 6, the subgroup
UP is uniquely determined. IfWP = 0, I call (P,X+) a connected pure Shimura datum or simply a
connected Shimura datum. The notation X+ comes from the convention to denote by X an orbit
of Hom(SC, PC) under the action of P (R) · UP (C). The long list of conditions is there to ensure
the truth of the following proposition.

Proposition 2.5. Let (P,X+) be a connected mixed Shimura datum.

1. X+ has a unique structure of a complex manifold such that for every representation ρ of PC
on a complex vector space the Hodge filtration determined by ρ ◦ x varies holomorphically
with x ∈ X+.

2. Define P (R)+ ⊂ P (R) as the stabiliser of X+. Then every sufficiently small congruence
subgroup G ⊂ P (R)+ works freely on X+, so that X+ −→ G \X+ is an unramified covering
of complex manifolds.

3. G \X+ possesses a natural structure of a quasiprojective algebraic variety over C.

Proof. See [32, Facts 2.3].

I now have enough to define the notion of a connected mixed Shimura variety. Once again, let
(P,X+) be a connected mixed Shimura datum, and fix a model PZ of P over Z.

Definition 2.6. Let P,X+, G be as above, then G \X+ is the connected mixed Shimura variety
associated with (P,X+, G). If (P,X+) is a connected pure Shimura datum, then G \X+ is called
a (pure) Shimura variety.

Our next aim is to define morphisms between connected mixed Shimura varieties. For this, I
first need to define morphisms between connected mixed Shimura data.

Definition 2.7. A morphism of connected mixed Shimura data (P,X+) −→ (P ′, X ′+) is a mor-
phism of linear algebraic groups φ : P −→ P ′ such that the map Hom(SC, PC) −→ Hom(SC, P ′

C) :
x 7→ φ ◦ x maps X+ into X ′+.

Definition 2.8. Let S and S′ be connected mixed Shimura varieties associated with (P,X+, G)

and (P ′, X ′+, G′) respectively. Amorphism of connected mixed Shimura varieties is a map S −→ S′

induced from a morphism of connected mixed Shimura data φ : (P,X+) −→ (P ′, X ′+) such that
φ(G) ⊂ G′.

Proposition 2.9. Let φ : S −→ S′ be a morphism of connected mixed Shimura varieties. Then φ
is holomorphic and algebraic with respect to the structure in 2.5.3, and its image is clsoed in S′.
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Proof. See [32, Facts 2.6].

Now I want to define a certain kind of subvarieties of connected mixed Shimura varieties, rather
generically named special subvarieties. Much of this thesis will be dedicated to classifying these
for certain connected mixed Shimura varieties.

Definition 2.10. A subvariety Z ⊂ G \X+ is called special if it is the image of a morphism of
connected mixed Shimura varieties.

The following proposition greatly aids in classifying special subvarieties of connected mixed
Shimura varieties.

Proposition 2.11. Let Z ⊂ G\X+ be a special subvariety. Then there is a morphism of connected
mixed Shimura varieties φ : (P ′, X ′+, G′) −→ (P,X+, G) such that the induced map P ′ −→ P is
an immersion of linear algebraic groups, hence a closed immersion.

Proof. See [32, Proposition 4.3].

In order to greatly simplify the statements of propositions later, the notion of a Hecke corre-
spondence is needed.

Definition 2.12. Let (P,X+) be a connected mixed Shimura datum, and let G,G′ and G′′ be
congruence subgroups of P , with corresponding connected mixed Shimura varieties S, S′ and S′′.
A Hecke correspondence5 is a pair of morphisms of connected mixed Shimura varieties (φ : S′′ −→
S, φ′ : S′′ −→ S′) for which there exists an automorphism α of P , inducing an automorphism of
X+, such that α−1(G) ∩G′ = G′′, and φ and φ′ are the maps S′ φ′

←− G′′ \X+ φ−→ S induced by
α and the identity, respectively.

Given P , X+, G and G′ as above, one says that a closed subvariety Z ⊂ S is said to be equal
to another closed subvariety Z ′ ⊂ S′ up to Hecke correspondence if there is an α as above such
that Z is a connected component of φ(φ′−1(Z)). Despite the terminology this is not in general an
equivalence relation. The significance of this definition is shown by the following proposition.

Proposition 2.13. Let P,X+, G,G′ be as above. Suppose that Z ⊂ G \X+ and Z ′ ⊂ G′ \X+ be
irreducible closed algebraic subsets such that Z is equal to Z ′ up to Hecke correspondence. Then:

1. Z ′ is equal to Z up to Hecke correspondence;

2. if Z ′ is a special subvariety of S′, then Z is a special subvariety of S.

Proof.
5Actually, this is a generalisation of what is referred to as a generalised Hecke correspondence by [32]. In the terminology

used there, a generalised Hecke correspondence must satisfy G = G′, whereas an ordinary Hecke correspondence requires
α to be a conjugation by an element of P (Q).
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1. Suppose that Z is equal to Z ′ up to Hecke correspondence via an automorphism α. Consider
the following commutative diagram:

(G ∩ αG′) \X+

(G′ ∩ α−1G) \X+

S′ S

α−1

ψ′ ψ

φ′ φ

Here φ′ and ψ are induced by quotient maps on the level of congruence subgroups, φ is
induced by α and ψ′ is induced by α−1. Since Z is irreducible and φ is finite, one sees that
every irreducible component of φ−1(Z) maps surjectively to Z. Furthermore, there is such a
component ζ such that φ′(ζ) = Z ′. Because φ′ is finite, this means that ζ is an irreducible
component of φ′−1(Z ′). Then α−1ζ is an irreducible component of (G∩αG′)\X+ such that
ψ(α−1ζ) = Z and ψ′(α−1ζ) = Z ′. As ψ′ is a finite map, one has that α−1ζ is an irreducible
component of ψ′−1(Z ′), so Z = ψ(α−1ζ) is an irreducible component of ψ(ψ′−1(Z ′)).

2. Let (Q,Y +) be a connected mixed Shimura datum, H a congruence subgroup of Q inducing
a connected mixed Shimura variety T = H \Y +, and ψ : (Q,Y +) −→ (P,X+) a morphism of
connected mixed Shimura data inducing a morphism of Shimura varieties T −→ S′ such that
Z ′ is the image of T . Furthermore, let ζ ⊂ (α−1G ∩G′) \X+ be an irreducible component
of φ′−1(Z ′) that maps to Z. Again, the image φ′(ζ) must be an irreducible component of
Z ′, and φ′ : ζ −→ Z is surjective.

The morphism ψ induces a morphism of connected mixed Shimura varieties

(H ∩ ψ−1(α−1G)) \ Y + −→ (α−1G ∩G′) \X+.

Now the following diagram commutes:

(H ∩ ψ−1(α−1G)) \ Y + (α−1G ∩G′) \X+

T S′

ψ

φ′

ψ

This means that the image K of the top arrow is also an irreducible subset of φ′−1(Z ′) that
maps surjectively to Z ′; again, the finiteness of φ′ implies that K is an irreducible component
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of φ′−1(Z ′). The right action of G′ on X+ induces a transitive right action of G′ on the
irreducible components of φ′−1(Z ′), so there is a γ ∈ G′ such that γK = ζ. Since the map
φ′ trivialises the G′-action, the following diagram is again commutative:

(H ∩ ψ−1(α−1Γ)) \ Y + (α−1G ∩G′) \X+

T S′ S

γ · ψ

φ′ φ

ψ

Furthermore, the image of the composite map φ ◦ (γ · ψ) is Z, so this establishes Z as a
special subvariety of S.

2.4 The Siegel upper half space
This section is devoted to a special example of Shimura varieties that will be of great importance
for the rest of this thesis. Let g > 0 be an integer, and let J be the matrix

(
0 1g
−1g 0

)
. One

defines the algebraic group of symplectic similitudes P0 = GSp2g,Q as follows, for any Q-algebra
B:

P0(B) =
{
(A ∈ GL2g(B) | ∃λ ∈ B× : ATJA = λJ

}
.

For any a, b ∈ B one has (a+ bJ)(a− bJ) = a2 + b2, so a+ bJ is invertible in GL2g(B) if a2 + b2

is invertible in B. If this is the case, then

(a+ bJ)TJ(a+ bJ) = (a− bJ)J(a+ bJ) = (a2 + b2)J,

which shows that a+ bJ ∈ P0(B). As J2 = −1, the map

h0 : S −→ P0,R

a+ bi 7→ a+ bJ

is an injective morphism of linear algebraic groups over R. As a differential manifold, the space
P0(R) has two connected components; the identity component P0(R)+ consists of the elements
with positive multiplier character λ. Now consider X+

0 = P0(R)+ · h0 ⊂ Hom(S, P0,R). We show
that (P0, X

+
0 ) is a connected pure Shimura datum, by checking the different conditions of 2.4 voor

h0:

1. By definition the map h0,C : SC −→ P0,C is defined over R.

2. It is known that LieGL2g,Q is equal to M2g,Q, with the adjoint action of GL2g,Q given by
conjugation. As such, LieP0 is a subspace of M2g,Q. Since h0 gives a Hodge structure of type
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{(0,−1), (−1, 0)} on R2g, this conjugation gives a Lie structure whose type is a subset of
{(1,−1), (0, 0), (−1, 1)}. As the scalars in GL2g,Q are contained in P0, the scalars in M2g,Q are
contained in LieP0. These commute with any other matrix, in particular with elements h0(z),
which shows that (LieP0(C))0,0 is nonzero. Now consider A =

(
1g ig
ig −1g

)
∈ P0(C); one

has that A2 = 0, so that exp(A) = 1+A =

(
2g ig
ig 0g

)
, which is an element of P0(C); this

shows that A ∈ LieP0(C). On the other hand, for z = a+ bi ∈ C× one has

h0(z)Ah0(z)
−1 =

1

a2 + b2

(
ag bg
−bg ag

)(
1g ig
ig −1g

)(
ag −bg
bg ag

)
=

1

a2 + b2

(
(a2 − b2 + 2abi)g (−2ab+ (a2 − b2)i)g

(−2ab+ (a2 − b2)i)g (−a2 + b2 − 2abi)g

)
=

z

z̄
A,

which shows that LieP0(C)(−1,1) (hence also LieP0(C)(1,−1)) must be nonzero, as was to be
shown.

3. From the above we find that U =W = 0, so (P0, X
+
0 ) is indeed a pure Shimura variety.

4. It is known that the center of GSp2g,Q consists of just the scalars, which we may identify with
Gm,Q; its quotient is denoted PGSp2g,Q. Now for any A ∈ GSp2g,Q, let d(A) ∈ Gm,Q be such
that ATJA = d(A)J . Then the kernel of the morphism d : GSp2g,Q −→ Gm,Q : A 7→ d(A) is
denoted Sp2g,Q, the symplectic group over Q of dimension 2g. This is a normal subgroup of
GSp2g,Q, and the quotient is Gm,Q. The intersection Sp2g,Q ∩Gm,Q consists of the scalars
with square 1, which we may identify with µ2,Q. One defines Sp2g,Q = PSp2g,Q /µ2g,Q.

Over B = C we see that the natural injective map PSp2g(C) −→ PGSp2g(C) is also surjec-
tive, because for every A ∈ GSp2g(C) the matrices A and 1√

d(A)
A ∈ Sp2g(C) have the same

image in PGSp2g(C); hence PSp2g(C) = PGSp2g(C). By definition τ = inn(h0(i)) = inn(J)
gives a Cartan involution if and only if P ad,τ

0 (R), theR-points of the twist of P ad
0 = PGSp2g,Q

over C by τ , is compact. The involution τ comes from the involution τ̃ on Sp2g,R given by
τ̃(G) = JGJ−1. In this particular instance, we see, from the fact that G = JGT,−1J−1 for
G ∈ Sp2g(C) and that J2 = −1, that

τ̃(G) = JGJ−1

= J(JGT,−1J−1)J−1

= GT,−1.

This gives us, for G ∈ Sp2g(C) that τ̃(Ḡ) = G if and only if GḠT = id2g. In other
words, Spτ̃2g(R) is a closed subgroup of the compact subgroup U2g(C) ⊂ GL2g(C) of unitary
matrices. Furthermore, the preimage K of PSpτ2g(R) in Sp2g(C) consists of all G such that
τ̃(Ḡ) = ζG for some ζ ∈ µ2(C) = {±1}; hence K/ Spτ̃2g(R) has at most 2 elements, which
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means that K is compact as well. This implies that PSpτ2g(R), as the image of a compact
set, is compact as well.

5. For any Q-algebra B, any commutator of GSp2g,Q(B) lies in Sp2g,Q(B) as it acts trivially on
J , and by scaling we may assume that it is of the form [A,A′], for some A,A′ ∈ Sp2g,Q(B).
However, Sp2g,Q is a perfect group, so [Sp2g,Q, Sp2g,Q] = Sp2g,Q; hence GSp2g,Q /GSpder2g,Q =
GSp2g,Q /Sp2g,Q = Gm,Q, which is a split torus over Q.

6. Suppose P ′ is a normal subgroup of P0 containing h0(S). Then P ′ properly contains the
scalars, so the quotient map P0 −→ P/P0 factors through PGSp2g,Q and its image there is
nontrivial. However, this is a simple linear algebraic group, so this means it must be all of
it; hence P ′ = P .

Now define the Siegel upper half plane Hg as the set of g × g symmetric complex matrices
with positive definite imaginary part. It comes with a transitive action of P0(R)+ as follows:
For A ∈ P0(R)+, write A =

(
a b
c d

)
with a, b, c, d ∈ Mg(R); then for τ ∈ Hg, one has

A · τ = (aτ + b)(cτ + d)−1. As is shown by the following proposition, this action comes naturally
from the action of P (R)+ on X+

0 .

Proposition 2.14. There is a unique isomorphism φ of complex manifolds X+
0 −→ Hg that is

equivariant under the P0(R)+-action such that φ(h0) = i.

Proof. Let h ∈ X+
0 , and write h = Inn(A) ◦ h0 for some A ∈ P0(R)+. Let Vh be the Hodge

structure on R2g induced by h. Then V −1,0
C,h = AV −1,0

C,h0
. As V −1,0

C,h0
= {

(
iy
y

)
: y ∈ Cg}, we see that

V 0,−1
C,h =

{(
(ai+ b)y

(ci+ d)y

)
: y ∈ Cg

}
=

{(
(ai+ b)(ci+ d)−1y

y

)
: y ∈ Cg

}
.

This shows that there is an injective map φ : X+
0 −→ GLg(C), sending h ∈ X+ to the unique

element A ∈ GLg(C) such that V −1,0
C,h = {

(
Ay
y

)
: y ∈ Cg}. As above, if h = Inn(A) ◦ h0, then

φ(h) = (ai+ b)(ci+ d)−1 = A · i. Now, for any A1 ∈ P0(R)+ and any h = A2 · h0 ∈ X+
0 one has

φ(A1 · h) = φ(A1A2 · h0)
= A1A2 · i
= A1(φ(h)),

so the action is equivariant under the action of P0(R). As φ(h0) ∈ Hg, the group P0(R)+ works
transitively on both Hg and X+

0 the map φ is a bijection. It is also an isomorphism of smooth real
manifolds. As the complex structure on X+

0 is unique, φ must also be an isomorphism of complex
manifolds.

For a sufficiently small congruence subgroup G0 ⊂ P0(Z)+ = GL2(Z) ∩ P0(R)+ we now have
a connected Shimura variety S0 = G0 \ Hg. A point τ ∈ Hg induces an isomorphism of R-vector
spaces tτ : Cg −→ R2g, defined by tτ (τei) = fi, tτ (ei) = fi+g, where e1, . . . , eg is the standard
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basis for Cg, and f1, . . . , f2g is the standard basis for R2g. The morphism hτ ∈ X+
0 corresponding

to τ is on R-points the composite map

C× −→ AutR(Cg)
tτ∗−→ AutR(R2g) = GL2g(R).

For suitable choices of G0, the connected Shimura variety S0 becomes a Siegel modular variety,
parametrising principally polarised abelian varieties with some level structure, as we will see in
chapter 7.
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3 Abelian and semiabelian varieties
Before continuing with more examples of Shimura varieties, I first introduce the notion of two
specific kinds of group varieties, namely abelian and semiabelian varieties, starting with the former.

3.1 Abelian varieties
For a thorough treatment of abelian varieties in general, including proofs of the statements in this
section, I refer to [17]. We begin, straightforwardly enough, with a definition.

Definition 3.1. Let k be a field. An abelian variety over k is a complete group variety.

The terminology comes from the fact that any such a group variety is automatically a com-
mutative group variety. However, not every commutative group variety is an abelian variety; a
counterexample is the group variety Ga,k. An elliptic curve over k is a one-dimensional abelian
variety over k. In fact, one can prove that every one-dimensional abelian variety is an elliptic curve.

The notion of an abelian variety can also be extended to a more scheme-theoretic definition.

Definition 3.2. Let S be a scheme. An abelian scheme X/S is a proper smooth group scheme
π : X −→ S, whose fibres are geometrically connected.

An equivalent definition of an abelian scheme is then a smooth group scheme X/S whose fibres
are abelian varieties. If S is itself a variety over a field k, we call X/S a family of abelian varieties.
An abelian scheme of relative dimension 1 is the same as an elliptic curve over a scheme as defined
in [21].

Now let X be an abelian variety, and let T be another variety over k. A rigidified line bundle
on X × T is a pair (L, α) of a line bundle, i.e. an invertible OX×T -bundle, L on X × T and
an isomorphism α : OT

∼−→ 0∗TL of line bundles on T . A morphism between two rigidified line
bundles (L1, α1) and (L2, α2) on X × T is a morphism of line bundles φ : L1 −→ L2 such that
(0∗φ) ◦ α1 = α2. We can now define the following functor:

PX : Sch/k −→ Set
T 7→ {isomorphism classes of rigidified line bundles on X × T}

One can show that PX is representable by a k-scheme Y . As the tensor product of two rigidified
line bundles is again rigidified, Y obtains the structure of a group variety. One can prove that its
identity component X∨ is again an abelian variety, called the dual abelian variety of X. The line
bundles on X coming from X∨(k) are said to be algebraically equivalent to 0; in the case that X is
a curve, this coincides with the usual definition of degree. The identity on X∨ induces a rigidified
line bundle (P, ν) on X ×X∨, called the Poincaré bundle, which has the following universal prop-
erty: if T is a scheme over k and (L, α) is a rigidified line bundle on X × T then there is a unique
morphism g : T −→ X∨ such that (idX × g)∗P and L are naturally isomorphic as line bundles
over X × X∨, and such that (idX × g)∗ν = α. Because P is rigidified, we have an isomorphism
OX∨ ∼= P|0×X∨ of line bundles on X∨. On the other hand, the map 0 : Spec k −→ X∨ corresponds
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to the identity element of PX(Spec k), so we find that OX ∼= P|X×0 as line bundles on X. Further-
more, one can prove that (X∨)∨ ∼= X and PX ∼= PX∨ as line bundles over X×X∨ = (X∨)∨×X∨.
Also, a morphism of abelian varieties f : X −→ Y induces a pullback morphism f∨ : Y ∨ −→ X∨

called the dual morphism of f .

In the case of an abelian scheme X/S, the notion of a dual abelian scheme X∨/S can be
defined as well, but the proof of representability is more complicated; it can be found in [14, I].

Now let X be an abelian variety over a field k, and let x ∈ X(k). For any k-scheme T , there
is a map

tx(T ) : X(T ) −→ X(T )

y 7→ y + x,

and this is functorial in T , so it defines a morphism of varieties tx : X −→ X. Now let L be a line
bundle on X. Then L induces the following morphism of abelian varieties:

φL : X −→ X∨

x 7→ t∗xL ⊗ L−1

If L is ample, then φL is an isogeny. An isogeny X −→ X∨ coming from an ample line bundle is
called a polarisation; a polarisation that is an isomorphism is called a principal polarisation.

Now letX be an elliptic curve, and for any point x ∈ X, let Dx be the line bundle corresponding
to the divisor [x]. Then one can take L to be the line bundle D0 corresponding to the divisor [0];
this gives an isomorphism X −→ X∨ that is defined on k̄-points by sending x to D−x ⊗ D−1

0
∼=

D0 ⊗ D−1
x ∈ Pic0(X); elliptic curves hence are canonically isomorphic to their dual. For general

abelian varieties, however, this is not the case. Still, it can be proven that every abelian variety is
projective, and an embedding of an abelian variety into a projective space defines an ample line
bundle, hence a polarisation, so every abelian variety is isogenous to its dual.

3.2 Complex abelian varieties
We call a complex abelian variety X simple if X has precisely two abelian subvarieties, namely
0 and X itself. Furthermore, we define the category Q ⊗ AbVarC of complex varieties up to
isogeny to have as objects complex abelian varieties, denoted Q⊗X, while the sets of morphisms
between two abelian varieties X and X ′ is defined to be Q ⊗Z HomAbVarC(X,X

′), also denoted
Hom(Q⊗X,Q⊗X ′). The terminology comes from the fact that for every isogeny f : X −→ X ′

there is an isogeny g : X ′ −→ X such that gf ∈ Z>0 ⊂ End(X); this means that every isogeny
is an isomorphism in Q ⊗ AbVarC. The advantage of using this category lies in the following
theorem.

Theorem 3.3 (Poincaré’s Complete Reducibility Theorem). The category Q ⊗ AbVarC is
semisimple, i.e. every complex abelian variety X is isogenous to a product of simple varieties
that are uniquely determined up to permutation and isogeny.
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Proof. See [6, 5.3.7]

Now let X be a complex abelian variety. The associated complex analytic manifold Xan can
be regarded as a real analytic manifold, which makes it a Lie group. Since A is a commutative
complete group variety, Xan is a compact commutative connected Lie group. By the classification
of Lie groups6, this means that Xan is a complex torus; let us write Xan = V /Λ, where V is a
complex vector space and Λ a lattice in V . Then Λ = π1(X) = H1(X,Z). The complex structure
on V = R ⊗ Λ gives H1(X,Z) a Z-Hodge structure of type {(0,−1), (−1, 0)}. Now let X ′ be
another complex abelian variety, and write X ′an = V ′/Λ′. A morphism X −→ X ′ of complex
abelian varieties corresponds to a C-linear map φ : V −→ V ′ such that φ(Λ) ⊂ Λ′. In other
words, φ is a map Λ −→ Λ′ preserving the complex structure on R ⊗ Λ; but this is exactly the
same as a morphism of Z-Hodge structures. We thus have a fully faithful functor

AbVarC −→ Z−Hodge
A 7→ H1(A,Z).

An isogeny from A to itself leaves the Q-Hodge structure invariant, so we get a commutative
diagram of functors

AbVarC Z−Hodge

Q⊗AbVarC Q−Hodge

However, not every such a V /Λ gives a complex manifold that comes from an abelian vari-
ety. Before giving a necessary and sufficient condition for this, we first have to explain some theory.

A line bundle on a complex analytic torus T = V /Λ is represented by an element of H1(T,O×
T ).

The exact sequence of sheaves on T

0 −→ Z(1)T −→ OT
exp−→ O×

T −→ 0

induces a group homomorphism H1(T,O×
T ) −→ H2(T,Z(1)). The image of a line bundle L is

called the first Chern class of L, written c1(L). One can prove (see [6, 2.1.2]) that H2(T,Z(1)) is
canonically isomorphic to Alt2(Λ,Z(1)), the set of Z-bilinear maps φ : Λ× Λ −→ Z(1) satisfying
φ(x, y) = −φ(y, x). Under this identification the image of a line bundle L will be an alternating
form c1(L) : Λ⊗Λ −→ Z(1) that is a morphism of Hodge structures. The following theorem shows
the importance of these definitions.

Theorem 3.4 (Lefschetz). Let T = V /Λ be a complex analytic torus, and let L be a line bundle
on T . Then the space of holomorphic sections of Ln defines a closed embedding as a closed complex
submanifold of T into a projective space for each n ≥ 3 if and only if c1(L) is a polarisation of the
Z-Hodge structure Λ.

6See [3, 6.1].
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Proof. See [8, 1.18].

This theorem has the following important corollary, which completely classifies which complex
tori come from algebraic varieties.

Corollary 3.5. Let T = V /Λ be a complex torus. Then T is the analytic space corresponding to
a complex algebraic variety if and only if Λ is polarisable. Therefore the functor AbVarC −→
{polarisable Z-Hodge structures of type {(0,−1), (−1, 0)}} is an equivalence of categories.

Proof. See [8, 1.20].

As is shown in [6, 2.4], for a complex abelian variety X with Xan = V /Λ, the complex analytic
variety corresponding to X∨ is equal to Ω/Λ̂, where

Ω = {f : V −→ C antilinear}

and
Λ̂ = {f ∈ Ω : Im f(Λ) ⊂ Z}.

Its Hodge structure is stated in the following proposition.

Proposition 3.6. Let Λ∗ = Hom(Λ,Z(1)). The map Λ̂ −→ Λ∗ sending a functional f to 2πi Im f

is an isomorphism of Z-Hodge structures.

Proof. An inverse map can be given by h 7→ (z 7→ 1
2πi (ih(z) − h(iz))), so the map is a bijection.

Now Λ̂ and Λ∗ are both Z-Hodge structures of type {(0,−1), (−1, 0)}, so it suffices to show that
the complex structure on Ω = R ⊗ Λ̂ is preserved by the bijection. For every α ∈ C, every
f ∈ Ω and every z ∈ V one has Im(αf(αz)) = |α|2 Im f(z). On the other hand, for every α ∈ C,
h ∈ V ∗ = R ⊗ Λ∗ and z ∈ V one has (α · h)(αz) = |α|2z, which shows that the two real vector
spaces have the same complex structure.

Under this identification, the polarisations of the complex analytic abelian variety V /Λ corre-
spond to the polarisations of the Z-Hodge structure Λ, as is shown in [6, 2.5.5].

Consider the universal covering V = R ⊗ H1(A) with its complex structure, and let O×
V be

the sheaf of nowhere zero holomorphic functions on V . The free group H1(A) acts on H0(V,O×
V )

by translations, which allows us to define the group of 1-cocycles Z1(H1(A),H0(V,O×
V )). Such a

cocycle is a function f : H1(A)× V −→ C, and it defines a line bundle by quotienting out V ×C
by the action of H1(A) given by v0 · (v, t) = (v + v0, f(v0, v)t). As is shown in [6, B], this actually
defines a group homomorphism

Z1(H1(A),H0(V,O×
V )) −→ PicA.

It is surjective, and its kernel is B1(H1(A),H0(V,O×
V )), so that we might consider it as an isomor-

phism
H1(H1(A),H0(V,O×

V ))
∼−→ H1(A,O×

A) = PicA.
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Any polarisation ψ : Λ ⊗ Λ −→ Z(1) induces an isomorphism ψ̃ : V −→ V ∗. If φ is an
endomorphism of X in Q⊗AbVarC, then let Rψ(φ) be ψ̃−1 ◦ φ∨ ◦ ψ̃ ∈ End(Q⊗X). The map
Rψ is an involution of End(Q⊗X) called the Rosati involution induced by ψ. Now let φT be the
transpose of φ with respect to ψ. For every v ∈ V , one has

Rψ(φ)(v) = (ψ̃−1 ◦ φ∨ ◦ ψ̃)(v)
= (ψ̃−1 ◦ φ∨)(w 7→ ψ(v, w))

= ψ̃−1(w 7→ ψ(v, φ(w)))

= ψ̃−1(w 7→ ψ(φT (v), w))

= φT (v),

so Rψ(φ) is the transpose of φ with respect to ψ.

3.3 Semiabelian varieties
We begin, straightforwardly enough, with a definition.

Definition 3.7. Let k be an algebraically closed field. A semiabelian variety over k is a commu-
tative group variety G over k which fits in a short exact sequence of linear algebraic groups

0 −→ T −→ G −→ A −→ 0,

where T is a torus and A is an abelian variety.
Analogously, we can define a semiabelian scheme, and a family of semiabelian varieties.

Example 3.8. Let X be an abelian variety, and let L ∈ X∨ be a degree zero line bundle
on X. For any k-scheme T , let G(L)(T ) be the set of pairs (x, φ), where x ∈ X(T ) and
φ : LT −→ t∗xLT is an isomorphism. The set G(L)(T ) carries an abelian group structure by
the operation (x1, φ1) · (x2, φ2) = (x1 + x2, t

∗
x2
φ1 ◦ φ2), and this is functorial in T , so this defines

a group functor G(L) : Sch/k −→ Grp; see [17, VIII] for more details. One can show that G(L) is
representable by L×

L , the geometric line bundle corresponding to L with its zero section removed.
The isomorphism is defined as follows: The rigidification rT : Gm,T −→ LL,0,T defines a point
P = r(1) ∈ LL,0(T ) for every k-scheme T ; then any (x, φ) ∈ G(L)(T ) induces an isomorphism
φ̃ : LL,T

∼−→ LL,T that makes the following diagram commute:

LL,T LL,T

X X

φ̃

tx

Then (x, φ) corresponds to the point φ̃(T ) ∈ L×
L (T ). Now L×

L fits into a short exact sequence of
commutative group varieties

1 −→ Gm,k
rk−→ L×

L
π−→ X −→ 1,
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where π is the projection morphism. This shows that L×
L is a semiabelian variety. One can even

prove that every extension of X by Gm,k is of this form.

Example 3.9. Let X be an abelian variety over a field k, and let P be the Poincaré bundle
over X × X∨. Let q ∈ X∨ be a point, and let L be the corresponding line bundle on X. Then
there is a canonical isomorphism of line bundles π1∗PX×{q} = L. This isomorphism preserves
the rigidification, so this isomorphism induces an isomorphism L×

P,q
∼= L×

L of commutative group
scheme extensions of X. This shows that L×

P,q is a semiabelian variety, and we can regard L×
P as a

semiabelian scheme over the basis X∨. On the other hand, we can also regard L×
P as a semiabelian

scheme over X. Now, if we denote the group law on L×
P,X×{q} by +q for every point q ∈ X∨, and

the group law on L×
P,{p}×X∨ by +p for every p ∈ X, then the two semiabelian scheme structures on

L×
P are compatible in the sense that for every p1, p2 ∈ X and q1, q2 ∈ X∨ and for every quadruple

(gij)i,j∈{1,2} with gij ∈ L×
P,(pi,qj) one has

(g11 +p1 g12) +
q1+q2 (g21 +p2 g22) = (g11 +

q1 g21) +p1+p2 (g12 +
q2 g22).

For this reason L×
P is called a biextension of X and X∨; see [19, VII] for a more thorough treatment

of this notion.
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4 Classification of connected mixed Shimura varieties over
Siegel modular varieties

Fix (P0, X
+
0 ) = (GSp2g,Q,Hg) as in section 2.4. In this section, I classify all Shimura varieties

S (associated with a triple (P,X+, G)) for which P/WP
∼= P0, such that the morphism of linear

algebraic groups P −→ P0 induces a morphism of Shimura data (P,X+) −→ (P0, X
+
0 ); these are

called Shimura varieties over a Siegel modular variety. If UP is the subgroup defined by point
3 of definition 2.4, then the morphism P −→ P0 factors through the quotient map π : P −→
P ′ = P/UP . Write X ′+ = π(X+), then (P ′, X ′+) is again a Shimura datum, and the map
(P,X+) −→ (P0, X

+
0 ) factors through (P ′, X ′+). For this reason, I first classify all such (P,X+)

such that UP = 0.

4.1 Unipotent extensions of GSp2g,Q of weight −1
Our next objective is to classify all mixed Shimura data (P1, X

+
1 ) such that UP1 = 0 (in other words,

LieWP1 is of pure Hodge weight −1) and P1/WP1
∼= GSp2g,Q, with a morphism (P1, X

+
1 ) −→

(P0, X
+
0 ) by quotienting out byWP1 , such that X+

1 maps surjectively to X+
0 . For such a (P1, X

+
1 ),

we have the following exact sequence:

1 −→WP1 −→ P1 −→ P0 −→ 1

Since P1 is an algebraic group over Q, and Q has characteristic 0, it admits a Levi decomposition,
i.e. there is a subgroupM ⊂ P1 such that P1

∼=MnWP1 ; see [23] for more details. By quotienting
out WP1 , we see that M ∼= P0, so we may write P1 = P0 nWP1 . Now let x : SC −→ PC be an
element of X+

0 . By point 1 of definition 2.4 we know that x is defined over R. Now let x1 ∈ X+ be
the composite map S x−→ P0 −→ P1; then x1 gives a Hodge structure of type {(0,−1), (−1, 0)} via
the adjoint representation on LieWP1 . For any R-algebra B, the action of λ ∈ B× on LieWP1(B)
coming from the map Gm,R −→ S, is multiplication by λ. The following lemma then shows that
WP1 is abelian.

Lemma 4.1. Let V be a connected algebraic group over R, and suppose that there exists a positive
integer k and an action of Gm,R on V through which, for any R-algebra B, any element λ ∈ B×

acts as λk on LieV (B). Then V is abelian.

Proof. The given group acts through Lie algebra automorphisms. This means that for every
v, w ∈ LieV (B) and λ ∈ B× the following holds:

λk[v, w] = φ(λ)[v, w]

= [φ(λ)v, φ(λ)w]

= [λkv, λkw]

= λ2k[v, w].

This shows that [v, w] = 0, so LieV is abelian; since V is connected, it must be abelian as well.
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This shows us that WP1,R is abelian, so WP1
itself must be abelian as well. Since WP1

is
unipotent and Q has characteristic 0, we know that there exists an n such that WP1

∼= Gn
a,Q. Let

GL(WP1
) be the linear algebraic group for which the B-points, for any Q-algebra B, is the set

GL(WP1)(B) = AutB(WP1(B)).

Then the semidirect product P1 = P0 nWP1 comes from a map P0 −→ GL(WP1).

Lemma 4.2. Let V be a finite-dimensional representation of GSp2g,Q such that for some h ∈ X+
0

the induced Hodge structure is of type {(−1, 0), (0,−1)}. Then V is a direct product of copies of
the standard representation G2g

a,Q.

Proof. Let us write L0
∼= G2g

a,Q for the standard representation of P0, and L(w) ∼= Ga,Q for the
representation of Gm,Q with the action of z given by multiplication by zw. Finally, let L′ be the
representation Ga,Q of P0, with the action given by multiplication by the multiplier character.
First we determine all irreducible representations of P0. Since P0(C) is simply connected, we
simply need to find all irreducible representations of LieP0 = gsp2g. As a Lie algebra, this is
equal to sp2g × Ga,Q, where the factor Ga,Q comes from the scalar matrices. By [15, 9.17] an
irreducible representation of gsp2g is the tensor product of an irreducible representation of sp2g
with a one-dimensional representation of Ga,Q. By [15, 17.5] the irreducible representations of
sp2g are as follows: for nonnegative integers a1, a2, . . . , ag, let Va1,...,ag be the subrepresentation of

g⊗
k=1

Symak(

k∧
L0)

generated as a Lie algebra module by ea11 ⊗ (e1 ∧ e2)a2 ⊗ . . .⊗ (e1 ∧ . . . ∧ eg)ag . Then Va1,...,ag is
irreducible, and every irreducible representation is of this form.

Now let us look at C-points. The map

ρ : Sp2g(C)×C −→ GSp2g(C)

(A, z) 7→ ezA

is surjective, and its kernel is generated by (e
πi
g ,−πig ). Hence any irreducible representation of

GSp2g(C) is of the form Va1,...,ag ⊗ L(w) for some a1, . . . , ag and w, such that the action of
(e

πi
g ,−πig ) ∈ Sp2g(C) ×C is trivial. A straightforward calculation shows that (eπi

g ,−πig ) acts by
scalar multiplication by exp(πig (

∑
j jaj − w)); hence w =

∑
j jaj + 2kg for some k ∈ Z. But

then Va1,...,ag ⊗ L(w) = Va1,...,ag (C) ⊗ L′(C)⊗k as representations of GSp2g(C); this can be seen
because the actions of both Sp2g(C) and the diagonal matrices are the same. In particular, this
means that every irreducible representation of GSp2g,Q is of the form Va1,...,ag ⊗ L′⊗k, and every
such representation indeed is irreducible.

Under the map h0 from section 2.4 the real vector space L(R) gets a Hodge structure of
type {(0,−1), (−1, 0)}; a basis for L(C)−1,0 is {ej + ieg+j : 1 ≤ j ≤ g}. Since the matrix
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(
1g 0g
ig 1g

)
∈ Sp2g(C) maps ej to vj = ej + ieg+j , we see that in the induced Hodge structure

on Va1,...,ag (R), the vector va11 ⊗ . . . ⊗ (v1 ∧ . . . ∧ vg)ag is an element of V (−
∑

j jaj ,0)
a1,...,ag ; hence

Va1,...,ag (R)⊗L′(R)⊗k has a Hodge weight (−2k−
∑
j jaj ,−2k). However, the difference between

the two terms must be 1, so
∑
j jaj = 1; hence a1 = 1 and aj = 0 for all j > 1. This also implies

that k = 0, so Va1,...,ag ⊗ L′⊗k = L0, as was to be shown. Since every representation is a direct
sum of irreducible representations, this shows that any representations is a direct sum of copies of
L0.

From this lemma it follows that WP1 is the direct sum of a number of copies of the standard
representation. Let us now write P1 = P0 nWP1 . Let h1 be the composite map

S h0−→ P0,R −→ P1,R,

and let X1 be the orbit of h1 in Hom(S, P1,R) under the action of P1(R). Let X+
1 be the connected

component of X1 containing h1; then (P1, X
+
1 ) is a connected mixed Shimura datum, as we can

check for h1 ∈ X+
1 :

1. Again by definition we know that h1,C : SC −→ P1,C is defined over R.

2. Here LieP1(R) = gsp2g(R)×R2gn as vector spaces, and the action of A ∈ h0(C×) is given
by conjugation on gsp2g(R) and left multiplication on the copies R2gn, which gives us the
desired Hodge structure type, i.e. gsp2g(R) has weights {(−1, 1), (0, 0)(1,−1)} and R2n has
weights {(−1, 0), (0,−1)}.

3. We see that LieWP1
= G2gn

a,Q =W−1(LieP ), as was to be shown.

4. Since P1/WP1 = P0, this was already shown in section 2.4.

5. Since P der
1 = Sp2g,QnG2gn

a,Q, we get that P1/P
der
1 = P0/P

der
0 = Gm,Q.

6. Using the composite map h0 : S −→ P1,R −→ P0,R, we see that any normal subgroup
P ′ ⊂ P1 for which P ′

R contains h0(S) must map surjectively to P0, so it is of the form
P ′ = P0 n V for some linear subspace V ⊂ WP1 stable under the P0-action. Let us prove
that this inclusion is actual an equality. Writing WP1 = Qn ⊗Q G2g

a,Q as P0-modules, with
the group acting on the right half of the product, one sees that V = V ′⊗Ga,Q G2g

a,Q for some
Q-linear subspace V ′ ⊂ Q. Now the image of P ′ in G = P0 n (W ′/V ′ ⊗G2g

a,Q) is normal in
G. This image is P0 n 0, but this is normal only if V ′ =W ′, which was to be proven.

As a set, Hg × WP1(R) ∼= X+
1 , with the map given by (τ, v) 7→ Inn(v) ◦ hτ . The action

of P1(R)+ is then given by (A, v)(τ, v′) = (Aτ, Av′ + v), where Aτ denotes the usual action of
GSp2g(R)+ on Hg.

As a Z-model for P1 we take GSp2g nG2n
a ; a congruence subgroup G1 of P1(Z) in the classical

sense of the word7 is then a subgroup of G × Λ ⊂ Sp2g(Z) n Z2gn, where G is a congruence
7i.e. it contains the kernel of the map Sp2g(Z) n Z2gn −→ Sp2g(Z/NZ) n (Z/NZ)2gn for some N ∈ Z≥1.
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subgroup of Sp2g(Z), and Λ a maximal sublattice of Z2 fixed by G. For G sufficiently small, we
get a connected mixed Shimura variety S1 = G1 \ X+

1 , that comes with a surjective morphism
of connected mixed Shimura varieties S1 −→ G \X+

0 . The result of this section is the following
theorem.

Theorem 4.3. Let S be a connected mixed Shimura variety associated to (P,X+, G), with unipo-
tent radical WP ⊂ P , such that UP = 0 (in point 3 of definition 2.4), P/WP

∼= GSp2g,Q, and
the morphism P −→ GL2,Q induces a morphism of connected mixed Shimura data (P,X+) −→
(GSp2g,Q,Hg). Then there is an n such that WP

∼= G2gn
a,Q, and P = GSp2g,QnWP , X+ ∼=

Hg ×R2gn. Conversely, every such (P,X+, G′) defines a connected mixed Shimura variety S.

4.2 General unipotent extensions of GSp2g,Q

Again we take P1, X
+
1 as above. Let us now look for extensions f : P2 −→ P1 by some U such that,

for W ′ = f−1(WP1), we have a connected mixed Shimura datum (P2, X
+
2 ) with unipotent radical

W ′ and such that the Hodge structure on LieU induced by any h ∈ X+
2 is of type {(−1,−1)}.

This means that for any R-algebra B, any λ ∈ B× acts on LieU(B) as λ2, so by Lemma 4.1
U ∼= Gk

a,Q for some k. Furthermore, the Levi decomposition of P2 is then P2
∼= P0 nW ’. Since

U is normal in P2 there is an action of the subgroup P0 of P2 on U . for any h ∈ X+
0 , we see that

any h(z) acts as zz̄ = d(h(z)) on U . As the images of the different h generate P0, the action of
P0 on U must be by multiplication through d.

The possible extensions are given in lemma 4.6. As in section 2.4, let d : GSp2g,Q −→ Gm,Q be

the morphism of linear algebraic groups defined by ATJA = d(A)J , where J =

(
0 idg
−idg 0

)
,

and A ∈ GSp2g(B) for some Q-algebra B.

Lemma 4.4. Let V,H, I be rational vector spaces, regarded as algebraic groups over Q. Let P
be a linear algebraic subgroup of GL(V ), and let ρ : P −→ GL(H) and σ : P −→ GL(I) be
representations of P . Furthermore, let β : H × H −→ I be a bilinear map under which the
P -action is invariant. Define the following map:

β̃ : P ×H −→ H∨⊗I
(A,w) 7→ (w′ 7→ β(w,Aw′))

Then the morphism of varieties

φ : P ×H × I −→ GL(V ⊕H ⊕ I ⊕Ga,Q)

(A,w, u) 7→


A 0 0 0

0 σ(A) β̃(A,w) u

0 0 ρ(A) w

0 0 0 1
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is injective. Furthermore, let ι : I −→ P ×H × I : u 7→ (1, 0, u) and π : P ×H × I −→ P nH

denote the inclusion and projection map, respectively. Then the sequence

1 −→ I
φ◦ι−→ φ(P ×H × I) π◦φ

−1

−→ P nH −→ 1

is a short exact sequence of linear algebraic groups over Q.
I omit the proof, which is a straightforward verification. An alternative way to describe this

group law on P ×H × I is by the formula

(A,w, u)(A′, w′, u′) = (AA′, Aw′ + w, u′ + u+ β(w,Aw′)).

Note that the matrices of the form (1, w, u) for w ∈ H and u ∈ I form a normal subgroup of this
group. Now, if we take P = P0, H =WP1 and I = U , we get the following corollary.

Corollary 4.5. Let P1 and W ′ be as above, and let U = Gk
a,Q for some integer k. Let β :

WP1 ×WP1 −→ U be a morphism of linear algebraic groups over Q such that for every Q-algebra
B, the induced map WP1

(B) ×WP1
(B) −→ U(B) is B-bilinear, and for every A ∈ P0(B) and

v, w ∈WP1(B) one has that β(Av,Aw) = d(A)β(Av,Aw). Then for every Q-algebra B, the set

P2,β(B) = P0(B)×WP1(B)× U(B)

has a group structure given by

(A,w, u)(A′, w′, u′) = (AA′, Aw′ + w, d(A)u′ + u+ β(w,Aw′)).

This defines a linear algebraic group P2,β, which is an extension of P1 by U . Furthermore, if
X+

2,β = X+
1 × U(C), then (P2,β , X

+
2,β) is a connected mixed Shimura datum via the identification

X+
0 ×W (R)× U(C) −→ Hom(SC, P2,C)

(h,w, u) 7→ Inn(1, w, u) ◦ h.

For any x ∈ X+
2,β, the induced Hodge weight filtration on LieP2,β is given by

Wn(LieP2,β) =


0, if n < −2;
LieU, if n = −2;
LieW ′, if n = −1;
LieP2,β , if n ≥ 0.

As the following lemma shows every ‘suitable’ extension of P1 is of this form.

Lemma 4.6. Let P1 and W ′ be as above, and let U = Gk
a,Q. Let P2 be an extension of P1 by U

such that P2 is part of a connected mixed Shimura datum (P2, X
+
2 ) such that, for some x ∈ X+

2 ,
the induced Hodge weight structure on LieP2 is given by

Wn(LieP2) =


0, if n < −2;
LieU, if n = −2;
LieW ′, if n = −1;
LieP2, if n ≥ 0.
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Then P2 = P2,β for a unique β : WP1
×WP1

−→ U such that for every Q-algebra B, the induced
map WP1(B)×WP1(B) −→ U(B) is B-bilinear, and for every A ∈ P0(B) and v, w ∈WP1(B) one
has that β(Av,Aw) = d(A)β(Av,Aw).

Proof. Let us write W =WP1 . The short exact sequence of algebraic groups over Q

1 −→ U −→W ′ −→W −→ 1

induces a short exact sequence of Lie algebras

0 −→ LieU −→ LieW ′ −→ LieW −→ 0.

Now take a morphism x ∈ X+
2 . As x : SC −→ (P2/U)C is defined over R, so is the composite

morphism
SC −→ (P2/U)C −→ P0,C −→ P2,C −→ GL(LieW ′)C;

now consider the weight structure on LieW ′
R given by the map φ : S −→ GL(LieW ′

R). The Lie
bracket is an isomorphism of Hodge structures

LieW ′
R ⊗ LieW ′

R −→ LieW ′
R.

By looking at weights, we find that [LieWR,LieUR] = [LieUR,LieUR] = 0 and [LieWR,LieWR] ⊂
LieUR. In terms of the algebraic groups themselves, this means that UR is abelian, elements of
UR and WR commute, and for two w,w′ ∈WR, one has that (w, 0) · (w′, 0) = (w+w′+βR(w,w′))

for some bilinear map βR : WR ×WR −→ UR. The group law on W ′
R in general is then given by

(w, u)(w′, u′) = (w +w′, u+ u′ + βR(w,w′)). Since this must be defined over Q, this implies that
βR comes from a bilinear form β :W ×W −→ U .

In the same manner we may write, as algebraic varieties, P2
∼= GSp2g,Q×W × U . We know

that P2 is isomorphic to the semidirect product P2 = GSp2,QnW ′ (this is again the Levi de-
composition). The action of GSp2,Q is given by matrix multiplication on W . For any map
x : S −→ P2,R and for any R-algebra B, the action of z = a+ bi ∈ S(B) on U(B) is multiplication
by a2 + b2 = d(x(z)). Since GSp2,R is is generated by the images of the various x, we see that the
action of some A ∈ GSp2g(B) on U is just given by multiplication by d(B). Using this, and the
group law we have on W ′, we can determine the group law of P2:

(A,w, u) · (A′, w′, u′) = (1, w, u) · (A, 0, 0) · (1, w′, u′) · (A′, 0, 0)

= (1, w, u) · A(1, w′, u′) · (A, 0, 0) · (A′, 0, 0)

= (1, w, u) · (1, Aw′, d(A)u′) · (AA′, 0, 0)

= (AA′, Aw′ + w, d(A)u′ + u+ β(w,Aw′)).

It is easy to see that (1, 0, 0) is a unit element and that

(A,w, u)−1 =

(
A−1,−A−1w,

1

d(A)
(β(w,w)− u)

)
.
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If this is indeed to be a group law, it has to be associative, so for every Q-algebra B and for every
A ∈ P0(B) and v, w ∈W (B) the following must hold:

(A,Aw +Av, β(Av,Aw)) = (A,Av, 0)(1, w′, 0)

= ((A, 0, 0)(1, v, 0))(1, w′, 0)

= (A, 0, 0)((1, v, 0)(1, w′, 0))

= (A, 0, 0)(1, v + w, 0)

= (A,Aw +Av, d(A)β(v, w)),

Which is easily seen to be true if and only if β(Av,Aw) = d(A)β(v, w) for all A, v, w. As every
choice of β gives a different group law on the variety P0 ×W × U , the actual β corresponding to
P2 is unique.

Now take a P2 satisfying the conditions of Lemma 4.6. By taking a connected component X+
2

of the orbit of the map h2 : SC −→ P2,C : z 7→ (h0(z), 0, 0) under the action of P2(R) · U(C), one
can show that (P2, X

+
2 ) is a connected mixed Shimura datum, where X+

2 can be identified with
H×R2gn×Ck under the action given by (A, v, z)(τ, v′, z′) = (A ·τ, Av′+v, d(A)z′+β(v,Av′)+z).
The complex structure above a point τ ∈ Hg is given by identifying R2g with τRg +Rg.

A congruence subgroup G2 of P2 is a subgroup of P2(Z)+, which we may write, as a set, as
G2 = G × Λ × ∆ ⊂ Sp2g(Z) × Z2gn × Zk. Here G is a congruence subgroup of Sp2g(Z), Λ is a
lattice in Z2n fixed by G, and ∆ is a lattice in Zk such that β(Λ,Λ) ⊂ ∆. If G is sufficiently small
this induces a connected mixed Shimura variety S2 = Γ2 \ X+

2 , which comes with a surjective
morphism of connected mixed Shimura varieties S2 −→ (GnΛ) \X+

1 . Again, I state the result of
this section in the following theorem. Note that it is a strengthening of a special case of [31, 2.16]

Theorem 4.7. Let S be a connected mixed Shimura variety associated to (P,X+, G), with unipo-
tent radical WP ⊂ P , such that P/WP

∼= GSp2g,Q and the morphism P −→ GSp2g,Q induces a
morphism of connected mixed Shimura data (P,X+) −→ (GSp2g,Q,Hg). Then there exist integers
n, k such that UP ∼= Gk

a,Q, WP /UP ∼= G2gn
a,Q, and P/UP = GSp2g,Qn(WP /UP ). For any Q-algebra

B, the group P (B) is as a set equal to GSp2g(B)×B2gn ×Bk, and the group law is given by

(A,w, u) · (A′, w′, u′) = (AA′, Aw′ + w, d(A)u′ + u+ β(w,Aw′)),

for some bilinear map β : G2gn
a,Q × G2gn

a,Q −→ UP satisfying β(Aw,Aw′) = d(A)β(w,w′) for all
A,w,w′. Furthermore, X+ ∼= Hg × R2gn × Ck, and G is a congruence subgroup of P (Q)+.
Conversely, every such (P,X+, G) defines a connected mixed Shimura variety S.
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5 Special subvarieties of extensions of Siegel modular va-
rieties

In this chapter we classify the special subvarieties of the connected mixed Shimura varieties de-
scribed in the last chapter. Hence we take P0 = GSp2g,Q and X+

0 = Hg. Furthermore, let
G0 ⊂ P0(Z) be a congruence subgroup; then we consider the Shimura varieties S0 = G0 \X+

0 .

For a subgroup Q of P0, let ΞQ be the subset of morphisms SC −→ P0,C in X+
0 factoring

through QC. By Lemma 2.11, a special subvariety arises from an injective morphism of connected
mixed Shimura data (Q,Y +) −→ (P0, X

+
0 ), so we may regard Q as a linear algebraic subgroup

of P0, and Y + as a connected component of ΞQ. However, not every subgroup of P0 is part of a
connected mixed Shimura datum (Q,Y +) for some Y +; let us call those that do special. Although
I will not give an explicit classification of special subgroups of P0, we will discuss specific examples
of these connected mixed Shimura subdata in chapter 6. Suppose Q is a special subgroup of P0;
then (Q,Y +, G0 ∩Q(Q)) defines a special subvariety ΣQ,Y + of S0.

5.1 Special subvarieties of S1

I keep the notation from section 4.1, so I consider the connected mixed Shimura datum (P1, X
+
1 ),

where P1 is the linear algebraic group P0nW , where W =WP1 is a product of n distinct copies of
the standard P0-moduleG2g

a,Q. As before, we can identify X+
1 with Hg×R2gn. For G a congruence

subgroup of P0 and Λ a maximal sublattice of Z2gn fixed by G, I consider the Shimura variety
S1 corresponding to (P1, X

+
1 , G n Λ). The following proposition classifies the subgroups Q of P1

for which there exists a connected subset Y + ⊂ Hom(SC, Q) ∩X+
1 for which (Q,Y +, P (Z) ∩G1)

defines a Shimura subvariety of S1. In order to do this, we first need the following lemma from
group cohomology.

Lemma 5.1. Let k be a field of characteristic 0, B a subgroup of GLn(k) containing the scalars,
and let V ′ be a k-vector space that is a B-module, on which the scalars act by multiplication. Then
H1(B, V ′) = 0.

Proof. Let s : B −→ V ′ be a cocycle. Then for all A ∈ B one has that

2s(A) + s(2) = s(2A) = As(2) + s(A),

so s(A) = (A− 1)s(2), so s is a coboundary.

Proposition 5.2. Let Q ⊂ P1 = P0 nW be a special algebraic subgroup. Then up to conjugation
Q is of the form Q′ n W ′, where Q′ is a special subgroup of P0, and W ′ is a sub-Q′-module
of W , and the section implicitly induced by the semidirect product is a restriction of the section
P0 −→ P1.

Proof. The image of the special subvariety ΣQ in S0 is again a special subvariety, so the image Q′

of Q in P0 is a special subgroup. Let Qred be the reductive part of Q in the Levi decomposition.
Then the map Q −→ P0 factors through Qred. On the other hand, since Q is a subgroup of P1,
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Qred can be considered as a subgroup of P0, so Q′ = Qred. Now let W ′ ⊂ W be the kernel of the
map Q −→ P0; it is the unipotent radical of Q. Furthermore, by definition Q is a subgroup of
Q′ nW , where the semidirect product is induced from the semidirect product of P1 = P0 nW .
We therefore have a morphism Q −→ Q′ nW/W ′ that respects the morphisms to Q′. The image
of Q in Q′ nW/W ′ is isomorphic to Q′, so it comes from a cocycle Q′ −→W/W ′. By lemma 5.1
this is a coboundary, so the image of Q is up to conjugation equal to Q′ n 0. Therefore Q is up
to conjugation contained in Q′ nW ′, where the semidirect product is induced by the semidirect
product P1 = P0 nW . Since the dimensions of the unipotent radical have to be the same, we find
that Q must actually equal Q′ nW ′ up to conjugation, as was to be shown.

From this classification of subgroups I can now derive a classification of the special subvari-
eties of S1. In order to keep the classification simple, I list the subvarieties only up to Hecke
correspondence, which is justified by proposition 2.13.

Proposition 5.3. Let Z be a special subvariety of S1. Then up to Hecke correspondence Z is
of the form ΣQ′nW ′,Y + for some special Q′ ⊂ P0 and some sub-Q′-module W ′ of W , and some
connected component Y + of Hom(SC, Q′ nW ′) ∩X+

1 .

Proof. Suppose Z corresponds to a connected mixed Shimura datum (Q,Y +). As we have seen
above, we know that Q is a subgroup of P0 that is a conjugate of a subgroup of the form
Q′ n W ′. Without loss of generality, we may assume that this conjugations is by some ele-
ment w ∈ W ′(Q). If π : P1 −→ P0 is the projection map, and Y ′+ = π ◦ Y +, one now has that
Y + = Y ′+ × (W ′(R) + w) ⊂ Hg ×W (R) = X+

1 .

Now let G′ ⊂ Q(Z) ∩ G1 be small enough, so that the inverse image of Z under the map
G′ \ Y + −→ G1 \X+

1 = S1 is of the form ΣQ,Y + ; we may assume without loss of generality that
G′ = ΓnΛ, where Γ is a congruence subgroup of Q′(Z), and Λ is a lattice inW ′. Now let m ∈ Z>1

be such that mw ∈ Λ, and consider the Hecke correspondence

(Γn
1

m
Λ) \X+ φ′

←− G′ \X+ φ−→ (G ∩Q(Z)) \X+.

Then Z is an irreducible component of φ(φ′−1(ΣQ,Y +)), as was to be shown.

5.2 Special subvarieties of S2

In this section, I classify the special subvarieties of S2, keeping the notation from section 4.2.
Thus we let P0, P1,W,X

+
1 , G,Λ be as above, and we let U = Gk

a,Q for some integer k, and
β : W ×W −→ U a bilinear map so that β(Av,Aw) = d(A)β(v, w) for all A ∈ P0 and v, w ∈ W .
We then let P2 be the extension of P1 by U as in corollary 4.5, and X+

2 = X+
1 ×Ck. Choose some

lattice ∆ ⊂ Zk so that β(Λ,Λ) ⊂ ∆; then S2 is the connected mixed Shimura variety G′ \ X+
2 ,

where G′ is the congruence subgroup of P0 corresponding to the set G × Λ × ∆. Again, I start
with classifying the special algebraic subgroups of P2.
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Lemma 5.4. Let Q ⊂ P2 be a special algebraic subgroup. Then up to conjugation Q is as a variety
of the form Q′×W ′×U ′, where Q′ is a special subgroup of P0, W ′ is a sub-P ′-module of W , and
U ′ is a linear subspace of U such that the induced bilinear form W ′ ×W ′ −→ U/U ′ is symmetric.

Proof. Look at the kernel of Q −→ P1; this will be a linear subspace U ′ of U . Now Q/U ′ is
the image of a section Q′ nW ′ −→ P2/U

′. We may assume that the image of Q′ in P1 equals
Q′ nW ′ for some special subgroup Q′ of P0 and a sub-Q′-module W ′ of W , as any other special
subgroup may be obtained by conjugating. Denote this section by (A, v) 7→ (A, v, zA,v); then one
has zAA′,Av′+v = d(A)zA′,v′ + β(v,Av′) + zA,v. In particular one has z1,v + z1,v′ + β(v′, v) =

z1,v+v = z1,v + z1,v′ + β(v, v′), which shows that β must be symmetric on W ′ ×W ′. If this is the
case, then the map given by zA,v = 1

2β(v, v) gives us a section. Any other section can be obtained
from this one by conjugating.

Again, the classification of special subgroups allows us to find the special subvarieties of S2.

Theorem 5.5. Let Z be a special subvariety of S2. Then up to Hecke correspondence Z is of the
form Σ(P ′nW ′)nU ′),Y + for some P ′, W ′, U ′ such that P ′ is a special subgroup of P0, W ′ is a sub-P ′-
module of W , and U ′ is a linear subspace of U such that the induced bilinear form W ′×W ′ −→ U ′

is symmetric, and some connected component Y + of X+
2 ∩Hom(SC, (P ′ nW ′)n U ′).

Proof. The proof of this proposition is analogous to that of Proposition 5.3.
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6 Special subvarieties of modular curves and universal el-
liptic curves

This section is devoted to a specific example of the connected mixed Shimura varieties S0, S1 and
S2 as described above. First, let us take g = 1, and write P0 = GSp2,Q = GL2,Q and X+

0 = H1.
For a suitable choice of the congruence subgroup G0 ⊂ Sp2(Z) = SL2(Z), the curve S0 = G0 \X+

0

is a moduli space for elliptic curves over C with some level structure; this means in this case that
there is a ‘natural’ one-to-one correspondence between C-points of G0 \ X+

0 and elliptic curves
over C with a point of given order. This notion of naturality will be properly defined in the next
chapter. A point τ ∈ X+

0 ⊂ C corresponds to the map hτ : S −→ GL2(R) obtained by taking the
R-basis (τ, 1) for C. By a slight abuse of notation, I will still write τ for the image of τ ∈ X+

0 in S0.

As g = 1, the variety S0 is a one-dimensional quasiprojective complex variety, so a special
subvariety of S0 is either all of S0 or a special point. The latter are classified by the following
proposition.

Proposition 6.1. Let τ ∈ H1 ⊂ C be a point. Let Eτ be the elliptic curve C/(Z · τ + Z). Then
the image of τ in S0 is special if and only if Eτ has complex multiplication.

Proof. Suppose Eτ has complex multiplication; then Q(τ) is an imaginary quadratic extension of
Q, so Qτ +Q is closed under multiplication by τ . By choosing (τ, 1) as a basis for Q(τ), we get
an injective morphism of algebraic groups f : ResQ(τ)/QGm,Q(τ) −→ GL2,Q = GSp2,Q; let Tτ be
its image. The base-change of f to R is the morphism hτ : S −→ GSp2,R. It is easy to verify that
(Tτ , {τ}) is a connected mixed Shimura subdatum, defining the special subvariety τ ∈ S0.

Conversely, if τ in S0 is special, then the image hτ (S) has to be contained in an algebraic
subgroup of P0,R defined over Q. Let Tτ be the smallest of these algebraic subgroups defined over
Q. Then, as Tτ fixes τ , this subgroup must be commutative. However, hτ (S) is a maximal abelian
subgroup of GL2,R, so hτ (S) = Tτ,R. Now Tτ (Q) is a subgroup of C× that fixes the set Qτ +Q.
Now suppose that Tτ (Q) is contained in R× ⊂ C×; then Tτ (R) is contained in R×. However, we
know that Tτ (R) = C×, which is a contradiction. Therefore there is a z ∈ C \R fixing Qτ +Q.
By multiplying z with a sufficiently large integer we may assume that z fixes Zτ + Z; but then z
is an endomorphism of Eτ that is not in Z, which shows that Eτ has complex multiplication.

6.1 Universal elliptic curves and their dual
Fix a suitably small congruence subgroup G0 ⊂ SL2(Z), and let P0, X

+
0 , S0 be as in the preceding

paragraph. Now I take P1 = P0 n G2
a,Q. As was discussed in section 4.1, this gives rise to a

connected mixed Shimura datum (P1, X
+
1 ), where X+

1 is the complex manifold X+
1 = H1 ×R2,

where the complex structure above a τ ∈ H1 is determined by regarding R2 as Rτ +R = C. Now
we can take the quotient with the congruence subgroup G0 n Z2 to obtain the connected mixed
Shimura variety S1, which comes with a projection morphism S1 −→ S0. Above every τ ∈ S0 one
finds that S1,τ is isomorphic to the elliptic curve C/(Zτ + Z). Conversely, every complex elliptic
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curve is of this form; for this reason, we call S1 the universal elliptic curve over S0. In the next
chapter we will formalise this notion. The following classification of special subvarieties of S1 is a
direct corollary of proposition 5.3.

Corollary 6.2. Let Z be a special subvariety of S1. Then up to Hecke correspondence Z is of one
of the following forms:

• Z = {τ} × 0 for some special τ ;

• Z = Eτ above a special τ ;

• Z = G0 \ (H1 × 0);

• Z = S1.

Note that this corollary implies that the special points of S1 are exactly the torsion points of
Eτ above a special τ ∈ S0.

Let G2∨
a,Q be the linear algebraic group over Q defined for any Q-algebra B as G2∨

a,Q(B) =

HomB(B
2, B). We equip it with a left action of P0, by having a A ∈ P0(B) act on some

ξ ∈ G2∨
a,Q(B) as A · ξ = (detA)ξ ◦ A−1. The induced Hodge structure on G2∨

a,Q is of type
{(0,−1), (−1, 0)}, so by Lemma 4.2 it should be isomorphic to G2

a,Q; indeed there exists the
isomorphism of P0-modules

Φ : G2
a,Q −→ G2∨

a,Q(
a
b

)
7→ det

(
a
b

)
.

Now consider the connected mixed Shumura datum

(P ′
1, X

′
1) = (P0 n (G2

a,Q ×G2∨
a,Q), X

+
0 ×R2 ×R2∨),

and let G′
1 = G0 n (Z2 × Z2∨); I denote by S′

1 the connected mixed Shimura variety G′
1 \ X ′

1.
Above every τ ∈ S0, the fibre of S′

1 −→ S0 is Eτ × E∨
τ , where E∨

τ is the dual of the elliptic curve
E∨
τ , i.e. E∨

τ = R2∨/Z2∨, with the complex structure given by

ĥτ : C× −→ GL(R2∨) : z 7→ (ξ 7→ |hτ (z)|ξ ◦ hτ (z)−1).

My next aim is to classify the special subvarieties of S′
1. For a special τ ∈ H1 and λ ∈ Q(τ)×, we

denote Vτ,λ for the sub-Tτ -module of G2
a,Q×G2∨

a,Q given by Vτ,λ(B) = {(x, y) ∈ B2×B2∨ : Φ(x) =
λy} for every Q-algebra B. Again, the following classification follows directly from proposition
5.3. By picking a different set of 2 generators for G4

a,Q as a GL2-module, we see that the special
subvarieties {τ}×Eτ×0, {τ}×0×E∨

τ and {τ}×Vτ,λ(R)/(Vτ,λ(R)∩Z2×Z2∨) for some λ ∈ Q(τ)×

are all equal up to Hecke correspondence, an analogous statement holds for the case that the special
subvariety maps surjectively to S0. We therefore get the following classification.
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Corollary 6.3. Let Z be a special subvariety of S′
1. Then up to Hecke correspondence Z is of one

of the following forms:

• Z = {τ} × 0, where τ is special;

• Z = {τ} × Eτ × 0, where τ is special;

• Z = {τ} × Eτ × E∨
τ ;

• Z = G0 \ H1 × 0;

• Z = (G0 n (Z2 × 0)) \ (H1 ×R2 × 0);

• Z = S′
1.

6.2 The Poincaré bundle
Now we follow the construction in section 4.2. We take P2 to be the extension of P ′

1 by U = Ga,Q,
given by the bilinear map

β : (G2
a,Q ×G2∨

a,Q)× (G2
a,Q ×G2∨

a,Q) −→ Ga,Q

((v, ξ), (v′, ξ′)) 7→ ξ(v′),

where the action of a matrix A ∈ P0 on U is given by multiplication. This gives us a connected
mixed Shimura datum (P2, X

+
2 ), where X+

2 can be identified with H ×R2 ×R2∨ ×C. For any
x ∈ X+

2 the induced Hodge structure of U(R) is of type {(−1,−1)}, so we may identify U(Q)
with Q(1) through multiplication with 2πi.

We can divide out by a subgroup of the set-theoretic form G0 × Z2 × Z2∨ × Z to get a
connected mixed Shimura variety S2. Over a point (τ, v, ξ) ∈ S′

1, we may identify the fibre
S2,(τ,v,ξ) = U(C)/U(Z) = C(1)/Z(1) with C× via the exponential map. This connected mixed
Shimura variety is then the geometric object corresponding to the Poincaré bundle over S′

1 with
the zero section removed, as can be shown by using the methods of [6, 2.5.1]. The two group laws
on S2 from its biextension structure as in example 3.9 are now as follows. For any (τ, v, ξ, z) ∈
H ×R2 ×R2∨ ×C, let (τ, v, ξ, z) be its image in S2. The group laws are then given by

(τ, v, ξ1, z1) +τ,v (τ, v, ξ2, z2) = (τ, v, ξ1 + ξ2, z1 + z2)

and
(τ, v1, ξ, z1) +

τ,ξ (τ, v2, ξ, z2) = (τ, v1 + v2, ξ, z1 + z2),

as one can check using the formulation of the group law in example 3.8.

There are several equivalent ways of describing P2. First, we can use the isomorphism Φ to
write P2(B) = GL2(B) × B2 × B2 × B, with multiplication given by (A, v, w, z)(A′, v′, w′, z′) =
(AA′, Av′ + v,Aw′ + w, |A|z′ + ⟨Av′, w⟩ + z), where ⟨ , ⟩ : G2

a,Q × G2
a,Q −→ Ga,Q is given by

⟨v, w⟩ = Φ(w)(v). The Poincaré bundle is symmetric, which is reflected in the fact that there is
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an automorphism of P2 given by (A, v, w, z) 7→ (A,w, v, z − ⟨v, w⟩), which is its own inverse.

Alternatively, one can identify (A, v, ξ, z) with the 4× 4 matrix detA ξ ◦A z
0 A v
0 0 1

 ,

where ξ ◦ A is a row vector and v is a column vector. Let f : S2 −→ S′
1 denote the morphism

of Shimura varieties induced by the projection morphism
P2 −→ GL2,Qn(G2

a,Q ×G2∨
a,Q).

The following results now follow straightforwardly from theorem 5.5.
Corollary 6.4. Let Z be a special subvariety of S2. Then up to Hecke correspondence Z is of one
of the following forms, where groups are written in set-theoretic form, with the multiplication as
in 4.5 understood:

• Z = f−1(Z ′), where Z ′ is a special subvariety of S′
1;

• Z = τ × 0× 0× 0, for some special τ ;

• Z = {τ} × Eτ × 0× 0, for some special τ ;

• Z = (G0 × 0× 0× 0)) \ (H1 × 0× 0× 0);

• Z = (G0 × Z2 × 0× 0) \ H1 ×R2 × 0× 0;

• Z = {τ}×{(v, ξ, z) : (v, ξ) ∈ Vτ,λ(R), 2z = ξ(v)} ⊂ {τ}×R2/Z2×R2∨/Z2∨×C/Z for some
λ ∈ Q(τ)× ∩ iR (regarded as a subset of Tτ (Q)).

Proof. Using theorem 5.5, the only nontrivial cases that need to be checked is for which Vλ and Vτ,λ
the induced map of connected mixed Shimura varieties f−1(Vλ) −→ Vλ (or f−1(Vτ,λ) −→ Vτ,λ)
admits a section. First consider Vτ,λ as before for some λ ∈ Q(τ)×. Then the fact that β is
symmetric implies that ⟨λy, y′⟩ = ⟨λy′, y⟩ for all y, y′ ⊂ B2, for any Q(τ)-algebra B. From the
definition of the bilinear map one has that

⟨|λ|y, y′⟩ = |λ|⟨y, y′⟩
= ⟨λy, λy′⟩
= −⟨λy′, λy⟩
= ⟨−λ2y, y′⟩.

Since the bilinear form is degenerate, this implies that |λ| = −λ2, so φ is symmetric on Vτ,λ ×
Vτ,λ if and only if λ is purely imaginary. For such a λ, the section Tτ n Vτ,λ −→ Tτ × Vτ,λ ×Ga,Q
given by (A, v) 7→ (A, v, 12 ⟨v, v⟩) gives us the special subvariety Z ′. If we now consider Vλ, the
same calculation shows us that λ must be purely imaginary, but this is a contradiction with the
fact that λ ∈ Q×.
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7 A moduli interpretation of the results
In this section, I interpret the connected mixed Shimura varieties discussed in the previous chapters
within the theory of moduli spaces of principally polarised abelian varieties and their associated
universal abelian varieties. I start with the pure Shimura variety S0 as discussed in section 2.4.

7.1 Siegel modular varieties
Let S be a scheme, and let g be a positive integer. By AbSchS,g,1 I denote the category whose
objects are pairs (A/T, φ), where T is an S-scheme, A/T is an abelian scheme of relative dimension
g, and φ : A −→ A∨ is a principal polarisation. Its morphisms are cartesian diagrams

A′ A

T ′ T

ψA

ψ

where ψ is a morphism of S-schemes such that ψA∨◦φ′ = ψA◦φ, and ψ∗0A/T = 0A′/T ′ ∈ A′(T ′).
Now to continue we need the following lemma.

Lemma 7.1. Let X/S, Y /S be abelian schemes of relative dimension g, and let α : X −→ Y be
an isogeny with dual isogeny α∨ : Y ∨ −→ X∨. Then there is a canonical perfect pairing

kerα× kerα∨ −→ Gm,S .

Proof. See [18, 2.1.5].

Now let S be a scheme over C and let A/S be a principally polarised abelian scheme, and
let N ≥ 1 be an integer. By A[N ] I denote the kernel of the multiplication map N : A −→ A.
Through the principal polarisation, we may consider A as its own dual, and N∨ = N under this
identification. The image of the perfect pairing A[N ] × A[N ] −→ Gm,S lies in µN,S . By fixing a
N -th unit root ζN ∈ C we can consider this as a pairing with values in the constant group scheme
(Z/NZ)S .

The constant group scheme (Z/NZ)2gS comes with a natural symplectic pairing (Z/NZ)2gS ×
(Z/NZ)2gS −→ (Z/NZ)S induced by the matrix

(
0g 1g
−1g 0g

)
. Therefore we can define the

following functor

Bg,1,N : AbSchC,g,1 −→ Set
(A/S, φ) 7→ Isom((Z/NZ)2gS , A[N ]),

where the isomorphisms are to be understood as isomorphisms of symplectic modules over S.
This in turn induces a contravariant functor
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Ag,1,N : SchC −→ Set
S 7→ {(A/S, φ, α) : (A/S, φ) ∈ AbSchC,g,1, α ∈ Bg,d,N (A/S)}/ ∼

where ∼ denotes ‘up to isomorphism’; a morphism (A/S, φ, α) −→ (A′/S, φ′, α′) is a morphism
ζ : (A/S, φ) −→ (A′/S, φ′) such that Bg,1,N (ζ)(α′) = α. In other words, Ag,1,N sends a C-scheme
S to the set of isomorphy classes of abelian schemes A of relative dimension g over S, together
with a principal polarisation φ : A

∼−→ A∨ and a given symplectic basis of the N -torsion. This
functor connects with the rest of this thesis by the following proposition.

Proposition 7.2. LetN ≥ 3 and g ≥ 1 be integers, and let Γ(N) = ker(Sp2g(Z) −→ Sp2g(Z/NZ)).
Then the functorAg,1,N is represented by the pure Shimura variety corresponding to (GSp2g,Hg,Γ(N)).

Proof. See [28, 7.3].

Hence, for G0 = Γ(N), the connected Shimura variety S0 parametrises principally polarised
abelian schemes with a given basis for the N -torsion. In particular, the set of C-points S0(C) is
the set of principally polarised abelian varieties over C with a given basis for the N -torsion with a
certain symplectic structure. In fact, a point τ ∈ S0 corresponds to the abelian variety R2g/Z2g,
with the complex structure induced by τ . The basis for the N -torsion is ( 1

N e1, . . . ,
1
N e2g), where

e1, . . . , e2g is the standard basis for Z2g.

7.2 The universal abelian variety
Again we take S0 = G0 \ Hg, where G0 = Γ(N) for N ≥ 3. We have seen that S0 represents
the functor Ag,1,N : SchC −→ Set. In particular, the identity map S0 −→ S0 corresponds to
an abelian variety E/S0. Furthermore, if A/T is an element of AbSchC,g,1, then the morphism
φ : T −→ S0 to which it corresponds can be decomposed as id◦φ; this induces a cartesian diagram
of abelian schemes A/T −→ E/S0, so we see that A is the pullback of E under the morphism φ. For
this reason, E is called the universal abelian variety. It can be shown that E = S1 = (G0nZ2g)\X+

1 .
Above a point τ ∈ S0, the equality comes from the fact that S1,τ = Cg/(τ ·Zg+Z), which is indeed
the complex abelian variety corresponding to τ , see section 2.4. If g = 1, we get the connected
mixed Shimura variety S1 from section 6.1.

For any C-scheme S, we know that S0(S) equals the set of principally polarised abelian va-
rieties over S with a given dimension g and with a given symplectic basis of the N -torsion, up
to isomorphy. For a given morphism f : S −→ S0, the abelian variety that it represents is
(S1 ×S0 S)/S. Now let π : S1 −→ S0 be the structure morphism, and let h : S −→ S1 be such
that π ◦ h = f . Then h induces an element of (S1 ×S0 S)(S), the abelian variety induced by f .
Therefore S1 represents the functor

G(N) : SchC −→ Set

S 7→
{
(A/S, φ;R) :

A/S p.p. ab. schemes of relative dimension g,
φ : (Z/NZ)2gS

∼−→ A(S)[N ], R ∈ A(S)

}
/ ∼ .
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Now I wish to describe the special subvarieties of S1 in the light of this moduli interpretation.
For simplicity, I assume that g = 1, so that I may take the classification these special subvarieties
from section 6. Above a special point τ , there are only two possible special subvarieties, namely a
torsion point and all of Eτ ; these are the elliptic curves with complex multiplication. The special
subvarieties mapping surjectively to S0 are more interesting.

Proposition 7.3. Let Z be a special subvariety of S1 = (Γ(N) n Z2) \ X+
1 , not equal to S1,

that maps surjectively to S0. Then there exists a multiple N ′ of N and integers a, b such that Z
represents the image of the natural transformation of functors

A1,1,N ′ −→ G(N)

A1,1,N ′(S) −→ G(N)(S)

(E/S, P,Q) 7→ (E/S,
N ′

N
P,
N ′

N
Q; aP + bQ).

Proof. A connected component Z ′ of the inverse image of Z of S1 in X+
1 is of the form H1 × {v},

for some v ∈ Q2. Now let N ′ be such that N | N ′ and N ′v ∈ Z2; then there exist a, b ∈ Z/N ′Z
such that v = a e1N ′ + b e2N ′ in Q2/Z2, where (e1, e2) is the standard basis of Z2. Now consider the
quotient map π : X+

1 −→ (Γ(N ′)n Z2) \X+
1 ; then K = π(Z ′) equals (Γ(N ′) \ H1)× {v}. This is

the image of a morphism of connected mixed Shimura varieties

Γ(N ′) \ H1 −→ (Γ(N ′)n Z2) \ (H1 ×R2)

τ 7→ (τ, v).

Now, for any C-scheme S, an element of (Γ(N ′) \ H)(S) corresponds to an elliptic curve E/S

with two given sections P,Q ∈ E[N ′](S) that generate E[N ′]. Over a C-point x of S mapping to
τ ∈ Γ(N ′) \ H, we see that Ex ∼= C/(Z + Zτ), and P = 1

N ′ τ , Q = 1
N ′ ; therefore, v = aP + bQ

in Ex. The morphism above can therefore be represented in terms of contravariant functors on
AbSchC as follows:

A1,1,N (N ′) −→ G(N ′)

A1,1,N (N ′)(S) −→ G(N ′)(S)

(E/S, P,Q) 7→ (E/S, P,Q; aP + bQ).

The inclusion Γ(N ′) ⊂ Γ(N) induces a morphism (Γ(N ′) n Z2) \ X+
1 −→ S1. In terms of con-

travariant functors on AbSchC, this morphism is defined as follows:

G(N ′) −→ G(N)

G(N ′)(S) −→ G(N)(S)

(E/S, P,Q;R) 7→ (E/S, P,Q,
N ′

N
P,
N ′

N
Q;R).

Under this morphism, the image of K is Z. In other words, we can interpret Z as the image of
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the natural transformation of functors

Γ(N ′) −→ G(N)

Γ(N ′)(S) −→ G(N)(S)

(E/S, P,Q) 7→ (E/S,
N ′

N
P,
N ′

N
Q; aP + bQ),

as was to be shown.

In the same way S′
1 = (Γ(N) n (Z2 × Z2∨)) \ (H1 ×R2 ×R2∨) represents the contravariant

functor

G′(N) : SchC −→ Set
S 7→ {(E/S, P,Q;R,R′) : P,Q generate E(S)[N ], R,R′ ∈ E(S)}/ ∼ .

Again, we wish to regard the special subvarieties of S′
1 as the images of natural transformations

of functors. In order to simplify notation, I use the identification S′
1 = G0 n Z4 \ H1 ×R4.

Let Z ⊂ S′
1 be a special subvariety such that, for the map π : S′

1 −→ S0, the image π(Z) is
a special point τ ∈ S0. If Z is zero-dimensional, we see that Z is a torsion point on Eτ × Eτ ,
and if Z is two-dimensional, we see that Z = Eτ × Eτ . Now suppose G0 = Γ(N) for some N ,
and that Z ⊂ S′

1 is a one-dimensional special subvariety mapping to some τ ∈ S0. Then the
preimage Z ′ of Z in {τ}×R4 ∼= (R⊗QQ(τ))2 is a translate of a one-dimensional Q(τ)-linear sub-
space V of Q(τ)2 by an element of Q(τ). Because V is defined over Q(τ), the free abelian group
Λ = (Z + Zτ)2 ∩ V ⊂ V is of maximal rank, so VR/Λ is an abelian subvariety of C2/(Z + Zτ)2.
Also, every one-dimensional subvariety of C2/(Z+Zτ)2 corresponds to such a V . Combining this
with the zero-dimensional and two-dimensional cases, we see that the special subvarieties above
some τ ∈ S0 are exactly the translates of abelian subvarieties by torsion points.

Again, the case that Z maps surjectively to S0 allows for a nicer description. Here too the
cases that Z −→ S0 has zero-dimensional or two-dimensional fibres are not interesting.

Proposition 7.4. Let Z be a special subvariety of S′
1 = (Γ(N) n Z4) \ (H1 ×R4) such that the

projection morphism Z −→ S0 is surjective and has one-dimensional fibres. Then there exists a
multiple N ′ of N , integers a, b, c and d, and coprime integers p and q such that Z represents the
image of the natural transformation of functors

G(N ′) −→ G′(N)

G(N ′)(S) −→ G′(N)(S)

(E/S, P,Q;R) 7→ (E/S,
N ′

N
P,
N ′

N
Q; aP + bQ+ pR, cP + dQ+ qR).

Proof. Let Z ′ be an irreducible component of the inverse image of Z in H1×R4; then Z ′ = v0+VR
for some v0 ∈ Q4 and some sub-GL2(Q)-module V of Q2×Q2. We may write V = {(x, y) ∈ Q2×
Q2 : qy = px} for some coprime integers p, q ∈ Z. Then the map Q2 −→ V : v 7→ (pv, qv) induces
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an isomorphism Q2/Z2 −→ V /(V ∩ Z4). As before, let N ′ be such that N | N ′ and N ′v0 = 0.
Then the image of Z ′ in (Γ(N ′)n Z4) \X ′+

1 is of the form (Γ(N ′) \X+
0 )× (VR/(VR ∩ Z4) + v0).

This is the image of the morphism of connected mixed Shimura varieties

(Γ(N ′)n Z2) \X+
1 −→ (Γ(N ′)n Z4) \X ′+

1

(τ, v) 7→ (τ, (pv, qv) + v0).

Now let v0 = a
N ′ e1+

b
N ′ e2+

c
N ′ e3+

d
N ′ e4 for some integers a, b, c, d; then this morphism corresponds

to the natural transformation of functors

G(N ′) −→ G′(N ′)

G(N ′)(S) −→ G′(N ′)(S)

(E/S, P,Q;R) 7→ (E/S, P,Q; aP + bQ+ pR, cP + dQ+ qR).

Furthermore, the morphism of connected mixed Shimura varieties (Γ(N ′)nZ4)\X ′+
1 corresponds

to the following natural transformation of functors:

G′(N ′) −→ G′(N)

G′(N ′)(S) −→ G′(N)(S)

(E/S, P,Q;R,R′) 7→ (E/S,
N ′

N
P,
N ′

N
Q;R,R′).

Composing these two functors gives us the desired result.

7.3 The Poincaré bundle
In this section, we look at the connected mixed Shimura variety S2 as defined, for elliptic curves,
in section 6.2. The construction for general dimensions is as follows. Let V be the GSp2g,Q-
module G2g∨

a,Q , where for every Q-algebra B, the action of a matrix A ∈ GSp2g(B) on a functional
ξ ∈ V (B) is given by Aξ = d(A)ξ ◦ A−1. Now any h ∈ X+

0 gives V a Hodge structure of type
{(0,−1), (−1, 0)}. By lemma 4.2, there is an isomorphism Φ : V −→ G2g

a,Q of GSp2g,Q-modules.
In the case that g = 1, we have explicitly given this isomorphism in section 6.2. In general, we
may define Φ by means of the symplectic form J used to define GSp2g,Q. By a base change on
either side we may assume that Φ(Z2g) = Z2g∨. Now, in the notation of corollary 4.7, we take
U = Ga,Q, WP1 = G2g

a,Q ×G
2g∨
a,Q , and the bilinear map

β :WP1 ×WP1 −→ U

((v, ξ), (v′, ξ′)) 7→ ξ(v′).

We then take G to be the congruence subgroup of P2 corresponding to the set Γ(N)×Z2×Z2∨×Z,
and we take S2 = G \ Hg ×R4 ×C. Again, as in [6, 2.5.1], one can prove that S2 as defined in
this way is the geometric object corresponding to the Poincaré bundle over S′

1 = S1 ×S0 S
∨
1 with

the zero section removed. Now denote by CS the category of commutative group schemes over S.
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One can prove that S2 represents the following functor:

G2(N) : SchC −→ Set

S 7→

(A/S, φ,G;R) :

A/S p.p. ab. schemes of relative dimension g,
φ : (Z/NZ)2gS

∼−→ A[N ],
G an extension of A by Gm,S , R ∈ G(S)

 / ∼ .

On C-points the correspondence works as follows. Let x be a point in S2(C), and let τ be its
image in S0, and L its image in A∨

τ = S∨
1,τ . Then L corresponds to an extension G of Aτ by Gm,

and this extension is S2 ×S′
1
L; therefore x corresponds to a point R ∈ G(C). Furthermore, the

isomorphism of GSp2g,Q-modules Φ : G2g
a,Q −→ V induces, when viewed as S-modules via hτ , an

isomorphism of Z-Hodge structures Z2g −→ Z2g∨(1); this yields an isomorphism φ : Aτ −→ A∨
τ .

In this notation, x ∈ S2(C) corresponds to (Aτ , φ,G;R) ∈ G2(N).

Now let us look at the special subvarieties of S2 for the case g = 1. Following section 4.2, we
can categorize them into three types:

• inverse images of special subvarieties of S′
1;

• sections of the Poincaré bundle above special subvarieties of S′
1 above which this bundle is

trivial;

• Z = {τ}×{(v, ξ, z) : (v, ξ) ∈ Vτ,λ(R), 2z = ξ(v)} ⊂ {τ}×R2/Z2×R2∨/Z2∨×R/Z for some
λ ∈ Q(τ)× ∩ iR (regarded as a subset of Tτ (Q)), up to Hecke correspondence.

Of these, only the last one is interesting to describe. For a Z of the last kind, the map Z −→
V ′ = (v, ξ) + Vτ,λ(R) ⊂ Eτ × E∨

τ is either a double or a single covering, depending on whether
the image of Vτ,λ(R) ∩ Z2 × Z2∨ under the canonical map

Z2 × Z2∨ −→ Z

lies in 2Z ⊂ Z or not. If we write P for the Poincaré bundle on Eτ × E∨
τ , and regard Z as a

subset of L×
P , then the map L×

P −→ L×
P⊗P , defined by the morphism of line bundles P −→ P ⊗P

defined by z 7→ z2 on local sections, maps Z into the image of the section (v, ξ) 7→ (v, ξ, exp(ξ(v)))
of L×

P⊗P|V ′
−→ V ′. This shows that the line bundle P ⊗ P is trivial over V ′; hence P|V ′ is of

order 2 or 1 in Pic0(V ′). And vice versa, from section 4.2 it follows that every special subvariety
V ′ of S′

1 above which P is of order one or two is of the form (v, ξ) + Vτ,λ(R).
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8 Pink’s conjecture on semiabelian varieties
As Pink in [32], I start by listing the history of various conjectures.

8.1 Introduction
The following theorem, before being proven by Faltings [13] in 1983, was conjectured by Mordell
[27].

Theorem 8.1 (Faltings). For any geometrically irreducible smooth projective algebraic curve Z
of genus ≥ 2 over a number field K, the set of rational points Z(K) is finite.

One can translate this into a question about abelian varieties by embedding Z into its Jacobian
variety J (see [25]), so that Z(K) = J(K)∩Z . Since J(K) is finitely generated by the Mordell-Weil
theorem, it is sufficient to prove that for every abelian variety A over a field of of characteristic
zero, any finitely generated subgroup Λ ⊂ A and any irreducible curve Z ⊂ A of genus ≥ 2,
the intersection Z ∩ Λ is finite. This is true, although the only known proof of this is from the
above conjecture. Still, considering objects similar to Z ∩ Λ led to other conjectures, such as the
following statement, first conjectured independently by Manin and Mumford before proven by
Raynaud [35],[36]:

Theorem 8.2 (Raynaud). Let A be an abelian variety over C and let Ator denote its subgroup of
all torsion points. Let Z ⊂ A be an irreducible closed algebraic subvariety such that Z ∩ Ator is
Zariski dense in Z. Then Z is a translate of an abelian subvariety of A.

There are also other proofs, see [32] for details. The following theorem, due to McQuillan [24],
implies the two above:

Theorem 8.3 (McQuillan). Let A be a semiabelian variety over C, let Λ0 be a finitely generated
subgroup of A, and let

Λ = {a ∈ A : ∃n ∈ Z>0 : na ∈ Λ0}

be the division group of Λ0. Let Z ⊂ A be an irreducible closed algebraic subvariety such that Z∩Λ
is Zariski dense in Z. Then Z is a translate of a semiabelian subvariety of A.

The analogous (and weaker) statement regarding abelian varieties is called the Mordell-Lang
conjecture, and has been proven by the combined work of Faltings [13], Raynaud [34], Vojta [37]
and Hindry [20].

On the other hand, there are Shimura varieties which act as universal polarised abelian varieties
with a given dimension and level structure, as we have seen in chapter 7. Also, from Proposition
5.3, it follows that above special points of such a Siegel modular variety, the torsion points of
these abelian varieties are exactly the special points of these varieties as Shimura varieties. This
suggests the following analog of the previous conjecture, posed independently by André [2] and
Oort [29]:
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Conjecture 8.4 (André-Oort). Let S be a pure Shimura variety over C and let Λ ⊂ S denote
the set of all its special points. Let Z ⊂ S be an irreducible closed algebraic subvariety such that
Z ∩ Λ is Zariski dense in Z. Then Z is a special subvariety of S.

Although special cases of this conjecture, mostly under additional assumptions, have been
proven by Moonen [26], André [1], Edixhoven [9], [10], Edixhoven-Yafaev [11],Yafaev [38], [39],
Pila-Tsimerman [30] and Gao [16], this conjecture remains open. It should be noted, however,
that it has recently been solved under the assumption of the Generalised Riemann Hypothesis by
Klingler-Yafaev [22] for pure Shimura varieties.

The conjectures of Mordell-Lang and André-Oort were combined by Pink [32] into a conjecture
about Shimura varieties.

Conjecture 8.5 (Pink). Consider a mixed Shimura variety S over C and an irreducible closed
subvariety Z, and let SZ be the smallest special subvariety of S containing Z. Then the intersection
of Z with the union of all special subvarieties of S of dimension < dimSZ − dimZ is not Zariski
dense in Z.

In [32], Pink showed how the conjectures of André-Oort and Mordell-Lang follow from this
conjecture. He also claimed to prove the following conjecture concerning families of abelian vari-
eties under the assumption of conjecture 8.5. In order to state the conjecture, we first need some
notation. Suppose B −→ X is a family of semiabelian varieties, and let x ∈ X be a point. For any
integer d, let B[>d]

x be the set of points of the semiabelian variety Bx contained in an algebraic
subgroup of codimension > d. Furthermore, we set

B[>d] =
∪
x∈X

B[>d]
x .

Conjecture 8.6 (Pink). Consider an algebraic family of semiabelian varieties B −→ X over C
and an irreducible closed subvariety Y ⊂ B of dimension d that is not contained in any proper
closed subgroup scheme of B −→ X. Then Y ∩B[>d] is not Zariski dense in Y .

A counterexample to this conjecture was found by Bertrand [5]. However, this counterexample
does not disprove conjecture 8.5. There is a mistake in Pink’s proof of the implication 8.5 ⇒ 8.6.
In section 8.2, I will explain the counterexample found by Bertrand.

8.2 Bertrand's counterexample
In [5], Bertrand gives a counterexample to conjecture 8.6. This counterexample can be constructed
as a special subvariety of the mixed Shimura variety S2 as defined in section 6.2, in the following
way. Let τ ∈ H1 be a point, with corresponding elliptic curve E = Eτ . As in example 3.8, the
geometric line bundle L×

P with the zero section removed corresponding to the Poincaré bundle P
on E × E = E × E∨ can be regarded as a family of semiabelian varieties over E∨, as every point
of E∨ corresponds to an extension of E by Gm,C.
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Theorem 8.7. Suppose τ ∈ H is such that Q(τ) is imaginary quadratic over Q, and let λ ∈ Q(τ)×

be totally imaginary. Let Gλ be the image of the set

Vλ = {(x, y) ∈ C2 : x = λy}

in (C/(Z+ τZ))2 = E × E, and suppose that the pairing ⟨, ⟩ : (Z+ τZ)2 −→ Z(1) induced by the
identification E = E∨ maps Vλ ∩ (Z+ τZ)2 to 2Z(1) ⊂ Z(1). Then there is a special subvariety T
of L×

P that projects one-to-one to Gλ, such that T is not contained in any proper closed subgroup
scheme of L×

P , but T contains infinitely many torsion points on fibres.

Proof. As we have seen in section 7.3, the map Vλ −→ C : (v, w) 7→ 1
2 ⟨v, w⟩ induces a map

s : Gλ −→ C/Z, which is a section of L×
P,Gλ

−→ Gλ.

Now Z = s(Gλ) is a one-dimensional subvariety of L×
P . Furthermore, it is not contained in any

proper closed subgroup scheme. One way to see this is as follows. Suppose Z is contained in a
closed subgroup scheme H ⊂ L×

P ; as Z is connected, we may assume without loss of generality
that H is connected. As Z maps surjectively to E∨, the same must hold for H. Now let H ′ be the
image of H in E×E∨. Suppose the fibre H ′ is a proper closed subgroup scheme of (E×E∨)/E∨.
As E is one-dimensional, its proper closed subgroups are finite; therefore H ′ −→ E∨ is a finite
morphism. This means that above every ξ ∈ E∨, the fibre H ′

ξ ⊂ E consists of torsion points only.
However, Zξ ∈ E is a nontorsion point if ξ is nontorsion. This is a contradiction, so H ′ = E×E∨.

Now consider the kernel K of the map H −→ E × E∨, which is a closed subgroup scheme
of Gm,E∨ . Again, as Gm,E∨ is one-dimensional over E∨, K is either finite or all of Gm. Let k
be an integer such that (k, λk) ∈ (Z + τZ)2, denote m = ⟨k, λk⟩ in Z(1), and let p be a prime
number not dividing m

2πi . Let x ∈ E be the image of kp in C/(Zτ +Z). The image of (x, λx) under
the section s is the point (x, λx, exp( 12 ⟨x, λx⟩)) ∈ L

×
P,(x,λx). If we regard s(x, λx) as an element

of the semiabelian variety L×
P,λx, then p · s(x, λx) is the point (0, λx, exp(p2 ⟨x, λx⟩)), which is

annihilated by p, and is nontrivial, so s(x, λx) has order p2 in the semiabelian variety L×
P,λx. This

gets arbitrarily large as p increases, so it follows that K = Gm,E∨ , so H = P×. However, this also
shows that s(Gλ) contains infinitely many torsion points.

According to Pink’s conjecture 8.6, the intersection Gλ ∩L×[>1]
P is not Zariski dense in Gλ. As

L×
P is of relative dimension 2 over E∨, P×[>1] is the set of torsion points in the fibres of L×

P , so
conjecture 8.6 would predict that set of points of Gλ that are torsion in their fibre are not Zariski
dense in Gλ. However, we have seen before, the image of a torsion point ξ of E∨ is a torsion point
of L×

P |E×{ξ}; this section thus gives a counterexample to conjecture 8.6.

On the other hand, it is not a counterexample to conjecture 8.5, because Gλ is a special
subvariety of L×

P . This apparent contradiction stems from the fact that there is a mistake in Pink’s
proof of the implication 8.5 ⇒ 8.6. The mistake of the proof lies in the fact that Pink claims that
any special subvariety of S2 is a translate of a semiabelian subgroup scheme by a torsion point;
in particular it is contained in a closed subgroup scheme. He uses this to translate a statement
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about mixed Shimura varieties into one about semiabelian schemes. However, this claim is false.
In our example, the subvariety Gλ is special, but not contained in any closed subgroup scheme
of L×

P −→ E∨. In the next subsections we will classify over which abelian varieties Bertrand’s
construction can be generalised.

8.3 Abelian subvarieties of A × A∨ over which the Poincaré bundle is
trivial

In this section, I classify the complex abelian varieties over which Bertrand's construction from
section 8.2 works, so, for an abelian variety A, subvarieties X ⊂ A × A∨ such that the Poincaré
bundle restricted to X is trivial. In the terminology of [4], these are called isotropic. I start by
classifying, for a simple abelian variety A, the set of abelian subvarieties of A×A∨ over which the
square of the Poincaré bundle is trivial. As the Poincaré bundle is birigidified, it is trivial over the
abelian subvarieties 0, A× 0 and 0×A∨ of A×A∨; the following proposition classifies the other
cases. As in section 3.2, for V a (rational, integral) Hodge structure of type {(0,−1), (−1, 0)}, I
denote with V ∗ the Hodge structure Hom(V,R(1)) (or Hom(V,Q(1)), Hom(V,Z(1)), respectively).

Theorem 8.8. Let A = ΛR/Λ be a simple complex abelian variety with dual variety A∨ and let P
be the Poincaré bundle on A×A∨. Suppose that φ ∈ Isom(ΛQΛ∗

Q) is such that φ(v)(w) = φ(w)(v)

for all v, w ∈ Q⊗ Λ. Let X be the image of the graph of φR : ΛR −→ Λ∗
R in A×A∨. Then X is

an abelian subvariety of A×A∨ such that P2|X is trivial. Conversely, every abelian subvariety X
of A×A∨ such that P2|X is trivial and X /∈ {0, A× 0, 0×A∨} is of this form.

Proof. First, suppose that X is an abelian subvariety of A × A∨ such that P2|X is trivial, and
X /∈ {0, A× 0, 0×A∨}. Now the first Chern class of the Poincaré bundle is an element of

H2(A×A∨,Q(1)) = Alt2(ΛQ ⊕ Λ∗
Q,Q(1))

One can calculate (using, for instance, [6, 2.1.2]) that the class of the Poincaré bundle is the
alternating bilinear form

F : (ΛQ ⊕ Λ∗
Q)

2 −→ Q(1)

((v1, ξ1), (v2, ξ2)) 7→ ξ1(v2)− ξ2(v1).

NowX corresponds to a sub-Q-Hodge structure V of ΛQ⊕Λ∗
Q, with projection maps π1 : V −→

ΛQ and π2 : V −→ Λ∗
Q. Because A and A∨ are both simple, and the Poincaré bundle, or its square,

is not trivial over A×A∨, we get that V is the graph of theQ-linear map φ = π2◦π−1
1 : ΛQ −→ Λ∗

Q.
This map is induced by some element of φ ∈ Hom(Q⊗A,Q⊗A∨) such that X is the graph of φ.
We may write V = Γφ(ΛQ), with

Γφ : ΛQ −→ ΛQ ⊕ Λ∗
Q

v 7→ (v, φ(v)).
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This induces the pullback map Γ∗
φ : H2(A×A∨,Q) −→ H2(A,Q), which we can regard as a map

Alt2(ΛQ ⊕ Λ∗
Q)(1) −→ Alt2(ΛQ)(1). The fact that P2|X is trivial implies that the image of 2F

under this map is trivial, so the image of F must be as well. But Γ∗
φF is the bilinear map

Γ∗
φF : ΛQ × ΛQ −→ Q(1)

(v, w) 7→ φ(v)(w)− φ(w)(v),

so the fact that this map is trivial implies that φ(v)(w) = φ(w)(v) for all v, w ∈ ΛQ.

Conversely, suppose that φ is of this form. Regarding ΛR ⊕ Λ∗
R as V ⊕ Ω again as in section

3.2, we find that P is represented by the 1-cocycle

aP : Λ× Λ̂× V × Ω −→ C×

(v0, ξ0, v1, ξ1) 7→ exp(π(ξ0(v0) + ξ1(v0) + ξ0(v1))

in H1(Λ⊕ Λ∨,H0(V ⊕ Ω̄,O×
V⊕Ω̄

)). In particular on Γφ(V ) this is of the form

aP|X (v0, φ(v0), v1, φ(v1)) = exp(π(φ(v0)(v0) + φ(v1)(v0) + φ(v0)(v1))),

for every v0 ∈ Λ such that φ(v0) ∈ Λ̂. In this terminology, we know that Imφ(v0)(v1) =

Imφ(v1)(v0). This means that we can write this as

aP|X (v0, φ(v0), v1, φ(v1)) = exp(πφ(v0)(v0)) · exp(2πReφ(v0)(v1))).

Now exp(2πReφ(v0)(v1))) only takes real values. The only way this can be holomorphic in v1, for
a fixed (v0, φ(v0)), is if it is constant; call this constant value f(v0, φ(v0)); by substituting 0 for
v1 one sees that f(v0, φ(v0)) = exp(πφ(v0)(v0)). Because Imφ(v0)(v0) ∈ Z, the complex number
f(v0, φ(v0)) is actually real. Furthermore, as the action of V ′ ∩ (Λ ⊕ Λ̂) on the set of constant
functions on V ′ is trivial, one sees that

f(v0 + w0, φ(v0 + w0)) = aP|X (v0 + w0, φ(v0 + w0), 0, φ(0))

= aP|X (v0, φ(v0), 0, φ(0)) · ((v0, φ(v0)) · aP|X (w0, φ(w0), 0, φ(0)))

= aP|X (v0, φ(v0), 0, φ(0)) · aP|X (w0, φ(w0), 0, φ(0))

= f(v0, φ(v0)) · f(w0, φ(w0)),

so f : V ′ ∩ (Λ⊕ Λ̂) −→ R× : (v, φ(v)) is a group homomorphism. This means that we have

exp(4πφ(v)(v)) = f(2v, φ(2v))

= f(v, φ(v))2

= exp(2πφ(v)(v)),

which shows that f(v, φ(v))2 = 1 for all (v, φ(v)) ∈ V ′∩(Λ⊕Λ̂). But this means that a2P|X = aP2|X
is trivial, so P2|X is trivial.
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Corollary 8.9. Let A be a complex abelian variety with dual variety A∨, and let ψ : Q⊗H1(A)×
Q⊗H1(A) −→ Q(1) be a polarisation. Let φ ∈ Aut(Q⊗ A), and let X be the graph of ψ̃ ◦ φ in
A×A∨. Then P2|X is trivial if and only if Rψ(φ) = −φ.

Proof. From the previous theorem we see that P2|X is trivial if and only if (ψ̃ ◦ φ)(v)(w) =

(ψ̃ ◦φ)(w)(v) for all v, w ∈ H1(A). This equation can also be written as ψ(φ(v), w) = ψ(φ(w), v).
As ψ is alternating, this is true if and only if the transpose of φ with respect to ψ is equal to −φ;
but this transpose is equal to Rψ(φ).

In general, to find endomorphisms φ of A such that Rψ(φ) = −φ, the following classification
of endomorphism algebras of abelian varieties up to isogeny is very useful.

Lemma 8.10. Let A be a simple abelian variety, and let ψ be a polarisation of A. Let D =

End(Q ⊗ A), K = Z(D), † = Rψ, and K0 = {x ∈ K : x† = x}. Then (D, †) is of one of the
following four types:

1. D = K = K0 is a totally real number field, and † = idD.

2. K0 = K is a totally real number field, and D is a quaternion algebra over K with D⊗K,σR ∼=
M2(R) for every embedding σ : K −→ R. There is an a ∈ D. such that d† = ad∗a−1 for all
d ∈ D, where ∗ is the quaternion conjugation.

3. K0 = K is a totally real number field, and D is a quaternion algebra over K with D⊗K,σR ∼=
H for every embedding σ : K −→ R. † is the normal quaternion conjugation.

4. K0 is a totally real number field, K is a totally imaginary quadratic field extension of K0,
and D is a central simple algebra over K such that

(a) for every finite place v of K with v = v̄ one has that invv(D) = 0, where ¯ denotes
complex conjugation on K;

(b) For every place of K one has invv(D) + invv̄(D) = 0 in Q/Z.

Ifm is the degree ofD as aK-algebra, there is an isomorphismD⊗QR −→
∏
σ:K0−→CMm(C)

such that † on D ⊗Q R corresponds to the involution (A1, . . . , At) 7→ (A1
T
, . . . , At

T
).

Proof. See [17, XII].

As is remarked in [5], for non-simple A, there are generally many isotropic X ⊂ A × A∨. In
fact, the only case when they do not exist (except for the trivial ones 0×A and A∨×0) is when A
is simple and there are restrictions on its endomorphism algebra, as is reflected in the proposition
below.

Proposition 8.11. Let A be an abelian variety. Then there exist isotropic abelian subvarieties X
of A × A∨, not subvarieties of A × 0 or 0 × A∨, if and only if End(Q ⊗ A) is not a totally real
number field.
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Proof. Suppose no such X exist; we may ignore isogenies and work in the category Q⊗AbVarC.
If A is not simple, say via an isomorphism A = B × C, then B × 0 × 0 × C∨ ⊂ A × A∨ is an
abelian subvariety over which P is trivial, which is a contradiction, so A is simple. Since the
image of every endomorphism of A must either be 0 or all of A, one has that every element of
End(Q×A)\{0} is invertible, so it has the structure of a division ring. Now fix a polarisation ψ of
A and its Rosati involution Rψ. If there is an element of φ in End(Q×A) such that Rψ(φ) = −φ,
let then N ∈ Z>0 be such that χ(ξ) := Nφ ◦ ψ̃−1(ξ) ∈ 2Λ for all ξ ∈ Λ̂. If X is the graph of χ
with corresponding subspace V ⊂W ⊕Ω, then the element of H1(V ∩ (Λ∩ Λ̂),O×

V ) corresponding
to P|X is of the form

aP|X (χ(ξ0), ξ0, χ(ξ1), ξ1) = exp(πξ0(χ(ξ0))).

As was shown in the proof of 8.8, this map factors through {±1}; but the choice of N ensures that
this map is trivial, so P|X is trivial. We thus have a contradiction, so no such φ exists; lemma
8.10 now implies that End(Q×A) is a totally real number field.

Conversely, suppose A is an abelian variety such that End(Q × A) is a totally real number
field. Fix a polarisation ψ of A, and write A =

∏
iA

ni
i , where the Ai are pairwise nonisomorphic

simple abelian varieties. Then if Di = End(Q ⊗ Ai), one has that End(Q ⊗ A) =
∏
iMni(Di).

This is only a field if i = 1 and n1 = 1, and then (A,Rψ) is of type 1 in lemma 8.10. By corollary
8.9, the only subvarieties of A×A∨ over which P is trivial are 0, A× 0 and 0×A∨.
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