
R.B. Kappetein

Optimal control of a server farm

Master thesis, 24 January, 2013

Thesis supervisor: dr. F.M. Spieksma

-

Mathematical institute, University Leiden

Contents

1 Introduction 2

2 Model and notation 2

3 Basic properties and definitions 4

4 Key properties 5

5 Stability 6

6 Strategies on a diagonal 10

7 Comparing strategies 12

8 Strategies on the y-axis 19

9 Bounding a(j) 21

10 Strategies on the (x=1)-axis 26

11 The global optimal strategy 29

12 Conclusion 29

1

1 Introduction

A server farm consists of ample servers that serve a stream of arriving customers. Upon a service
completion, a server can be turned off. this might be beneficial to save power, and hence costs.
However , for shutting down and starting up a server, extra power (e.e. costs) is incurred. Thus,
there is a trade-off between the savings by turning servers off, and the extra costs made for
the start-ups and shut-downs. We consider a model where arriving customers are taken into
service directly. For this, we study the optimal control of such a server farm, that is, we derive
the optimal dynamic control policy deciding when a server should be turned off after a demand
completion, minimizing the expected costs.[1]
A server farm consists of an unlimited amount of servers, that serve an arriving stream of
customers. Each server in the system can be in one of the following states: busy, off or standby.
Busy servers consume power, standby servers consume less power, and off servers consume no
power at all. Hence, by turning an idle server off, power and hence costs, can be saved. However
extra power (i.e. costs) is incurred for starting up and shutting down a server . In this way,
there is a trade-off between the potential cost savings, and the extra costs incurred. Thus the
question is, when servers should be turned off, and when they should be idled. In this article
you can find the optimal control scheme.[1]

Server farm power consumption accounts for more than 1.5% of the total electricity usage in the
U.S., at a cost of nearly 4.5 billion. The rising cost of energy and the tremendous so naturally
you want to minimize that power consumption.[3]

This model has been studied and has been formulated as a Markov Decision Process. There are
two complicating factors: unbounded jumps, there are policies for which the associated Markov
process is transient, e.g. the policy that always idles. Van Wijk et al cannot solve this problem
and therefore they consider a variant with bounded service rates. In this thesis we consider
the original problem: we show that we can reduce the problem to a finite state problem. This
allows to show that an average expected optimal policy exists. We give an explicit algorithm to
compute the optimal policy.

2 Model and notation

In this model we consider a server farm consisting of an unlimited amount of identical servers.
Each server can be in one of three states: busy, idle or off. Customers arrive according to a
Poisson process with parameter λ > 0. All customers require a service time that is exponentially
distributed with parameter µ > 0. An arriving customer will be served by an idle server.
That idle server will then immediately be switched to busy. We assume that this switch is
instantaneously. If there are no idle servers an off server will be switched on to serve the
customer. There is no start up time for the server. So in both cases an arriving customer will be
served immediately, since there is an unlimited amount of servers. When a customer leaves the
system you can either idle that server or switch it off. There are costs for keeping the servers
idle, switching them on and switching them off. The cost to put a server on are equal to Kon

and the cost of putting a server off is equal to Koff . The cost of the idle servers is equal to c ∗ i
per time unit with i the number of idle servers. The goal is to design an idling strategy that
minimises the average expected cost per unit time

We can model this optimisation problem as a Markov Decision Process. The system state Xt at
time is a two-dimensional process, where Xt = (i, j) denotes that i servers are idle and j busy
at time t. The state space is therefore given by S = Z2.

The possible actions in state (i, j) with i > 0, are either to switch a server off immediately (0),

2

to switch an server off (1) or the idle the server (2) when the next event is a service completion
(1). Then the action space in state (i, j) is equal to A(i, j) = {1, 2, 3}. The model description in
(vW) does not allow for immediate switching off of servers. At, t ≥ 0 describes the prescribed
action at time t. In state (0, j), j > 0, the action space A(0, j) = {1, 2}, since immediate server
switch-off is impossible due to lack of idle servers. In state (0, 0) no decision needs to be made,
hence A(0, 0) = {0}.

In this thesis, we restrict to so-called stationary, deterministic strategies, F . f is a stationary,
deterministic policy, if it assign an action to each state, i.o.w. f(i, j) ∈ A(i, j) for all (i, j) ∈ S.

The transition mechanism is now described by the following rates

q(i,j)(k,l)(a) =


λ, k = i− 1, l = j + 1, a ∈ A(i, j) if i > 0
jµ k = i, l = j − 1, a = 1, if (i, j) 6= (0, 0)
jµ k = i+ 1, l = j − 1, a = 2 if (i, j) 6= (0, 0)
∞ k = i− 1, l = j, a = 0 if i 6= 0
−
∑

(k′,l′)6=(i,j) q(i,j)(k,l)(a) k = i, l = j

The costs associated with state (i, j) consists of an action independent cost rate given by

c(i, j, a) = c · i, a ∈ A(i, j)

and a lump cost associated with transitions: d((0, j)(0, j + 1), a) = Kon , a ∈ A(i, j), d((i, j)(i−
1, j), 0) = Koff = d(i, j)(i, j − 1), 1).

Given that strategy f is used, the state process is a Markov process, denoted by Xf
t with possibly

instantaneous states. Denote by P ft the associated transition kernel and by P f the transition
matrix of the associated jump chain. Then the average expected cost Cf (i, j) associated with
strategy f , given initial state (i, j) is given by

Cf (i, j) = lim sup
T→∞

1

T

[∫ T

0
P ft,(i,j)(k,l)(c · l +Kon · λ · 1(k=0) + lµKoff · 1(k>0,f(k,l)=1))dt

+E{Nf (T) |Xf (0) = (i, j)} ·Koff
]
,

where Nf (T) is the number of instantaneous transitions of Xf in [0, T]. A priori it is not even
clear that Cf (i, j) is independent of the initial state (i, j).

The mathematical question is whether there exists a minimum cost strategy f , i.o.w. does there
exist a strategy f with

Cf (i, j) = inf
g∈F
Cg(i, j), for all (i, j) ∈ S.

If so, the objective is to give a fast (finite) procedure to determine the optimal strategy.

3

3 Basic properties and definitions

The number of customers in the system is completely independent of the number of idle servers,
since every customers will be served immediately regardless of the number of idle servers. There-
fore the number of customers in the system can be modelled as an M |M |∞ queue.

In order to better understand the problem it’s useful to visualize this in the following type of
pictures.

number of standby servers

number of busy servers

If you have picture you can draw two arrows from each state to represent what happens when
a customer leaves or enters the system. One arrow when a customer leaves and one for when a
customer arrives. When a customer arrives you don’t have any choice how to put the arrow but
if a customer leaves you have two choices. You can either put the server off, so the arrow goes
down or you can choose to idle the server and use that arrow. For an example you can look at
the picture.

number of standby servers

number of busy servers

As you can see from the picture the arrows and the grid points form a directed graph.

The customers arrive according to a Poisson process so the interarrival times are exponentially
distributed. The service time is also exponentially distributed. Since both the interarrival times
and service times are exponentially distributed the system is memoryless. Since we know the
interarrival times of the customers and the distribution of the service time of a customer we
know the probability of going from one state to another given a strategy. The probability of
going up from (i, j) (i.e. j increases) is equal to λ

λ+jµ and the probability of going down (i.e. j

decreases) is equal to jµ
λ+jµ .

Definition 1. Diagonal D(k) is the following set of points {(i, j)|i + j = k}. We call D(k′) a
higher diagonal than D(k) if k′ > k.
Definition 2. Triangle T (k) is the set points {(i, j)|0 ≤ i+ j ≤ k}
Definition 3. A state is reachable if there is directed path from every point on the y-axis to that
state.

4

The motivation for this definition is that the y-axis is reached from any point in finite expected
time.
Definition 4. A system is stable if you reach every reachable state with probability 1 and the
set of reachable states is non-empty.

We do not require that every reachable state is reached in finite expected time, because one
can construct strategies for which this does not hold. Moreover this is not relevant for our
derivations.

4 Key properties

The following two lemma’s are almost trivial, but they will prove to be vital for finding an
optimal solution.
Lemma 1. You can only get to a higher diagonal at (0, j).

Proof. Transitions to a higher diagonal only occur on the y-axis.

Lemma 2. You can only leave a triangle T (k) at the point (0, k) and the total time to leave the
triangle is independent of the chosen strategy.

Proof. Suppose you are in a triangle T (k). From lemma 1 we know that you can only get above
D(k) at (0, k). This immediately implies that you can only leave at (0, k). You will leave triangle
T (k) when you are in state (0, k) and a customer enters the system.
If you are in triangle T (k) and there are k customers in the system you can only be in state
(0, k). The total time to reach state (0, k) is precisely the total time to reach state k in the
M/M/∞-queue, which is independent of the chosen strategy.

This lemma has an important consequence. The system is memoryless so you don’t need to know
what happened in the past. So the strategy you choose at your current point is independent
on how you got there. The moment you leave a triangle is independent of the chosen strategy
inside the triangle. It takes a finite time to leave the triangle and the place where you leave the
triangle is independent of your chosen strategy. So it is sufficient to consider cost minimisation
problem on triangles. In the next chapters we will derive a bound on the maximum triangle
that we need to consider for the optimisation problem.

5

5 Stability

In this chapter we will look at the necessary conditions for a stable system. We first look at the
number of customers in the system. As previously stated this can be modelled as an M |M |∞
queue.
Definition 5. a(j) is the probability that there are j + 1 customers in the system before the
system gets empty given that you start with j customers in the system.

Lemma 3. • 1
(j+1)µ
λ (1− a(j)) + 1

= a(j + 1).

• limj→∞ a(j) = 0.

Proof. We already know that a(1) is equal to λ
λ+µ . So we are going to look at a(2). a(2) is the

probability that there are 3 customers in the system before the system gets empty if you start
with 2 customers in the system. In order to calculate this we look at the following picture. The
number in the box is the number of customers in the system and the probabilities to go from
one state to another have been given.

3 2 1 0
λ

λ+2µ

2µ
λ+2µ

λ
λ+µ

µ
λ+µ

As you can see from this picture you can directly get 3 customers in your system with probability
λ

λ+2µ . You can also go via 1, then to 2 and then go to 3. This has probability 2µ
λ+2µ

λ
λ+µ

λ
λ+2µ . In

this instance you make 1 loop. But you can also make 2, 3, . . . loops. Each additional loop you
have to multiply with another factor 2µ

λ+2µ
λ

λ+µ . You can see you that this all adds up to:

λ

λ+ 2µ

∞∑
n=0

(
2µ

λ+ 2µ

λ

λ+ µ
)n =

λ

λ+ 2µ

1

1− 2µ
λ+2µ

λ
λ+µ

=
λ

λ+ 2µ(1− λ
λ+µ)

= a(2).

Now we know the probability a(2). Next we are going to use a(2) to calculate a(3). Now suppose
we have 3 customers in the system and we want to calculate a(3). Then we get the following
picture:

4 3 2 1 0
λ

λ+3µ

3µ
λ+3µ

λ
λ+2µ

2µ
λ+2µ

λ
λ+µ

µ
λ+µ

You can see that the probabilities are the same but there is an extra state. In this system you
can directly go to 4 with probability λ

λ+3µ or you can go to 2 with probability 3µ
λ+3µ . Since the

tail is the same we already know the probability of going to 3 before visiting 0. This probability
is equal to a(2). And we know the probability of going to 0 before going before visiting 3. This
is equal to 1− a(2). So you can replace picture 4 with this picture:

6

4 3 2 0
λ

λ+3µ

3µ
λ+3µ

a(2)

1− a(2)

You can now see that is the same picture as we’ve had with 2 customers in the system but with
different probabilities. You can now compute the probability a(3) in the same way.

λ

λ+ 3µ

∞∑
n=0

(
3µ

λ+ 3µ
a2)

n =
1

3µ
λ (1− a2) + 1

= a(3).

You can easily see that the tail of each picture is the same as the picture before it. So you can
use your knowledge of the previous picture. The validity of the recursive formula in the first
statement of the lemma can be proved inductively.

Now we are going to prove that a(j)→ 0 as j →∞. Suppose a(n+ 1) ≤ a(n) then:

a(n+ 2) =
1

(n+2)µ
λ (1− a(n+ 1)) + 1

≤ 1
(n+2)µ

λ (1− a(n)) + 1

<
1

(n+1)µ
λ (1− a(n)) + 1

= a(n+ 1).

You can now easily see that a(n+ r) < a(n). Then we get:

a(n+ r + 1) =
1

(n+r)µ
λ (1− a(n+ r)) + 1

<
1

(n+r)µ
λ (1− a(n)) + 1

.

We can now take the limit to infinity of the right-hand side.

lim
r→∞

1
(r+n)µ

λ (1− a(n)) + 1
= 0.

So if there exists n such that a(n + 1) ≤ a(n), then a(j) goes to zero as j goes to infinity. We
will prove this by contradiction, and so we’re going to assume such n does not exist. This means
that a(j) is a strictly increasing function in j.
Suppose that a(j) is strictly increasing. That means that 1 − a(j) must be strictly decreasing
in j.

7

1− a(j) > 1− a(j + 1)⇔ 1− a(j) > 1− 1
jµ
λ (1− a(j)) + 1

⇔ 1− a(j) >
jµ
λ (1− a(j))

jµ
λ (1− a(j)) + 1

⇔ (1− a(j))(
jµ

λ
(1− a(j)) + 1) >

jµ

λ
(1− a(j))

⇔ (1− a(j))(
jµ

λ
(1− a(j)) + 1)− jµ

λ
(1− a(j)) > 0

⇔ jµ

λ
(1− a(j))2 + (1− jµ

λ
)(1− a(j)) > 0.

jµ

λ
(1− a(j))2 + (1− jµ

λ
)(1− a(j)) > 0

jµ

λ
(1− a(j)) + (1− jµ

λ
) > 0

jµ

λ
(1− a(j)) >

jµ

λ
− 1

(1− a(j)) >
(jµλ − 1)λ

jµ

(1− a(j)) > 1− λ

jµ

λ

jµ
> a(j).

If a(j) is strictly increasing in j then a(j) > a(1).

λ

jµ
> a(j) > a(1)⇒ λ

jµ
>

λ

λ+ µ

⇒ λ+ µ > jµ

⇒ λ

µ
+ 1 > j.

This means that a(j) can only be increasing if j < λ
µ + 1. So if j is larger then λ

µ + 1 then a(j)
will be decreasing in j. And we’ve already seen that if it’s decreasing then it goes to zero as j
goes to infinity. This concludes the proof.

Lemma 4. A strategy has a stable system if and only if there exists k ∈ N, such that each
diagonal higher than D(k) contains one state where the server is switched off upon a customer
departure.

Proof. Suppose a strategy has a stable system. Then there is at least one state that is reached
with probability 1. If the probability that you go to D(∞) is positive then there cannot be any
reachable state. Suppose that there is not a k ∈ N such that every diagonal higher than D(k)
contains one state where the server is switched off upon a customer departure. Then for any
m there is a m′ > m such that D(m′) only contains states where you idle the server upon a
customer departure. Suppose you are on a lower diagonal than D(m′). The probability that at
one point in time there are m′ customers in the system is 1. So there is a point in time that

8

you are on D(m′). But once you are there you cannot go below D(m′) since there are no states
where you switch the server off. So there is no path from any point on diagonal D(m′) to a point
below that diagonal. This means that no point below D(m′) is reachable. But this property
holds for any m ∈ N. So there is no point that is reachable. So the system is not stable because
there are no reachable states. So a stable system implies that each diagonal higher than D(k)
has at least one state where you switch a server off upon a departure, for a a certain k ∈ N

Suppose there exists k ∈ N, such that each diagonal higher than D(k) contains one state where
the server is switched off upon a customer departure. In order to prove that this strategy has
a stable system we are going to compare the probability of going to a higher diagonal with the
probability of going to a lower diagonal. Suppose that the probability of going to a lower diago-
nal goes to 1 then you cannot go to diagonal ∞. We are now going to look at the probability of
going from (0, k) to (0, k + 1) instead of (k − 1, 0) if the only state where you switch the server
off is at (k− 1, 1) (the lowest possible point). Once we have proven that this probability goes to
zero as k goes to infinity we will see that the probability of going to the diagonal infinity is zero
for all the strategies that satisfy our assumption. You can see that this probability is equal to
a(k) and we’ve already seen in lemma 3 that this goes to zero as k goes to infinity.

But we have only proven this if you start at the end of the diagonal and if you switch the server
off on the other end that the probability of going to a lower diagonal goes to one. However it
can be easily seen that if you start on any point on the diagonal that in order to go up to higher
diagonal you first need to pass the state on the top, but on that state the probability of going
down to a lower diagonal goes to 1. So in that case you also go down to a lower diagonal with
probability 1. And in order to go all the way down you first need to pass all other states so
if the state where you switch the server off was somewhere in between then you would also go
down. So we have now proven that the probability of going down goes to 1 if there is at least
one state where you switch the server off. This means that the probability of shooting away to
infinity is 0. For any state there is a positive probability to go to any other reachable node in
a finite number of steps. And since the probability of going to infinity is 0 you must go to any
reachable node with probability 1.

9

6 Strategies on a diagonal

Suppose you are at point (i, j). At this moment you are in the triangle T (i+ j). Like previously
stated the moment you leave the triangle is independent of the strategy that you choose. The
place where you leave the triangle is also independent of the strategy and you will always leave
the triangle at point (0, i+ j).
The strategy that you choose only has an influence on the cost that you make in that triangle.
So clearly you want to choose the strategy that minimizes the expected cost for getting out of
that triangle. If you are point (i, j) and a customer leaves the system then you have two choices.
You can either idle the server or shut it down. The optimal choice is to go to the point that has
the lowest expected cost to leave the triangle T (i+ j). You must not forget to take into account
that you have to pay Koff to shut down the server.
Theorem 1. If it is optimal to switch the server off at (i, j) and (j > 0) then it’s optimal to
switch the server off at (i+ 1, j − 1).

Proof. Suppose that you shut down the server at (i, j). That means that the expected cost to
leave the triangle T (i+ j) are lower if you go to the point (i, j − 1) then if you would go to the
point (i + 1, j − 1). Now suppose that you are at point (i + 1, j − 1). This is the point on the
same diagonal as (i, j), but one node below it. You want to know if you need to shut down the
server or not when a customer leaves the system and you are at (i+ 1, j− 1). You already know
that the expected cost to leave T (i+ j) at point (i, j− 1) plus Koff are lower than the expected
cost to leave T (i+ j) if you go to (i+ 1, j − 1).

number of standby servers

number of busy servers

i,j

i,j-1 i+1,j-1

i+2,j-2
i+1,j-2

We need to know if the expected cost to leave the triangle are lower if you go to (i + 1, j − 2)
than if you go to (i+ 2, j − 2). The strategy that minimizes the expected cost to leave T (i+ j)
once you are at point (i+ 1, j − 2) is bounded above by the expected cost of any other strategy
you choose at (i+1, j−2). If you have a strategy for the point (i+1, j−2) that is Koff cheaper
than any strategy at point (i + 2, j − 2) than it’s beneficial to go to (i + 1, j − 2) instead of
(i+ 2, j − 2).
Now at point (i + 1, j − 2) choose the following strategy: when a customer leaves the system
you idle the server until time t. That means that you will stay on diagonal D(i + j − 1). We
will show that this strategy is Koff cheaper then any strategy you can choose if you went to
(i+ 2, j − 2). For any strategy at (i+ 2, j − 2) there must be a moment that you go down to a
lower diagonal or that you are at point (i + 1, j − 1). Let’s call the moment that this happens
time t. Now we are going to look at the strategy that we have chosen at point (i+ 1, j−1) until
time t. There are two possibility’s either at time t you are at the same point as if you would
have started at point (i+ 2, j − 2) or you are at point (i, j − 1). If you started at (i+ 2, j − 2)
you have one more server standby than if you started at (i + 1, j − 2) at least until time t. So
until time t you have paid more if you started at point (i+ 2, j − 2) than if you started at point

10

(i+ 1, j − 2).
If are at the same point at time t then you have paid more if you started at point (i+ 2, j − 2)
then if you started at point (i+1, j−2) on top of that you needed to pay Koff to shut down the
server. The expected cost are equal after time t since you can choose the same strategy. But
since you paid more than Koff more if you started at point (i+ 2, j − 2) then if you started at
point (i+ 1, j − 2) the expected cost for (i+ 1, j − 2) must be lower then at point (i+ 2, j − 2).
If you are at (i, j − 1) at time t then the expected cost if you started at (i+ 1, j − 1) must also
be Koff lower since the expected cost at (i, j−1) are Koff lower then at (i+ 1, j−1) and you’ve
paid less until the moment t. So in both cases the expected cost at (i + 1, j − 1) is more then
Koff lower then at (i+ 2, j − 2). So if you shut down the server at (i, j), because the expected
cost at (i, j − 1) are Koff lower than it’s also cheaper to shut down the server at (i+ 1, j − 1).

You can use this lemma repeatedly to show that if it’s cheaper to shut down the server at (i, j)
it’s cheaper to shut down at any point on D(i+ j) below (i, j). If it’s cheaper to shut down the
server at (i, j) then it’s cheaper to shut down a server that’s on standby if you are at (i+1, j−1)
since the expected cost to leave T (i+j) are more than Koff lower at (i, j−1) than at (i+1, j−1).
So there i+ j+ 1 possible strategies on D(i+ j). Either you put everything on standby or there
is a point where it’s cheaper to shut down the server and below that point you shut down a idle
server. See for example this picture were you shut down the server at (i, j)

number of standby servers

number of busy servers

i,j

i-1,j+1

i+1,j-1

i+2,j-2

i+3,j-3

i+4,j-4

11

7 Comparing strategies

Suppose you are in a triangle T (k) then an optimal strategy is a strategy that has the lowest
expected cost for getting out of that given triangle. In this chapter we will show a way to cal-
culate the expected cost for getting out of a given triangle. This way we can compare strategies
and choose the optimal one.
Suppose we are given a strategy in triangle T (k) and a starting node (i, j). You already know
the probability of going up and down. But for the expected total cost we are interested in the
expected cost you make before you are in the next state given that you go up or given that you
go down. You can easily see that if you are on the y-axis and you go up that your expected cost
is equal to Kon . Define Y as the time that a customer leaves the system and X as the time that
a customer enters the system.

E(cost|(i, j)→ (i− 1, j + 1)) = c ∗ i ∗ E(time in (i, j)|(i, j)→ (i− 1, j + 1)).

We are now going to calculate the cumulative distribution function.

P (X ≤ t|X < Y) = 1− P (X ≥ t|X < Y)

= 1− P (X < Y |X ≥ t)P (X ≥ t)
P (X < Y)

= 1− (1− P (X ≥ Y |X ≥ t))P (X ≥ t)
P (X < Y)

= 1− (1− (P (X ≥ Y |Y < t,X ≥ t)P (Y < t) + P (Y ≥ t)P (X > Y |X,Y ≥ t))P (X ≥ t)
P (X < Y)

= 1− (1− (1− e−λt + P (Y ≥ t)P (X > Y |X,Y ≥ t))(e−j∗µt)
j∗µ

j∗µ+λ

= 1−
(1− (1− e−λt + e−λt λ

j∗µ+λ))(e−j∗µt)
j∗µ

j∗µ+λ

= 1−
(e−λt − e−λt λ

j∗µ+λ)(e−j∗µt)
j∗µ

j∗µ+λ

= 1−
e−λt(1− λ

j∗µ+λ)(e−j∗µt)
j∗µ

j∗µ+λ

= 1−
e−λt(j∗µ

j∗µ+λ)(e−j∗µt)
j∗µ

j∗µ+λ

= 1− e−(λ+j∗µ)t.

We can now calculate the probability density function and with that the expected value of the
costs given that a customer leaves the system

12

c ∗ i ∗ E(time in (i, j)|(i, j)→ (i− 1, j + 1)) = c(i) ∗ E(X|X < Y)

= c ∗ i ∗
∫ ∞
0

t ∗ f(t|X < Y)dt

= c ∗ i ∗
∫ ∞
0

t(µ ∗ j + λ)e−(λ+j∗µ)tdt

=
c ∗ i

µ ∗ j + λ
.

We can do the same calculation to calculate that E(Y |Y < X) = 1
µ∗j+λ . This means that the

time that you stay in a state is independent of whether a customer enters or leaves the system.
We now know the expected time you stay in each state, so we can calculate the expected cost
you make before entering a new state.

cost before entering a new state =


c∗i
λ+jµ , if a customer enters and i > 0

Kon , if a customer enters and i = 0
c∗i
λ+jµ , if a customer leaves and you idle
c∗i
λ+jµ +Koff , if a customer leaves and you shut down

Since were only interested in the average cost optimal policy for controlling a webfarm we now
switch to a discrete time markov process. With the cost as stated above, which depend on the
beginning and end state. From now on we will look at this discrete time markov chain.
Definition 6. pi,j(↑) is the probability that the number of customers increases if you are in state
(i, j) and pi,j(↓) is the probability that the number of customers decreases if you are in state (i, j)

So these are the transition probabilities that will be used in the new markov chain
Definition 7. E(i,j),↑ is the expected cost you make in state (i, j) given that the number of
customers increases and E(i,j),↓ is the expected cost you make in state (i, j) given that the number
of customers decreases

So these are the costs in this new markov chain.

We are now able to calculate the expected cost and the probability of a given path that leads
out of the triangle by a path-wise comparison. But there are infinitely many paths that lead
out of the triangle so we still need something else to calculate the expected cost for getting out
of the triangle for a given strategy.
What we are going to do is calculate the expected cost to leave a triangle T (j) and we will use
this to calculate the expected cost to leave T (j+1). Calculating the expected cost to leave T (1)
is straightforward so if we can calculate if or a next triangle were done. The concept to calculate
for other triangles is relatively easy.

There are three possible strategies on a diagonal. You idle every server, you only idle the first
server or you idle several servers.

We first start with the simplest case. You are in triangle T (j) and on diagonal D(j) you always
idle. We are now going to calculate the expected cost to leave T (j).

13

number of standby servers

number of busy servers

1,j-1

0,j

2,j-2

3,j-3

4,j-4

j-1,1

j,0

Suppose you are on at point (0, j). Then there are two possible things that can happen. Either
you go to (0, j + 1) or you go to (2, j − 2). In both cases you can pass (1, j − 1) and (0, j) one
or several times. We have this picture:

0,j+1 0,j 1,j-1 2,j-2 3,j-3

p0,j(↑)E(0,j),↑

p0,j(↓)E(0,j),↓

p1,j−1(↑)E(1,j−1),↑

p1,j−1(↓)E(1,j−1),↓

p2,j−2(↑)E(2,j−2),↑

p2,j−2(↓)E(2,j−2),↓

We want to reduce it to this picture:

0,j+1 0,j 2,j-2 3,j-3

p0,j(↑)E(0,j),↑

p0,j(↓)E(0,j),↓

p2,j−2(↑)E(2,j−2),↑

p2,j−2(↓)E(2,j−2),↓

The new p0,j(↑) is the probability that you go to (0, j + 1) and not to (2, j − 2). p0,j(↓) is the
same but then the other way around. p2,j−2(↑) is the probability that you go to (0, j) and not
to (3, j− 3). p0,j(↑) is the same but then the other way around. The expected cost are updated
in the same manner. So if we can calculate the costs and the probabilities we can eliminate the
node (1, j − 1).
In chapter 4 we’ve already shown how to calculate the probabilities in this case. The important
thing is to count the number of loops you make. The costs can be calculated in a similar way.
If you go from (0, j) to (0, j + 1) you know you have never visited (2, j − 2) in the mean time,
but you could have been to (1, j − 1) one or several times.

Definition 8. Ln↑ is the path from (0, j) to (0, j + 1) where you visit (1, j − 1) exactly n times
and you don’t visit (2, j − 2) before (0, j + 1)
Ln↓ is the path from (0, j) to (0, j + 1) where you visit (1, j − 1) exactly n times and you don’t
visit (0, j + 1) before (2, j − 2)

14

P (Ln↑|number of customers increases) =
P (Ln↑ and the number of customers increases)

P (number of customers increases

=
P (Ln↑)

P (number of customers increases)

=
p0,j(↑)(p0,j(↓)p1,j−1(↑))n∑∞
i=0 p0,j(↑)(p0,j(↓)p1,j−1(↑))i

=
(p0,j(↓)p1,j−1(↑))n∑∞
i=0(p0,j(↓)p1,j−1(↑))i

If you know that you take the path Ln↑ then the cost you make are equal to:
E(0,j)↑ + n ∗ (E(0,j)↓ + E(1,j−1)↑)

You can now calculate the new E(0,j)(↑) since we know the probability for each of the possible
paths and the costs invoked.

Enew(0,j)(↑) =
∞∑
n=0

P (Ln↑|number of customers increases)(E(0,j)↑ + n ∗ (E(0,j)↓ + E(1,j−1)↑))

=

∞∑
n=0

(p0,j(↓)p1,j−1(↑))n∑∞
i=0(p0,j(↓)p1,j−1(↑))i

(E(0,j)↑ + n ∗ (E(0,j)↓ + E(1,j−1)↑)).

You can calculate Enew(0,j)(↓), E
new
(2,j−2)(↑) and Enew(2,j−2)(↓) exactly the same way as Enew(0,j)(↑). You then

get:

Enew(0,j)(↓) =
∞∑
n=0

(p0,j(↓)p1,j−1(↑))n∑∞
i=0(p0,j(↓)p1,j−1(↑))i

(E(1,j−1)↓ + E(0,j)↓ + n ∗ (E(0,j)↓ + E(1,j−1)↑))

Enew(2,j−2)(↑) =

∞∑
n=0

(p1,j−1(↓)p2,j+2(↑))n∑∞
i=0(p1,j−1(↓)p2,j+2(↑))i

(E(1,j−1)↑ + E(2,j+2)↑ + n ∗ (E(1,j−1)↓ + E(2,j+2)↑))

Enew(2,j−2)(↓) =

∞∑
n=0

(p1,j−1(↓)p2,j+2(↑))n∑∞
i=0(p1,j−1(↓)p2,j+2(↑))i

(E(2,j−2)↓ + n ∗ (E(1,j−1)↓ + E(2,j+2)↑))

We have now found a way to reduce to first picture to the second picture if you start at (0, j)
or (2, j− 2) by eliminating the middle node. We can repeat this process of elimination until the
last node is (j, 0). So we start out with this picture:

0,j+1 0,j 1,j-1 . . . j-1,1 j,0

p0,j(↑)E(0,j),↑

p0,j(↓)E(0,j),↓

p1,j−1(↑)E(1,j−1),↑

.

. . .

pj−1,1(↓)E(j−1,1),↓

. . . E(j,0),↑

We start to eliminate the third from the left until we get this picture:

15

0,j+1 0,j j-1,0 j,0

p0,j(↑)E(0,j),↑

p0,j(↓)E(0,j),↓

pj−1,1(↑)E(j−1,1),↑

pj−1,1(↓)E(j−1,1),↓

E(j,0),↑

We can continue reducing the picture. If you would start at (j − 1, 0) you can go to (j, 0) one
or several times but you’ll always go to (0, j). You can easily see that the probability that you
visit (j, 0) n times before going to (0, j) is equal to pj−1,1(↑)pj−1,1(↓)n. We can now update the
picture:

0,j+1 0,j j-1,0

p0,j(↑)E(0,j),↑

p0,j(↓)E(0,j),↓

E(j−1,1),↑

We can repeat the process one last time to get:

0,j+1 0,j

E(0,j),↑

We now know the expected cost to get from (0, j + 1) if you start at (0, j) if you idle every
server. Of course we want to know the expected cost if you start on any other point on D(j).
We can calculate this with the help of our new found knowledge. If you start doing the process
backwards you can compute the expected cost of the other nodes. If you don’t look at the last
picture but the one before that you can easily see how the calculate the expected cost to get from
(j − 1, 0) to (0, j). The expected cost is just E(j−1,1),↑. If you add this to the value we already
have you get the expected cost to get to (0, j + 1). You can repeat this process to calculate
the expected cost for any of the nodes on D(j) by putting the nodes back one at the time. We
assumed that we already knew the expected cost to get from any node in T (j − 1) to (0, j). We
can just add the expected cost of getting from (0, j) to (0, j + 1) to get the value to leave T (j).
We now know how to calculate the expected cost to leave a triangle if you idle every server and
you already knew the expected cost of the previous triangle.
We started with the simplest case were you idle every server on the diagonal. We will see that
for the other cases you can calculate the expected cosy in almost the same way as before. Now
suppose you start on the strategy on diagonal D(j) looks like this:

16

number of standby servers

number of busy servers

1,j-1

0,j

2,j-2

3,j-3

j-2,2

j-1,1

j,0

So you idle on the y-axis and you shut down at the (x = 1) − axis. Now suppose you start at
(0, j). The scenario will then look like this.

0,j+1 0,j 1,j-1 1,j-2

p0,j(↑)E(0,j),↑ p0,j(↓)E(0,j),↓

pj−1,1(↑)E(j−1,1),↑

pj−1,1(↓)E(j−1,1),↓

E((1, j − 2)→ (0, j))

By assumption we already know the expected cost to get from (1, j − 2) to get to (0, j) so we
just have the expected cost to get from (1, j − 2) to (0, j). But this picture can be reduced
even more. You can calculate the expected cost to get from (1, j − 1) to (0, j). There are two
possibilities either you directly go back to (0, j) or you go via (1, j − 2). You already know the
probabilities for both cases and the expected cost for both cases. So you get this picture:

0,j+1 0,j 1,j-1

p0,j(↑)E(0,j),↑ p0,j(↓)E(0,j),↓

E(j−1,1),↑

This is a picture we’ve seen before so we already know how to get the expected cost to get to
(0, j+1) from this. We can calculate the expected cost for the other nodes by moving backwards
again. We just need to know what to do with nodes were you immediately shut down a server.
This is just as easy once you know the expected cost to get out of the triangle at (1, j − 1). If
you are (2, j− 2) you immediately shut down a server and that will cost you Koff . You now are
at T (j − 1) and you already know how much it will you cost from there. So once again we can
calculate the expected cost to leave T (J) if we know the expected cost to leave T (j − 1).

We will move to the last scenario. This scenario looks like this:

17

number of standby servers

number of busy servers

1,j-1

0,j

2,j-2

i,j-i

i+1,j-2

j-1,0

j,0

You idle every server until node (i, j − i) and then you shut down the server. This case is just
a combination of the previous to cases. You can just eliminate nodes in the same way as in the
first case and then you’ve reduced it to the second case. In all three cases you can calculate the
expected cost to leave the triangle if you know the expected cost of the previous triangle.
We know how to calculate the expected cost for T (1) and we now know how to calculate the
expected cost to leave triangle T (j) if we know how to calculate the expected cost to leave
T (j − 1), so we can calculate the expected cost for any larger triangle by induction.
It will be necessary to know the amount computations in the later chapters. To eliminate a node
you have to do at most four times a fixed number of calculations. And if you are at diagonal D(j)
you have to remove at most j nodes. After that you have to do a fixed number of calculations for
each node in T (j) to calculate the expected cost to leave the triangle. This updating will take
up the most time since there are 1

2j
2 nodes. However to know how much it will cost to leave

triangle T (j) on D(j) you only need to know the costs to leave triangle T (j− 1) at D(j− 1). In
the future we will only need to know this. And that only takes j times a fixed number number
of calculations.
Also note that we are now able to construct a partial optimal solution from the ground up.

18

8 Strategies on the y-axis

Suppose you are in a state on the y-axis and a customer leaves the system. You want to decide
whether or not to put the server off or idle it. Then putting the server off is the better strategy
if for every strategy that idles the server there is a strategy that puts the server off that has a
lower expected cost.
Now we are first going to look at the possible strategy when you are at state (0, 1). You can
either go to (0, 0) by putting the server off or you can go to (1, 0) by putting the server on
standby. You only go away from these states when a new customer enters the system and then
you go back to state (0, 1). We can now look at the expected cost for both scenario’s. If you
put the server off you have to spent Kon +Koff until you reach (0, 1). If you put the server on
standby then you have to pay for the time you stay in that state. The expected time you stay
in (1, 0) is equal to the time you have to wait for a customer to arrive and thats equal to 1

λ . So

the expected cost if you put the server on standby is equal to c(1)
λ . So it’s good strategy to put

the server off if and only if Kon +Koff ≤ c(1)
λ .

Lemma 5. If Kon +Koff > c(1)
λ then you idle the server on the y-axis in the optimal strategy

Proof. Suppose that Kon + Koff > c(1)
λ then you put the server on standby at (0, 1). Now

assume that in the optimal strategy you put the server on standby until at least state (0, n).
Now we are going to look at what we are going to do at state (0, n+ 1). If you put the server of
when a customer leaves the system you go to state (0, n). When the next customer leaves the
system you will choose to go to (1, n − 1) since in the optimal strategy you will put the server
on standby at (0, n). If a customer enters the system at (0, n) you go back to (0, n+ 1).
Now we are going to compare this strategy with a strategy if you idle the server at (0, n+ 1). If
you put the server down there you go to (1, n). When the next customer leaves the system you
will choose to go to (1, n−1). If a customer enters the system at (0, n) you go back to (0, n+1).
So whether a customer enters or leaves the system you are always on the same spot in both
strategies after one step. We are now going to compare the expected cost until they meet.
If you choose to put the server off at (0, n + 1) then you go to state (0, n) that will cost you
Koff . If you go to state (1, n − 1) you have only paid Koff . If you go back to state (0, n + 1)
you have pay Kon . The probability that you go back to (0, n + 1) is equal to λ

λ+n∗µ . So the

expected cost for this strategy until they meet is equal to (Kon+Koff)λ
λ+nµ + Koff nµ

λ+nµ .
If you choose to put the server on standby at (0, n + 1) then you go to state (1, n). Then
you have to pay c(1) times the time you stay in state (1, n). The expected time you stay in
state (1, n) is equal to 1

λ+n∗µ . If a customer leaves the system you also have to pay Koff to shut

down the server. So the expected cost for this strategy until they meet is equal to c(1)
λ+nµ + Koff nµ

λ+nµ .

Kon +Koff >
c(1)

λ
⇒ (Kon +Koff)λ

λ+ nµ
+
Koff nµ

λ+ nµ
>

c(1)

λ+ nµ
+
Koff nµ

λ+ nµ
.

This means that the expected cost are lower if you decide to put the server on standby at state
(0, n + 1) before they meet. After they meet you can choose to do the optimal strategy. This
means that idleling a server at (0, n+ 1) is the better strategy. Since you know that you idle at
(0, 1) and we have proven that if you idle the server at (0, n) you idle the server at (0, n + 1).
We now know that you idle the server at any point on the y-axis.

Lemma 6. If Kon +Koff < c
λ then you shut down on the y-axis in the optimal strategy

Proof. Suppose you are at (0, n) and a customer leaves the system. We are going to compare
the strategy of idling with the strategy of shutting down the server. If shutting down is cheaper

19

it’s enough to give a strategy that’s cheaper than any strategy if you idle. So the strategy that
we use is mimicking the strategy were you idle (obviously excluding the first step). The moment
the two strategies meet is when one is on the y-axis and the other is on the (x=1)-axis and
a customer enters the system. In the first step you have to pay Koff extra if you shut down
the server and in the last step you have to pay Kon extra. Then the rest of the time before
they meet you always have an extra idle server if you initially idled the server and for the rest
you make the same costs. The time it will take for the strategies to meet must be at least the
time it takes for a customer to enter the system and the expected time for that is 1

λ . So the
extra cost you make by idling is at least c

λ on average. But we know that c
λ > Kon +Koff this

means the lower bound for costs you make by idling are larger then the costs extra costs you
make for shutting down. This means you will shut down the on the y-axis. And this means
you will shut down an idle server if you’re not on the y-axis. This gives you a global strategy if
Kon +Koff < c

λ

Since we already know what happens if Kon + Koff < c
λ we will always assume from now on

that Kon +Koff > c
λ

20

9 Bounding a(j)

For reasons that will become clear in the next chapters it’s necessary to know how big a(j) is
for different µ and λ. For the computation time it’s important that 1 − a(j) doesn’t become
much smaller if λ increases. It will be shown that 1− a(200λµ) is bounded from below.

We will give a bound on 1 − a(200λµ) in three steps. First show that it’s really likely that the

amount of customers in the system is halved, then show that it’s really likely that you get λ
µ in

the system and finally that once you have that many in the system that’s pretty likely to get
an empty system.
Definition 9. b(j) is the probability that there are j + 1 customers in the system before there
are d j2e customers in the system if you start with j customers.

b(j) is the probability that the amount of customers in your system has halved without ever
having had more customers in the system. We will need some information about b(j) in order
to give a lower bound for 1− a(j).
Lemma 7. b(d200λµ e) = b(j) < 1

99

Proof. We are only interested in an upper bound for b(j) so we will change some probabilities to
make calculations easier. We say that the probability that a customer leaves the system before
another enters the system is 99

100 and that the probability that a customer enters the system
before another leaves the system is equal to 1

100 . In reality the probability that customer leaves

the system before another enters is larger, since we are looking at d
d 200λ

µ
e

2 e and above. So we get
an upper bound for b(j).

d200λ
µ e+ 1 d200λ

µ e d200λ
µ e − 1 . . .

1
100

99
100

1
100

99
100

1
100

Definition 10. c(i) is the probability that there are i − 1 customers in the system before there
are d200λµ e+ 1 in the system

We can calculate c(i) for the model were every probability is 99
100 . To make clear that the c(i)

that we calculate are an upper bound we will refer to them as c′(i). Clearly c′(d200λµ e) = 0.99.
We can now make the following picture:

d200λ
µ e+ 1 j j-1 j-2

1− c′(j)

c′(j)

1
100

99
100

You can now see that we can calculate c′(i− 1) using the geometric series we have used before.

21

c′(i− 1) =
99

100
+

1

100
c(i)c(i− 1)

=
99

100− c(i)
.

Now let d(i) = c′(d200λµ e − i). This means that d(0) = c(j) and d(1) = c(j − 1) and so on. Then
you get:

c′(j + 1) =
99

100− d(i)
.

You can easily proof by induction that this gives the following formula for d(i):

d(i) = 1− 98

992+i − 1
.

Now we can give the desired bound for b(j).

1− b(d200λ

µ
e) =

d 200λ
µ
e∏

i=d
d 200λµ e

2
e+1

c(i)

>

d 200λ
µ
e∏

i=d
d 200λµ e

2
e+1

c′(i)

=

d 200λ
µ
e−d

d 200λµ e
2
e−1∏

i=0

d(j)

>

∞∏
i=0

d(i)

=

∞∏
i=0

1− 98

992+i − 1

=
98

99
.

We now want to know what the probability is that you get dλµe customers in the system without

getting more then d200λµ e. If you have more then dλµe in your system then it’s more likely that

a customers will leave than that a customer will enter the system. If you start at d
d 200λ

µ
e

2 e then

you are further away from d200λµ e then from dλµe. This means that there are more states between

d200λµ e and d
d 200λ

µ
e

2 e then between dλµe and d
d 200λ

µ
e

2 e. The combination of these two gives that

it’s more likely to get to λ
µ before d200λµ e+ 1 if you start at d

d 200λ
µ
e

2 e. So we can safely say that

the probability to get dλµe customers before you have d200λµ e customers if you start with d
d 200λ

µ
e

2 e
customers is at least a 1

2 . So we can give a lower bound to get to dλµe before going to d200λµ e+ 1

if you start at d200λµ e

22

98

99
(
1

2
+

1
2
1
2
98
99

1− 1
2
98
99

) =
49

50
.

Suppose you start with d200λµ e customers in the system. The average amount of times you visit

d200λµ e before having dλµe customers in the system is bounded above by 1 +
1
50

1− 1
50

.

Lemma 8. 1− a(d200λµ e) ≥ ε > 0.

Proof. Suppose you have an empty system. How many times will the system get empty before
there are λ

µ customers in the system. a(j) is increasing in j as long there are less then λ
µ customers

in the system. The probability that the system gets empty again before λ
µ is reached is:

dλ
µ
e−1∏
j=1

a(j) >

dλ
µ
e−1∏
j=1

a(1)

=
λ

λ+ µ

λ
µ

We will only need to check what happens when we change λ since if µ goes to zero that’s the
same if λ goes to infinity and vice versa.

δ

δλ

λ

λ+ µ

λ
µ

= log(
λ

λ+ µ
)

λ

λ+ µ

λ
µ δ

δλ

λ

λ+ µ

log(
λ

λ+ µ
)

λ

λ+ µ

λ
µ µ

(µ+ λ)2

< 0.

δ

δλ

λ

λ+ µ

λ
µ

< 0⇒ λ

λ+ µ

λ
µ

> limλ→∞
λ

λ+ µ

λ
µ

⇒ λ

λ+ µ

λ
µ

>
1

e

⇒

λ
µ
−1∏
j=1

a(j) >
1

e
.

Suppose you start with an empty system. The average amount of times you have an empty

system. before having dλµe customers in the system is bounded above by 1 +
1
e

1− 1
e

.

The stationary distribution for the M |M |∞ queue is a Poisson distribution.

23

πk =

λ
µ

k
e
−λ
µ

k!
, k ≥ 0.

With the stationary distribution you know the ratios between the average amount of time you
stay in each state. You can also calculate the ratio between the average amount of times you
are in each state per time unit. You can do this by dividing the ratio for the average amount of
time you stay in each state with the expected time you stay in that given state.

λ
µ

k
e
−λ
µ

k!
(µk + λ) , k ≥ 0.

We want compare π 200λ
µ

with π0.

π 200λ
µ

=

λ
µ

200λ
µ e

−λ
µ

200λ
µ !

= π0

λ
µ

200λ
µ

200λ
µ !

= π0
x200x

200x!

< π0
x200x

200x
e

200x

= π0
1

200
e

200x

< π0
1

2

200x

= π0
1

2

200λ
µ

.

We used Stirlings approximation for the factorial. As you can see it’s far more likely to see the
system empty then that there are 200λ

µ customers in the system, if λ
µ > 1.

π 200λ
µ

(
200λ

µ
µ+ λ)100 > π0(λ+ µ)⇒ π0

1

2

200λ
µ

(
200λ

µ
µ+ λ)100 > π0(λ+ µ)

⇒ 1

2

200λ
µ

(
200λ

µ
µ+ λ)100 > (λ+ µ)

⇒ 1

2

200λ
µ

(20100λ) > (λ+ µ)

⇒ 1

2

200λ
µ

>
λ+ µ

20100λ

⇒ 1

2

200λ
µ

>
1

20100

⇒ 1

2

200

>
1

20100
, λ > µ.

24

So this means that
π 200λ

µ
200λ
µ

µ+λ
100 < π0

λ+µ if λ > µ. This means that the system is at least 100 times

more empty then that there are 200λ
µ in the system.

So now suppose you have λ
µ customers in the system and you want to know if it’s more likely to

get an empty system before there are 200λ
µ customers in the system.

If the system gets empty then the system gets at most 1 +
1
e

1− 1
e

times empty on average before

reaching λ
µ customers in the system and if the system has 200λ

µ customers in the system you

have 1 +
1
50

1− 1
50

times 200λ
µ customers before having λ

µ customers in the system in the system.

The difference between these to is less then a factor 2. So it’s not true that once you get an
empty system that gets empty a lot of times before returning to having λ

µ in the system (if you

compare it to having 200λ
µ customers in the system). And as we’ve seen it’s 100 times more

likely to have an empty system. If it’s more likely that you have 200λ
µ customers in the system

before the system is empty then you would be more often in 200λ
µ then that the system gets

empty. This contradicts what we’ve already seen. This means that it’s more likely to get an
empty system once you have λ

µ in the system. And we’ve already seen that the probability to

get λ
µ customers in the system is at least 98%. So we can conclude that 1− a(d200λµ e) ≥ ε > 0.

25

10 Strategies on the (x=1)-axis

Suppose you are in a state on the (x=1)-axis and a customer leaves the system. You want to
decide whether or not to shut down the server. Then putting the server off is the better strategy
if, for every strategy that idles the server there is a other strategy that puts the server off that
has a lower expected cost. In this section it will be shown that there is a point on the (x=1)-axis
where you shut down the server and if you get above that point you will also shut down the
server. This will be shown for every possible combination of λ, µ, c(i), Kon and Koff .

First we need to know the diagonal where there is at least one point where the server will
be put off. Suppose you are on a diagonal where you put idle every node and you start at the
x-axis (so no customers are in the system). You can now look at the expected time before you
leave this diagonal.

Lemma 9. If i > max((K
on+Koff)µ
ε∗c , d200λeµ) then you shut down at least one server on D(i)

Proof.

Definition 11. k(i) is the expected time to get i customers in the system if you start with an
empty system

So if you are on a diagonal were you idle all the time k(i) is the time to get to the y-axis if you
start on the x-axis. Now if you are on the y-axis two things can happen. You can either go
up to higher diagonal before the system gets empty or the system gets empty. Remember that
the probability that the system gets empty first is 1 − a(i). Now if you started on the x-axis
the expected time to get to the y-axis is k(i). Now with probability 1 − a(i) you get back to
the x-axis before going to a higher diagonal. And with probability (1 − a(i))10 you go to the
x-axis at least 10 times before you go to the higher diagonal. Then you can easily see that the
expected time before have i+ 1 customers in the system is at least:

k(i)
∞∑
n=0

(1− a(i))n =
k(i)

a(i)

The expected time is more than this since we ignore the time it takes to go from the y-axis to the
x-axis. But we will only need a lower bound so this is not important. We know that a(i) goes
to zero when i increases. In chapter 9 we’ve seen that a(d200λµ e) > ε and in chapter 5 we’ve seen
how a(i) will decrease if we’ve got an upper bound for 1 − a(i). Since k(i) must be increasing
the time to leave a diagonal goes to infinity if i increases. There will be a point such that the
expected time to get to y-axis times the cost per time c is larger then Kon +Koff . That means
the expected cost would have been lower if you were on a lower diagonal. If you would’ve been
on this lower diagonal and you idle every server on that diagonal you would always have one
less idle server. And since c times the expected time to get to y-axis is larger then Kon +Koff ,
you will have less cost. This means that if the property holds that the expected time to get to
y-axis times the cost per time c is larger then Kon +Koff you will put the server of if you are on
the (y = 1)-axis. So we only need to calculate the point were you shut down a least one server.

Now let i be at least then d200λeµ + 1.

26

c
k(i)

a(i)
≥ ck(1)

a(i)

=
c

λ

1

a(i)

=
c

λ

1
1

iλ
µ
(1−a(i−1))+1

≥ c

λ

1
1

iλ
µ
ε+1

=
i ∗ c
µ
ε+

c

λ

≥ i ∗ c
µ
ε.

i ∗ c
µ
ε > Kon +Koff ⇒ i >

(Kon +Koff)µ

ε ∗ c
.

Lemma 10. If j > max{ (K
on+Koff)µ2(µ+λ)

cλ2ε2
, 200λµ , (K

on+Koff)µ
ε∗c }+2 then you shut down the server

on the (x = 1)-axis of D(j)

Proof. Now choose a diagonal such that you put the servers off on at least one place on the
diagonal. This means that you put the server off on at least the (y = 1)-axis. Now suppose you
are in a state on the (x = 1)-axis and a customer leaves the system. We are going to compare a
strategy were you put the server off with all the possible strategies were you idle the server. If
you idle the server first then either there is a moment were you go to a lower diagonal or there
is a moment were you are on the y-axis. In the case that you shut down the server you use the
following strategy: you idle the server when a customer leaves the system until the moment that
you meet the strategy were you initially idled. The strategies meet when the first one goes to
a lower diagonal or when it reaches the y-axis. From that point on you can choose to do the
optimal strategy. So if putting the server off at the first step and then always idle every server
is cheaper then first idling the server we know that it’s the best strategy to put the server off,
since a strategy were you put the server off is better then any strategy were you initially idle
the server.
You can easily compare the cost of the strategies. If you idle the server then you always have
an extra idle server if you compare it to the case were you first put server off. If you started on
the j-th diagonal the expected time before the strategies meet is at least: 1

µ∗(j−1)+λ . Since this

is the expected time you stay on the node (1, j − 1) and (2, j − 1). So the extra cost you make
by idling the server is at least: c

µ∗(j−1)+λ . If the strategies meet on the y-axis and not on the

x-axis then you pay Kon extra if you put the server off first plus the initial Koff for shutting
down the server. The probability that you meet on the y-axis and not on the x-axis is equal to
a(j − 2)a(j − 1). If you meet on the x-axis you’ve paid Koff in both cases. This means that it’s
cheaper to put the server off if:

a(j − 1)a(j − 2)(Kon +Koff) <
c

µ ∗ (j − 1) + λ

27

Now we will show when this property holds. The implication below only hold if j > 200λ
µ and

j > (Kon+Koff)µ
ε∗c . This means that you shut down at least one server and you know a lower

bound for 1− a(j).

j − 2 >
(Kon +Koff)µ2(µ+ λ)

cλ2ε2
⇒

µ+ λ

(j − 2)
<

cλ2ε2

(Kon +Koff)µ2
⇒

λ

(j − 1)(j − 2)
+

µ

(j − 2)
<

cλ2ε2

(Kon +Koff)µ2
⇒

µ ∗ (j − 1) + λ

(j − 1)(j − 2)
<

cλ2ε2

(Kon +Koff)µ2
⇒

µ ∗ (j − 1) + λ

(j − 1)(j − 2)
<

cλ2ε2

(Kon +Koff)µ2
⇒

1
(j−1)(j−2)λ2

µ2
ε2

(Kon +Koff) <
c

µ ∗ (j − 1) + λ
⇒

1
(j−1)(j−2)λ2

µ2
ε2

(Kon +Koff) <
c

µ ∗ (j − 1) + λ
⇒

1
(j−1)µ
λ ε

1
(j−2)µ
λ ε

(Kon +Koff) <
c

µ ∗ (j − 1) + λ
⇒

1
(j−1)µ
λ (1− a(j − 2))

1
(j−2)µ
λ (1− a(j − 2))

(Kon +Koff) <
c

µ ∗ (j − 1) + λ
⇒

1
(j−1)µ
λ (1− a(j − 2)) + 1

1
(j−2)µ
λ (1− a(j − 2)) + 1

(Kon +Koff) <
c

µ ∗ (j − 1) + λ
⇒

1
(j−1)µ
λ (1− a(j − 2)) + 1

1
(j−2)µ
λ (1− a(j − 2)) + 1

(Kon +Koff) <
c

µ ∗ (j − 1) + λ
⇒

a(j − 1)a(j − 2)(Kon +Koff) <
c

µ ∗ (j − 1) + λ
.

28

11 The global optimal strategy

Now we can put everything together to construct the global optimal strategy.
Theorem 2. If c

λ > Kon +Koff the optimal strategy is to never have an idle server.

Proof. This has already been proven in lemma 6

Definition 12. (max{ (K
on+Koff)µ2(µ+λ)

cλ2
, λµ ,

(Kon+Koff)µ
c }) + 2 = d

Theorem 3. If c
λ < Kon +Koff the optimal strategy is to

• Idle on every state on the y-axis

• Shut down the server on the (x = 1)-axis if there at least k customers in the system

• If you switch off at (i, j) you switch of at (i+ 1, j − 2)

Lemma 5 proves the first part, the second part is proven in lemma 10 and the third part is
proven in theorem 1.
Theorem 4. You can calculate the optimal strategy in O(d3).

Proof. In chapter 6 we’ve seen all the possible strategies on a diagonal that you need to check.
The amount of strategies that you need to check on D(j) is at most j + 1. This means that
below D(d) there are less than d2 possible strategies to compare. In chapter 7 we’ve seen that if
you know the strategy on D(j) you need to do at most j+1 times a fixed number of calculations
(independent of j) to calculate the expected cost of a strategy on D(j + 1). This means that
each strategy will cost you at most d times a fixed number of calculations (independent of d).
So there are d2 at most strategies that you need to check and each one will cost at most d
times a fixed number of calculations (independent of d). So you can find the optimal strategy
in O(d3).

12 Conclusion

We’ve shown that there exists an expected average cost optimal policy for controlling a webfarm
that can be determined in polynomial time as a function of the given parameters. Furthermore
we have derived an explicit upper bound (d) on the region where idling may be optimal.

References

[1] Sandra C.C. van Wijk, Creation of pooling in inventory and queueing. Eindhoven University
of Technology, PHD-thesis, pp. 123–136, Eindhoven, 2012.

[2] I.J.B.F. Adan, V.G. Kulkarni, A.C.C. van Wijk Optimal control of a server farm. Eindhoven
University of Technology, Eindhoven, 2 October 2012 (preprint).

[3] A. Gandhi, V. Gupta, M. Harchol-Balter, M.A. Kozuch Optimality Analysis of Energy-
Performance Trade-off for Server Farm Management. Carnegie Mellon University, Pittsburg,
23 January 2010.

29

