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Abstract

Survival analysis is used in the medical field to identify the effect of predictive variables
and treatment on time to a specific event. Generally not all variation of survival time
can be explained by observed covariates. The effect of unobserved covariates on the risk
of a patient is called frailty.

In multi-center studies the unobserved center effect induces frailty on its patients.
Ignoring the effect of unobserved covariates leads to selection bias over time, since pa-
tients with low frailties remain in the risk set longer. It is common practice to account
for this by including a random frailty term in the model. Particularly in multi-center
studies a random center effect is included in the model.

In competing risks situations more than one type of event is possible. A frailty
variable representing the center effect can be incorporated in the analysis independently
for each event. However, in the medical context events representing disease progression
are likely to be related and this correlation is missed in the independent frailty model.

In this thesis an additive gamma frailty model to allow for correlation between frail-
ties in a model with two competing events is proposed. An instance of the litter frailty
model described in Petersen et al. (1996) is used to model correlation between frailties
at center level. Correlation between frailties indicates the common center effect on both
events and measures how closely the risks are related.

In this work it is illustrated how to estimate the model using the expectation maxi-
mization algorithm and a method to estimate the standard error is described.

The model is applied to a data set from a multi-center clinical trial, and results are
evaluated. Hospitals are compared by employing empirical Bayes estimates together
with the corresponding confidence intervals.

The model seems to be a useful tool to investigate heterogeneity between centers by
discriminating common and separate center effects.
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Chapter 1

Introduction

1.1 Goals of this thesis

For large studies or when incidence of disease is low data is often collected from multiple
treatment centers. Treatment outcome may differ between centers and even after adjust-
ing the analysis for disease specific risk factors possible heterogeneity between centers
may remain undetected. If this aspect is ignored in the analysis, results might be biased.
Common practice is to adjust for heterogeneity between centers by incorporating a ran-
dom variable representing the center effect into the model. In situations with multiple
events a correlation structure for the random center effect is desired.

The goal of this thesis is to model heterogeneity between centers with correlated
frailties for two competing events. This is achieved by incorporating a multivariate frailty
component into a cause-specific hazard regression model, as proposed by Petersen et al.
(1996). The frailties act on the cause-specific hazards, and frailty correlation indicates
whether transitions from the initial state to the competing events are associated. A
competing risks frailty model with correlated gamma frailty distribution, where each
frailty is associated with a specific transition, is studied.

The method will be illustrated with a data set from a multi-center clinical trial on
breast cancer by the European Organisation for Research and Treatment of Cancer.
Two competing events are studied here, local recurrence vs distant metastasis or death.
Heterogeneity among centers will be presented by calculating the empirical Bayes esti-
mates of the frailties of different causes for each individual center and their associated
confidence intervals.

1.2 Structure

In Chapter 2 a short introduction to survival analysis is given, including competing
risks and frailty models. In Chapter 3 a motivating data example will be presented and
currently available methods to analyze competing risks data will be applied.

The novelty of the thesis is presented in Chapter 4, where the proposed competing
risks frailty model with correlated frailties is introduced. Chapter 5 and 6 discuss the
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10 CHAPTER 1. INTRODUCTION

estimation of the model and its standard error respectively. The results of the model
applied to a data set from a multi-center clinical trial are presented in Chapter 7. Dis-
cussion follows in Chapter 8.



Chapter 2

Background theory

Survival analysis is a branch of statistics that studies time to event data. Such data arises
where interest lies on the time it takes for a specific event to occur. The most prominent
applications are found in the medical field, where e. g. time from diagnosis of disease
until death could be studied. Survival analysis specifically studies the distribution of
time between an initial event (e. g. diagnosis of disease) and the occurrence of an event
of interest (e. g. death), called event or failure, even though it might be a success (e. g.
recovery).

In this chapter we introduce some basic concepts used in survival analysis in Section
2.1. Competing risks models are introduced in Section 2.2 and the frailty model used in
this thesis is outlined in Section 2.3.

2.1 Introduction to survival analysis

2.1.1 Survival time distribution

Different representations of the distribution of time to event are used in survival analysis.
The following equivalent definitions of the distribution of time to event are based on

Klein and Moeschberger (2003, chap. 2).

Survival function

Let T be a random variable representing the time from a time origin to the occurrence of
the event of interest. In the following T is constricted to be continuous, with probability
density function f(t) and cumulative distribution function F (t) = P (T ≤ t). The
survival function at time t is the probability for a random individual to survive until
time t and is defined as follows

S(t) =P (T ≥ t) = 1− F (t) =

∫ ∞
t

f(s)ds. (2.1)

The survival function is monotone, non-increasing, equal to one at time zero and con-
verging to zero as time approaches infinity.

11



12 CHAPTER 2. BACKGROUND THEORY

Hazard function

The hazard function or hazard rate λ(t) is the instantaneous rate of failure at time t for
a random individual still event-free. In other words, it is the probability of failing in the
next instant, conditional on being event-free just before time t and is defined as

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

=
f(t)

S(t)
. (2.2)

The cumulative hazard is defined as

Λ(t) =

∫ t

0
λ(s)ds = − logS(t). (2.3)

The survival function can further be expressed by

S(t) =e−Λ(t). (2.4)

Expression (2.4) shows that the survival and the hazard function provide equivalent
characterizations for the distribution of T .

Cumulative incidence function

The cumulative incidence function is the probability of failing before time t and corre-
sponds to the distribution function F (t). It can be expressed in terms of the hazard and
survival function as

I(t) =

∫ t

0
λ(s)S(s)ds. (2.5)

2.1.2 Censoring and truncation

Survival data is generally incomplete. Since it takes time till event occurrence, it is
usually not possible to collect the complete information. This missing information can
be classified into two groups called censoring and truncation (Klein and Moeschberger,
2003, chap. 3).

The survival time of an individual is censored, if the event was not observed. Let T
denote the event time. The survival time is right-censored, if the event did not occur
before the end of the observation period. Instead of T only censoring time Cr, which
corresponds to the end of study or end of follow-up is observed. Data can be represented
as a pair of random variables (M, δ), where M = min(T,Cr) and δ is the event indicator,
equal to one if the event was observed and zero otherwise.

The survival time of an individual is left-censored, if the event had occurred at an
unknown time before entering the study. Analogous to right-censored data, data can
be represented as a pair of random variables (M, δ), where δ is the event indicator,
M = max(T,Cl) and Cl is the censored time, which corresponds to the start of the
observation period. The survival time of an individual is interval-censored, if the event
occurred within a certain time interval, but it is not further known when.
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The survival time of an individual is truncated if he was included in the study
conditional on his event time lying within a certain time interval (ML,MR). The survival
time of an individual is left-truncated, if ML > 0 and he was observed because his event
time is larger than ML. The survival time of an individual is right-truncated, if MR <∞
and he was observed because his event time is smaller than MR. The survival time of an
individual is interval-truncated, if ML > 0 and MR < ∞ and he was observed because
his event time lies within this interval.

2.1.3 Likelihood construction

The likelihood function gives the probability of the data conditional on knowing the
correct survival function or other function of equivalent information. In the remainder
of this thesis only right-censored data will be discussed. The likelihood for right censored
observations can be written as

L =
n∏
i=1

[λ(ti)]
δiS(ti), (2.6)

where δi is the event indicator, λ(ti) the hazard rate and S(ti) the survival function for
individual i (Klein and Moeschberger, 2003, sec. 3.5).

2.1.4 Estimation

There are various approaches to estimate the survival function. While parametric meth-
ods assume a particular distribution for the survival time, non-parametric methods can
be used without making such assumptions. Two non-parametric approaches are de-
scribed here (Klein and Moeschberger, 2003, sec. 4.2).

Let t1 < t2 < ... < tD be the ordered event times and di the number of events at time
ti. Let Yi denote the number of individuals at risk at time ti, which are individuals that
have not failed before time ti. The product-limit estimator or Kaplan-Meier esimator of
the survival function is as follows

Ŝ(t) =

{
1, if t < t1∏
ti≤t

(
1− di

Yi

)
, if t1 ≤ t.

(2.7)

The variance is estimated by Greenwoods’s formula

V̂ [Ŝ(t)] = Ŝ(t)2
∑
ti≤t

di
Yi(Yi − di)

. (2.8)

Another estimator can be obtained by first estimating the cumulative hazard with
the Nelson-Aalen estimator

Λ̂(t) =

{
0, if t < t1∑

ti≤t
di
Yi
, if t1 ≤ t,

(2.9)
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with variance

V̂ [Λ̂(t)] =
∑
ti≤t

di
Y 2
i

. (2.10)

And then estimating the survival function by Ŝ(t) = e−Λ̂(t).

2.1.5 The proportional hazards model

A popular mathematical model used to incorporate the effect of covariates on survival
time is the Cox proportional hazards model, which will be defined following Klein and
Moeschberger (2003, chap. 8). The hazard at time t of an individual i with covariate
vector Xi is assumed to be

λ(t|Xi) =λ0(t)eβ
TXi , (2.11)

where λ0(t) is the baseline hazard function, which describes the risk of individuals with
covariate vector Xi = 0, who serve as reference. The increased risk associated with the
covariate vector Xi compared to the reference group is expressed in the hazard ratio
eβ

TXi . Note that in this model the increase or decrease in risk is assumed to be the
same at all time points t. Model (2.11) is semi-parametric assuming a parametric form
for the covariate effects and a non-parametric baseline hazard. The cumulative hazard
is

Λ(t|Xi) =Λ0(t)eβ
TXi , (2.12)

where Λ0(t) =
∫ t

0 λ0(s)ds and the relationship to the survival function is

S(t|Xi) =S0(t)exp(βTXi), (2.13)

where S0(t) is the survival function of the reference group.

Under the assumptions of noninformative censoring given covariates, that is the event
and censoring time are independent given the covariate vector, and if no tied events
occur, based on the hazard function (2.11) a partial likelihood is constructed by

L(β) =
∏
i:δi=1

eβ
TXi∑

R(ti)
eβ

TXg
, (2.14)

where δi is the event indicator of subject i and R(ti) = {g : tg ≥ ti} is the set of patients
that are still at risk before time ti. The partial likelihood is the product of probabilities
over the event times ti, that an individual with covariate vector Xi dies at time ti given
one individual in the risk set dies at that time. The product is taken only over the
event times, since the baseline hazard is estimated to be zero at nonevent times. Note
that the partial likelihood does not depend on the baseline hazard. Conditional on the
coefficients β the baseline hazard can be estimated by e. g. the Nelson-Aalen estimator.

We conditioned the partial likelihood on continuous time, however in real data sets
often ties are present. There are several different methods to address this problem, e. g.
by Breslow or Efron (Klein and Moeschberger, 2003, sec. 8.4).
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2.2 Competing risks model

Standard survival analysis techniques are used to analyze the distribution of time it
takes for a specific type of event to occur from a time origin. In some situations more
than one type of end point are possible. Further it could be that other events (e. g.
death) will prevent the event of interest to occur. These scenarios can be described by
a competing risks model. Definitions and methodology introduced in this section follow
Putter et al. (2007).

The competing risks model is illustrated in Figure 2.1. It is described by a starting
state (indicated in Figure 2.1 as Alive) and several end states, representing the causes
of failure, that can be reached from the starting state.

Alive

Cause 1

Cause 2

Cause J

Figure 2.1: Competing risks model with J causes of failure.

An example for a competing risks scenario is the study of different causes of death.
Dying from one cause will prevent the occurrence of other events. A different example
is the study of time from remission to relapse of disease, where death is a competing
event. In other situations only the first event may be of interest. In this case all events
will prevent further events to occur.

2.2.1 Approaches to competing risks

In the following only right-censored survival times will be considered.

Let T1, T2, ..., TJ be the event times of a random individual for J competing events
and n the number of individuals in the study. For each individual only the first event
T = min(T1, T2, ..., TJ) and an indicator δ = 1, ..., J specifying the cause of failure, is
observed. The fundamental concept in the competing risks model is the cause-specific
hazards function, which is the hazard of failing from cause j in the presence of competing
events

λj(t) = lim
∆t↓0

Pr(t ≤ T < t+ ∆t, δ = j|T ≥ t)
∆t

. (2.15)

The cumulative cause-specific hazard and the probability of not failing from any cause
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at time t are respectively given as

Λj(t) =

∫ t

0
λj(s)ds (2.16)

and

S(t) = e−
∑J
j=1 Λj(t). (2.17)

Expression (2.17) relates the overall survival function to the cause-specific hazards. The
cumulative incidence function for cause j is defined as the probability of failing from
cause j before time t

Ij(t) = Pr(T ≤ t, δ = j) =

∫ t

0
λj(s)S(s)ds. (2.18)

Estimation

To estimate the parameters for cause j in a competing risks model, a naive approach
would censor observations for which a competing event occurred. In this way the com-
peting risks are ignored and a standard analysis with likelihood function (2.6) can be
performed. However, failures from competing risks reduce the number of individuals
at risk for the other causes and therefore the number of failures from cause j. The
likelihood function for the competing risks model is given as

L =

n∏
i=1

e−
∑
j Λj(ti)

J∏
j=1

λj(ti)
1{δi=j} . (2.19)

The cause-specific hazard for cause j can be estimated by counting the number of
events of type j divided by the observed number of patients at risk. Let

• dji : number of patients failing from cause j at ti

• Yi : number of patients at risk at ti

• R(t) = {i : ti ≤ t} : set of patients with time points before time t

The estimator of the cause-specific hazard for cause j is given as

λ̂j(ti) =
dji
Yi
. (2.20)

The estimator for the cause-specific cumulative hazard and cumulative incidence
function are respectively given as

Λ̂j(t) =
∑
i∈R(t)

λ̂j(ti) (2.21)

and



2.2. COMPETING RISKS MODEL 17

Îj(t) =
∑
i∈R(t)

λ̂j(ti)Ŝ(ti−1), (2.22)

where Ŝ(ti−1) is the Kaplan-Meier estimator (defined in (2.7)), the probability of re-
maining event-free just before time ti.

2.2.2 Covariate effects

When the effect of covariates on the different causes of failure are of interest, a model
analogous to the Cox proportional hazards model is appropriate. The traditional Cox
model can be used, to perform separate analysis for each cause of failure, censoring
observations which failed from a competing event. The cause-specific hazard of cause j
for a subject i with covariate vector Xi is

λj(t|Xi) = λj0(t)eβ
T
j Xi , (2.23)

where λj0 is the cause-specific baseline hazard for cause j and βj assesses the effect of
the covariates Xi on the progression rate to cause j.

Estimation

The general form of the likelihood function expressed in terms of cause-specific hazards
is

L =
n∏
i=1

e−
∑
j Λj0(ti) exp(βTj Xi)

J∏
j=1

(
λj0(ti)e

βTj Xi

)1{δi=j}
, (2.24)

where Λj0 is the cause-specific cumulative baseline hazard for cause j and δi = 1, ..., J
is the indicator for type of failure for subject i.

The parameters are estimated in the same way as in the classical framework with
only one type of end point, by maximizing the partial likelihood (2.14). The difference
is in the interpretation: here the effects are quantified on the cause-specific hazard and
not on the marginal hazard. Only if the censoring due to the competing risks is nonin-
formative conditionally to the covariates in the model, then the estimates can also be
interpreted as effects on the marginal hazard. In the competing risks context it is more
appropriate to call the model proportional cause-specific hazards model and not a Cox
model.

The covariate effects are proportional on the cause-specific hazard. However, the
relation with the cumulative incidence function for cause j associated to different values
of the same covariate can be unpredictable. The reason is that the effect of a covariate
not only influences the hazard of cause j but has also an effect on the other causes
of failure, which together contribute to the cumulative incidence function (2.18). As a
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consequence, it can happen that the cause-specific hazard is lower for a subgroup over
the whole time range, whereas the cause-specific cumulative incidence is higher for part
of the time scale. For this reason interpretation of the hazard ratios requires caution.

The covariate effects on the cause-specific hazards are estimated analogous to the
single event case for each transition separately. This can be done with readily available
software, e. g. in R (R Core Team, 2015) with the survival package (Therneau, 2015).
However, the results must be interpreted in the cause-specific context.

2.3 Frailty model

2.3.1 Introduction

In the medical field the term frailty is often used (Rockwood, 2005). The term comes
from the field of gerontology where it is used to indicate that frail people have an
increased risk for complication and mortality (Gillick, 2001). This condition can also be
referred to as heterogeneity, indicating variation in treatment outcome between patients.
Statistical models explain part of this variation by incorporating patient characteristics
into the model, however not all variation can be explained by observed covariates.

Unobserved heterogeneity can lead to biased results. Frail individuals will experience
the event on average earlier and hence the individuals remaining in the risk set will have
lower frailty. This gives a selection bias that reduces the population hazard rate over
time.

The concept of frailty provides a proper way to introduce random effects in the model
to account for the presence of association and unobserved heterogeneity. The variance
of this random component is a measure used to quantify heterogeneity in the data set.
Vaupel et al. (1979) discussed univariate frailty models with a gamma distribution and
applied this concept to survival. Clayton (1978) used frailties in the multivariate analysis
of chronic disease incidence in families.

Frailty or heterogeneity can also be considered at center level. Multi-center studies
combine data collected in different centers. A potential problem with this type of data
is heterogeneity between centers. The reason for this might be an imbalance of the
distribution of patient-specific characteristics (e. g. age) over centers or an effect of
center-specific factors (e. g. geography) on the outcome.

Heterogeneity can be addressed by incorporating both patient- and center-specific
factors into the model, that explain part of the heterogeneity. Those factors reduce the
variance of the random effect, however it is possible that not all heterogeneity can be
explained. In spite of treatment protocols there remains some variability due to slightly
different interpretation at the treatment centers. A random center effect models this
unobserved differences. A survival model with random effect is called a frailty model.

2.3.2 Univariate frailty model

In this subsection we will discuss the multiplicative gamma frailty model following Aalen
et al. (2008, chap. 2). In its simplest form, a frailty is an unobserved random factor
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varying over the population of individuals, which is assumed to have a multiplicative
effect on the hazard of a single individual.

In this model the hazard rate corresponding to subject i with frailty Wi is specified
as follows

λ(t|Wi) =Wiλ0(t), (2.25)

where λ0(t) is the baseline hazard. If Wi > 1 the individual risk increases and if Wi < 1
it decreases.

A convenient choice for the frailty distribution is the gamma distribution, since its
posterior distribution given survival data stays in the gamma family. The gamma density
function is as follows

f(w) =
ην

Γ(ν)
wν−1e−ηw, (2.26)

where ν > 0 and η > 0 are the shape and rate parameter respectively. Since part of the
frailty can be absorbed in λ0 it is typically assumed that the expectation of w equals 1,
which in the gamma case means that the parameters are equal (ν = η). The variance of
the gamma frailty with expectation 1 is 1/η and it is a natural measure of the degree of
heterogeneity in the population.

The model can also be represented by its conditional survivor function

S(t|Wi) = e−WiΛ0(t), (2.27)

where Λ0(t) =
∫ t

0 λ0(s)ds. The survival S(t|Wi) represents the fraction of individuals
surviving until time t given Wi.

Covariate effects

A natural choice to incorporate covariate effects in a frailty model is to extent the Cox
proportional hazards model. The frailty acts multiplicative on the baseline hazard, it
can however also be seen as entering the regression part of the hazard function the same
way as the observed covariates. For subject i with covariate vector Xi and frailty Wi

the hazard is as follows

λ(t|Xi,Wi) =Wiλ0(t)eβ
TXi (2.28)

=λ0(t)eβ
TXi+log(Wi).

Univariate frailty models are not identifiable from survival information alone. Elbers
and Ridder (1982) have shown the identifiability of model (2.25) for a finite mean frailty
distribution, which in case of survival data is given when covariates are included in
a proportional hazards model as in model (2.28). Heckman and Singer (1984) have
considered alternative conditions of identifiability.
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2.3.3 Multivariate frailty model

In multivariate frailty models several individuals share a frailty, inducing a dependence
structure. It is applied in situation in which data are divided into groups, like families or
treatment centers. The multivariate frailty model with and without covariates is given
by (2.28) and (2.25) respectively, with individuals indexed within their group. In a multi-
center study a frailty for the center effect models the dependence of patients treated in
the same treatment center and its variance measures the heterogeneity between hospitals.

2.3.4 Estimation

In the following the likelihood function for a multivariate frailty model with frailties at
center level will be explained. Let W = (W1, ...,WK) be the frailty vector associated to
K centers. In this context censoring must be independent from time to event, which is
the usual assumption and noninformative for the random vector W .

Let nk and dk denote the number of patients in hospital k and the number of events
in hospital k respectively. Let δki be the event indicator for subject i in hospital k. The
likelihood function conditional on the observed frailties is

L(β, λ0|data ,W ) =

K∏
k=1

f(Wk)

nk∏
i=1

(
Wkλ0(tki)e

βTXki

)δki
e−WkΛ0(tki) exp(βTXki), (2.29)

where λ0 and Λ0 denote the baseline and cumulative baseline hazard and f the gamma
density with parameters (ν, η). If the frailty were observed the estimation of coefficient
vector β would be reduced to the estimation of the traditional Cox model, with log(Wk)
entering the model as offset (cf. (2.28)). Since the frailty is not observed we need to
integrate out the frailty terms in (2.29), resulting in the observed data likelihood

L(β, λ0|data ) =

K∏
k=1

ηνΓ(ν + dk + 1)

Γ(ν)(η +
∑nk

i=1 Λ0(tki)eβ
TXki)ν+dk+1

nk∏
i=1

(
λ0(tki)e

βTXki

)δki
.

(2.30)

This is a more difficult maximization task that can be solved using the frailty option of
coxph() from the survival package (Therneau, 2015) in R (R Core Team, 2015), which
uses numerical approximation. Another approach is to use the expectation maximization
algorithm, which will be further investigated in Chapter 5.



Chapter 3

Motivating example

This chapter will illustrate available methods, to study time to event data in a multi-
center study of competing risks, on an example data set. The data set origins from a
multi-center clinical trial on breast cancer by the European Organisation for Research
and Treatment of Cancer.

Information on the studied population is given in Section 3.1. The data is described
in Section 3.2. A competing risks analysis is performed in Section 3.3 and a multivariate
frailty analysis in Section 3.4. All analysis are performed using the software R (R Core
Team, 2015).

3.1 Background information

Breast cancer is one of the most common types of cancer in women. It can be classified
by grade, indicating how well the cells are differentiated, as cells progressively lose the
features seen in normal breast cells, where low grade corresponds to better differentiated
cells.

Breast cancer can also be classified as carcinoma in situ and invasive carcinoma. The
former refers to cancer confined within a particular tissue compartment without invasion
of the surrounding tissue. Invasive carcinoma, as suggested by the terminology, does not
confine itself to the initial tissue compartment.

To define the stage of the cancer the TNM (Tumor, Node, Metastasis) system is
used. This technique is based on the tumor size, whether or not cancer has spread to
the lymph nodes in the armpits and whether the tumor has metastasized. Stages rank
from 0 to IV, where stage 0 indicates non-invasive breast cancer with no evidence of
abnormal cells out of their original confined location and stage IV describes invasive
cancers that have spread to other body parts (Breastcancer.org, 2015).

The standard treatment for breast cancer is surgery, which may be followed by
chemotherapy, radiotherapy or both. Surgeries can be classified in breast conserving
surgery (partial breast removal) and mastectomy (complete breast removal).

Disease progression after surgery can be described in terms of events a patient might
experience. A patient can develop local recurrence (LR), which means that the tumor
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grows back at the site of surgery and/or might develop distant metastasis (DM), which
corresponds to a tumor growth not at the site of surgery and/or she might die.

3.2 Data description

The European Organisation for Research and Treatment of Cancer (EORTC) has con-
ducted several large randomized phase III trials. The goal was to optimize the clinical
procedure applied to breast cancer in women with stage I or II disease. The data used
in this thesis originates from the EORTC trial 10854, which studied the effect of one
course of perioperative chemotherapy given directly after surgery on survival, compared
to surgery alone (van der Hage et al., 2001). The data set includes 2795 women treated
for invasive stage I or II breast cancer, randomized for treatment in 15 different centers.
The beginning of follow-up corresponds to the time of randomization, which is close
to the date of surgery. The end of follow-up corresponds to the incidence of distant
metastasis or the last date of follow-up (due to death, being lost to follow-up, or end of
study).

Patients with preoperative chemotherapy, patients not eligible for the study (due to
false inclusion or severe protocol violation) and patients with stage III breast cancer
were excluded from analysis (n = 41). Also patients without full information on all
covariates were excluded from analysis (n = 91). Further all 5 patients from center 301
were excluded, because of the small amount of patients at this center, leaving a total of
2658 patients from 14 different centers for analysis.

The data was checked and two patients were found to have developed DM after time
of death. Those patients were censored for DM at time of death. Two patients were
found to have LR at time of death. Those patients were censored for death at time of
LR, since LR occurred before death and for the analysis performed in the following only
the first event is considered. Further 81 patients experienced LR and DM at the same
time and were censored for DM for the same reason.

The prognostic factors considered in this analysis are age, tumor size, whether or
not the patient has positive lymph nodes, type of surgery (breast conserving or mastec-
tomy) and treatment (adjuvant chemo- or radiotherapy or perioperative chemotherapy).
Patients’ characteristics are provided in Table 3.1 and the distribution of patients over
centers is given in Figure 3.1.

3.3 Competing risks analysis

The competing risks model studied in this thesis is illustrated in Figure 3.2. Two com-
peting events are considered, local recurrence (LR) and distant metastasis or death
(DM/Death). The starting state is the state a patient enters after surgery, alive with
no evidence of disease (ANED). The black numbers on the arrows indicate the number
of patients moving from one state to the other and the blue numbers correspond to the
transition numbers.
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Table 3.1: Characteristics of 2658 patients.

Variable N (%)

Age
≥50 1602 (60.3)
40–50 762 (28.7)
<40 294 (11.1)

Tumor size
<2cm 798 (30.0)
≥2cm 1860 (70.0)

Nodal status
negative 1407 (52.9)
positive 1251 (47.1)

Surgery
mastectomy 1164 (43.8)
breast conserving 1494 (56.2)

Perioperative chemotherapy
yes 1325 (49.8)
no 1333 (50.2)

Adjuvant chemotherapy
no 2173 (81.8)
yes 485 (18.2)

Adjuvant radiotherapy
no 54 (2.0)
yes 2604 (98.0)

Alive with no evidence of disease

Local recurrence

Distant metastasis/Death

314

1

818

2

Figure 3.2: Competing risks model, 2658 patients at risk. Numbers denoted in black
and blue indicate the number of patients moving from one state to the other and the
transition numbers respectively.

Patient Data is collected in a wide format, in which each row represents a single
individual. To analyze the data with available software, it is first transformed into a
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Figure 3.1: Distribution of patients over 14 centers.

specific long format shown for three patients in Output 1. In this format each individual
is represented by 2 rows, one for each possible cause of failure. A start and stop variable
indicate the time interval a patient is at risk. A status variable indicates whether or not
a patient moved from one state to the other. The initial wide format data is transformed
in long format using the msprep() function from the R package mstate (de Wreede et al.,
2011).
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An object of class ’msdata’

Data:

id from to trans Tstart Tstop status center age size

1 1 1 2 1 0 2.006845 0 903 >=50 >=2cm

2 1 1 3 2 0 2.006845 1 903 >=50 >=2cm

3 2 1 2 1 0 13.379877 0 903 <40 >=2cm

4 2 1 3 2 0 13.379877 0 903 <40 >=2cm

5 3 1 2 1 0 1.275838 1 903 >=50 >=2cm

6 3 1 3 2 0 1.275838 0 903 >=50 >=2cm

Output 1: Data example in long format.

Separate analysis for the two causes of failure are performed by selecting the data
subset corresponding to transition 1 and 2.

Non-parametric cause-specific cumulative hazards for each cause of failure and 95%
confidence intervals are shown in Figure 3.3. The hazards are estimated not considering
any covariates, as specified in (2.21). The cumulative hazard for LR is lower than for
DM/Death, which reflects the number of patients experiencing these events depicted in
Figure 3.2.
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Figure 3.3: Non-parametric cause-specific cumulative hazards for LR and DM/Death.

For the cause-specific regression analysis the choice of covariates is based on a previ-
ous study on the same data (de Bock et al., 2009). The following prognostic factors are
considered in the analysis: age (≥ 50, 40− 50, < 40), tumor size (< 2cm, ≥ 2cm), nodal
status (negative, positive), type of surgery (mastectomy, breast conserving), perioper-
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ative chemotherapy (yes, no), adjuvant chemotherapy (yes, no), adjuvant radiotherapy
(yes, no). Since separate analysis are performed for each cause of failure, we estimate
for each covariate a cause-specific hazard ratio (HR). The results of the competing risks
analysis are shown in Table 3.2. In the following we consider a p value smaller than 5%
to be significant.

For transition 1 (ANED → LR) age, nodal status and perioperative chemotherapy
have a significant effect on the risk of moving from one state to the other. Both age
categories 40–50 and ≥ 50 increase the risk of moving to LR compared to the baseline
group with HRs equal to 1.54 (1.16–2.05) and 2.37 (1.7–3.31) respectively. A positive
nodal status increases the risk of moving from one state to the other with a HR equal to
1.32 (1–1.73). Perioperative chemotherapy has a protective effect since the cause-specific
hazard ratio for patients who did not receive perioperative chemotherapy is equal to 1.46
(1.17–1.83).

For transition 2 (ANED→ DM/Death) age, tumor size, nodal status and the type of
surgery have a significant effect on DM or death. The age group 40–50 has a protective
effect on moving to DM/Death with a HR equal to 0.82 (0.67–1) compared to the baseline
age group ≥ 50. A larger tumor and a positive nodal status both increase the risk of
moving to the state DM/Death with HRs equal to 1.45 (1.22–1.72) and 1.65 (1.41–1.93)
respectively. Breast conserving operation has a protective effect with a HR equal to 0.81
(0.7–0.94) compared to mastectomy.

Table 3.2: Competing risks model: effect of covariates on each cause of failure.

ANED → LR ANED → DM/Death
HR 0.95 CI P value HR 0.95 CI P value

Age
≥50 1 1
40–50 1.54 1.16-2.05 0.003 0.82 0.67-1 0.049
<40 2.37 1.7-3.31 0.000 1.18 0.92-1.51 0.184

Size (≥ 2cm vs <2cm) 1.18 0.92-1.52 0.186 1.45 1.22-1.72 0.000
Node (pos. vs neg.) 1.32 1-1.73 0.048 1.65 1.41-1.93 0.000
Surgery (cons. vs mast.) 1.21 0.95-1.55 0.125 0.81 0.7-0.94 0.005
CTperi (no vs yes) 1.46 1.17-1.83 0.001 1.05 0.92-1.21 0.487
CTadj (yes vs no) 0.73 0.51-1.06 0.098 0.79 0.63-1 0.052
RTadj (yes vs no) 0.66 0.33-1.3 0.227 1.34 0.77-2.34 0.298

Figure 3.4 illustrates stacked cumulative incidence curves of the events LR and
DM/Death for two patients with different baseline characteristics, created with the R

package mstate (de Wreede et al., 2011). The width of the colored areas are the pa-
tient’s probabilities of being in that state at the corresponding time. The prognosis of
the patient represented by the left panel seems better than for the patient on the right.
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Figure 3.4: Cumulative incidence curves for two patients. Patient’s characteristic on
the left side: age ≥ 50, small tumor, negative nodal status, mastectomy, perioperative
chemotherapy, no adjuvant chemotherapy, radiotherapy. Patient’s characteristic on the
right side: age < 40, large tumor, positive nodal status, breast conserving therapy,
perioperative chemotherapy and no adjuvant chemo- or radiotherapy.

3.4 Frailty model

Heterogeneity between hospitals is indicated by the variation of non-parametric cause-
specific cumulative hazards in Figure 3.5, where each line of a different color represents
a hospital. The left panel shows the cumulative incidence curves for the cause LR and
the right panel for the cause DM/Death.

To account for center effect in a cause-specific regression model each cause of failure
within a hospital is assigned its own independent frailty The likelihood functions for
competing risks (2.24) and frailty models (2.29) contribute to the likelihood function of
a competing risks model with independent frailties

L(β1, β2, λ10, λ20|data ,W ) =
K∏
k=1

f(Wk1)f(Wk2)

nk∏
i=1

e−
∑
jWkjΛj0(tki) exp(βTj Xki) (3.1)

2∏
j=1

(
Wkjλj0(tki)e

βTj Xki

)δki
.

The model can be estimated similarly to the classical competing risks model, by using
the coxph() function from the R package survival (Therneau, 2015) and including a
frailty term for each transition separately. The results of the estimated model with
gamma frailty are shown in Table 3.3.
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Figure 3.5: Cause-specific cumulative hazards for 14 centers.

For transition 1 (ANED → LR) the hazard ratios are the same as in the traditional
competing risks analysis (cf. Table 3.2). This is explained by the estimated frailty
variance, which is nearly 0 and not significant. This indicates no center effect on the
transition to LR.

For transition 2 (ANED →DM/Death) the hazard ratios are slightly different from
the traditional competing risks analysis. However, the set of significant risk factors stay
the same. The frailty variance is equal to 0.075 with a significant p value, which indicates
a significant center effect on this transition.

A different frailty model assigns to each hospital a shared frailty term for both causes
of failure. The likelihood function for this model is similar to (3.1) without the cause
index j for the frailty. The model can be estimated using methods from the R package
mstate (de Wreede et al., 2011), which allows to specify covariate effects to be transition
specific or not.

Both, the independent and shared frailty model, are not ideal. The former assumes
an independent effect of the unobserved covariates on the two events and the latter
assumes them to have the same effect on both events. A model allowing for possible
correlation between frailties is a more accurate representation of reality.
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Table 3.3: Frailty model : effect of covariates on each cause of failure.

ANED → LR ANED → DM/Death
HR 0.95 CI P value HR 0.95 CI P value

Age
≥50 1 1
40–50 1.54 1.16-2.05 0.003 0.76 0.62-0.93 0.007
<40 2.37 1.7-3.31 0.000 1.06 0.82-1.36 0.663

Size (≥ 2cm vs <2cm) 1.18 0.92-1.52 0.186 1.44 1.21-1.71 0.000
Node (pos. vs neg.) 1.32 1-1.73 0.048 1.65 1.41-1.93 0.000
Surgery (cons. vs mast.) 1.21 0.95-1.55 0.125 0.82 0.71-0.96 0.013
CTperi (no vs yes) 1.46 1.17-1.83 0.001 1.05 0.92-1.21 0.483
CTadj (yes vs no) 0.73 0.51-1.06 0.098 0.85 0.66-1.08 0.175
RTadj (yes vs no) 0.66 0.33-1.3 0.227 1.37 0.75-2.48 0.302

Variance P value Variance P value
Frailty 5e-07 0.901 0.075 0.000
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Chapter 4

Competing risks frailty model

The previous chapter described frailty models available in competing risks situations.
Independent frailties allow for different center effects on the two events, however a pos-
sible correlation of effects remains unnoticed. The unobserved covariates at center level,
could have a common effect on both risks.

Heterogeneity between centers in a competing risks setting can be modeled using
a correlated frailty model. Such a model may give further insight on the center effect
and the relationship of the two events. A model for the dependence structure was first
proposed by Yashin et al. (1995) in a twin study, decomposing the frailty of each twin
as a sum of two independent frailties one of which is shared by both twins. We follow
Petersen et al. (1996) where an additive variance components structure on multiplicative
gamma frailty models is proposed and its estimation is outlined.

In this chapter a methodology for a competing risks model with correlated frailties
will be introduced. First the correlation structure proposed by Petersen et al. (1996)
and the desired frailty properties are presented in Section 4.1. The construction of
those frailties will be explained in Section 4.2. Finally the estimation procedure will be
discussed in Section 4.3.

4.1 Correlation structure

In this section we describe the approach of Petersen et al. (1996) to construct correlated
frailties. A discussion about the desired frailty properties follows.

Let Wk1,Wk2 denote the two frailty variables assigned to each cause of failure within
hospital k. Each of those frailties is constructed by adding two independent gamma
distributed frailty components, one of which is in common. The frailties’ common com-
ponent models the unobserved covariates that have the same effect on both causes and
the independent component allows for unobserved cause-specific effects. The frailties of
hospital k are constructed in the following way

Wk1 =Zk0 + Zk1, (4.1)

Wk2 =Zk0 + Zk2, (4.2)

31



32 CHAPTER 4. COMPETING RISKS FRAILTY MODEL

where the terms Zk0, Zk1, Zk2 are independent gamma distributed random variables with
parameters (ν0, η), (ν1, η), (ν2, η) respectively. The common rate parameter η assures
that Wk1 and Wk2 are again gamma distributed with parameters (νa, ηa) and (νb, ηb)
respectively.

The desired frailty terms have mean equal to one and variances and correlation equal
to

Var (Wk1) =
1

νa
= ξa,Var (Wk2) =

1

νb
= ξb, (4.3)

Corr (Wk1,Wk2) = ρ. (4.4)

The gamma distribution to model dependence between frailties has been criticized
for leading to stronger dependence of late events and for being used without biological
indication (Hougaard, 1995). However, the mathematical properties justify the large
use of this distribution. In the context discussed in this thesis it is convenient that the
conditional distribution of the frailties given survival data belongs to the gamma family.

4.2 Frailty decomposition

Correlation of the frailties Wk1 and Wk2 can be constructed as illustrated in the previous
section. To obtain the frailty properties described in (4.3) and (4.4) the parameters for
the frailty components are chosen in a specific way and the sum of frailty components
is multiplied by a standardizing constant as follows (Fiocco et al., 2009)

Wk1 =
Zk0 + Zk1

ν0 + ν1
, (4.5)

Wk2 =
Zk0 + Zk2

ν0 + ν2
, (4.6)

where

Zk0 ∼ Γ(ν0, 1), Zk1 ∼Γ(ν1, 1), Zk2 ∼ Γ(ν2, 1). (4.7)

The random variables Zk0, Zk1, Zk2 are independent. This results in the following
distributions for the frailties

Wk1 ∼ Γ(ν0 + ν1, ν0 + ν1), (4.8)

Wk2 ∼ Γ(ν0 + ν2, ν0 + ν2). (4.9)

The expectation of the frailty variables is one, which corresponds to no hospital
effect. Their variance and correlation are given by
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Var (Wk1) =
1

ν0 + ν1
= ξa,Var (Wk2) =

1

ν0 + ν2
= ξb, (4.10)

Corr (Wk1,Wk2) =ν0(ξaξb)
1/2 = ρ. (4.11)

The construction of this model allows for positive correlation between frailties only,
as apparent from (4.11). This is a disadvantage of this approach. However, in many
practical situations it may be justified to disregard negative correlation.

4.3 Model estimation

Estimation of the model parameters is obtained by maximization of the likelihood func-
tion based on the observed data. As described in Section 3.4 formula (3.1) each center
has its own associated frailties acting multiplicative on the baseline hazard. Frailties
associated to different centers and individuals across hospitals are independent. Thus
the likelihood of the data is the product of hospital likelihoods. For simplicity only the
likelihood of a single center is given in the following.

Let Zk0, Zk1, Zk2 be the frailty components for hospital k with distribution as speci-
fied in (4.7). The general structure of the data has the following elements:

• k = 1, ...,K indicate the hospital

• nk : number of patients in hospital k

• dkj : number of patients in hospital k failing from cause (j = 1, 2)

• Xki, tki, (δki = 1, 2) : the covariate vector, the event or censoring time and the
event indicator for patient i in hospital k respectively

• βj ,Λj0 : vector of coefficients and cumulative baseline hazard for the two causes
of failure (j = 1, 2)

• Λkj =
∑nk

i=1 Λj0(tki)e
βTj Xki , (j = 1, 2)

The complete data likelihood for hospital k, if the frailties were observed is given as

L(β1,β2, λ10, λ20|data k, Zk0, Zk1, Zk2) =

nk∏
i=1

(
Zk0 + Zk1

ν0 + ν1
λ10(tki)e

βT1 Xki

)1{δki=1}

(4.12)(
Zk0 + Zk2

ν0 + ν2
λ20(tki)e

βT2 Xki

)1{δki=2}

exp

(
−
(
Zk0 + Zk1

ν0 + ν1
Λ10(tki)e

βT1 Xki +
Zk0 + Zk2

ν0 + ν2
Λ20(tki)e

βT2 Xki

))
.

Each patient contributes to the likelihood function by the product of his cause-specific
hazard rate and his survival probability until that point. The first and second factors
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in the likelihood represent the probability of failing from cause 1 and 2 respectively.
The last factor expresses the probability of remaining event-free until censoring time or
failure and depends on all cause-specific hazards.

Integrating out all frailty components specific to each center we obtain terms that
depend on the number of failures dkj of cause j in center k. The observed data likelihood
for center k is as follows

L(β1,β2, λ10, λ20|data k) = (ν0 + ν1)−dk1(ν0 + ν2)−dk2
1

Γ(ν0)Γ(ν1)Γ(ν2)
(4.13)

nk∏
i=1

[
(λ10(tki)e

βT1 Xki)1{δki=1}(λ20(tki)e
βT2 Xki)1{δki=2}

]
dk1∑
l=0

dk2∑
m=0

(
dk1

l

)(
dk2

m

)
Γ(l + ν1)(

1 + 1
ν0+ν1

Λk1

)l+ν1

Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + ν0 − l −m)(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+ν0−l−m ,

where Γ is the gamma function.
Since the frailties are not observed the estimation procedure is more complicated

than the traditional one. In combination with the unspecified baseline hazard, it is
computationally challenging to maximize the likelihood function (4.13). The unobserved
data can be seen as missing information and the expectation maximization algorithm
(EM-algorithm) can be used to estimate the model parameters (Petersen et al., 1996).
The complete data problem is much easier to solve compared to the observed data
problem, this is exploited by EM-algorithm. Details about its usage to estimate the
model are given in Chapter 5.



Chapter 5

Expectation maximization
algorithm

The expectation maximization algorithm (EM-algorithm) is applied to estimate param-
eters by maximizing the likelihood function in case of incomplete data. It is used when
the incomplete data problem is much more difficult to solve than the complete data
problem.

The EM-algorithm reduces the problem of optimizing the observed data log-likelihood
into sequences of simpler optimization problems, whose maxima are easy to compute.
These subproblems are chosen in a way that guarantees their corresponding solution to
converge to a local optimum of the observed data log-likelihood.

Its iterative scheme starts from some initial parameters, and determines which values
are most likely for the missing data, using the current parameter estimates. Assuming
these data completions to be correct, the next set of parameters is calculated through
maximization of the complete data log-likelihood. These two steps are repeated until
convergence.

The formulation of the algorithm will be illustrated in Section 5.1. The estimation
procedure for the competing risks frailty model is described in Section 5.2.

5.1 Algorithm formulation

The following notation and methodology follow Louis (1982). A simple small data ex-
ample can be found in Do and Batzoglou (2008).

Let x denote the observed data, w the unobserved data and θ the parameter to be
estimated. The complete data is given by x,w and the incomplete data by x only. The
log-likelihood for the complete and incomplete case are respectively given by

`(θ|x,w) = log f(x,w|θ), (5.1)

`∗(θ|x) = log f∗(x|θ) = log

∫
R
f(x,w|θ)dw, (5.2)

35
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where R = {w : x(w) = x} is the set of possible completions for the missing data and f
and f∗ the probabilities of the complete and incomplete data given θ respectively. Instead
of maximizing `∗ directly, the EM-algorithm proceeds by taking a starting parameter
estimate θ(0) and solving the pseudo-complete data problem

Q(θ|θ(0)) = Eθ(0) [`(θ|x,w)|w ∈ R]. (5.3)

The value maximizing (5.3) gives θ(1), which is used in the next iteration. Summarizing
the algorithm:

E-step: Compute

Q(θ|θ(k)) = Eθ(k) [`(θ|x,w)|w ∈ R].

M-step: Maximize

maximizeθ∈ΘQ(θ|θ(k)).

The iteration over these steps is continued until ||`∗(θ(v+1)|x)− `∗(θ(v)|x)|| is sufficiently
small.

Since the algorithm is guaranteed only to converge to a local maximum of the ob-
served data log-likelihood, running the procedure using multiple starting values can be
of use (Do and Batzoglou, 2008).

5.2 Implementation

The estimation procedure uses the EM-algorithm to approximate the observed data
log-likelihood to find optimal regression coefficients and baseline hazards for fixed ν =
(ν0, ν1, ν2). The in this way approximated observed data log-likelihood is then employed
in a three dimensional search to find maximum likelihood estimates for ν.

For the EM procedure the frailties are considered missing data and the complete
and observed data likelihood functions are given in (4.12) and (4.13) respectively. The
complete data log-likelihood is given as

logL(β1,β2, λ10, λ20|data k, Zk0, Zk1, Zk2) =

nk∑
i=1

1δki=1 log

(
Zk0 + Zk1

ν0 + ν1

)
(5.4)

+

nk∑
i=1

1δki=1 log(λ10(tki)e
βT1 Xki) +

nk∑
i=1

1δki=2 log

(
Zk0 + Zk2

ν0 + ν2

)

+

nk∑
i=1

1δki=2 log(λ20(tki)e
βT2 Xki)− Zk0 + Zk1

ν0 + ν1

nk∑
i=1

Λ10(tki)e
βT1 Xki

− Zk0 + Zk2

ν0 + ν2

nk∑
i=1

Λ20(tki)e
βT2 Xki .
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For the E-step it is not always necessary to form the probability distribution over
completions given in (5.3) explicitly, but rather need only to compute expected sufficient
statistics over these completions (Do and Batzoglou, 2008). This can be exploited in our
model.

Since ν is fixed throughout the EM iterations, the estimation concerns the regression
coefficients and baseline hazards only. The conditional expectations of the terms
log ((Zk0 + Zkj)/(ν0 + νj)), (j = 1, 2) given observed data are irrelevant to the estima-
tion of the complete data case (5.4), for fixed ν. For this reason the E-step reduces to the
calculation of the conditional expectations of the frailties Wkj = (Zk0 + Zkj)/(ν0 + νj),
(j = 1, 2) given observed data. These are rather easy to calculate, since the conditional
distributions of the frailty components Zk0, Zk1, Zk2 given observed data are a mixture
of gamma distributions.

The expectations of each frailty component conditional on the data for hospital k
are given as

E (Zk0|data k) =

∫
zk0

zk0f(zk0|data k)dzk0 (5.5)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
dk1 + dk2 + ν0 − l −m(

1 + 1
ν0+ν1

Λk1 + 1
ν0+ν2

Λk2

) ,
E (Zk1|data k) =

∫
zk1

zk1f(zk1|data k)dzk1 (5.6)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
l + ν1(

1 + 1
ν0+ν1

Λk1

) ,
E (Zk2|data k) =

∫
zk2

zk2f(zk2|data k)dzk2 (5.7)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
m+ ν2(

1 + 1
ν0+ν2

Λk2

) ,
where

• f : probability of a frailty component given data

• dkj : number of failures in center k by cause (j = 1, 2)

• Λkj =
∑nk

i=1 Λj0(tki)e
βTj Xki , (j = 1, 2)

•
c(l,m, ν0, ν1, ν2) =(

dk1
l

)(
dk2
m

)
Γ(m+ν2)(

1+ 1
ν0+ν2

Λk2

)m+ν2

Γ(dk1+dk2+v0−l−m)(
1+

(
1

ν0+ν1
Λk1+ 1

ν0+ν2
Λk2

))dk1+dk2+v0−l−m
Γ(l+ν1)(

1+ 1
ν0+ν1

Λk1

)l+ν1
∑dk1
l=0

∑dk2
m=0

(
dk1
l

)(
dk2
m

)
Γ(l+ν1)(

1+ 1
ν0+ν1

Λk1

)l+ν1 Γ(m+ν2)(
1+ 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1+dk2+ν0−l−m)(
1+

(
1

ν0+ν1
Λk1+ 1

ν0+ν2
Λk2

))dk1+dk2+ν0−l−m
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Notably the factor c(l,m, ν0, ν1, ν2) is the same in all three expectations (5.5)–(5.7).

The M-step consists of estimating the updated baseline hazards Λ10(t),Λ20(t) and
coefficient vectors β1,β2, which maximize the complete data log-likelihood. This can
be done with existing software, e. g. using coxph() from the R package survival,
incorporating the logarithm of the expected frailties as offset into the cause-specific
hazards model, as in (2.28). The iterations stop once the change in observed data log-
likelihood is smaller than 0.000001.

Up until now the frailty parameters ν = (ν0, ν1, ν2) were fixed throughout the EM
iterations. The function optim() is used to find the optimal ν, maximizing the ob-
served data log-likelihood approximated with the EM-algorithm. The parameter space
is searched on the log-scale to avoid negative or zero values for the parameters, which
would give problems in the calculation.

To start the EM-algorithm five different sets of initial parameter estimates are cho-
sen in the following way. Frailty components for each center Zk0, Zk1, Zk2 are randomly
chosen from a log-normal distribution with means ν0, ν1, ν2 respectively. The variance
of the underlying normal distribution is set to 1. The initial regression parameters are
calculated, using the coxph() function from the R package survival (Therneau, 2015)
with the logarithm of the frailties as an offset. The log-normal distribution was chosen
not to allow for negative values.

During the E-step further quantities are calculated. For estimation of the standard
error of model estimates in Chapter 6 and computation of conditional variances of the
frailty components for Chapter 7, the following conditional expectations are calculated
similarly to (5.5)–(5.7):

E (Z2
k0|data k) =

∫
zk0

z2
k0f(zk0|data k)dzk0 (5.8)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
dk1 + dk2 + ν0 − l −m(

1 + 1
ν0+ν1

Λk1 + 1
ν0+ν2

Λk2

) dk1 + dk2 + ν0 − l −m+ 1(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)
E (Z2

k1|data k) =

∫
zk1

z2
k1f(zk1|data k)dzk1 (5.9)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
l + ν1(

1 + 1
ν0+ν1

Λk1

) l + ν1 + 1(
1 + 1

ν0+ν1
Λk1

)
E (Z2

k2|data k) =

∫
zk2

z2
k2f(zk2|data k)dzk2 (5.10)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
m+ ν2(

1 + 1
ν0+ν2

Λk2

) m+ ν2 + 1(
1 + 1

ν0+ν2
Λk2

)
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E (Zk0Zk1|data k) =

∫
zk1

∫
zk0

zk0zk1f(zk0, zk1|data k)dzk0dzk1 (5.11)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
dk1 + dk2 + ν0 − l −m(

1 + 1
ν0+ν1

Λk1 + 1
ν0+ν2

Λk2

) l + ν1(
1 + 1

ν0+ν1
Λk1

)
E (Zk0Zk2|data k) =

∫
zk2

∫
zk0

zk0zk2f(zk0, zk2|data k)dzk0dzk2 (5.12)

=

dk1∑
l=0

dk2∑
m=0

c(l,m, ν0, ν1, ν2)
dk1 + dk2 + ν0 − l −m(

1 + 1
ν0+ν1

Λk1 + 1
ν0+ν2

Λk2

) m+ ν2(
1 + 1

ν0+ν2
Λk2

)
The conditional variances and covariances of the frailty components for cause (j =

1, 2) are given as

Var (Zk0|data k) =E (Z2
k0|data k)− E (Zk0|data k)

2, (5.13)

Var (Zkj |data k) =E (Z2
kj |data k)− E (Zkj |data k)

2, (5.14)

Cov (Zk0, Zkj |data k) =E (Zk0Zkj |data k)− E (Zk0|data k)E (Zkj |data k). (5.15)
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Chapter 6

Estimation of the standard error

The previous chapter illustrated how to estimate parameters for the proposed competing
risks frailty model. For the interpretation of the results a measure of accuracy is needed.

The standard error measures the variation of population estimates over different
samples and gives an idea about the accuracy of the estimates, in our case the regression
and frailty parameters. Apart from being a measure by itself it also allows us to construct
confidence intervals for the parameters.

In this chapter we illustrate a method to calculate the covariance matrix for the esti-
mated parameters. We first discuss the structure of the covariance matrix in Section 6.1,
followed by a detailed explanation of the components in Section 6.2, and the derivation
of the standard error from the covariance matrix in Section 6.3.

6.1 Covariance matrix

To obtain the covariance matrix for the regression parameters, two approaches can be
used. One is based on the observed data log-likelihood (Korsgaard and Andersen, 1998).
The second approach stays within the EM-algorithm framework, using only deriva-
tives of the complete information log-likelihood (Louis, 1982). The latter approach
does not yet include the uncertainty that is caused by estimating the frailty parameters
ν = (ν0, ν1, ν2). Putter and Houwelingen (2015, supplementary material) propose the
following way of estimation.

Let η̂(ν) = (β̂
T
1 (ν), β̂

T
2 (ν), λ̂

T
10(ν), λ̂

T
20(ν))T denote the maximum likelihood esti-

mates (MLE) of the regression coefficients and baseline hazards given frailty parameters
ν, and ν̂ denote the MLE of ν maximizing the observed data log-likelihood. The com-
bined covariance matrix of log(ν̂), η̂ is given as

 Σνν Σνν

(
∂η̂(ν)
∂ν

)T(
∂η̂(ν)
∂ν

)
Σνν Σηη +

(
∂η̂(ν)
∂ν

)
Σνν

(
∂η̂(ν)
∂ν

)T
 , (6.1)
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where Σνν is the covariance matrix of log(ν), Σηη is the covariance matrix of η̂ and
∂η̂(ν)
∂ν are the partial derivatives of the regression parameters given ν. The term on the

bottom right of (6.1) represents the covariance of η̂(ν̂), where η̂(ν̂) is obtained using a
Taylor series of η̂(ν) and of the score functions of η̂(ν) and ν̂ around the MLEs. The
off diagonal terms are the covariance matrices of (log(ν̂), η̂(ν̂)) and can be derived in a
similarly way.

6.2 Covariance components

We compute the term Σνν from the Hessian matrix returned by the optim() function
in R, which is used to find the optimal log(ν). We proceed by inverting the negative of
the Hessian matrix, since the inverse of the observed profile information equals the ν
component of the full observed inverse information evaluated at (ν, η̂(ν)) (Young and
Smith, 2005, sec. 8.6.2).

The term ∂η̂(ν)
∂ν is approximated numerically. Since the regression parameters are

estimated by approximating the observed data log-likelihood through the EM-algorithm,
no closed form function is available to compute the derivative. The derivative around the
MLE is estimated by calculating the slope between parameters for values of ν close to
the MLE. Let ε > 0 be a small constant, then an estimate of ∂η̂(ν)

∂ν around ν̂ is computed
as follows

∂η̂(ν̂)

∂ν0
=
η̂((ν̂0 + ε/2, ν̂1, ν̂2))− η̂((ν̂0 − ε/2, ν̂1, ν̂2))

ε
, (6.2)

∂η̂(ν̂)

∂ν1
=
η̂((ν̂0, ν̂1 + ε/2, ν̂2))− η̂((ν̂0, ν̂1 − ε/2, ν̂2))

ε
, (6.3)

∂η̂(ν̂)

∂ν2
=
η̂((ν̂0, ν̂1, ν̂2 + ε/2))− η̂((ν̂0, ν̂1, ν̂2 − ε/2))

ε
. (6.4)

The term Σηη can be computed as described in Louis (1982). As discussed before this
approach works within the EM framework. It requires the gradient vector and second
derivative matrix of the complete data log-likelihood, but not the ones associated to the
incomplete data case.

The notation in this chapter follow that introduced in Chapter 5. Let x,w be the
complete data, x the incomplete data, ` and `∗ the corresponding log-likelihood functions.
Let R = {w : x(w) = x} denote the possible completions given the data, and θ the
parameters. Louis (1982) show that the gradient of the observed data log-likelihood can
be expressed by the gradient of the complete data log-likelihood:

∂

∂θ
`∗(θ|x) =E θ

(
∂

∂θ
`(θ|x,w)|w ∈ R

)
. (6.5)
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The second derivative can be expressed as

∂2

∂θ∂θ
`∗(θ|x) =E θ

(
∂2

∂θ∂θ
`(θ|x,w)|w ∈ R

)
(6.6)

+ E θ

(
∂

∂θ
`(θ|x,w)

∂

∂θ
`T (θ|x,w)|w ∈ R

)
− ∂

∂θ
`∗(θ|x)

∂

∂θ
`∗T (θ|x),

where at the MLE θ̂ the last term is zero, which is the only one depending on the
observed data gradient.

We can write the Fisher information for η̂ of the incomplete data in terms of the
complete data quantities as follows

Iηη(ν) =E ν

(
− ∂2

∂η∂η
`∗(η|data )

)
(6.7)

=E ν

(
− ∂2

∂η∂η
`(η|data ,W )|W ∈ R

)
− E ν

(
∂

∂η
`(η|data ,W )

∂

∂η
`T (η|data ,W )|W ∈ R

)
+

∂

∂η
`∗(η|data )

∂

∂η
`∗T (η|data ),

where W are the unobserved frailties. The last term of (6.7) is zero at the MLE ν̂. A
simplified notation for the Fisher information at the MLE is

I
(full)
ηη − I(loss)

ηη , (6.8)

where the first term represents the full information and the second term represents the
loss of information due to the missing data. The estimate of the Fisher information is
only of interest at the MLE ν̂. Its quantities need to be computed only for the last
iteration of the EM-algorithm, where the observed data gradient is zero. The covariance
matrix Σηη is derived by inversion Σηη = I−1

ηη .

To compute the second term in (6.7) corresponding to the loss of information, condi-
tional expectations of the product of frailty components are needed. Given data, frailty
components between centers are independent, however not anymore within center. The
conditional expectations for the product of frailty components of the same center are
computed as specified in (5.8)–(5.12).

6.3 Standard error

The standard error of the estimated regression parameters η can be calculated by taking
the square root of the corresponding diagonal elements of the covariance matrix (6.1).
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To obtain the standard error of the frailty variances and correlation we apply the multi-
variate delta method on Σνν . The delta method is a technique that uses a Taylor series
approximation of the transformation function g to approximate its moments, e. g. the
expectation or variance (Casella and Berger, 2001, sec. 5.6).

Let θ = (θ1, θ2, θ3) be the maximum likelihood estimates of the frailty parameters
on the log-scale, then

θ ∼ N(θ,Σνν). (6.9)

For the three transformation functions, corresponding to the frailty variances and cor-
relation follows

g1(θ) =
1

eθ1 + eθ2
∼N

(
θ,

∂

∂θ
g1(θ)Σνν

∂

∂θ
gT1 (θ)

)
, (6.10)

g2(θ) =
1

eθ1 + eθ3
∼N

(
θ,

∂

∂θ
g2(θ)Σνν

∂

∂θ
gT2 (θ)

)
, (6.11)

g3(θ) = eθ1
√

1

eθ1 + eθ2
1

eθ1 + eθ3
∼N

(
θ,

∂

∂θ
g3(θ)Σνν

∂

∂θ
gT3 (θ)

)
. (6.12)



Chapter 7

Results

In this chapter we will discuss the results of the model estimation. In Section 7.1 the
estimated regression parameters and frailty variances are discussed. The empirical Bayes
estimates of the frailties for each hospital and their corresponding confidence intervals
are investigated in Section 7.2.

7.1 Competing risks frailty model

In Table 7.1 the results for the competing risks frailty model with correlated frailties are
illustrated. The table shows the estimated regression coefficients, the hazard ratios, the
standard errors and corresponding 95% confidence intervals. The lower part of the table
shows the estimated frailty variances and correlation, as well as their standard errors
calculated as described in Section 6.3.

For transition 1 (ANED → LR) only age has a significant effect on moving to LR.
The age group < 40 has a significantly increased risk of moving to the state LR compared
to the baseline group, with a HR equal to 2.22 (1.036–4.776).

For transition 2 (ANED → DM/Death) nodal status has a significant and tumor
size a marginally significant effect on moving to DM/Death. A positive nodal status
significantly increased the risk of moving to the state DM/Death, with a HR equal to
1.65 (1.14–2.4). A larger tumor size has a marginally significant effect, increasing the
risk of moving to DM/Death, with a HR equal to 1.45 (0.998–2.102).

The HRs in this model are comparable to the HRs of the traditional competing risks
model in Table 3.2. However, the variation added by additionally estimating the frailties,
increased the standard errors and only two variables remain significant. Notably for both
transitions the confidence intervals for the effect of adjuvant radiotherapy are extremely
large, equal to (0.038–11.657) for transition 1 and (0.067–28.234) for transition 2. The
reason may be that only few patients did not receive adjuvant radiotherapy (2%, cf.
Table 3.1).

The variance of the frailty for transition 1 (ANED → LR) is equal to 0.047 with a
standard error of 0.024. For transition 2 (ANED → DM/Death) the frailty variance is
equal to 0.055 with a standard error of 0.031. The correlation of the frailties is estimated
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to be equal to 0.92 with a standard error of 0.084. This strong correlation indicates that
the unobserved covariates have a common effect on the two events, which implies that
the two risks are closely related. Unobserved covariates increasing the risk of one event
likely also increase the risk of the other event and covariates decreasing the risk of one
event decrease the risk of the other.

7.2 Empirical Bayes estimates

During the EM iterations we repeatedly estimate values for the unobserved frailties in
the E-step. The final completions are the empirical Bayes estimates for the frailties of
each hospital, which can be used to compare the hospital effects on disease progression.

Figures 7.1 and 7.2 show the empirical Bayes estimates of the frailties of each center
together with 95% confidence intervals, for event LR and DM/Death respectively. The
x-axis represents the hospitals sorted by the number of patients and the y-axis the
estimated frailties on the log-scale. A value equal 1 implies that there is no center effect.

The confidence intervals are computed from the conditional variances of the frailties,
which depend on the conditional variances and covariances of the frailty components
given in (5.13)–(5.15):

Var

(
Zk0 + Zk1

ν0 + ν1
|data k

)
=

1

(ν0 + ν1)2
(Var (Zk0|data k) + Var (Zk1|data k) (7.1)

+2Cov (Zk0, Zk1|data k))

Var

(
Zk0 + Zk2

ν0 + ν2
|data k

)
=

1

(ν0 + ν2)2
(Var (Zk0|data k) + Var (Zk2|data k) (7.2)

+2Cov (Zk0, Zk2|data k))

Figure 7.1 shows the frailties for the event LR. One can see that two hospitals (9 and
11) have a significantly increased risk for their patients to develop LR. One hospital (12)
has a significantly decreased risk for its patients to develop DM or die. Further we see
that the width of the confidence intervals decreases with a growing number of patients
in the hospital.

Figure 7.2 shows that two hospitals (9 and 11) have a significantly increased risk for
their patients to move to the state of DM/Death and one hospital (12) has a significantly
decreased risk for its patients to develop DM or die. One hospital (8) has a marginally
decreased risk for its patients to move to DM/Death. The width of the confidence
intervals again decreases as the number of patients per hospital increases.

To visualize the relation of the two frailties within a hospital we plot the empirical
Bayes estimates of the two frailties for each center against each other in Figure 7.3. The
x-axis represents the frailty of cause LR and the y-axis the frailty of cause DM/Death,
both on the log-scale. Each point in the plot represents one hospital. One can recognize
the strong correlation between the frailties as seen before in Table 7.1.

The hospital effects on a patient can be investigated by looking at the difference in
cumulative hazard and cumulative incidence between the hospitals. This is shown in
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Figure 7.1: Frailties and 95% confidence intervals for event LR of 14 centers, sorted by
number of patients.

Figures 7.4 and 7.5, for an average patient.
A pairwise comparison of cumulative incidence curves for an average patient treated

in two hospitals further illustrates the difference in effects. This is depicted in Figure
7.6, which shows the stacked cumulative incidence curves for an average patient treated
in the two most extreme hospitals. The hospitals are located at the top right and left
down of Figure 7.3. The prognosis shown in the left panel estimates a lower risk for both
events, compared to the right panel. This is explained by the high estimated correlation
between frailties (cf. Table 7.1) and the empirical Bayes estimates of the hospitals (cf.
Figure 7.3), which indicate that a hospital with a decreased risks for one cause also has
a decreased risk for the other cause. This makes the hospital corresponding to the left
panel more attractive.
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Figure 7.2: Frailties and 95% confidence intervals for event DM/Death of 14 centers,
sorted by number of patients.
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Figure 7.3: Frailties for the two causes of failure for 14 centers.
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Figure 7.4: Left panel: cumulative hazard for cause LR for an average patient where
each line represents a hospital. Right panel: cumulative hazard for cause DM/Death for
an average patient where each line represents a hospital.
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Chapter 8

Discussion and Conclusion

It is common practice to account for unobserved heterogeneity by incorporating a frailty
term in the analysis. This is particularly important in multi-center studies where data
is collected from several treatment centers. In some cases the heterogeneity between
centers may be the target of study.

The model presented in this thesis provides a comprehensive analysis of unobserved
heterogeneity in competing risks situations. An additive gamma frailty model is used to
allow for correlation between frailties. The amount of correlation indicates how closely
risks of competing events are related. Estimation of the model is conducted using the
EM-algorithm and a method to estimate standard errors for model estimates is illus-
trated. The estimation procedure simultaneously provides empirical Bayes estimates for
hospital frailties, which together with their confidence intervals can be used to com-
pare hospital effects. The method is applied on example data and a strong correlation
between the frailties of the competing events is detected.

A limitation of the method are large standard errors for the regression coefficients.
After adding the correlated frailties to the estimation for only two variables a significant
effect could be shown. However, when the goal is to investigate hospital heterogeneity,
the method discussed in this thesis provides a comprehensive analysis of hospital effects.

8.1 Future research

The introduced model covers the simplest competing risks situation, with two compet-
ing events. It could be extended to an arbitrary amount of competing events and even
be applied to multi-state models, in which transitions to intermediate events are possi-
ble. These models describe disease progression in a more accurate form and could give
additional inside in heterogeneity between hospitals.

To further investigate the performance of this model a simulation study could be
conducted. Unobserved covariates with common and cause-specific effects could be sim-
ulated with varying strength of effects inducing different amounts of correlation between
frailties. An interesting aspect would be to investigate the relationship between the
performance of the model and presence of correlation in the data.
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Appendix A

Probabilities for E-step

Let

• zkj ∼ Γ(vj , 1), (j = 0, 1, 2)

• dkj : number of failures in center k by cause (j = 1, 2)

• Λkj =
∑nk

i=1 Λj0(tki)e
βTj Xki , (j = 1, 2)

f(data k|zk0, zk1, zk2) =

nk∏
i=1

(
zk0 + zk1

ν0 + ν1
λ10(tki) exp(βT1 Xki)

)1{δki=1}
(
zk0 + zk2

ν0 + ν2
λ20(tki) exp(βT2 Xki)

)1{δki=2}

exp

(
−
(
zk0 + zk1

ν0 + ν1
Λ10(tki) exp(βT1 Xki) +

zk0 + zk2

ν0 + ν2
Λ20(tki) exp(βT2 Xki)

))

=(ν0 + ν1)−dk1 (ν0 + ν2)−dk2

dk1∑
l=0

(dk1

l

)
z
dk1−l
k0 zlk1

 dk2∑
m=0

(dk2

m

)
z
dk2−m
k0 zmk2


nk∏
i=1

[
(λ10(tki) exp(βT1 Xki))

1{δki=1} (λ20(tki) exp(βT2 Xki))
1{δki=2}

]
exp

(
−zk0

(
1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))
exp

(
−zk1

1

ν0 + ν1
Λk1

)
exp

(
−zk2

1

ν0 + ν2
Λk2

)

f(data k|zk0, zk2) =

∫
zk1

f(zk1)f(data k|zk0, zk1, zk2)dzk1

= (ν0 + ν1)−dk1 (ν0 + ν2)−dk2

 dk2∑
m=0

(dk2

m

)
z
dk2−m
k0 zmk2


nk∏
i=1

[
(λ10(tki) exp(βT1 Xki))

1{δki=1} (λ20(tki) exp(βT2 Xki))
1{δki=2}

]
exp

(
−zk0

(
1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))
exp

(
−zk2

1

ν0 + ν2
Λk2

)
1

Γ(ν1)

dk1∑
l=0

(dk1

l

)
z
dk1−l
k0

Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1
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f(data k|zk0) =

∫
zk2

f(zk2)f(data k|zk0, zk2)dzk2

=(ν0 + ν1)−dk1 (ν0 + ν2)−dk2
1

Γ(ν1)Γ(ν2)
nk∏
i=1

[
(λ10(tki) exp(βT1 Xki))

1{δki=1} (λ20(tki) exp(βT2 Xki))
1{δki=2}

]
exp

(
−zk0

(
1

ν0 + ν1
Λk1 +

1

ν0 + ν2
Λk2

))
dk1∑
l=0

dk2∑
m=0

(dk1

l

)(dk2

m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2
z
dk1+dk2−l−m
k0

f(data k) =

∫
zk0

f(zk0)f(data k|zk0)dzk0

=(ν0 + ν1)−dk1 (ν0 + ν2)−dk2
1

Γ(ν0)Γ(ν1)Γ(ν2)
nk∏
i=1

[
(λ10(tki) exp(βT1 Xki))

1{δki=1} (λ20(tki) exp(βT2 Xki))
1{δki=2}

]
dk1∑
l=0

dk2∑
m=0

(dk1

l

)(dk2

m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1

)l+ν1 Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + ν0 − l −m)(
1 + 1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

)dk1+dk2+ν0−l−m

f(data k|zk0, zk1) = (ν0 + ν1)−dk1 (ν0 + ν2)−dk2

dk1∑
l=0

(dk1

l

)
z
dk1−l
k0 zlk1


nk∏
i=1

[
(λ10(tki) exp(βT1 Xki))

1{δki=1} (λ20(tki) exp(βT2 Xki))
1{δki=2}

]
exp

(
−zk0

(
1
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1
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Λk2

))
exp

(
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1
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)
1

Γ(ν2)

dk2∑
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(dk2

m

)
z
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k0

Γ(m+ ν2)(
1 + 1
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Λk2

)m+ν2
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f(data k|zk1) =

∫
zk0

f(zk0)f(data k|zk0, zk1)dzk0

=(ν0 + ν1)−dk1 (ν0 + ν2)−dk2
1

Γ(ν0)Γ(ν2)
nk∏
i=1

[
(λ10(tki) exp(βT1 Xki))

1{δki=1} (λ20(tki) exp(βT2 Xki))
1{δki=2}

]
dk1∑
l=0

dk2∑
m=0

(dk1

l

)(dk2

m

) Γ(m+ ν2)(
1 + 1

ν0+ν2
Λk2

)m+ν2

Γ(dk1 + dk2 + v0 − l −m)(
1 +

(
1

ν0+ν1
Λk1 + 1

ν0+ν2
Λk2

))dk1+dk2+v0−l−m

zlk1 exp

(
−zk1

1

ν0 + ν1
Λk1

)

f(data k|zk2) =

∫
zk0

f(zk0)f(data k|zk0, zk2)dzk0

=(ν0 + ν1)−dk1 (ν0 + ν2)−dk2
1

Γ(ν0)Γ(ν1)
nk∏
i=1

[
(λ10(tki) exp(βT1 Xki))

1{δki=1} (λ20(tki) exp(βT2 Xki))
1{δki=2}

]
dk1∑
l=0

dk2∑
m=0

(dk1

l

)(dk2

m

) Γ(l + ν1)(
1 + 1

ν0+ν1
Λk1
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zmk2 exp

(
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1

ν0 + ν2
Λk2

)

f(zk0|data k) =
f(data k|zk0)f(zk0)

f(data k)

=
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l=0

∑dk2
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l

)(dk2
m

) Γ(l+ν1)(
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Λk2

)dk1+dk2+ν0−l−m

exp

(
−zk0

(
1 +

1

ν0 + ν1
Λk1 +
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ν0 + ν2
Λk2

))

f(zk1|data k) =
f(data k|zk1)f(zk1)

f(data k)

=
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Γ(dk1+dk2+v0−l−m)(
1+
(

1
ν0+ν1
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f(zk2|data k) =
f(data k|zk2)f(zk2)

f(data k)
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Appendix B

Observed information of
regression parameters

In the following the quantities needed for Iηη are described.
Let

• tkl, l = 1, ..., dk1: ordered event times for cause 1 in hospital k

• tkm,m = 1, ..., dk2: ordered event times for cause 2 in hospital k

• Λ10(tki) =
∑

tkl≤tki λ10(tkl)

• Λ20(tki)
∑

tkm≤tki λ20(tkm)

•
∑nk

i=1 e
βT1 XkiΛ10(tki) =

∑dk1
l=1 λ10(tkl)

∑
i:tki≥tkl e

βT1 Xki

•
∑nk

i=1 e
βT2 XkiΛ20(tki) =

∑dk2
m=1 λ20(tkm)

∑
i:tki≥tkm e

βT2 Xki

• dk1, dk2: number of failures of cause 1 and 2 in hospital k respectively

• d1, d2: number of failures of cause 1 and 2 in total respectively

• tl′ , (l′ = 1, ..., d1): ordered event times for cause 1

• tm′ , (m′ = 1, ..., d2): ordered event times for cause 2

• dkl′ : number of failures of cause 1 at time tl′ in hospital k

• dkm′ : number of failures of cause 2 at time tm′ in hospital k

• d1l′ : number of failures of cause 1 at time tl′

• d2m′ : number of failures of cause 2 at time tm′

• Rk(tl′) = {i : tkl ≥ tl′}: risk set at time tl′ for hospital k
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The complete data log-likelihood can expressed as

` =
∑
k

dk1 log(
zk0 + zk1

ν0 + ν1
) +

dk1∑
l=1

log(λ10(tkl)) +

dk1∑
l=1

βT1Xkl

− zk0 + zk1

ν0 + ν1

dk1∑
l=1

λ10(tkl)
∑

i:tki≥tkl

eβ
T
1 Xki

+ dk2 log(
zk0 + zk2

ν0 + ν2
) +

dk2∑
m=1

log(λ20(tkm)) +

dk2∑
m=1

βT2Xkm

− zk0 + zk2

ν0 + ν2

dk2∑
m=1

λ20(tkm)
∑

i:tki≥tkm

eβ
T
2 Xki .

The elements of the gradient vector of the complete data log-likelihood are:

∂

∂β1j

` =
∑
k

 dk1∑
l=1

Xklj −
zk0 + zk1

ν0 + ν1

dk1∑
l=1

λ10(tkl)
∑

i∈Rk(tkl)

Xkije
βT1 Xki


∂

∂β2j

` =
∑
k

 dk2∑
m=1

Xkmj −
zk0 + zk2

ν0 + ν2

dk2∑
m=1

λ20(tkm)
∑

i∈Rk(tkm)

Xkije
βT2 Xki


∂

∂λ10l′
` =

∑
k

 dkl′

λ10l′(tl′)
− zk0 + zk1

ν0 + ν1
dkl′

∑
i∈Rk(tl′ )

eβ
T
1 Xki


=

d1l′

λ10l′(tl′)
−
∑
k

zk0 + zk1

ν0 + ν1
dkl′

∑
i∈Rk(tl′ )

eβ
T
1 Xki

∂

∂λ20m′
` =

d2m′

λ20m′(tm′)
−
∑
k

zk0 + zk2

ν0 + ν2
dkm′

∑
i∈Rk(tm′ )

eβ
T
2 Xki
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The second order derivatives to calculate the full information matrix I(full) are:

∂2

∂β1j∂β1h

` =−
∑
k

zk0 + zk1

ν0 + ν1

dk1∑
l=1

λ10(tkl)
∑

i∈Rk(tkl)

XkijXkihe
βT1 Xki

∂2

∂β1j∂β2h

` =0

∂2

∂β1j∂λ10l′
` =−

∑
k

zk0 + zk1

ν0 + ν1
dkl′

∑
i∈Rk(tl′ )

Xkije
βT1 Xki

∂2

∂β1j∂λ20m′
` =0

∂2

∂β2j∂β2h

` =−
∑
k

zk0 + zk2

ν0 + ν2

dk2∑
m=1

λ20(tkm)
∑

i∈Rk(tkm)

XkijXkihe
βT2 Xki

∂2

∂β2j∂λ10l′
` =0

∂2

∂β2j∂λ20m′
` =−

∑
k

zk0 + zk2

ν0 + ν2
dkm′

∑
i∈Rk(tm′ )

Xkije
βT2 Xki

∂2

∂λ10p′∂λ10l′
` =0,

∂2

∂λ10l′∂λ10l′
` = − d1l′

λ10l′(tl′)2

∂2

∂λ10p′∂λ20m′
` =0

∂2

∂λ20p′∂λ20m′
` =0,

∂2

∂λ20m′∂λ20m′
` = − d2m′

λ20m′(tm′)2

Let

• X1j =
∑

k

∑dk1
l=1Xklj

• X2j =
∑

k

∑dk2
m=1Xklj

• Sk1j =
∑dk1

l=1 λ10(tkl)
∑

i∈Rk(tkl)
Xkije

βT1 Xki

• Sk2j =
∑dk2

m=1 λ20(tkm)
∑

i∈Rk(tkm)Xkije
βT2 Xki

• Sk1l′ = dkl′
∑

i∈Rk(tl′ )
eβ

T
1 Xki

• Sk2m′ = dkm′
∑

i∈Rk(tm′ )
eβ

T
2 Xki
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We re-wright the elements of the gradient vector:

∂

∂β1j

` =X1j −
∑
k

zk0 + zk1

ν0 + ν1
Sk1j

∂

∂β2j

` =X2j −
∑
k

zk0 + zk2

ν0 + ν2
Sk2j

∂

∂λ10l′
` =

d1l′

λ10l′(tl′)
−
∑
k

zk0 + zk1

ν0 + ν1
Sk1l′

∂

∂λ20m′
` =

d2m′

λ20m′(tm′)
−
∑
k

zk0 + zk2

ν0 + ν2
Sk2m′

The elements of the product of the gradient vector for I(loss) are:

∂

∂β1j

`
∂

∂β1h

` =X1jX1h −X1j

∑
k

zk0 + zk1

ν0 + ν1
Sk1h −X1h

∑
k

zk0 + zk1

ν0 + ν1
Sk1j

+
∑
k

∑
c

(zk0zc0 + zk0zc1 + zk1zc0 + zk1zc1)

(
1

ν0 + ν1

)2

Sk1hSc1j

∂

∂β1j

`
∂

∂β2h

` =X1jX2h −X1j

∑
k

zk0 + zk2

ν0 + ν2
Sk2h −X2h

∑
k

zk0 + zk1

ν0 + ν1
Sk1j

+
∑
k

∑
c

(zk0zc0 + zk0zc2 + zk1zc0 + zk1zc2)
1

ν0 + ν1

1

ν0 + ν2
Sk1jSc2h

∂

∂β1j

`
∂

∂λ10l′
` =X1j

d1l′

λ10l′(tl′)
−X1j

∑
k

zk0 + zk1

ν0 + ν1
Sk1l′ −

d1l′

λ10l′(tl′)

∑
k

zk0 + zk1

ν0 + ν1
Sk1j

+
∑
k

∑
c

(zk0zc0 + zk0zc1 + zk1zc0 + zk1zc1)

(
1

ν0 + ν1

)2

Sk1jSc1l′

∂

∂β1j

`
∂

∂λ20m′
` =X1j

d2m′

λ20m′(tm′)
−X1j

∑
k

zk0 + zk2

ν0 + ν2
Sk2m′ −

d2m′

λ20m′(tm′)

∑
k

zk0 + zk1

ν0 + ν1
Sk1j

+
∑
k

∑
c

(zk0zc0 + zk0zc2 + zk1zc0 + zk1zc2)
1

ν0 + ν1

1

ν0 + ν2
Sk1jSc2m′
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∂

∂β2j

`
∂

∂β2h

` =X2jX2h −X2j

∑
k

zk0 + zk2

ν0 + ν2
Sk2h −X2h

∑
k

zk0 + zk2

ν0 + ν2
Sk2j

+
∑
k

∑
c

(zk0zc0 + zk0zc2 + zk2zc0 + zk2zc2)

(
1

ν0 + ν2

)2

Sk2hSc2j

∂

∂β2j

`
∂

∂λ10l′
` =X2j

d1l′

λ10l′(tl′)
−X2j

∑
k

zk0 + zk1

ν0 + ν1
Sk1l′ −

d1l′

λ10l′(tl′)

∑
k

zk0 + zk2

ν0 + ν2
Sk2j

+
∑
k

∑
c

(zk0zc0 + zk0zc2 + zk1zc0 + zk1zc2)
1

ν0 + ν1

1

ν0 + ν2
Sk1l′Sc2j

∂

∂β2j

`
∂

∂λ20m′
` =X2j

d2m′

λ20m′(tm′)
−X2j

∑
k

zk0 + zk2

ν0 + ν2
Sk2m′ −

d2m′

λ20m′(tm′)

∑
k

zk0 + zk2

ν0 + ν2
Sk2j

+
∑
k

∑
c

(zk0zc0 + zk0zc2 + zk2zc0 + zk2zc2)

(
1

ν0 + ν2

)2

Sk2jSc2m′

∂

∂λ10l′
`

∂

∂λ10p′
` =

d1l′

λ10l′(tl′)

d1p′

λ10p′(tp′)
− d1l′

λ10l′(tl′)

∑
k

zk0 + zk1

ν0 + ν1
Sk1p′

−
d1p′

λ10p′(tp′)

∑
k

zk0 + zk1

ν0 + ν1
Sk1l′

+
∑
k

∑
c

(zk0zc0 + zk0zc1 + zk1zc0 + zk1zc1)

(
1

ν0 + ν1

)2

Sk1p′Sc1l′

∂

∂λ10l′
`

∂

∂λ20m′
` =

d1l′

λ10l′(tl′)

d2m′

λ20m′(tm′)
− d1l′

λ10l′(tl′)

∑
k

zk0 + zk2

ν0 + ν2
Sk2m′

− d2m′

λ20m′(tm′)

∑
k

zk0 + zk1

ν0 + ν1
Sk1l′

+
∑
k

∑
c

(zk0zc0 + zk0zc2 + zk1zc0 + zk1zc2)
1

ν0 + ν1

1

ν0 + ν2
Sk1l′Sc2m′

∂

∂λ20m′
`

∂

∂λ20p′
` =

d2m′

λ20m′(tm′)

d2p′

λ20p′(tp′)
− d2m′

λ20m′(tm′)

∑
k

zk0 + zk2

ν0 + ν2
Sk2p′

−
d2p′

λ20p′(tp′)

∑
k

zk0 + zk2

ν0 + ν2
Sk2m′

+
∑
k

∑
c

(zk0zc0 + zk0zc2 + zk2zc0 + zk2zc2)

(
1

ν0 + ν2

)2

Sk2p′Sc2m′
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Appendix C

R code

C.1 R code for model estimation through EM-algorithm

library(survival)

library(mstate)

library(numDeriv)

library(dynpred)

library(plyr)

setwd("/Users/anja/Desktop/Desktop/Uni Leiden/Thesis/material thesis")

load("Data.Rda")

# prepare data for analysis

# censore DM if at the same time as LR (81x)

data$event_DM[data$event_LR & data$event_DM &

data$time_LR == data$time_DM] <- 0

# combine events DM and death

data$event_DMsurv <- ifelse(data$event_surv | data$event_DM, 1, 0)

data$time_DMsurv <- ifelse(data$event_DM, data$time_DM, data$time_surv)

tmat <- transMat(x=list(c(2, 3), c(), c()),

names=c("ANED", "LR", "DM/Death"))

covs=c("center", "age", "size", "node", "surgery",

"CTperi", "CTadj", "RTadj")

longData <- msprep(data = data, trans = tmat,

time = c(NA, "time_LR", "time_DMsurv"),

status = c(NA, "event_LR", "event_DMsurv"),

keep = covs)

expandedData <- expand.covs(longData, covs, longnames=FALSE)

em <- function(lognu = c(0,0,0), last=FALSE) {

# calculates observed data log-likelihood with EM algorithm,

# if last=True returns final models instead of log-lik

# set up constant values valid for all hospitals
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print(exp(lognu))

nu0 <- exp(lognu[1])

nu1 <- exp(lognu[2])

nu2 <- exp(lognu[3])

stand1 <- 1/(nu0 + nu1)

stand2 <- 1/(nu0 + nu2)

log.stand1 <- log(stand1)

log.stand2 <- log(stand2)

center <- unique(data$center)

K <- length(center)

X <- as.matrix(expandedData[expandedData$trans==1,

c("age1.1", "age2.1", "size.1",

"node.1", "surgery.1", "CTperi.1",

"CTadj.1", "RTadj.1")])

eventtimes1 <- sort(unique(longData$time[longData$trans == 1 &

longData$status == 1]))

eventtimes2 <- sort(unique(longData$time[longData$trans == 2 &

longData$status == 1]))

# set up constant values for each hospital

datak1 <- datak2 <- dk1 <- dk2 <-

l <- m <- a1 <- a2 <- a3 <- wh1 <-

wh2 <- xk <- tk1 <- tk2 <- vector(’list’, K)

for(i in 1:K){

datak <- longData[longData$center == center[i],]

datak1[[i]] <- datak[datak$trans == 1,]

datak2[[i]] <- datak[datak$trans == 2,]

dk1[[i]] <- sum(datak1[[i]]$status)

dk2[[i]] <- sum(datak2[[i]]$status)

xk[[i]] <- X[data$center == center[i],]

l[[i]] <- matrix(0:dk1[[i]], nrow = dk1[[i]] + 1, ncol = dk2[[i]] + 1)

m[[i]] <- matrix(0:dk2[[i]], nrow = dk1[[i]] + 1, ncol = dk2[[i]] + 1,

byrow=TRUE)

a1[[i]] <- l[[i]] + nu1

a2[[i]] <- m[[i]] + nu2

a3[[i]] <- dk1[[i]] + dk2[[i]] + nu0 - l[[i]] - m[[i]]

wh1[[i]] <- which(datak1[[i]]$status == 1)

wh2[[i]] <- which(datak2[[i]]$status == 1)

tk1[[i]] <- match(datak1[[i]]$time[wh1[[i]]], eventtimes1)

tk2[[i]] <- match(datak2[[i]]$time[wh2[[i]]], eventtimes2)

}

obslik <- numeric(5)

models <- vector(’list’, 5)

for(j in 1:5){
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print(j)

# set up starting parameters for EM (5 times)

Zk0 <- exp(rnorm(K, lognu[1]-0.5,1))

Zk1 <- exp(rnorm(K, lognu[2]-0.5,1))

Zk2 <- exp(rnorm(K, lognu[3]-0.5,1))

longData$zk0 <- Zk0[match(longData$center, center)]

longData$zk1 <- Zk1[match(longData$center, center)]

longData$zk2 <- Zk2[match(longData$center, center)]

m.cause1 <- coxph(Surv(time, status)~ age + size + node +

surgery + CTperi + CTadj + RTadj +

offset(log((zk0 + zk1)*stand1)),

data = longData, subset = (trans == 1))

m.cause2 <- coxph(Surv(time, status)~ age + size + node +

surgery + CTperi + CTadj + RTadj +

offset(log((zk0 + zk2)*stand2)),

data = longData, subset = (trans == 2))

Lambda1 <- basehaz(m.cause1, centered=FALSE)

Lambda1 <- Lambda1[!duplicated(Lambda1$hazard),]

Lambda1 <- Lambda1[Lambda1$hazard != 0,]

Lambda2 <- basehaz(m.cause2, centered = FALSE)

Lambda2 <- Lambda2[!duplicated(Lambda2$hazard),]

Lambda2 <- Lambda2[Lambda2$hazard != 0,]

lambda1 <- diff(c(0, Lambda1$hazard))

lambda2 <- diff(c(0, Lambda2$hazard))

beta1 <- m.cause1$coef

beta2 <- m.cause2$coef

loglik.old <- 1

obs <- numeric(K)

repeat{

for(i in 1:K){

# E-step for hospital k

H10time <- evalstep(Lambda1$time, Lambda1$hazard,

newtime = datak1[[i]]$time, subst=0)

H20time <- evalstep(Lambda2$time, Lambda2$hazard,

newtime = datak2[[i]]$time, subst=0)

hr1 <- exp(xk[[i]]%*%beta1); hr2 <- exp(xk[[i]]%*%beta2)

st.Lambdak1 <- stand1*sum(H10time*hr1)

st.Lambdak2 <- stand2*sum(H20time*hr2)

b1 <- 1 + st.Lambdak1; b2 <- 1 + st.Lambdak2; b3 <- b1 + b2 - 1

tmp <- lchoose(dk1[[i]], l[[i]]) + lchoose(dk2[[i]], m[[i]]) +

(lgamma(a1[[i]]) - a1[[i]]*log(b1)) +

(lgamma(a2[[i]]) - a2[[i]]*log(b2)) +

(lgamma(a3[[i]]) - a3[[i]]*log(b3))
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maxtmp <- max(tmp)

tmp <- tmp - maxtmp

mat <- exp(tmp)

clm <- mat/sum(mat)

Zk0[i] <- sum(clm*(a3[[i]]/b3))

Zk1[i] <- sum(clm*(a1[[i]]/b1))

Zk2[i] <- sum(clm*(a2[[i]]/b2))

# likelihood contribution of hospital k

obs[i] <- (dk1[[i]]*log.stand1 + dk2[[i]]*log.stand2 -

lgamma(nu0) - lgamma(nu1) - lgamma(nu2)) +

sum(log(lambda1[tk1[[i]]]*hr1[wh1[[i]]])) +

sum(log(lambda2[tk2[[i]]]*hr2[wh2[[i]]])) +

log(sum(mat)) + maxtmp

}

loglik <- sum(obs)

delta <- loglik.old - loglik

cat("Log-lik =", loglik, ", delta =", delta, "\n")

if(abs(delta) < 1e-6) break

loglik.old <- loglik

# M-step

longData$zk0 <- Zk0[match(longData$center, center)]

longData$zk1 <- Zk1[match(longData$center, center)]

longData$zk2 <- Zk2[match(longData$center, center)]

m.cause1 <- coxph(Surv(time, status)~ age + size + node +

surgery + CTperi + CTadj + RTadj +

offset(log((zk0 + zk1)*stand1)),

data = longData, subset = (trans == 1))

m.cause2 <- coxph(Surv(time, status)~ age + size + node +

surgery + CTperi + CTadj + RTadj +

offset(log((zk0 + zk2)*stand2)),

data = longData, subset = (trans == 2))

Lambda1 <- basehaz(m.cause1, centered = FALSE)

Lambda1 <- Lambda1[!duplicated(Lambda1$hazard),]

Lambda1 <- Lambda1[Lambda1$hazard != 0,]

Lambda2 <- basehaz(m.cause2, centered = FALSE)

Lambda2 <- Lambda2[!duplicated(Lambda2$hazard),]

Lambda2 <- Lambda2[Lambda2$hazard != 0,]

lambda1 <- diff(c(0, Lambda1$hazard))

lambda2 <- diff(c(0, Lambda2$hazard))

beta1 <- m.cause1$coef

beta2 <- m.cause2$coef

}

obslik[j] <- loglik
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models[[j]] <- list(m.cause1 = m.cause1, m.cause2 = m.cause2)

}

m.index <- which.max(obslik)

ifelse(last == FALSE, return(obslik[m.index]),

return(c(models[[m.index]], longData)))

}

param <- function(lognu){

# returns frailty variances and correlation

nu <- exp(lognu)

nu0<- nu[1]

nu1<- nu[2]

nu2<- nu[3]

var1<-1/(nu0+nu1)

var2<-1/(nu0+nu2)

corr<-nu0*sqrt(var1*var2)

return(list(nu=nu,var1=var1,var2=var2,corr=corr))

}

C.2 R code for estimation of standard error

i.param <- function(lognu, m.cause1, m.cause2) {

# calculate information matrix for regression parameters

nu0 <- exp(lognu[1])

nu1 <- exp(lognu[2])

nu2 <- exp(lognu[3])

X <- model.matrix(m.cause1)

Lambda1 <- basehaz(m.cause1, centered=FALSE)

Lambda1 <- Lambda1[!duplicated(Lambda1$hazard),]

Lambda1 <- Lambda1[Lambda1$hazard != 0,]

Lambda2 <- basehaz(m.cause2, centered=FALSE)

Lambda2 <- Lambda2[!duplicated(Lambda2$hazard),]

Lambda2 <- Lambda2[Lambda2$hazard != 0,]

lambda1 <- diff(c(0, Lambda1$hazard))

lambda2 <- diff(c(0, Lambda2$hazard))

beta1 <- m.cause1$coef

beta2 <- m.cause2$coef

stand1 <- 1/(nu0 + nu1)

stand2 <- 1/(nu0 + nu2)

log.stand1 <- log(stand1)

log.stand2 <- log(stand2)

center <- unique(data$center)
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K<-length(center)

loglik.old <- 1

Zk0 <- numeric(K)

Zk1 <- numeric(K)

Zk2 <- numeric(K)

obs <- numeric(K)

#---------Quantities for I(full)---------#

n1 <- length(lambda1)

n2 <- length(lambda2)

n <- length(beta1)

eventtimes1 <- longData$time[longData$trans == 1 & longData$status == 1]

eventtimes2 <- longData$time[longData$trans == 2 & longData$status == 1]

d1l <- sapply(Lambda1$time, function(x) sum(eventtimes1 == x))

d2m <- sapply(Lambda2$time, function(x) sum(eventtimes2 == x))

ddbetas1 <- matrix(0, nrow=n, ncol=n)

ddbetas2 <- matrix(0, nrow=n, ncol=n)

ddbetahaz1 <- matrix(0, nrow=n, ncol=n1)

ddbetahaz2 <- matrix(0, nrow=n, ncol=n2)

ddhaz1 <- -diag(d1l/(lambda1^2))

ddhaz2 <- -diag(d2m/(lambda2^2))

#---------Quantities for I(loss)---------#

Zk02 <- numeric(K)

Zk12 <- numeric(K)

Zk22 <- numeric(K)

Zk0Zk1 <- numeric(K)

Zk0Zk2 <- numeric(K)

Zk1Zk2 <- numeric(K)

X <- model.matrix(m.cause1)

d1 <- longData$status[longData$trans == 1] == 1

d2 <- longData$status[longData$trans == 2] == 1

X1 <- apply(X[d1,], 2, sum)

X2 <- apply(X[d2,], 2, sum)

dl <- d1l/lambda1

dm <- d2m/lambda2

S1 <- matrix(0, nrow = K, ncol = n)

S2 <- matrix(0, nrow = K, ncol = n)

Sl1 <- matrix(0, nrow = K, ncol = n1)

Sl2 <- matrix(0, nrow = K, ncol = n2)

for(i in 1:K){

# Do a last E-step to get calculate all quantities

datak <- expandedData[expandedData$center == center[i],]

datak1 <- datak[datak$trans == 1,]

datak2 <- datak[datak$trans == 2,]
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dk1 <- sum(datak1$status)

dk2 <- sum(datak2$status)

H10time <- evalstep(Lambda1$time, Lambda1$hazard,

newtime = datak1$time, subst = 0)

H20time <- evalstep(Lambda2$time, Lambda2$hazard,

newtime = datak2$time, subst = 0)

xk <- X[data$center == center[i],]

hr1 <- exp(xk%*%beta1)

hr2 <- exp(xk%*%beta2)

st.Lambdak1 <- stand1*sum(H10time*hr1)

st.Lambdak2 <- stand2*sum(H20time*hr2)

l <- matrix(0:dk1, nrow = dk1 + 1, ncol = dk2 + 1)

m <- matrix(0:dk2, nrow = dk1 + 1, ncol = dk2 + 1, byrow = TRUE)

b1 <- 1 + st.Lambdak1

b2 <- 1 + st.Lambdak2

b3 <- b1 + b2 - 1

a1 <- l + nu1

a2 <- m + nu2

a3 <- dk1 + dk2 + nu0 - l - m

tmp <- lchoose(dk1,l) + lchoose(dk2,m) + (lgamma(a1) - a1*log(b1)) +

(lgamma(a2) - a2*log(b2)) + (lgamma(a3) - a3*log(b3))

maxtmp <- max(tmp)

tmp <- tmp - maxtmp

mat <- exp(tmp)

clm <- mat/sum(mat)

wh1 <- which(datak1$status == 1)

wh2 <- which(datak2$status == 1)

tk1 <- match(datak1$time[wh1], Lambda1$time)

tk2 <- match(datak2$time[wh2], Lambda2$time)

Zk0[i] <- sum(clm*(a3/b3))

Zk1[i] <- sum(clm*(a1/b1))

Zk2[i] <- sum(clm*(a2/b2))

#---------Contribution to I(full) for hospital i----------#

# create risks sets r1, r2

eventtimesk1 <- datak1$time[wh1]

eventtimesk2 <- datak2$time[wh2]

r1 <- lapply(eventtimesk1, function(x) which(datak1$time >= x))

r2 <- lapply(eventtimesk2, function(x) which(datak2$time >= x))

# calculate ddbetas

haz1 <- lambda1[tk1] # hazards at event times

haz2 <- lambda2[tk2]

ddbeta <- function(j, h, cause){ # contribution to ddbetas for hospital k

if(cause == 1){
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if(dk1 == 0) return(0)

return(-(Zk0[i] + Zk1[i])*stand1*

sum(haz1*sapply(r1, function(i) sum(hr1[i]*xk[i, j]*xk[i, h]))))

}else{

if(dk2 == 0) return(0)

return(-(Zk0[i] + Zk2[i])*stand2*

sum(haz2*sapply(r2, function(i) sum(hr2[i]*xk[i, j]*xk[i, h]))))

}

}

ddbeta <- Vectorize(ddbeta, vectorize.args = c(’j’, ’h’))

ddbetas1 <- ddbetas1 + outer(1:n, 1:n, ddbeta, 1)

ddbetas2 <- ddbetas2 + outer(1:n, 1:n, ddbeta, 2)

# calculate ddbetahazs

rl1 <- lapply(Lambda1$time, function(x) which(datak1$time >= x))

rl2 <- lapply(Lambda2$time, function(x) which(datak2$time >= x))

dkl <- sapply(Lambda1$time, function(x) sum(eventtimesk1 == x))

dkm <- sapply(Lambda2$time, function(x) sum(eventtimesk2 == x))

ddbetahaz <- function(j,cause){ # contribution to ddbetahaz for hospital k

if(cause == 1){

-(Zk0[i] + Zk1[i])*stand1*dkl*sapply(rl1, function(i) sum(xk[i, j]*hr1[i]))

}else{

-(Zk0[i] + Zk2[i])*stand2*dkm*sapply(rl2, function(i) sum(xk[i, j]*hr2[i]))

}}

ddbetahaz1 <- ddbetahaz1 + t(sapply(1:n, function(x) ddbetahaz(x, 1)))

ddbetahaz2 <- ddbetahaz2 + t(sapply(1:n, function(x) ddbetahaz(x, 2)))

#---------Contribution to I(loss)---------#

Zk02[i] <- sum(clm*(a3/b3)*((a3 + 1)/b3))

Zk12[i] <- sum(clm*(a1/b1)*((a1 + 1)/b1))

Zk22[i] <- sum(clm*(a2/b2)*((a2 + 1)/b2))

Zk0Zk1[i] <- sum(clm*(a3/b3)*(a1/b1))

Zk0Zk2[i] <- sum(clm*(a3/b3)*(a2/b2))

Zk1Zk2[i] <- sum(clm*(a1/b1)*(a2/b2))

sj <- function(j, cause){

if(cause == 1){

if(dk1 == 0) return(0)

return(sum(haz1*sapply(r1, function(i) sum(hr1[i]*xk[i, j]))))

}

if(cause == 2){

if(dk2 == 0) return(0)

return(sum(haz2*sapply(r2, function(i) sum(hr2[i]*xk[i, j]))))

}

}

S1[i,] <- sapply(1:n, function(j) sj(j, 1)) # hospital i beta 1
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S2[i,] <- sapply(1:n, function(j) sj(j, 2)) # hospital i beta 2

Sl1[i,] <- dkl*sapply(rl1, function(i) sum(hr1[i])) # hospital i lambda1 l

Sl2[i,] <- dkm*sapply(rl2, function(i) sum(hr2[i])) # hospital i lambda2 m

}

#---------I(full)---------#

m <- matrix(0, nrow=n, ncol=n)

m1 <- matrix(0, nrow=n, ncol=n1)

m2 <- matrix(0, nrow=n, ncol=n2)

m12 <- matrix(0, nrow=n1, ncol=n2)

I.full <- rbind(cbind(ddbetas1, m, ddbetahaz1, m2),

cbind(m, ddbetas2, m1, ddbetahaz2),

cbind(t(ddbetahaz1), t(m1), ddhaz1, m12),

cbind(t(m2), t(ddbetahaz2), t(m12), ddhaz2))

#---------I(loss)---------#

# calculate the gradient

db1 <-sapply(1:n, function(j) X1[j] - sum((Zk0 + Zk1)*stand1*S1[, j]))

db2 <-sapply(1:n, function(j) X2[j] - sum((Zk0 + Zk2)*stand2*S2[, j]))

dh1 <- sapply(1:n1, function(l) dl[l] - sum((Zk0 + Zk1)*stand1*Sl1[, l]))

dh2 <- sapply(1:n2, function(m) dm[m] - sum((Zk0 + Zk2)*stand2*Sl2[, m]))

S1ind <- (Zk0 + Zk1)*stand1*S1

S1corr <- (Zk02 + 2*Zk0Zk1 + Zk12)*stand1^2*S1

S2ind <- (Zk0 + Zk2)*stand2*S2

S2corr <- (Zk02 + 2*Zk0Zk2 + Zk22)*stand2^2*S2

S12corr <- (Zk02 + Zk0Zk2 + Zk0Zk1 + Zk1Zk2)*stand1*stand2*S1

S21corr <- (Zk02 + Zk0Zk2 + Zk0Zk1 + Zk1Zk2)*stand1*stand2*S2

Sl1ind <- (Zk0 + Zk1)*stand1*Sl1

Sl1corr <- (Zk02 + 2*Zk0Zk1 + Zk12)*stand1^2*Sl1

Sl12corr <- (Zk02 + Zk0Zk1 + Zk0Zk2 + Zk1Zk2)*stand1*stand2*Sl1

Sl2ind <- (Zk0 + Zk2)*stand2*Sl2

Sl2corr <- (Zk02 + 2*Zk0Zk2 + Zk22)*stand2^2*Sl2

db1db1 <- db1%*%t(db1) - t(S1ind)%*%S1ind + t(S1corr)%*%S1

db1db2 <- db1%*%t(db2) - t(S1ind)%*%S2ind + t(S12corr)%*%S2

db1dh1 <- db1%*%t(dh1) - t(S1ind)%*%Sl1ind + t(S1corr)%*%Sl1

db1dh2 <- db1%*%t(dh2) - t(S1ind)%*%Sl2ind + t(S12corr)%*%Sl2

db2db1 <- t(db1db2)

db2db2 <- db2%*%t(db2) - t(S2ind)%*%S2ind + t(S2corr)%*%S2

db2dh1 <- db2%*%t(dh1) - t(S2ind)%*%Sl1ind + t(S21corr)%*%Sl1

db2dh2 <- db2%*%t(dh2) - t(S2ind)%*%Sl2ind + t(S2corr)%*%Sl2

dh1db1 <- t(db1dh1)

dh1db2 <- t(db2dh1)

dh1dh1 <- dh1%*%t(dh1) - t(Sl1ind)%*%Sl1ind + t(Sl1corr)%*%Sl1
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dh1dh2 <- dh1%*%t(dh2) - t(Sl1ind)%*%Sl2ind + t(Sl12corr)%*%Sl2

dh2db1 <- t(db1dh2)

dh2db2 <- t(db2dh2)

dh2dh1 <- t(dh1dh2)

dh2dh2 <- dh2%*%t(dh2) - t(Sl2ind)%*%Sl2ind + t(Sl2corr)%*%Sl2

I.loss <- rbind(cbind(db1db1, db1db2, db1dh1, db1dh2),

cbind(db2db1, db2db2, db2dh1, db2dh2),

cbind(dh1db1, dh1db2, dh1dh1, dh1dh2),

cbind(dh2db1, dh2db2, dh2dh1, dh2dh2))

I <- -I.full - I.loss

#---------Empirical bayes and variances---------#

Wk1 <- (Zk0 + Zk1)*stand1

Wk2 <- (Zk0 + Zk2)*stand2

var.zk0 <- Zk02 - Zk0^2

var.zk1 <- Zk12 - Zk1^2

var.zk2 <- Zk22 - Zk2^2

cov.zk0zk1 <- Zk0Zk1 - Zk0*Zk1

cov.zk0zk2 <- Zk0Zk2 - Zk0*Zk2

sdWk1 <- sqrt((var.zk0 + var.zk1 + 2*cov.zk0zk1)*stand1^2)

sdWk2 <- sqrt((var.zk0 + var.zk2 + 2*cov.zk0zk2)*stand2^2)

empbayes <- data.frame(center = center, Wk1 = Wk1, Wk2 = Wk2,

sdWk1 = sdWk1, sdWk2 = sdWk2)

return(list(I = I, empbayes = empbayes))

}

#---------Find optimal nu and return final model---------#

set.seed(38317)

DMdeath <- optim(par = c(0, 0, 0), fn = em, control = list(fnscale = -1),

lower = c(-10, -10, -10), method = "L-BFGS-B", hessian = TRUE)

set.seed(06100205)

lognu <- DMdeath$par #lognu <- c(2.897764, 1.164795, -8.283077)

final <- em(lognu, last = TRUE)

m.cause1 <- final$m.cause1

m.cause2 <- final$m.cause2

#---------Caulculate covariance matrix of regression parameters---------#

info <- i.param(lognu, m.cause1, m.cause2)

info.param <- info$I

empbayes <- info$empbayes

confbayes <- info$confbayes

covparam <- solve(info.param)
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#---------Get dEta for covaraince matrix---------#

eps <- 0.00001

lognu01 <- lognu - c(eps/2, 0, 0)

lognu02 <- lognu + c(eps/2, 0, 0)

lognu11 <- lognu - c(0, eps/2, 0)

lognu12 <- lognu + c(0, eps/2, 0)

lognu21 <- lognu - c(0, 0, eps/2)

lognu22 <- lognu + c(0, 0, eps/2)

set.seed(2819849)

m01 <- em(lognu01, last = TRUE)

m02 <- em(lognu02, last = TRUE)

m11 <- em(lognu11, last = TRUE)

m12 <- em(lognu12, last = TRUE)

m21 <- em(lognu21, last = TRUE)

m22 <- em(lognu22, last = TRUE)

eta <- function(m){

# returns regression parameters from final models

Lambda1 <- basehaz(m$m.cause1, centered=FALSE)

Lambda1 <- Lambda1[!duplicated(Lambda1$hazard),]

Lambda1 <- Lambda1[Lambda1$hazard != 0,]

Lambda2 <- basehaz(m$m.cause2, centered = FALSE)

Lambda2 <- Lambda2[!duplicated(Lambda2$hazard),]

Lambda2 <- Lambda2[Lambda2$hazard != 0,]

lambda1 <- diff(c(0, Lambda1$hazard))

lambda2 <- diff(c(0, Lambda2$hazard))

beta1 <- m$m.cause1$coef

beta2 <- m$m.cause2$coef

return(c(beta1, beta2, lambda1, lambda2))

}

eta01 <- eta(m01)

eta02 <- eta(m02)

eta11 <- eta(m11)

eta12 <- eta(m12)

eta21 <- eta(m21)

eta22 <- eta(m22)

dEta <- cbind((eta01 - eta02)/eps,

(eta11 - eta12)/eps,

(eta21 - eta22)/eps)
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#---------Covariance for log(nu)---------#

set.seed(16072100)

covnu <- solve(-DMdeath$hessian)

#---------Combine to final covariance matrix---------#

final.cov <- rbind(cbind(covnu,covnu %*% t(dEta)),

cbind(dEta %*% covnu, covparam + dEta %*% covnu %*% t(dEta)))

#---------Calculate standard error of frailties---------#

nu <- exp(lognu)

nu0 <- nu[1]

nu1 <- nu[2]

nu2 <- nu[3]

dg1 <- c(-nu0/(nu0 + nu1)^2, -nu1/(nu0 + nu1)^2, 0)

dg2 <- c(-nu0/(nu0 + nu2)^2, 0, -nu2/(nu0 + nu2)^2)

sd1 <- sqrt(dg1%*%covnu%*%dg1)

sd2 <- sqrt(dg2%*%covnu%*%dg2)

dg3 <- c(0.5*nu0*((nu0 + nu1)*(nu0 + nu2))^(-3/2)*

(nu0*nu1+nu0*nu2+2*nu1*nu2),

0.5*nu0*nu1*((nu0 + nu1)^2*(nu0 + nu2)*

sqrt(1/((nu0 + nu1)*(nu0 + nu2))))^(-1),

0.5*nu0*nu2*((nu0 + nu1)*(nu0 + nu2)^2*

sqrt(1/((nu0 + nu1)*(nu0 + nu2))))^(-1))

sd3 <- sqrt(dg3%*%covnu%*%dg3)

# Confidence intervals

p <- param(lognu)

lv1 <- p$var1 - 1.96*sd1

uv1 <- p$var1 + 1.96*sd1

lv2 <- p$var2 - 1.96*sd2

uv2 <- p$var2 + 1.96*sd2

lcor <- p$corr - 1.96*sd3

ucor <- p$corr + 1.96*sd3

C.3 R code for tables and figures

#---------Competing risks model chapter 3---------#

m.comp <- coxph(Surv(time, status)~age1.1 + age2.1 + size.1 +

node.1 + surgery.1 + CTperi.1 + CTadj.1 + RTadj.1 +

#transition 2

age1.2 + age2.2 + size.2 + node.2 + surgery.2 +
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CTperi.2 + CTadj.2 + RTadj.2 +

strata(trans),

data = expandedData)

newData <- function(center = 0, age = 0, size = 0, node = 0, surgery = 0,

CTperi = 0, CTadj = 0, RTadj = 0){

data <- data.frame(trans=1:2,age1.1=0,age1.2=0,age2.1=0,age2.2=0,

size.1=0,size.2=0,

node.1=0,node.2=0,

surgery.1=0,surgery.2=0,

CTperi.1=0,CTperi.2=0,

CTadj.1=0, CTadj.2=0,

RTadj.1=0,RTadj.2=0,

center1.1=0,center1.2=0,center2.1=0,center2.2=0,

center3.1=0,center3.2=0,center4.1=0,center4.2=0,

center5.1=0,center5.2=0,center6.1=0,center6.2=0,

center7.1=0,center7.2=0,center8.1=0,center8.2=0,

center9.1=0,center9.2=0,center10.1=0,center10.2=0,

center11.1=0,center11.2=0,center12.1=0,center12.2=0,

center13.1=0,center13.2=0,

strata=1:2)

p <- as.matrix(data)

if(age==1) diag(p[,2:3]) <- 1

if(age==2) diag(p[,4:5]) <- 1

if(size==1) diag(p[,6:7]) <- 1

if(node==1) diag(p[,8:9]) <- 1

if(surgery==1) diag(p[,10:11]) <- 1

if(CTperi==1) diag(p[,12:13]) <- 1

if(CTadj==1) diag(p[,14:15]) <- 1

if(RTadj==1) diag(p[,16:17]) <- 1

if(center==1) diag(p[,18:19]) <- 1

if(center==2) diag(p[,20:21]) <- 1

if(center==3) diag(p[,22:23]) <- 1

if(center==4) diag(p[,24:25]) <- 1

if(center==5) diag(p[,26:27]) <- 1

if(center==6) diag(p[,28:29]) <- 1

if(center==7) diag(p[,30:31]) <- 1

if(center==8) diag(p[,32:33]) <- 1

if(center==9) diag(p[,34:35]) <- 1

if(center==10) diag(p[,36:37]) <- 1

if(center==11) diag(p[,38:39]) <- 1

if(center==12) diag(p[,40:41]) <- 1

if(center==13) diag(p[,42:43]) <- 1

data <- as.data.frame(p)
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return(data)

}

p1 <- newData(age=0,size=0,node=0,surgery=0,

CTperi=0,CTadj=0,RTadj=1)

p2 <- newData(age=2,size=1,node=1,surgery=1,

CTperi=0,CTadj=0,RTadj=0)

ord <- c(3:1)

par(mfrow=c(1,2))

msfitcox1<-msfit(object=m.comp,newdata=p1,vartype="aalen",trans=tmat)

ptcox1 <- probtrans(msfitcox1,predt = 0, method = "aalen")

plot(ptcox1, main="Cumulative incidence curves",type="filled", ord=ord,

xlab="Years since Surgery")

msfitcox2<-msfit(object=m.comp,newdata=p2,vartype="aalen",trans=tmat )

ptcox2 <- probtrans(msfitcox2,predt = 0, method = "aalen")

plot(ptcox2, main="Cumulative incidence curves",type="filled", ord=ord,

xlab="Years since Surgery")

#---------Nonparam cumulative hazards for each center---------#

CH1 <- survfit(Surv(time, status) ~ center,

data=longData, subset=(trans==1))

CH2 <- survfit(Surv(time, status) ~ center,

data=longData, subset=(trans==2))

par(mfrow=c(1,2))

plot(CH1, mark.time=FALSE, xlab="Years since surgery",ylim=c(0,0.75),

main="Cumulative hazard LR",fun="cumhaz",col=1:14)

plot(CH2, mark.time=FALSE, xlab="Years since surgery",ylim=c(0,0.75),

main="Cumulative hazard DM/Death",fun="cumhaz",col=1:14)

# combined for all centers

CH1 <- survfit(Surv(time, status) ~ 1,

data=longData, subset=(trans==1))

CH2 <- survfit(Surv(time, status) ~ 1,

data=longData, subset=(trans==2))

par(mfrow=c(1,2))

plot(CH1, mark.time=FALSE, xlab="Years since surgery",ylim=c(0,0.55),

main="Cumulative hazard LR",fun="cumhaz")

plot(CH2, mark.time=FALSE, xlab="Years since surgery",ylim=c(0,0.55),

main="Cumulative hazard DM/Death",fun="cumhaz")

#---------frailty model chapter 3---------#

m.LRDM <- coxph(Surv(time, status)~age+size+node+
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surgery+CTperi+CTadj+RTadj+

frailty(center, distribution="gamma"),

data=longData,subset=(trans==1))

m.surv <- coxph(Surv(time, status)~age+size+node+

surgery+CTperi+CTadj+RTadj+

frailty(center, distribution="gamma"),

data=longData,subset=(trans==2))

#common frailty:

m.commonf <- coxph(Surv(time, status)~age1.1+age2.1+size.1+

node.1+surgery.1+CTperi.1+CTadj.1+RTadj.1+

#transition 2

age1.2+age2.2+size.2+node.2+surgery.2+

CTperi.2+CTadj.2+RTadj.2+

+frailty(center, distribution="gamma")+strata(trans),

data=expandedFrailtyData)

#---------Competing risks frailty model confidence intervals chapter 7---------#

m.cause1 <- final$m.cause1

m.cause2 <- final$m.cause2

b <- round(sqrt(diag(final.cov)[4:19]),2)

l1 <- round(exp(m.cause1$coef - 1.96*b[1:8]), 3)

u1 <- round(exp(m.cause1$coef + 1.96*b[1:8]), 3)

l2 <- round(exp(m.cause2$coef - 1.96*b[9:16]), 3)

u2 <- round(exp(m.cause2$coef + 1.96*b[9:16]), 3)

ci1 <- paste(l1, u1, sep="-")

ci2 <- paste(l2, u2, sep="-")

p <- param(lognu)

lv1 <- round(p$var1 - 1.96*sd1, 2)

uv1 <- round(p$var1 + 1.96*sd1, 2)

lv2 <- round(p$var2 - 1.96*sd2, 2)

uv2 <- round(p$var2 + 1.96*sd2, 2)

lcor <- round(p$corr - 1.96*sd3, 2)

ucor <- round(p$corr + 1.96*sd3, 2)

civ1 <- paste(lv1, uv1, sep="-")

civ2 <- paste(lv2, uv2, sep="-")

cicor <- paste(lcor, ucor, sep="-")

#---------Empirical bayes chapter 7---------#

lognu <- c(2.897764, 1.164795, -8.283077)

nu <- exp(lognu)



84 APPENDIX C. R CODE

nu0<-nu[1]

nu1<-nu[2]

nu2<-nu[3]

Wk1 <- empbayes$Wk1

Wk2 <- empbayes$Wk2

sd1 <- empbayes$sdWk1

sd2 <- empbayes$sdWk2

center <- empbayes$center

K <- length(center)

#CIs for frailties

lower1 <- Wk1 - 1.96*sd1

upper1 <- Wk1 + 1.96*sd1

lower2 <- Wk2 - 1.96*sd2

upper2 <- Wk2 + 1.96*sd2

# sort by patient number

par(mfrow=c(1, 1))

ord <- order(table(data$center))

center.ord <- labels(table(data$center)[ord])[[1]][-1]

index <- match(center.ord,center,)

# cause 1

plot(Wk1[index], ylim=c(0.5, 2), xlim=c(0, 15),

log="y",

main="Empirical Bayes estimates for LR",

xlab="Center index",ylab="Frailty for LR")

for (i in 1:K){

lines(x=c(i,i), y=c(lower1[index][i],upper1[index][i]))

}

abline(h = 1, col = "red", lty = 2)

# cause 2

plot(Wk2[index], ylim=c(0.5,2), xlim=c(0, 15),

log="y",

main="Empirical Bayes estimates for DM/Death",

xlab="Center index",ylab="Frailty for DM/Death")

for (i in 1:K){

lines(x=c(i,i), y=c(lower2[index][i],upper2[index][i]))

}

abline(h = 1, col = "red", lty = 2)

# both causes
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plot(Wk1, Wk2, log="xy", ylim=c(0.7,1.6),xlim=c(0.7,1.6),

main="Empirical Bayes estimates for both causes",

xlab="Frailty of LR",ylab="Frailty of DM/Death")

#---------create average patient---------#

X <- model.matrix(m.cause1)

x <- apply(X,2,mean)

average.p <- function(hosp=0){

p.data <- data.frame(trans=1:2,age1.1=0,age1.2=0,age2.1=0,age2.2=0,

size.1=0,size.2=0,

node.1=0,node.2=0,

surgery.1=0,surgery.2=0,

CTperi.1=0,CTperi.2=0,

CTadj.1=0, CTadj.2=0,

RTadj.1=0,RTadj.2=0,

wk1.1=0,wk1.2=0,wk2.1=0,wk2.2=0,

strata=1:2)

p <- as.matrix(p.data)

diag(p[,2:3]) <- x[1]

diag(p[,4:5]) <- x[2]

diag(p[,6:7]) <- x[3]

diag(p[,8:9]) <- x[4]

diag(p[,10:11]) <- x[5]

diag(p[,12:13]) <- x[6]

diag(p[,14:15]) <- x[7]

diag(p[,16:17]) <- x[8]

diag(p[,18:19]) <- Wk1[hosp]

diag(p[,20:21]) <- Wk2[hosp]

p.data <- as.data.frame(p)

return(p.data)

}

#---------Stacked cumulative incidences for avarage patient chapter 7---------#

longFrailtyData <- data.frame(final[3:21])

covs=c("center","age","size","node","surgery",

"CTperi","CTadj","RTadj","lwk1","lwk2")

tmat <- transMat(x=list(c(2,3),c(),c()),

names=c("ANED","LR","DM/Death"))

longData$lwk1 <- log((longFrailtyData$zk0 + longFrailtyData$zk1)/(nu0 + nu1))

longData$lwk2 <- log((longFrailtyData$zk0 + longFrailtyData$zk2)/(nu0 + nu2))

expandedFrailtyData <- expand.covs(longData, covs, longnames=FALSE)
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m.final <- coxph(Surv(time, status)~age1.1+age2.1+size.1+

node.1+surgery.1+CTperi.1+CTadj.1+RTadj.1+

#transition 2

age1.2+age2.2+size.2+node.2+surgery.2+

CTperi.2+CTadj.2+RTadj.2+

offset(lwk1.1+lwk2.2)+strata(trans),

data=expandedFrailtyData)

par(mfrow=c(2,2))

p1 <- average.p(which.min(empbayes$Wk1))

p2 <- average.p(which.max(empbayes$Wk1))

ord <- c(3:1)

par(mfrow=c(1,2))

msfitcox1<-msfit(object=m.final,newdata=p1,vartype="aalen",trans=tmat)

msfitcox1$Haz$Haz[(msfitcox1$Haz)$trans==1] <- p1$wk1.1[1]*

msfitcox1$Haz$Haz[(msfitcox1$Haz)$trans==1]

msfitcox1$Haz$Haz[(msfitcox1$Haz)$trans==2] <- p1$wk2.2[2]*

msfitcox1$Haz$Haz[(msfitcox1$Haz)$trans==2]

ptcox1 <- probtrans(msfitcox1,predt = 0, method = "aalen")

plot(ptcox1, main="Cumulative incidence curves",type="filled",

ord=ord, xlab="Years since Surgery")

msfitcox2<-msfit(object=m.final,newdata=p2,vartype="aalen",trans=tmat )

msfitcox2$Haz$Haz[(msfitcox2$Haz)$trans==1] <- p2$wk1.1[1]*

msfitcox2$Haz$Haz[(msfitcox2$Haz)$trans==1]

msfitcox2$Haz$Haz[(msfitcox2$Haz)$trans==2] <- p2$wk2.2[2]*

msfitcox2$Haz$Haz[(msfitcox2$Haz)$trans==2]

ptcox2 <- probtrans(msfitcox2,predt = 0, method = "aalen")

plot(ptcox2, main="Cumulative incidence curves",type="filled",

ord=ord, xlab="Years since Surgery")

#---------Cumulative hazards for average patient in all centers---------#

m.cause1 <- final$m.cause1

m.cause2 <- final$m.cause2

X <- model.matrix(m.cause1)

x <- apply(X,2,mean)

Lambda1 <- basehaz(m.cause1, centered=FALSE)

Lambda1 <- Lambda1[!duplicated(Lambda1$hazard),] # remove duplicate hazard values

Lambda1 <- Lambda1[Lambda1$hazard!=0,]

Lambda2 <- basehaz(m.cause2, centered=FALSE)

Lambda2 <- Lambda2[!duplicated(Lambda2$hazard),]

Lambda2 <- Lambda2[Lambda2$hazard!=0,]
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lambda1 <- diff(c(0,Lambda1$hazard))

lambda2 <- diff(c(0,Lambda2$hazard))

beta1 <- m.cause1$coef

beta2 <- m.cause2$coef

hr1 <- beta1%*%x

hr2 <- beta2%*%x

cumhaz1 <- Lambda1$hazard*hr1

cumhaz2 <- Lambda2$hazard*hr2

par(mfrow=c(1,2))

plot(Lambda1$time,cumhaz1*Wk1[1],col=1,type="l",

main="Cumulative hazards for LR",

xlab="Years since surgery",ylab="")

for(i in 2:length(center)){

lines(Lambda1$time,cumhaz1*Wk1[i],col=i)

}

plot(Lambda2$time,cumhaz2*Wk2[1],col=1,type="l",

main="Cumulative hazards for DM/Death",

xlab="Years since surgery",ylab="")

for(i in 2:length(center)){

lines(Lambda2$time,cumhaz2*Wk2[i],col=i)

}

#---------Cumulative incidences for average patient in all centers---------#

haz1 <- lambda1*hr1

haz2 <- lambda2*hr2

cumhaz1 <- Lambda1$hazard*hr1

cumhaz2 <- Lambda2$hazard*hr2

#create risk sets

l1<-vapply(Lambda2$time, function(x)

ifelse(any(which.max(which(Lambda1$time<=x))),

which.max(which(Lambda1$time<=x)),0),numeric(1))

l2<-vapply(Lambda1$time, function(x)

which.max(which(Lambda2$time<=x)),numeric(1))

par(mfrow=c(1,2))

plot(Lambda1$time,cumsum(haz1*Wk1[1]*

exp(-Wk1[1]*cumhaz1-Wk2[1]*cumhaz2[l2])),

col=1,type="l",

main="Cumulative incidence for LR",

xlab="Years since surgery",ylab="")

for(i in 2:length(center)){

lines(Lambda1$time,cumsum(haz1*Wk1[i]*

exp(-Wk1[i]*cumhaz1-Wk2[i]*cumhaz2[l2])),
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col=i)

}

plot(Lambda2$time, cumsum(haz2*Wk2[1]*

exp(-Wk1[1]*

ifelse(l1==0, 0, cumhaz1[l1])-Wk2[1]*cumhaz2)),

col=1,type="l", main="Cumulative incidence for DM/Death",

xlab="Years since surgery",ylab="")

for(i in 2:length(center)){

lines(Lambda2$time,cumsum(haz2*Wk2[i]*

exp(-Wk1[i]*

ifelse(l1==0,0,cumhaz1[l1])-Wk2[i]*cumhaz2)),

col=i)

}


