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Chapter 1

Introduction

In this thesis, we will analyze the cubic nonlinear Schrödinger (NLS) equation

i
∂Φ

∂t
+ ∆Φ + Φ|Φ|2 = 0, (1.1)

Φ(x, 0) = Φ0(x),x ∈ Rd, 2 < d < 4. (1.2)

The NLS is a useful model for many physical processes including nonlinear
optics, plasma physics and quantum theory, as well as forming the envelope
equation for many other important problems. The NLS is an example of a
unitary Hamiltonian partial differential equation, and during the evolution
of the solution Φ(x, t) both the mass

M =

∫

Rd

|Φ|2dx

and the Hamiltonian

H =

∫

Rd

(|∇Φ|2 − 1

2
|Φ|4)dx

remain unchanged.

It has been proved that in dimensions 4 > d ≥ 2, and if the Hamiltonian of
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the initial condition Φ0(x) is negative, there exists solutions that become in-
finite at a single point in a finite time T, forming a growing and increasingly
narrow peak [4]. We call this the ”blow-up”, in plasma physics this is called
a collapse and in nonlinear optics it corresponds to an extreme increase of
the field amplitude due to self-focusing of a laser beam. [1,6]

It has also been shown [4] that solutions of the NLS remain bounded for
d < 2, therefore d = 2 is so-called ”critical dimension”, with d > 2 called
”supercritical dimension”. For the critical case d = 2, there’s no self-similar
blowup solutions for NLS.

In 2007, G.Fibich and N.Gavish [3] presented a first study of singular vortex
solutions of the two-dimensional NLS.

The word ’vortex’ is widely known as a spinning, often turbulent, flow of
fluid, the motion of the fluid swirling rapidly around a center. In dynamical
systems, a solution which have the form

Φ(t, r, θ) = A(t, r)eimθ, Ar(t, 0) = 0 (1.3)

is called ’vortex’.

In the polar coordinate system, Φ satisfies

∆Φ =
∂2Φ

∂r2
+

d− 1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
. (1.4)

Since then the equation (1.1) becomes

i
∂Φ

∂t
+

∂2Φ

∂r2
+

d− 1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
+ Φ|Φ|2 = 0, Φr(t, 0, θ) = 0. (1.5)

In this equation, the dimension d can take non-integer values. In other words,
d can now be considered as a bifurcation parameter. The solution Φ can also
be considered as a function of d.

Many previous works investigated the solutions for m = 0 which are only
depend on r (radially symmetric case)[1,2,6,7]. There is numerical evidence
that there appears to be a single-bump, self-similar, blowup solution [6,7]
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(it means that Φ can be written as a function depends on variables that are
functions of x and t) for each 2 < d ≤ 4 in terms of a locally unique quantity
that we will denote by a = a(d) (see later in this Chapter). Especially, for
solutions asymptotic to the blow-up, it is proved that their exist solutions
when a and d vary slowly with time where a → 0 and d → 2 as t → T , where
T is the blow-up time.

Some former works concentrate in the case that d is close to 2. Most of
them discussed the case that d− 2 = O(e−π/a) which is exponentially small
[1,2], but also the case when d is algebraically close to 2 that d − 2 = al is
considered [7].

In this paper, we will also concentrate in the critical limit of

d → 2+ (1.6)

but for the case m 6= 0. We will compare its behaviour with the radially
symmetric case.

We can find that the equation (1.5) is invariant under a change in the scale
of r, t and Φ such that

t 7→ λt, r → λ1/2r, Φ → λ−1/2Φ, θ → θ (1.7)

for some λ > 0.

Rescale

y =
|x|

L(t)
=

r

L(t)
, τ =

∫ t

0

1

L2(s)
ds, u(y, θ, τ) = L(t)Φ(x, θ, t) (1.8)

with some L(t) to be decided.

Then u satisfies

iuτ + (uyy +
d− 1

y
uy +

1

y2
uθθ) + |u|2u + ia(τ)(yu)y = 0. (1.9)

Where

a = −L
dL

dt
= − 1

L

dL

dτ
. (1.10)
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There is numerical evidence [2] that u has the form

u(y, θ, τ) = eiωτAm(y, θ). (1.11)

And also numerical evidence that we can take a as a positive constant, that
is,

L(t) =
√

2a(T − t). (1.12)

Since then the amplitude of u remains constant in time and as a sequence,
the rescaled system is no longer singular and can be simplified to something
which is independent of τ .

Since we can rescale ω by changing other coefficients it is convenient to
consider only ω ≡ 1.

Also τ can be calculated,

τ =

∫ t

0

1

L2(s)
ds =

∫ t

0

1

2a(T − t)
ds =

1

2a
log

T

T − t
. (1.13)

In previous work, C.J.Budd presented a simplified equation when Am(y, θ) =
Q(y) [1] and a ¿ 1. The equation is given by

Qyy +
(d− 1)

y
Qy + ia(yQ)y −Q + Q|Q|2 = 0. (1.14)

It is shown in [9] that there is a global solution Q(y) such that

Q(y) → 0, as y →∞. (1.15)

Theoretical study of (1.14) is given in [1], C. J. Budd gave an asymptotic de-
scription of a doubly countable set of multi-bump solutions Q(y) ≡ QK,J(y)
with (K, J) ∈ (0, 1, 2, 3, ..)× (0, 1, 2, 3, ..) and for which |QK,J(y)| has K + J
local maxima.
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He showed that if y is fixed and a → 0, d → 2 then QK,J(y) → RK(y),
where {RK(y)} is the set of solutions of the ODE

Ryy +
1

y
Ry −R + R3 = 0, Ry(0) = 0 R → 0 as y →∞ (1.16)

and RK(y) has precisely K − 1 zeros and K turning points [8]. For small a
the function |QK,J(y)| has J bumps with maxima located at the points κj/a,
with κj is to leading order 1 +O(a log(a)).

Now for the vortex case,

Am(y, θ) = Q(y)eimθ. (1.17)

The equation of Q can be calculated from (1.9),

Qyy +
(d− 1)

y
Qy + ia(yQ)y − (1 +

m2

y2
)Q + Q|Q|2 = 0. (1.18)

Consider that Q is only depend on y, and for every fixed r = r0, y → ∞
when t → T . Then we must have the initial condition

Q(y) → 0, as y →∞. (1.19)

Otherwise Φ will be infinite at r0 as t → T by definition of u. Since r0

arbitrary, it is contradict with what we assumed.

Also the amplitude of Am is symmetric in y, therefore y = 0 must be a
local maximum or minimum so that Am,y|y=0 = 0. Hence

Qy(0) = 0. (1.20)

And observe that Q has a phase invariance symmetry, that is, we can always
replace Q by Qeiϕ for some constant ϕ ∈ <. Thus without lost generality we
can take

Q(0) ∈ <. (1.21)

Thus the initial conditions are same with the radially symmetric case.

In this thesis, we will present an asymptotic analysis of the solution of (1.18)
when m 6= 0 and d → 2 with single peak.
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Chapter 2

How we construct the solution

2.1 Basic assumptions

As we mentioned in the previous chapter, there exist both analytical and nu-
merical results that in case for m = 0 and a is small, there exists a solution
with single peak and the peak lies at O(1/a) (Q0,1(y)). The width of bump
region is ¿ O(1/a). We look for the similar solution in case for m 6= 0. Thus
we assume that the peak lies at y = κ/a, with the O(1) parameter κ to be
calculated.

Figure 2.1 shows the graph of the solution of (1.18) when d = 2 but m 6= 0
[3], which has a similar shape as Q0,1(y). Hence we have strong motivation
to do the above assumptions and we can estimate the shape of solution. (see
Figure (2.2)).

2.2 Multiple Scale and Matching

To analyze the solution of (1.18) and derive the relationship between a, m
and d near d = 2, it is hard to investigate the solution directly in the whole
region. Thus we split it into different regions and approximate every regions
use different asymptotic analysis methods, and get different types of asymp-
totic approximations in different regions.
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Figure 2.1: The solution of (1.18) when d = 2 and for m=1,2,4 and 6 gener-
ated by Fibich and Gavish [3]

y0

|Q|

Bump region

Inner region           Far field

κ/a

Figure 2.2: Approximate shape of the solution
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It is important that we can link solutions together. Therefore, in the tran-
sition region between two regions we should expect that the two expansions
give the same result. We use the technique of matching developed in asymp-
totic analysis.

For instance consider Figure (2.2), we may intuitively split the whole re-
gion into three parts: Inner region, Bump region and Far field. There are
analytical evidences that |Q| is small at inner region in case m = 0, here we
assume that we also have this in case m 6= 0.

We also have to discuss the scale of m in terms of a. For instance, if
am = O(1) then some parts of the second term in the expansion may be
as large as the first term. The solution will be very different when m = O(1)
versus when m = O(1/a). We do not consider m À O(1/a).
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Chapter 3

The solution at inner region

In this chapter, we construct the inner region solution of (1.18) for y = O(1),
we have already assumed that |Q| is small in this region. Since Q is complex
it is common to use the amplitude and phase decomposition

Q(y) = A(y)eiθ(y). (3.1)

Thus, its derivative can also be calculated in terms of A and θ, we have

Qy = (Ay + iAθy)e
iθ(y), (3.2)

and

Qyy = (Ayy + 2iAyθy + iAθyy − Aθ2
y)e

iθ(y). (3.3)

Put into (1.18), then take the imaginary part

2Ayθy + Aθyy +
d− 1

y
Aθy + aA + ayAy = 0. (3.4)

Times Ay and put the third term to right-hand side we get

(A2θy + 2AyAyθy + A2yθyy) + (aA2y + ay2AAy) = −(d− 2)A2θy. (3.5)

Observe that the left−hand side is equal to the derivative of θyyA2+ay2A2/2.
Integrate both sides,

θy +
a

2
y = −(d− 2)

yA2

∫ y

0

θyA
2dy′. (3.6)
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By assumption d − 2 is small and Q(0) ∈ <, that is, θ(0) = 0, hence θ can
be estimated by

θ(y) ≈
∫ y

0

−ay′

2
dy′ = −ay2

4
. (3.7)

This motivates using the following decomposition:

Q(y) = P (y)e−iay2/4. (3.8)

Combine with (1.18) we have

Pyy +
d− 1

y
Py − (1 +

m2

y2
)P +

a2y2

4
P − ia(

d− 2

2
)P + P |P |2 = 0. (3.9)

By assumption we have that |P | is small in the inner region, thus the term
P |P |2 can be ignored. Then (3.9) can be simplified as

Pyy +
d− 1

y
Py − (1 +

m2

y2
)P +

a2y2

4
P − ia(

d− 2

2
)P = 0. (3.10)

For y is not large it is treated as a perturbation of Bessel equation

Pyy +
1

y
Py − (1 +

m2

y2
)P = 0 (3.11)

which is solved by linear combinations of modified Bessel functions Im(y)
and Km(y). Since Km(y) goes to infinity as y → 0 which is in contradiction
to the initial condition, we have to leading order

P (y) = α
√

2πIm(y). (3.12)

Here we put the
√

2π term together with a coefficient α in order to be more
convenient for calculation. We have asymptotically that

Im(0) = 0(m 6= 0) and
√

2πIm(y) → ey

√
y

as y →∞(m = O(1)). (3.13)
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Chapter 4

Behavior in the bump-region

4.1 The multi-bump solutions for m = O(1)

In this section we analyze the solution of (1.18) at multi-bump region. We
use a similar method with previous work to rescale (1.18) by setting

y = κ/a + s, (4.1)

where κ/a is the location of the peak we assumed.

Put into (1.18) then it satisfies

Qss −Q + iκQs + Q|Q|2 + ia(sQ)s + a
d− 1

κ + as
Qs − a2m2

(κ + as)2
Q = 0. (4.2)

Here we use the asymptotic expansion to solve this problem.

The method of asymptotic analysis is widely used in researching ODEs and
PDEs. The basic idea is that if there is a small parameter ε in the equation,
then we assume that the solution F can be written as

F = F0 + εαF1 + εβF2 + · · · , (4.3)

where the leading term F0 is much larger than the others and β > α > 0.
If we put the expansion into the initial equation and take only the leading
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order terms into account, we get an equation for the function F0 which is
not depend on ε. This is called the asymptotic approximation of the solution.

We always have to analyze not only the leading term, but also the second
term, third term...etc. And the values of parameters α and β should be de-
cided.

Now a is the small parameter, thus Q can be expressed by

Q(s) = Q0(s) + aQ1(s) + a2Q2(s) + · · · . (4.4)

We hereby consider the leading order of the solution. Let Q0(s) be the lead-
ing term of Q(s), then again we have to pay attention to the range of m.

If m ¿ O(1/a), then a2m2 ¿ O(1) will be small. Then

Q0,ss −Q0 + iκQ0,s + Q0|Q0|2 = 0. (4.5)

Do the rescaling

Q0(s) = e−iκs/2S0(s). (4.6)

Then the ordinary differential equation of S0 is

S0,ss − (1− κ2/4)S0 + S0|S0|2 = 0. (4.7)

This equation has been solved in [B00], the solution is unique up to a constant
of unit modulus, and is given by

S0(s) =
√

2(1− κ2/4) sech(
√

1− κ2/4 s). (4.8)

Consider for the shape of the solution, we must have S0 → 0 as |s| → ∞.
In other words, it should be 1 − κ2/4 > 0, otherwise the solution will be
oscillating.

Hence we have at peak s = 0

|S0(0)| = |Q0(κ/a)| =
√

2(1− κ2/4) (4.9)

to leading order.
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4.2 The multi-bump solutions for m = O(1/a)

If m = O(1/a), then a2m2 = O(1) will not be small anymore. Hence

Q0,ss −Q0 + iκQ0,s + Q0|Q0|2 +
4ρ2

κ2
Q0 = 0 (4.10)

where ρ = am/2.

Here we do the same rescaling as above, and get

S0,ss − (
4ρ2

κ2
+ 1− κ2/4)S0 + S0|S0|2 = 0. (4.11)

The solution is again unique similarly given by

S0(s) =

√
2(

4ρ2

κ2
+ 1− κ2/4) sech(

√
4ρ2

κ2
+ 1− κ2/4 s). (4.12)

Also we must have 4ρ2

κ2 + 1− κ2/4 > 0. And

|S0(0)| = |Q0(κ/a)| =
√

2(
4ρ2

κ2
+ 1− κ2/4). (4.13)

Remark: Note that for the case m = O(1/
√

a), in the leading order is equal
to the case m = O(1). But the solution for this case will be somehow differ-
ent in later discussion.
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Chapter 5

Locating the maxima

In this section we determine the value of κ, this is done by considering the
second term of (4.4). Here we must discuss the order of m more precisely. It
has been found for equation (4.2) that when m ¿ O(1/a), the term contains
m is trivial compare to the leading order of the equation (4.2). But consider
if m = O(1/

√
a), then a2m2 = O(a). Hence it is not small compare to the

second term.

5.1 In case m ¿ O(1/
√

a)

We begin with the simplest case m ¿ O(1/
√

a). In this case a2m2 is small
compared to both the first and the second term of equation (4.2). Since then
this case is the same as the m = 0 case which C.J.Budd done before[1].

Put (4.4) into (4.2) we get

Q1,ss −Q1 + iκQ1,s + 2Q1|Q0|2 + Q2
0Q1 = −i(sQ0)s − d− 1

κ
Q0,s. (5.1)

Do the similar rescaling as above

Q1(s) = e−iκs/2S1(s). (5.2)
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Thus Q1(s) = eiκs/2S1(s). Together with the similar relationship between
Q0(s) and S0(s) we get

S1,ss − (1− κ2/4)S1 + 2S1|S0|2 + S2
0S1 = −iS0 − isS0,s − κ

2
sS0 − d− 1

κ
S0,s.

(5.3)

Let t(s) be the real part of S1. Since S0 is real, the absolute value of S0 can
be replaced by itself. We get the ODE of t is

tss − (1− κ2/4)t + 3S2
0t = −κ

2
sS0 − d− 1

κ
S0,s ≡ f1(s). (5.4)

For the asymptotic expansion to be consistent we require |t| → 0 as |s| → ∞.
In order to solve (5.4), first consider the homogeneous equation

tss − (1− κ2/4)t + 3S2
0t = 0. (5.5)

The behavior of this equation has already been recognized. It has an odd,
exponentially decaying solution ψ1(s) = S0,s and a linearly independent,
exponentially growing, even valued solution ψ2(s). With ψ1(s) and ψ2(s)
having constant Wronskian W (see[B00]). Hence

ψ2(s) = S0,s

∫ s

0

dy

S2
0,y(y)

∼ exp(
√

1− κ2/4s) for large s. (5.6)

From the variation of constants formula, we can express t(s) by

t(s) = Aψ2(s) + A′ψ1(s)− ψ1

∫ s

0

ψ2f1

W
ds′ + ψ2

∫ s

0

ψ1f1

W
ds′ (5.7)

with some constants A and A′. Also ψ1 decays exponentially, so we can find

t(s) → (A− I/W )ψ2(s) as s →∞ (5.8)

t(s) → (A + I/W )ψ2(s) as s → −∞ (5.9)

where

I =

∫ ∞

0

f1ψ1ds = − 2

3κ
(1− κ2/4)1/2(1− κ2) (5.10)
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to leading order.

From the fact that |t| → 0 as |s| → ∞ and ψ2(s) grows exponentially, we
have A = 0 and I = 0. And also we already have that 1− κ2/4 > 0. Thus

κ = 1 (5.11)

is the leading order of maxima.

We do not have to consider the imaginary part of S1.

5.2 In case m = O(1/a)

For m = O(1/a), a2m2 = O(1) is significant. Again we put (4.4) into (4.2)
and get

Q1,ss −Q1 + iκQ1,s + 2Q1|Q0|2 + Q2
0Q1 = −i(sQ0)s − d− 1

κ
Q0,s − 8ρ2s

κ3
Q0.

Define S1 and t the same to above, hence

S1,ss − (1− κ2/4 + 4ρ2/κ2)S1 + 2S1|S0|2 + S2
0S1 =

−iS0 − isS0,s − κ

2
sS0 − d− 1

κ
S0,s.

We can write the differential equation of t

tss − (1− κ2/4 + 4ρ2/κ2)t + 3S2
0t =(−κ

2
− 8ρ2

κ3
)sS0 − d− 1

κ
S0,s

=− 2

κ
(κ2/4 + 4ρ2/κ2)sS0 − d− 1

κ
S0,s =: f2(S)

(5.12)

with

|t| → 0 as |s| → ∞. (5.13)
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The solution of homogeneous equation

tss − (1− κ2/4 + 4ρ2/κ2)t + 3S2
0t = 0 (5.14)

is given by ψ1(s) = S0,s and

ψ2(s) = S0,s

∫ s

0

dy

S2
0,y(y)

∼ exp(
√

1− κ2/4 + 4ρ2/κ2s) for large s. (5.15)

Also we can express the solution by

t(s) = Cψ2(s) + C ′ψ1(s)− ψ1

∫ s

0

ψ2f2

W
ds′ + ψ2

∫ s

0

ψ1f2

W
ds′ (5.16)

for some C and C ′.

And

t(s) → (C − J/W )ψ2(s) as s →∞ (5.17)

t(s) → (C + J/W )ψ2(s) as s → −∞ (5.18)

where

J =

∫ ∞

0

f2ψ1ds = − 2

3κ
(1− κ2/4 + 4ρ2/κ2)1/2(1− κ2 − 8ρ2

κ2
) (5.19)

to leading order.

Again we have C = 0 and J = 0. And also 1 − κ2/4 + 4ρ2/κ2 > 0 as
we mentioned before. Thus we have

1− κ2 − 8ρ2

κ2
= 0 (5.20)

at the peak.

We may rewrite above equation as

κ4 − κ2 + 8ρ2 = 0. (5.21)
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It has no solutions for ρ > 1
4
√

2
, and

κ =

√
1±

√
1− 32ρ2

2
(5.22)

otherwise.

This gives two κ that satisfy the conditions 1− κ2 − 8ρ2

κ2 = 0 and 1− κ2/4 +

4ρ2/κ2 = (1 − κ2 − 8ρ2

κ2 ) + 3κ2/4 + 12ρ2/κ2 > 0. Thus it maybe true that
there exists two possible solutions.

5.3 In case m = O(1/
√

a)

For special case m = O(1/
√

a), we take b = am2 = O(1). Again put (4.4)
into (4.2) and hence there will be one term more compare to (5.1)

Q1,ss −Q1 + iκQ1,s + 2Q1Q0Q0 + Q2
0Q1 = −i(sQ0)s − d− 1

κ
Q0,s +

b

κ2
Q0.

(5.23)

The calculation will be totally the similar way as m ¿ O(1/
√

a), the corre-
sponding equation will be

tss − (1− κ2/4)t + 3S2
0t = −κ

2
sS0 − d− 1

κ
S0,s +

b

κ2
S0 ≡ f3(s). (5.24)

And K (which corresponds to I) will be

K =

∫ ∞

0

f3S0,sds =
2

3κ
(1− κ2/4)1/2(1− κ2)− b

κ2
(1− κ2/4). (5.25)

It is difficult to give an explicit solution of κ given K = 0. But we can
implicitly give b as a function of κ

b =
2κ(1− κ2)

3
√

1− κ2/4
. (5.26)
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Figure 5.1: The function of b by κ

We plot this function (the horizontal axis is κ), we only take that b ≥ 0, since
when κ > 1, then b < 0, there is no solutions at κ > 1. Also if b greater than

the maximum
2(3−√7)

√
2
√

7−4

3
there will be no value for κ. This maximum

happens when κ =
√

3−√7 and it is approximately between 0.26 and 0.27.
For each b between 0 and the maximum there are two solutions of κ.
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Chapter 6

The WKB solution at far field

6.1 Rescaling

In this section we consider the behavior of equation (1.18) at far field, where
y − κ/a = O(1/a). As the value of y − κ/a becomes large, then the solution
computed in previous section decays exponentially. When this happens we
have simultaneously that y = O(1/a) and |Q| ¿ 1.

For this region, the term Q|Q|2 in equation (1.18) is small compared to
the other terms. Then (1.18) can be approximated by

Qyy +
(d− 1)

y
Qy + ia(yQ)y − (1 +

m2

y2
)Q = 0. (6.1)

In [1], the following rescaling was used,

Q(y) = e−iay2/4y(1−d)/2Z(y). (6.2)

The rescaled function Z(y) satisfies the ODE

−Z ′′ +
(
−a2y2

4
+ 1− ia(

d− 2

2
)− y1−d|Z|2 +

(d− 1)(d− 3)

4y2
− m2

y2

)
Z = 0.

(6.3)

Because y is large, d → 2 and |Q| is small, the terms ia(d−2
2

), y1−d|Z|2 and
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(d−1)(d−3)
4y2 are small compare to the term ’1’. Hence we may drop them out

and get

Z ′′ +
(

a2y2

4
− (1 +

m2

y2
)

)
Z = 0. (6.4)

6.2 A solution for m ¿ O(1/a)

It is also necessary to consider the order of m here. As we see in (6.4), if

m = O(1/a) and y = O(1/a) then a2y2

4
and m2

y2 will both be O(1).

But for m ¿ O(1/a) and y = O(1/a), the m2

y2 term is small, and equation

(6.4) becomes

Z ′′ + (
a2y2

4
− 1)Z = 0. (6.5)

In this section we first consider this case.

Introduce the rescaling parameter x by

x =
ay

2
. (6.6)

Change into x scale, then we have

Zxx +
4

a2
(x2 − 1)Z = 0. (6.7)

Equation (6.7) satisfies the condition to use the WKB method, which is
introduced in Appendix 1. For x < 1 and not close to 1, the WKB solution
is given by

Z(x) =
A+

(1− x2)1/4
e

2
a
g(x) +

A−
(1− x2)1/4

e−
2
a
g(x) (6.8)

where

g(x) =

∫ x

0

√
1− s2ds =

1

2
x
√

1− x2 +
1

2
sin−1(x), (6.9)

25



for some constants A+ and A−.

The turning point will be at x = 1, which is after the bump region. For
x > 1 and not close to 1, equation (6.8) becomes elliptic.

6.3 The solution for m = O(1/a)

For m = O(1/a), there is a parameter we set in section 4

ρ =
am

2
. (6.10)

Then this gives

Zxx +
4

a2
(x2 − ρ2

x2
− 1)Z = 0. (6.11)

Similarly equation (6.11) satisfies the condition to use the WKB method.

The turning point located where x2 − ρ2

x2 − 1 = 0, hence

x2 =
1

2
±

√
1

4
+ ρ2. (6.12)

There is only one real positive solution for (6.12)

x =

√
1

2
+

√
1

4
+ ρ2. (6.13)

It follows that the turning point will be at x0 =

√
1
2

+
√

1
4

+ ρ2. Recall that

we have the relation 4ρ2

κ2 + 1− κ2/4 > 0 derived in section 4, this gives that
κ < 2x0. Thus the turning point lies after the bump region.

For x < x0 and not close to x0, the WKB approximation is

Z(x) =
C+

(1 + ρ2

x2 − x2)1/4
e

2
a
f(x) +

C−
(1 + ρ2

x2 − x2)1/4
e−

2
a
f(x), (6.14)

26



where

f(x) =
1

2
ρ log(x2)− 1

2
ρ log(2ρ2 + 2ρ

√
x2 + ρ2 − x4 + x2)

+
1

2

√
x2 + ρ2 − x4 − 1

4
tan−1(

1− 2x2

2
√

x2 + ρ2 − x4
), (6.15)

for some constants C+ and C−. Also when x > x0 and not close to x0, the
solution becomes elliptic.
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Chapter 7

Solutions near the
turning-point

According to Appendix 1, the WKB methods will not be available when x is
close to the turning point. In this section we look for the solutions near the
turning point.

7.1 Solution when m ¿ O(1/a)

For m ¿ O(1/a), the turning point lies at x = 1. It can be approximated that
x2− 1 ≈ 2(x− 1) as x → 1. Since then, equation (6.7) can be approximated
by

Zxx =
8(1− x)

a2
Z. (7.1)

Let η = 2(1 − x)a−2/3, then we get Zηη = ηZ. Hence equation (7.1) can be
solved using Airy functions according to Appendix 2. The solution is given
by

Z(x) = β1Ai(η) + β2Bi(η). (7.2)
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Also by L’Hospital rule, here g(x) (which is defined in section 6.2) can be
estimated by

g(x) = g(1)−
∫ 1

x

√
2(1− x′)dx′ =

π

4
− 2

√
2

3
(1− x)3/2. (7.3)

7.2 Solution when m = O(1/a)

For m = O(1/a), when x is close to x0, we find that

lim
x→x0

1 +
ρ2

x2
− x2 = lim

x→x0

ρ2 + x2 − x4

x2
(7.4)

= lim
x→x0

−
(x2 − (1

2
+

√
1
4

+ ρ2))(x2 − (1
2
−

√
1
4

+ ρ2))

x2
0

= lim
x→x0

(x0 − x)(x0 + x)(x2
0 − (1

2
−

√
1
4

+ ρ2))

x2
0

= lim
x→x0

2(x0 − x)
√

1 + 4ρ2

x0

.

Since f ′(x) =
√

1 + ρ2

x2 − x2, we get from L’Hospital rule

f(x) = f(x0)− 2
√

2

3

(x0 − x)3/2(1 + 4ρ2)1/4

√
x0

(7.5)

for x → x−0 .

Then equation (6.11) can be written as

Zxx =
8(x0 − x)

√
1 + 4ρ2

a2x0

Z. (7.6)

According to Appendix 2, we let ζ = 2(1+4ρ2)1/6

x
1/3
0

x0−x
a2/3 , this gives

Zζζ = ζZ, (7.7)

which can also be solved in terms of Airy function that

Z(x) = α1Ai(ζ) + α2Bi(ζ). (7.8)
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Chapter 8

Matching

8.1 Intermediate region

At last, it is time to match solutions of different regions together. We intro-
duced how to match solutions in Section 2 briefly. Now we explain it in more
details.

First we introduce the intermediate region. As we know, we assumed that
y = O(1) at the inner region and |y − κ/a| ¿ O(1/a) at the bump-region,
but how about the region with both y = O(1/a) and κ/a− y = O(1/a) be-
tween these two regions? We define it by the ’intermediate region’ (see Figure
(8.1)). In this region, it is also true that |Q| ¿ O(1), hence the solution in
the intermediate region must be the same with the WKB solution at far field.

8.2 Matching the WKB solution with the multi-

bump solutions

In this subsection we consider the matching of the multi-bump solution with
the WKB solutions at both the intermediate region and far field. Here we
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y

|Q|

0

Bump region

          Far fieldInner region
intermediate

x0

Far field

s=0

Airy function region

κ/a

Figure 8.1: Different regions used for our matching

The intermediate region is the region where |Q| is small and
y = O(1) between the inner region and the bump region;

WKB method is used in both intermediate region and far field;
The Airy function region is the region where x close
to the turning point of the WKB Method at far field.
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set

t = x− κ/2 = as/2. (8.1)

8.2.1 If m ¿ O(1/a)

In the case of m ¿ O(1/a), rescale the WKB solution near the bump region
use the Taylor expansion of small t, equation (6.9) becomes

g(x) = g(κ/2) + tg′(κ/2)

=
1

4
κ
√

1− κ2/4 +
1

2
sin−1(

κ

2
) + t

√
1− κ2/4 +O(t2). (8.2)

Combine with (6.2) and (6.8), Q can to leading order be expressed in terms
of t by

Q(t) =
e−iκt/a

(1− κ2/4)1/4
(
a

κ
)(d−1)/2[A−e−

2
a
(g(κ/2)+t

√
1−κ2/4)

+ A+e
2
a
(g(κ/2)+t

√
1−κ2/4)]. (8.3)

In the other hand, recall the leading order Q0 and S0 in the bump region
which we computed in section 4.1, in terms of t it is given by

Q(t) = e−iκt/a
√

2(1− κ2/4) sech(
2

a

√
1− κ2/4 t). (8.4)

Here we look at the transition region where 0 < t = O(a1/2), in this region
the leading term of the multi-bump solution is given by

Q(t) = e−iκt/a2
√

2(1− κ2/4)e−
2
a

√
1−κ2/4 t. (8.5)

Expressions (8.3) and (8.5) can be perfectly matched when A+ = 0 and

A− = 2
√

2(1− κ2/4)3/4(
κ

a
)1/2e

2
a
g(κ/2). (8.6)

We also have to match the multi-bump solution with the WKB solution in

32



the intermediate region. This time we match the WKB solution when t → 0−
together with the bump solution where s → −∞.

Here the asymptotic behavior of WKB solution remains the same as above.
The approximation of multi-bump solution for s → −∞ is given by

Q(t) = e−iκt/a2
√

2(1− κ2/4)e
2
a

√
1−κ2/4 t. (8.7)

Hence match with equation (8.3) we get A− = 0 and

A+ = 2
√

2(1− κ2/4)3/4(
κ

a
)1/2e−

2
a
g(κ/2) (8.8)

where κ is given in section 5.1 and 5.3 for m = O(1) and m = O(1/
√

a)
respectively.

8.2.2 If m = O(1/a)

For m = O(1/a), use the Taylor expansion of (6.15) we get

f(x) =
1

2
ρ log(κ2/4)− 1

2
ρ log(2ρ2 + 2ρ

√
κ2/4 + ρ2 − κ4/16 + κ2/4)+

1

2

√
κ2/4 + ρ2 − κ4/16− 1

4
arctan(

1− κ2/2

2
√

κ2/4 + ρ2 − κ4/16
)

+ t

√
4ρ2

κ2
+ 1− κ2/4 (8.9)

=f(κ/2) + t

√
4ρ2

κ2
+ 1− κ2/4. (8.10)

Then the WKB expression for Q(y) becomes

Q(t) =
e−iκt/a

(4ρ2

κ2 + 1− κ2/4)1/4
(
a

κ
)(d−1)/2[C−e−

2
a
(f(κ/2)+t

q
4ρ2

κ2 +1−κ2/4)

+ C+e
2
a
(f(κ/2)+t

q
4ρ2

κ2 +1−κ2/4)]. (8.11)

The leading order of the solution in the multi-bump region is

Q(y) = e−iκ(y−κ/a)/2

√
2(

4ρ2

κ2
+ 1− κ2/4) sech(

√
4ρ2

κ2
+ 1− κ2/4(y − κ/a)).

(8.12)
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Again take 0 < t = O(a1/2) the multi-bump solution can be estimate by

Q(t) = e−iκt/a2

√
2(

4ρ2

κ2
+ 1− κ2/4)e−

2
a

q
4ρ2

κ2 +1−κ2/4 t. (8.13)

Then we get C+ = 0 and

C−(
4ρ2

κ2
+ 1− κ2/4)−1/4(

a

κ
)(d−1)/2e−

2
a
f(κ/2) =

√
2(

4ρ2

κ2
+ 1− κ2/4). (8.14)

So

C− = 2
√

2(
4ρ2

κ2
+ 1− κ2/4)3/4(

κ

a
)(d−1)/2e

2
a
f(κ/2). (8.15)

In the other side t < 0, the approximation of multi-bump solution becomes

Q(t) = e−iκt/a2

√
2(

4ρ2

κ2
+ 1− κ2/4)e−

2
a

q
4ρ2

κ2 +1−κ2/4 t. (8.16)

Match again, we get C− = 0 and

C+ = 2
√

2(
4ρ2

κ2
+ 1− κ2/4)3/4(

κ

a
)(d−1)/2e−

2
a
f(κ/2). (8.17)

Here κ is given in section 5.2.

8.3 Matching the WKB solution with the so-

lution near turning point

We’ve already derived the solution in a small neighborhood near the turning
point by Airy functions in Section 7. Since then we can match the asymptotic
behaviors of Airy functions at infinity with asymptotic behaviors of WKB
solutions near turning point together.
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8.3.1 If m ¿ O(1/a)

For m ¿ O(1/a), combine (6.8) and (7.3), also put A+ = 0 and we get that
when x → 1−, the WKB solution Z(x) is approximated by

Z(x) =
A−

(1− x2)1/4
e−

π
2a e

4
√

2
3a

(1−x)3/2

. (8.18)

From (B.5), for η → +∞ the asymptotic solution in terms of Airy functions
is given by

Z(x) =
1√
π

a1/6

21/4

1

(1− x)1/4
(
1

2
β1e

− 4
√

2
3a

(1−x)3/2

+ β2e
4
√

2
3a

(1−x)3/2

). (8.19)

Now we can match two solutions together. Then to leading order, the β1-
term gives no contribution and we’re not able to determine the value of β1

here. The constants A− and β2 can be related by

a1/6

√
π

β2 = e−π/2aA−. (8.20)

For the other side x → 1+, here the WKB solution becomes elliptic and the
amplitude monotone decreasing, it is noted in [1] that it must has form

Z(x) ∼ B

(1− x2)1/4
exp(

2i

a

∫ x

1

√
s2 − 1ds) (8.21)

with some constant B. By the approximation limx→1(x
2− 1) ≈ 2(x− 1) and

L’Hospital Rule, we have the estimation

Z(x) ≈ B

(2(1− x))1/4
e

4
√

2
3a

(x−1)3/2

. (8.22)

For Airy function we consider that η → −∞. Combine with (B.5) we have

Z(x) ∼ 1√
π

1

(−η)1/4
(β1 sin(

2

3
(−η)3/2 + π/4) + β2 cos(

2

3
(−η)3/2 + π/4)).

(8.23)
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Also since |Z| is monotone decreasing, the only possibility is that β1 = iβ2

and hence

Z(x) ≈ β2√
π

a1/6

(2(x− 1))1/4
ei(π

4
+ 4

√
2

3a
(x−1)3/2). (8.24)

Match two solutions for x → 1+ together, where we use that eiπ/4 = (eiπ)1/4 =
(−1)1/4, they are perfectly matched by

B =
β2a

1/6

√
π

. (8.25)

Combine with (8.20), it gives that

B = A−e−π/2a. (8.26)

8.3.2 If m = O(1/a)

In case m = O(1/a), let x → x−0 , the WKB solutions can be estimated by
combining (6.14) and (7.5)

Z(x) =
C−

(1 + ρ2

x2 − x2)1/4
e−

2
a
f(x0)e

4
√

2
3a

(x0−x)3/2(1+4ρ2)1/4
√

x0 . (8.27)

Here we have that ζ → +∞. From the asymptotic form of Airy function, we
get

Z(x) =
1√
π

a1/6

21/4

x
1/12
0

(x0 − x)1/4(1 + 4ρ2)1/24
(
1

2
α1e

− 4
√

2
3a

(x0−x)3/2(1+4ρ2)1/4
√

x0

+ α2e
4
√

2
3a

(x0−x)3/2(1+4ρ2)1/4
√

x0 ). (8.28)

Matching with the WKB term as x → x0, we can not determine α1 now but
we can get that

a1/6

√
π

α2 =
x

1/6
0

(1 + 4ρ2)1/12
e−

2
a
f(x0)C−. (8.29)
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For x > x0, ζ goes to −∞. The Airy function for large −ζ is asymptotic to

Z(x) ∼ 1√
π

1

(−ζ)1/4
(α1 sin(

2

3
(−ζ)3/2 + π/4) + α2 cos(

2

3
(−ζ)3/2 + π/4)).

(8.30)

Again |Z(x)| is monotone decreasing. Hence this is consistent with (8.30)
only when α1 = iα2 so that

Z(x) ∼ 1√
π

a1/6

21/4

x
1/12
0 α2

(x− x0)1/4(1 + 4ρ2)1/24
e

i(π
4
+ 4

√
2

3a
(x−x0)3/2(1+4ρ2)1/4

√
x0

)
. (8.31)

The WKB approximation for Z(x) is

Z(x) ≈ D

( ρ2

x2 + 1− x2)1/4
exp(

2i

a

∫ x

x0

√
s2 − ρ2

s2
− 1ds) (8.32)

≈ x
1/4
0 D

21/4(1 + 4ρ2)1/8(x0 − x)1/4
exp(

2i

a

∫ x

x0

√
s2 − ρ2

s2
− 1ds)

for some constant D. By similar approximation as (7.4), we have

lim
x→x0

(x2 − ρ2

x2
− 1) ≈ lim

x→x0

2(x− x0)
√

1 + 4ρ2

x0

. (8.33)

Also by L’Hospital Rule, we have

Z(x) ≈ x
1/4
0 D

21/4(1 + 4ρ2)1/8(x0 − x)1/4
e
( 4
√

2
3a

(x−x0)3/2(1+4ρ2)1/4
√

x0
)i
. (8.34)

Thus the two solutions again match perfectly by choosing

a1/6

√
π

α2 =
x

1/6
0 D

(1 + 4ρ2)1/12
. (8.35)

Combining this with the relation of C− and α2 gives

D = C−e−
2
a
f(x0). (8.36)
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8.4 Matching the solutions at infinity

In this section, we consider the solution for x À 1. Since x2 À 1 and
ρ2/x2 ¿ 1, the behavior of Z does not depend on the order of m. Hence in
this analysis it is not necessary to vary the magnitude.

The equation of Z(y) becomes

Z ′′ + (
a2y2

4
− 1)Z = 0. (8.37)

Since the behaviour of Q(y) is the same as the radially symmetric case, it
has already been widely investigated in previous work [1,6,7]. Following these
discussions, for large y the corresponding Q(y) have the following asymptotic
form

Q(y) = µy−1−i/a[1 + o(1)] = µy−1e−i log(y)/a[1 + o(1)] (8.38)

for some µ.

We hereby match (8.38) with (8.21) or (8.32) for x → ∞. We may esti-
mate (8.21) and (8.32) in the same way (B can be replaced by D when m is
large)

Z(x) ≈ Be−iπ/4x−1/2 exp

(
2i

a

∫ x
√

s2 − 1 +
1

4s2
ds

)
. (8.39)

Here to leading order the lower bound of the integration is not important
since the function is also large for x is large, also the term 1

4s2 can be omitted.
Thus we can write the approximation by

Z(x) ≈ Be−iπ/4x−1/2 exp

(
2i

a

∫ x

1

√
s2 − 1ds

)
= Bx−1/2 exp

(
2i

a
(
x2

2
− 1

2
log(2x))

)
.

(8.40)

Rescaling (8.38) to Z(x) we get

Z(x) ≈ µei(x2/a−log(2x/a)/a)(
2x

a
)−1/2. (8.41)

38



Hence we get relationship that

µ = (
2

a
)1/2 B µ = (

2

a
)1/2e−

2
a
g(or f)(x0)A−. (8.42)

Here B in the expressions can be replaced by D, and A− in the expressions
can be replaced by C− while g is replaced by f if m = O(1/a).

8.5 Matching solutions with inner region

Finally, we match the WKB solution in the intermediate region with the
Bessel solution at inner region. In section 3 we derived the leading order
solutions of inner region by

Q(y) = α
√

2πe−iay2/4Im(y). (8.43)

And the asymptotic expansion can be given by

Q(y) = α
√

2πe−iay2/4Im(y)(1− a2y3

24
+ · · · ). (8.44)

For the asymptotic behavior of Im we have two approximations [5] which we
will use:
If m ¿ O(1/

√
a), to leading order we have

Im(y) ∼ ey

√
2πy

. as |y| → ∞ (8.45)

If m = O(1/
√

a) or m = O(1/a), to leading order

Im(y) ∼ 1√
2πm

emν

(1 + y2/m2)1/4
, (8.46)

where ν =
√

1 + y2/m2 + log y

m+
√

m2+y2
.
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8.5.1 If m ¿ O(1/
√

a)

First consider if m ¿ O(1/
√

a). In section 8.2 we showed that the WKB
solution for this range of m is given by

Z(x) =
A+

(1− x2)1/4
e

2
a
g(x). (8.47)

We hereby match the WKB solution when x → 0 with Bessel solution for
y →∞. For small x we have

g(x) ∼ 1

2
x · 1 +

1

2
x = x. (8.48)

Then the approximation of WKB solution can be given by

Q ≈ e−iay2/4y−1/2A+e
2
a
x = A+e−iay2/4 ey

√
y
. (8.49)

Use (8.45) to estimate Bessel solution for large y, we have

Q ≈ α
√

2πe−iay2/4 ey

√
2πy

. (8.50)

We can see that these two solutions match perfectly if

α = A+. (8.51)

8.5.2 If m = O(1/
√

a)

In case m = O(1/
√

a), the approximation of WKB solution is same above.
On the other hand in inner region, we use (8.46) for the Bessel solution in-
stead of (8.45).

The expansion (8.44) is only available for y ¿ O(a−2/3). Hence we consider
the transition region O(1/

√
a) ¿ y ¿ O(a−2/3) and let z = y/m . Then z is

also large, (1+y2/m2)1/4 = (1+z2)1/4 ∼ z1/2 and ν =
√

1 + z2+log z
1+
√

1+z2 ∼
z + log z

z
= z. hence the approximation becomes

Im(y) ≈ emz

√
2πmz

=
ey

√
2πy

(8.52)
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which is also the same as m ¿ O(1/
√

a).

Thus both are the same as in subsection 8.6.1 and we match in a similar
way as done there.

8.5.3 If m = O(1/a)

Finally consider case m = O(1/a) which is more difficult. We must hereby
match in an transition region y = O(1/

√
a), here x = ay/2 = O(

√
a). By

transformation we get z = y/m = x/ρ is also small. Then

ν ≈ 1 + log
z

2
= 1 + log x− log 2ρ = 1 + log x− log(am). (8.53)

Hence

Q = α
√

2πe−iay2/4Im(y) ≈ α
(2e

ρ
)m · em log x

√
m

e−ix2/a. (8.54)

Note that the WKB solution in this range is given in terms of f(x) and C+.

Expression (6.15) gives the definition of f(x). When x is small the first
term of f(x) becomes −∞ while others remains O(1). Hence the first term
will dominate the rest. We get

2

a
f(x) ∼ 2

a
ρ log(x) = m log(x). (8.55)

Put into the WKB solution

Q = e−ix2/a(
2x

a
)−1/2 C+

(1 + ρ2

x2 − x2)1/4
e

2
a
f(x). (8.56)

This gives that to leading order

Q ≈ e−iay2/4C+em log(x)

√
ρ/x

√
y

= e−ix2/a C+em log(x)

√
m

. (8.57)

Since then, two solutions also match perfectly if

α = (
am

e
)mC+ = (

2ρ

e
)

2ρ
a C+. (8.58)
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8.6 Derive the relationship between d, m and

a

In this section we relate d to a and m. It is done by estimating µ from the
behavior of Q(y) at large y. For further discussion, we use amplitude and
phase decomposition of Q(y) again

Q(y) = A(y)eiθ(y). (8.59)

It has already been calculated in Chapter 3 that

θy +
a

2
y = −(d− 2)

yA2

∫ y

0

θyA
2dy′. (8.60)

For x À 1 we have

A ≈ µy−1 and θy ≈ −1/(ay). (8.61)

Hence θy is small and the leading order is

a

2
y = −(d− 2)y

µ2

∫ y

0

θyA
2dy′. (8.62)

Since θyA
2 = o(y−2) as y large, the integral converges for y →∞. Hence we

have

a

2
= −(d− 2)

µ2

∫ y

0

θyA
2dy′. (8.63)

So that

µ2 = −2(d− 2)

a

∫ ∞

0

θyA
2dy′. (8.64)

To estimate this integral, it is necessary to study the different cases of m
separately.
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8.6.1 If m ¿ O(1/a)

For m ¿ O(1/a), first we look at the solution (8.4) in the bump region.
Rescale it into y and in terms of amplitude and phase we get

A2(y) = 2(1− κ2/4)sech2(
√

1− κ2/4(y − κ/a)) and θy = −κ/2. (8.65)

Then θyA
2 = o(y−2) if both |y| and |y−κ/a| are large, hence the contribution

to the integral for large y is small. Also the amplitude at inner region is small.
Hence to leading order we have
∫ ∞

0

θyA
2dy′ = −

∫ ∞

−∞
κ(1− κ2/4)sech2(

√
1− κ2/4 s)ds = −2κ

√
1− κ2/4.

(8.66)

Hence

µ2 =
4(d− 2)

a
κ
√

1− κ2/4. (8.67)

Combine with

A− = 2
√

2(1− κ2/4)3/4(
κ

a
)1/2e

2
a
g(κ/2), (8.68)

we get

8(1− κ2/4)3/2(
κ

a
)d−1e

4
a
(g(κ/2)−π

4
) = 2(d− 2)κ

√
1− κ2/4. (8.69)

Thus

d− 2 =
β

ad−1
e−λ/a (8.70)

where

λ = 4(g(1)− g(κ/2)) = π − 2 sin−1(κ/2)− κ
√

1− κ2/4 (8.71)

and

β = 4κd−2(1− κ2/4). (8.72)

If m ¿ O(1/
√

a), then κ = 1. Hence we have β = 3 and

λ =
2π

3
−
√

3

2
. (8.73)
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8.6.2 If m = O(1/a)

For m = O(1/a). The leading order of integral (8.64) is

∫ ∞

0

θyA
2dy′ = −

∫ ∞

−∞
κ(1− κ2/4 + 4ρ2/κ2)sech2(

√
1− κ2/4 + 4ρ2/κ2 s)ds

(8.74)

= −2κ
√

1− κ2/4 + 4ρ2/κ2.

Thus

µ2 =
4(d− 2)

a
κ
√

1− κ2/4 + 4ρ2/κ2. (8.75)

This time combine with

C−(
4ρ2

κ2
+ 1− κ2/4)−1/4(

a

κ
)(d−1)/2e−

2
a
f(κ/2) =

√
2(

4ρ2

κ2
+ 1− κ2/4), (8.76)

then

8(
4ρ2

κ2
+ 1− κ2/4)3/2(

κ

a
)d−1e

4
a
(f(κ/2)−f(x0)) = 2(d− 2)κ

√
1− κ2/4 + 4ρ2/κ2.

(8.77)

Thus

d− 2 =
γ

ad−1
e−δ/a (8.78)

Where

δ = 4(f(x0)− f(κ/2)) = 4

∫ x0

κ/2

√
1− x2 + ρ2/x2dx (8.79)

and

γ = 4κd−2(1− κ2/4 + 4ρ2/κ2). (8.80)

Both of them must be positive.
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It is quite complicate to compute γ and δ precisely. For instance, if we

let κ =

√
1+
√

1−32ρ2

2
, combine with the expression of γ, we get

γ = 4(
1 +

√
1− 32ρ2

2
)

d−2
2 (

9

8
− 3

8

√
1− 32ρ2) (8.81)

and

δ =2ρ(log(1 +
√

1 + 4ρ2)− log(4ρ2 + 1 +
√

1 + 4ρ2))− π

2
− 2ρ(log(1 +

√
1− 32ρ2)

− log(16ρ2 + 1 +
√

1− 32ρ2 +
√

6ρ

√
1 +

√
1− 32ρ2))−

√
6

4

√
1 +

√
1− 32ρ2

+ arctan(
3−

√
1− 32ρ2

√
6 + 6

√
1− 32ρ2

), (8.82)

which only exist when

ρ ≤
√

2

8
. (8.83)

Note that we have that d − 2 is exponentially small in a for every order of
m.
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Chapter 9

Statement of Results

We hereby state the solutions of (1.18) in terms of Q and y.

9.1 Conditions of the solutions

We do not get the solution in every circumstance. Due to our work, if

m = O(1/
√

a) then solutions only exist when am2 ≤ 2(3−√7)
√

2
√

7−4

3
, if

m = O(1/a) then solutions only exist when am ≤ √
2/4.

9.2 For m = O(1)

The leading order of location of maxima is at 1/a.

At inner region, the leading order of solution is given by

Q(y) = A+

√
2πIm(y)e−iay2/4. (9.1)
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At bump region, the leading order of solution is given by

Q(y) =
√

3/2 sech(
√

3/4 (y − 1/a))e−i(y−1/a)/2. (9.2)

At far field, when 0 < 2/a − y À O(1), combine (6.2), (6.8) and (6.9), we
get

Q(y) = e−iay2/4y(1−d)/2 A−
(1− a2y2/4)1/4

e−( y
2

√
1−a2y2/4+ 1

a
sin−1(ay

2
)). (9.3)

When 0 < y − 2/a À O(1), combine (6.2), (8.21) and (8.26) we get

Q(y) = e−iay2/4y(1−d)/2 A−e−
π
2a

+ iπ
4

(a2y2/4− 1)1/4
ei( y

2

√
1−a2y2/4− 1

a
log(ay/2+

√
1−a2y2/4)).

(9.4)

When |2/a− y| = O(1), from the solution of Airy function we have

Q(y) = e−iay2/4y(1−d)/2

√
πe−π/2aA−

a1/6
(iAi((2− ay)a−2/3) + Bi((2− ay)a−2/3)).

(9.5)

For the intermediate region between inner region and bump region, combine
(6.2), (6.8) and (6.9), the solution is given by

Q(y) = e−iay2/4y(1−d)/2 A+

(1− a2y2/4)1/4
e

y
2

√
1−a2y2/4+ 1

a
sin−1(ay

2
). (9.6)

Here we have two parameters A+ and A−, from chapter 8 their values are
given by

A− = 2
√

2(3/4)3/4

√
1

a
e

1
a
(π
6
+
√

3
4

)

and

A+ = 2
√

2(3/4)3/4

√
1

a
e−

1
a
(π
6
+
√

3
4

).

The relationship between d and a is

d− 2 =
3

ad−1
e−(2π/3−√3/2)/a. (9.7)
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9.3 For m = O(1/a)

The first order of location of maxima is at κ/a, with κ satisfies

κ4 − κ2 + 2a2m2 = 0. (9.8)

It is true that we can only find κ when am ≤ 1
2
√

2
.

Since then we get a2m2 = 1
2
(κ2 − κ4).

At inner region, the first order of solution is given by

Q(y) = (
am

e
)mC+

√
2πe−iay2/4Im(y). (9.9)

At bump region, the first order of solution is given by

Q(y) =

√
3− 3κ2

2
sech(

√
3

2
− 3κ2

4
(y − κ/a))e−i(y−κ/a)/2. (9.10)

At far field, the turning point happens at y = 2x0/a, where

x0 =

√
1

2
+

1

2

√
1 + a2m2. (9.11)

When 0 < 2x0/a− y À O(1), combine (6.2) and (6.14) we have

Q(y) = e−iay2/4y(1−d)/2 C−
(1 + m2

y2 − a2y2

4
)1/4

e−
2
a
f(ay

2
) (9.12)

where

f(x) =

∫ x

0

√
1 +

a2m2

4s2
− s2ds. (9.13)

When 0 < y − 2x0/a À O(1), combine (6.2) and (8.32), we have

Q(y) = e−iay2/4y(1−d)/2 C−e−
2
a
f(x0)+ iπ

4

(a2y2

4
− m2

y2 − 1)1/4
exp(

2i

a

∫ ay/2

x0

√
s2 − a2m2

4s2
− 1ds).

(9.14)
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When |2x0/a− y| = O(1), the solution is given in terms of Airy function,

Q(y) = e−iay2/4y(1−d)/2

√
πx

1/6
0 e−

2
a
f(x0)C−

a1/6(1 + a2m2)1/12
(iAi(

(1 + a2m2)1/6(2x0 − ay)

x
1/3
0 a2/3

)

(9.15)

+ Bi(
(1 + a2m2)1/6(2x0 − ay)

x
1/3
0 a2/3

)).

For the intermediate region between inner region and bump region, combine
(6.2), (6.14), the solution is given by

Q(y) = e−iay2/4y(1−d)/2 C+

(1 + m2

y2 − a2y2

4
)1/4

e
2
a
f(ay

2
). (9.16)

The values of C+ and C− are

C− =
3
√

2

2
(2− kappa2)3/4(

κ

a
)(d−1)/2e

2
a
f(κ/2)

and

C+ =
3
√

2

2
(2− kappa2)3/4(

κ

a
)(d−1)/2e−

2
a
f(κ/2).

At last, the relationship between d and a is

d− 2 =
3κd−2(2− kappa2)

ad−1
e−4(f(x0)−f(κ/2))/a. (9.17)

9.4 For m = O(1/
√

a)

The first order of location of maxima is at κ̃/a (here we use κ̃ to distinguish
with κ used before), with κ̃ satisfies

am2 =
2κ̃(1− κ̃2)

3
√

1− κ̃2/4
. (9.18)
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This equation have solution only if am2 ≤ 2(3−√7)
√

2
√

7−4

3
.

At inner region, the first order of solution is given by

Q(y) = A′
+

√
2πIm(y)e−iay2/4. (9.19)

At bump region, the first order of solution is given by

Q(y) =
√

2(1− κ̃2/4) sech(
√

1− κ̃2/4 (y − κ̃/a))e−iκ̃(y−κ̃/a)/2. (9.20)

At far field, when 0 < 2/a − y À O(1), combine (6.2), (6.8) and (6.9).
Similarly with m = O(1) case we get

Q(y) = e−iay2/4y(1−d)/2 A′
−

(1− a2y2/4)1/4
e−( y

2

√
1−a2y2/4+ 1

a
sin−1(ay

2
)). (9.21)

When 0 < y − 2/a À O(1), combine (6.2), (8.21) and (8.26) we get

Q(y) = e−iay2/4y(1−d)/2 A′
−e−

π
2a

+ iπ
4

(a2y2/4− 1)1/4
ei( y

2

√
1−a2y2/4− 1

a
log(ay/2+

√
1−a2y2/4)).

(9.22)

When |2/a− y| = O(1), from the solution of Airy function we have

Q(y) = e−iay2/4y(1−d)/2

√
πe−π/2aA′

−
a1/6

(iAi((2− ay)a−2/3) + Bi((2− ay)a−2/3)).

(9.23)

For the intermediate region between inner region and bump region (for which
we have y À O(1) and |Q(y)| ¿ O(1)), the solution given by

Q(y) = e−iay2/4y(1−d)/2 A′
+

(1− a2y2/4)1/4
e

y
2

√
1−a2y2/4+ 1

a
sin−1(ay

2
). (9.24)

Here A′
+ and A′

− are given by

A′
− = 2

√
2(1− κ̃2/4)3/4

√
κ̃

a
e

1
a
( κ̃
2

√
1−κ̃2/4+sin−1(κ̃/2))
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and

A′
+ = 2

√
2(1− κ̃2/4)3/4

√
κ̃

a
e−

1
a
( κ̃
2

√
1−κ̃2/4+sin−1(κ̃/2)).

The relationship between d and a is

d− 2 =
4κ̃d−2(1− κ̃2/4)

ad−1
e−(π−2 sin−1(κ̃/2)−κ̃

√
1−κ̃2/4)/a. (9.25)
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Chapter 10

Conclusions

In this thesis, we constructed the vortex solutions of the NLS that become
infinite in finite time under some conditions. The idea of solving the equa-
tion (1.18) is come from Chris Budd’s previous work[1]. His work can also
be considered as the special case m = 0.

In our work, we discovered that if the parameter m is of order 1, then the
location of the peak of the solution is to leading order 1/a which is almost
the same place with case m = 0.
In the range 1 ¿ y < 2/a we have to leading order

|Q(y)| ∼
√

3/2 sech(
√

3/4 (y − 1/a)). (10.1)

If 0 ≤ y ≤ a−2/3, then to leading order

Q(y) = e−iay2/44(3/4)3/4

√
π

a
e−

1
a
(π
6
+
√

3
4

)Im(y). (10.2)

And to leading order we have the relationship

d− 2 =
3

ad−1
e−(2π/3−√3/2)/a. (10.3)

So the first order of solution is almost the same as case m = 0 , only the so-
lution at inner region is a little different. But if we put m = 0 into our result,
it just corresponds to what Chris Budd did. This could somehow verify our
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result. Also the relationship between d and a is the same with previous work.

When we enlarge the scale of m, things become different and more inter-
esting, especially when we consider m to be of order 1/a, the location of
maxima have the following relationship

κ4 − κ2 + 2a2m2 = 0. (10.4)

So the location of maxima can have two possible results if am <
√

2/4, or
no results if am >

√
2/4. Here ’two results’ doesn’t mean the solution have

to peaks, but there are two possible solutions where each has one peak.

The relation between d and a is somehow depend on m when m is of or-
der 1/a which is different from the case m = O(1). Despite this however, we
can still get the conclusion from our result that d− 2 is exponentially small
in a (What we assume is only d − 2 is small, but not exponentially small),
which is similar to results previously found [1].

At last, note again that we didn’t find solutions for all m. For m = O(1/
√

a),

we can’t find solutions if am2 >
√

3−√7. For m = O(1/a), we can’t find
solutions if am >

√
2/4. And we didn’t investigate non-vortex cases either.

Hence there are still many further researches to be made.
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Appendix A

WKB Methods

There are two standard methods that we used in our calculation, we hereby
put them in the appendix [10].

In order to solve (6.7) and (6.11), we consider the differential equation for
general case

ε2y′′ − q(x)y = 0 (A.1)

with ε a small constant.

We first assume that the coefficient q is constant. Then the solution is very
easy to give

y(x) = a0e
− 1

ε
x
√

q + b0e
1
ε
x
√

q (A.2)

as x → ∞. The solution goes exponentially large if q > 0 and remains
oscilliating otherwise. Since then we discover that the behaviour is totally
different for both sides of q = 0, which we called the ’turning-point’.

For a more general case, we make the hypothesis that the form of asymptotic
expansion of the solution is

y ∼ eθ(x)/ε[y0(x) + εy1(x) + · · · ]. (A.3)

One of the distinctive features of the WKB method is that it is fairly specific
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on how the solution depends on the fast variation, namely, the dependence
is assumed to be exponential.

From (A.3) we get

y′ ∼ (ε−1θxy0 + y′0 + θxy1 + · · · )eθ/ε (A.4)

and

y′′ ∼ [ε−2θ2
xy0 + ε−1(θxxy0 + 2θxy

′
0 + θ2

xy1) + · · · ]eθ/ε. (A.5)

Combine with (A.1) leads to the following equations:
O(1) (θx)

2 = q(x) (eikonal equation),
O(ε) θxxy0 + 2θxy

′
0 + θ2

xy1 = q(x)y1 (transport equation).
It follows that θxxy0 + 2θxy

′
0 = 0. Since then, we may find the solution of

these two equations are

θ(x) = ±
∫ x √

q(s)ds (A.6)

and

y0(x) =
c√
θx

(A.7)

where c is an arbitrary constant.

Then the first-term approximation of (A.1) is

y ∼ q(x)−1/4(a0e
− 1

ε

R x
√

q(s)ds + b0e
1
ε

R x
√

q(s)ds) (A.8)

where a0 and b0 are arbitrary, possibly complex, constants. Similarly, we call
q(x) = 0 the ”turning-points”.

The WKB solutions become deficient close to the turning points since that
|q(x)| is small here and the asymptotic expansion could not use again.
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Appendix B

Airy function

In order to solve (7.1), in this part we introduce the solution of the equation

y′′ = xy. (B.1)

The solution is given by the linear combination of Airy functions

y(x) = α0Ai(x) + β0Bi(x) (B.2)

where

Ai(x) ≡ 1

32/3π

∞∑

k=0

Γ(k+1
3

) sin[2π
3

(k + 1)]

k!
(31/3x)k (B.3)

and

Bi(x) ≡ eπi/6Ai(xe2πi/3) + e−πi/6Ai(xe−2πi/3). (B.4)

The Airy functions have asymptotic approximations that

Ai(x) ∼ 1√
π|x|1/4

[cos(z − π

4
) + w sin(z − π

4
)] as x → −∞,

Ai(x) ∼ 1

2
√

πx1/4
e−z(1− w) as x → +∞,
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Bi(x) ∼ 1√
π|x|1/4

[cos(z +
π

4
) + w sin(z +

π

4
)] as x → −∞,

Bi(x) ∼ 1√
πx1/4

ez(1 + w) as x → +∞, (B.5)

where z = 2
3
|x|3/2 and w = 5

72z
.

Consider for more general case

y′′ = c(x0 ± x)y (B.6)

where c and x0 arbitrary constant.

Let ζ = c1/3(x0 ± x), then yxx = c2/3yζζ . Hence we get

c2/3yζζ = c · c−1/3ζy = c2/3ζy. (B.7)

Then the solution of (B.6) can be given

y(x) = α0Ai(ζ) + β0Bi(ζ). (B.8)
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