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CHAPTER 1

Introduction

1. Arithmetic in k[X]

Just as in Z, there are several problems in k[X] with k a finite field that are
much easier to formulate than to prove. One of them is the following theorem.

Theorem 1.1.1. Let k be a field with q elements, let f ∈ k[X] ̸=0 and let n ∈
Z>0. Then (k[X]/fk[X])∗ is generated by the set of residue classes of the monic
irreducible polynomials of degree n coprime to f if n ≥ 2 logq(deg f + 4).

A proof of this theorem will be given in Chapter 4 of this thesis.
Theorem 1.1.1 has an analogue in Z. Let n ∈ Z>0 and assume the extended

Riemann hypothesis (see the next section). Then (Z/nZ)∗ is generated by the set
of residue classes of the numbers coprime to n that are smaller than 2(log n)2. A
proof of this theorem can be found in [1].

Another theorem to be proved in this thesis has a well known analogue in
Z. Dirichlet’s theorem on primes in arithmetic progressions states that for all
a, b ∈ Z>0 such that (a, b) = 1 the set of primes p such that p ≡ a mod b is
infinite. A stronger statement tells that if πa,b(x) is the number of primes p smaller
than x such that p ≡ a mod b, then

lim
x→∞

πa,b(x) log x

x
=

1

ϕ(b)

where ϕ(b) = #(Z/bZ)∗. This is called the prime number theorem on arithmetic
progressions, see [3], Theorem 4, p. 315.

If we replace Z>0 by the set of monic polynomials in k[X] with k a finite field
there is no ‘exact’ analogue for Dirichlet’s theorem since there is no clear ordering
on k[X] like there is on Z>0. So in this case we look, for all a, f ∈ k[X] ̸=0 such
that (a, f) = 1, at the set of all monic irreducible polynomials g ∈ k[X] of degree
n such that g ≡ a mod f . In fact we can even do more. The set we are going to
estimate is the following.

Definition 1.1.2. Let a, f ∈ k[X] ̸=0 be such that (a, f) = 1, let b = (b1, . . . , bc−1)
be an element of kc−1 for c ∈ Z>0. Then we define Sn(a, f, b, c) be the set of monic
irreducible polynomials g of degree n such that g ≡ a mod f and g has coefficient
bi at X

n−i for 0 < i < c.

Now the analogue of Dirichlet’s theorem on primes in arithmetic progressions
is as follows.
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6 1. INTRODUCTION

Theorem 1.1.3. Let a, f ∈ k[X] ̸=0 be such that (a, f) = 1, let b be an element of
kc−1 for c ∈ Z>0 and let n ∈ Z>0. Then∣∣∣∣#Sn(a, f, b, c)− qn−c+1

nΦ(f)

∣∣∣∣ ≤ max{ q
q−1 , deg f + c− q−2

q−1}q
n/2

n
.

where Φ(f) = #(k[X]/fk[X])∗.

The only ‘ugly’ thing about this theorem is the maximum taken on the right
side on the equation, but this is only relevant if deg f = 0 and c = 1. The similarity
with the Z-case is obvious from the following two corollaries.

Corollary 1.1.4. We have

lim
n→∞

#Sn(a, f, b, c) = ∞

and

lim
n→∞

#Sn(a, f, b, c)

#Sn(1, 1, (), 1)
=

1

Φ(f)qc−1
.

A proof of the special case of Corollary 1.1.4 where c = 1 can also be found in
[4]. In [4] one can also find a version of the special case of Theorem 1.1.3 where
c = 1. The author did not bother to calculate explicit bounds like in Theorem
1.1.3 though. As far as I know, nobody has ever done this, nor has anybody ever
considered the cases where c > 1.

The main ingredient of the proof of these theorems is the fact that the absolute
value of each zero of each L-function of the projective line over k (see Definition
2.1.7 in the next chapter) is either 1 or 1√

q . The complete theorem is formulated in

Theorem 2.1.10. A sketch of the proof can be found in [5]. The sketch given in [5]
is very brief and its only reference, namely Appendix V of [9], is not easy to read.
So it seemed a nice task to work through the proof of this theorem and write down
a detailed proof.

2. Riemann hypotheses

The proof of Theorem 2.1.10 is a consequence of the so called “Riemann hy-
pothesis for function fields”. In this section I will give a sketch of various Riemann
hypotheses and how they are related.

One of the main open problems in mathematics is the Riemann hypothesis.
This hypothesis states properties about a certain complex valued function ζ(s), the
so called zeta function. It is defined as follows. One can show that the function∑∞
n=1 n

−s is analytic on the set {s ∈ C : Re s > 1}. Then it can be shown that
this function has a unique analytic continuation to C \ {1}, in this way we obtain
ζ(s). The Riemann hypothesis states that all zeros of ζ in the region {s ∈ C : 0 <
Re s < 1} satisfy Re s = 1

2 .

One of the generalizations of the Riemann hypothesis, called the extended
Riemann hypothesis, is the following. Let χ be a character of Z, that is a map
χ : Z>0 → C for which there exists n ∈ Z>0 and a group homomorphism χ′ :
(Z/nZ)∗ → C∗ with the property that χ(a) = χ′(a mod n) for all a ∈ Z>0 with
gcd(a, n) = 1 and χ1(a) = 0 for all a ∈ Z>0 with gcd(a, n) ̸= 1. Now one can show
that

∑∞
n=1 χ(n)n

−s is analytic on the set {s ∈ C : Re s > 1} and can be uniquely
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continued to an analytic function on C \ {1}. This function is often denoted by
L(s, χ). The extended Riemann hypothesis states that all zeros of L(s, χ) in the
region {s ∈ C : 0 < Re s < 1} satisfy Re s = 1

2 . The statement of the extended
Riemann hypothesis implies the Riemann hypothesis since we can take χ to be the
map that sends all elements of Z≥0 to 1.

Another generalization of the Riemann hypothesis, called the generalized Rie-
mann hypothesis, is as follows. Let K be a number field and let I be the set of
nonzero ideals of OK , the ring of integers of K. Let NK/Q : I → Z>0 be the norm

function of the ideals. Then it can be shown that
∑
I∈I(NK/Q(I))−s is analytic on

the set {s ∈ C : Re s > 1} and can be uniquely continued to an analytic function
on C \ {1}. This function is often denoted by ζK(s). The generalized Riemann
hypothesis states that all zeros of ζK(s) in the region {s ∈ C : 0 < Re s < 1}
satisfy Re s = 1

2 . The statement of the generalized Riemann hypothesis implies the
extended Riemann hypothesis, but not trivially. In fact the proof of this is similar
to what is done in chapter 3 of this thesis, in the number field case it is just a little
bit more complicated since one needs to worry about convergence.

All these conjectures have analogues in k[X] where k is a field with q elements.
In this case the zeta-functions are always functions in q−s. So it is convenient to
do the substitution q−s = T . The statement of the zeros having real part 1

2 then

changes into the zeros having absolute value 1√
q . The analogue of the extended

Riemann hypothesis is the main theorem of this thesis. In section 1 of chapter 2
we give an explicit version. The classical Riemann hypothesis should then be the
case were the character is trivial. In the case of the classical Riemann hypothesis
the analogue is not too interesting though. It merely states that all the zeros of
the rational function 1

(1−T )(1−qT ) ∈ C(T ) have absolute value 1√
q , which is obvious

since this function does not have any zeros. Why this is analogous to the classical
Riemann hypothesis follows from the generalized version.

The analogue of the generalized Riemann hypothesis is the theorem people
usually mean when they speak of the Riemann hypothesis for function fields (which
is no hypothesis at all, since it was proved by Weil in 1948). A proper definition
in terms of ideles is given in Chapter 2. Chapter 3 is devoted to proving why the
Riemann hypothesis for function fields implies our main theorem by means of class
field theory.





CHAPTER 2

L-functions

1. L-functions of the projective line

Just as we can define Dirichlet characters on Z>0, we can define characters on
the set of monic polynomials of k[X] (denoted by k[X]monic) where k is a finite
field. For convenience we generalize this definition a bit.

Definition 2.1.1. Let k be a finite field. Let χ1 : k[X] → C be a map for
which there exists a nonzero polynomial f ∈ k[X]monic and a group homomorphism
χ′
1 : (k[X]/fk[X])∗ → C∗ with the property that χ1(h) = χ′

1(h mod f) for all
h ∈ k[X] with gcd(h, f) = 1 and χ1(h) = 0 for all h ∈ k[X] with gcd(h, f) ̸= 1. Let
χ∞ : 1+X−1k[[X−1]] → C∗ be a group homomorphism such that there is c ∈ Z>0

with 1 +X−ck[[X−1]] ⊂ kerχ∞. A character of k[X] is a map χ : k[X]monic → C
defined by χ(h) = χ1(h)χ∞(X− deg hh).

Lemma 2.1.2. Let χ be a character of k[X]. Then the pair (χ1, χ∞) is uniquely
determined by χ.

Proof. Let χ = (χ1, χ∞) and let f ∈ k[X]monic and c ∈ Z>0 be as in Definition
2.1.1. Let ψ = (ψ1, ψ∞) with corresponding monic polynomial g. Now suppose
χ = ψ and take h ∈ k[X]monic arbitrary. Then there exists d ∈ Z>0 such that
1 + X−dk[[X−1]] ⊂ kerχ∞ and 1 + X−dk[[X−1]] ⊂ kerψ∞. Moreover, there is
j ∈ k[X] such that

X− deg(h+jfg)(h+ jgf) ∈ 1 +X−dk[[X−1]].

Hence we have

χ∞(X− deg(h+jfg)(h+ jgf)) = ψ∞(X− deg(h+jfg)(h+ jgf)) = 1.

So we have χ(h+jgf) = χ1(h+jfg) = χ1(h) and ψ(h+jgf) = ψ1(h+jfg) = ψ1(h).
Since we assumed that χ = ψ this shows that χ1 = ψ1. Then it immediately follows
that χ∞ = ψ∞, hence (χ1, χ∞) is uniquely determined by χ. �

It follows immediately that for any character χ and for any h1, h2 ∈ k[X] we
have χ(h1h2) = χ(h1)χ(h2). Now we will give some more useful definitions.

Definition 2.1.3. Let χ = (χ1, χ∞) be a character. If imχ ⊂ {0, 1} we call χ
principal. With a monic polynomial f that comes from χ1 and a c ∈ Z>0 that
comes from χ∞ we define a pair (f, c) to be a modulus of χ. We denote the set of
characters with modulus (f, c) by X (f, c).

Note that X (f, c) is a group by pointwise multiplication. Next we are going to
define the notion of a primitive character. The following lemma is useful.

Lemma 2.1.4. Let f ∈ k[X]monic and let c ∈ Z>0. Write f =
∏
i p
ni
i with all pi

monic irreducible such that pi ̸= pj if i ̸= j and all ni > 0. Then for any character
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10 2. L-FUNCTIONS

χ = (χ1, χ∞) with modulus (f, c) there are characters (χpni
i
, 1) ∈ X (pni

i , 1) such

that χ = (
∏
i χpni

i
, χ∞). We have an isomorphism

X (f, c)
∼−→

∏
i

X (pni
i , 1)×X (1, c)

χ 7−→ ((χpni
i
)i, χ∞)

Proof. Use the Chinese remainder theorem and Lemma 2.1.2. �

Let f ∈ k[X]monic. Let f =
∏
i p
ni
i with all pi monic irreducible such that

pi ̸= pj if i ̸= j and all ni > 0 be the prime factorization of f . Then for each pi
and mi such that 0 ≤ mi ≤ ni we have an injective map

Hom((k[X]/pmi
i · k[X])∗,C∗) −→ Hom((k[X]/pni

i · k[X])∗,C∗),

so we have an injective map (which is an inclusion if mi > 0)

πpi,mi,ni : X (pmi
i , 1) −→ X (pni

i , 1).

Let c ∈ Z>0. Then for each d such that 1 ≤ d ≤ c we have an injective map

Hom((1 +X−1k[[X−1]])/(1 +X−dk[[X−1]]),C∗) −→

Hom((1 +X−1k[[X−1]])/(1 +X−ck[[X−1]]),C∗),

so we get an inclusion

X (1, d) −→ X (1, c).

Definition 2.1.5. Let χ = (χ1, χ∞) be a character with modulus (f, c). Let
f =

∏
i p
ni
i with all pi monic irreducible be the prime factorization of f . Write χ1

like
∏
i χpni

i
like in Lemma 2.1.4. Let πpi,mi,ni be as above. We say that a character

ψ = (ψ1, ψ∞) induces χ if the following two conditions are met.

• There are mi ∈ Z≥0 and maps (χpmi
i
, 1) ∈ X (pmi

i , 1) such that ψ1 =∏
i χpmi

i
and for all i we have πpi,mi,ni(χpmi

i
, 1) = (χpni

i
, 1).

• We have ψ∞ = χ∞.

We call χ primitive if χ is only induced by itself. Let g be the polynomial
∏
i p
ki
i

where each ki ∈ Z≥0 is the smallest number such that there exists (χ
p
ki
i

, 1) ∈
X (pkii , 1) with πpi,ki,ni(χpki

i

, 1) = (χpni
i
, 1). Let d ∈ Z>0 be the smallest number

such that (1, χ∞) ∈ X (1, d). We define the conductor of χ to be the pair (g, δ)
where δ = d if χ1|k∗ or χ∞ is nontrivial and δ = 0 otherwise.

Proposition 2.1.6. Each character χ with modulus (f, c) is induced by a unique
primitive character ψ with modulus the conductor of χ. For each h ∈ k[X] with
(h, f) = 1 we have χ(h) = ψ(h).

Proof. Obvious from the construction. �

To these characters we can associate L-functions.

Definition 2.1.7. The L-function L(T, χ) associated to a character χ of k[X] is
defined by the formal power series

L(T, χ) =
∑
h

χ(h)T deg h ∈ C[[T ]]

where the sum is taken over the monic polynomials h in k[X].



1. L-FUNCTIONS OF THE PROJECTIVE LINE 11

Each L-function satisfies an Euler product.

Proposition 2.1.8. We have

L(T, χ) =
∏
h

1

1− χ(h)T deg h

where the product is taken over the monic irreducible polynomials h in k[X].

Proof. Standard. �

Proposition 2.1.9. Let ψ be the primitive character with conductor (g, δ) that
induces χ. Then we have

L(T, χ) = L(T, ψ) ·
∏

h∈k[X]

(1− ψ(h)T deg h)

where h ranges over all monic irreducible factors h of f that do not divide g.

Proof. Compare the factors of L(T, χ) and L(T, ψ) in the Euler product. �

The following theorem is the main theorem of the thesis.

Theorem 2.1.10. Let χ = (χ1, χ∞) be a character on k[X] with modulus (f, c),
where k has q elements. Let (g, δ) be the conductor of χ. Then:

i. If χ is principal, then

L(T, χ) =
1

1− qT
·
∏
h

(1− T deg h)

where h ranges over all monic irreducible factors of f .
ii. If χ is not principal then there are α1, . . . , αm ∈ C, wherem = deg g−2+δ,

such that |αi| =
√
q for 1 ≤ i ≤ m and such that

L(T, χ) =
m∏
i=1

(1− αiT ) · (1− T )max{0,1−δ} ·
∏
h

(1− χ(h)T deg h)

where h ranges over all monic irreducible factors of f that do not divide
g.

The first part of the theorem is very easy. If χ = (χ1, 1) is principal with
modulus (f, c) then χ is induced by the primitive character ψ = (1, 1) which has
conductor (1, 0). We see that

L(T, ψ) =
∑
h

T deg h =

∞∑
n=1

(qT )n =
1

1− qT

where h ranges over the monic polynomials of k[X], since there are exactly qd monic
polynomials of degree d. Now we use Proposition 2.1.9 to see

L(T, χ) = L(T, ψ) ·
∏
h

(1− ψ(h)T deg h) =
1

1− qT

∏
h

(1− T deg h)

where h ranges over the monic irreducible factors of f . This proves the first part
of Theorem 2.1.10.

The second part of Theorem 2.1.10 is significantly more difficult. The proof
will be given at the end of Chapter 3.
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Now we will calculate a couple of examples to give evidence for this theorem.

Example 2.1.11. Let k = F2. Let χ = (χ1, χ∞) be a character with modulus
f = X3+X+1 where χ1 : k[X] → C maps X to ζ7, where ζ7 is a primitive seventh
root of unity and χ∞ is the trivial map. We are going to calculate L(T, χ). First
we note that L(T, χ) will be a polynomial of degree at most 2 by 2.1.10 (deg g = 3
and δ = 0), so we only need to calculate χ(g) where g is a polynomial of degree 0,
1, or 2. We have

L(T, χ) =
∑

h∈k[X]monic

χ(h)T deg h = 1 + s1T + s2T
2.

So we need to calculate s1 and s2. Let α a zero of f . We see that α3 = α+1, α4 =
α2 + α, α5 = α2 + α + 1, α6 = α2 + 1, α7 = 1, in this way we have expressed
all polynomials of degree less than 3 in terms of powers of α. So we see that
χ1(X) = ζ7, χ1(X + 1) = ζ37 , so s1 = ζ7 + ζ37 . We have χ1(X

2) = ζ27 , χ1(X
2 + 1) =

ζ67 , χ1(X
2 +X) = ζ47 , χ1(X

2 +X + 1) = ζ57 , so s2 = ζ27 + ζ67 + ζ47 + ζ57 . Hence we
have

L(T, χ) = 1 + (ζ7 + ζ37 )T + (ζ27 + ζ67 + ζ47 + ζ57 )T
2.

We immediately see that 1 is a zero of L(T, χ), since
∑6
i=1 ζ

i
7 = −1. Now we can

find the other zero by dividing out 1− T . We see:

L(t, χ) = (1− T )(1− (ζ27 + ζ67 + ζ47 + ζ57 )T ).

We see that ζ27 + ζ67 + ζ47 + ζ57 = −(1 + ζ7 + ζ37 ). Since we only want to determine
an absolute value, it is sufficient to calculate |1 + ζ7 + ζ37 |2. We have

|1+ζ7+ζ37 |2 = (1+ζ7+ζ
3
7 )(1 + ζ7 + ζ37 ) = (1+ζ7+ζ

3
7 )(1+ζ

6
7+ζ

4
7 ) = 2+

6∑
i=0

ζi7 = 2.

This shows that |1 + ζ7 + ζ37 | =
√
2, hence the theorem has been confirmed.

Example 2.1.12. Let k = F3 = {0, 1,−1}. Let χ = (χ1, χ∞) be a character with
modulus f = X such that χ1 is the map that sends −1 to −1 and 1 to 1 and χ∞ is
the map that sends 1 +X−1 to ζ3, where ζ3 is a primitive third root of unity, and
maps 1 +X−2k[[X−1]] to 1. We see that g = 1 and δ = 2. By Theorem 2.1.10 we
know that L(T, χ) has degree 1. So we see that

L(T, χ) = 1 + (ζ3 − ζ23 )T.

Since ζ3 − ζ23 =
√
−3 we have |ζ3 − ζ23 | =

√
3, which again confirms the theorem.

2. Ideles

First we recall some important definitions and theorems about valuations.

Definition 2.2.1. Let K be a field. A valuation ring of K is a subring O ( K
such that for all x ∈ K∗ one has x ∈ O or x−1 ∈ O. If in addition K∗/O∗ ∼= Z we
call O a discrete valuation ring. A place p of K is a maximal ideal of a valuation
ring O ⊂ K.

Theorem 2.2.2. Any valuation ring is a local ring. If a valuation ring is discrete
its place is a principal ideal.
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Proof. Let O be a valuation ring. Then it is easy to check that O \ O∗ is an
ideal of O, so O is a local ring. If K∗/O∗ ∼= Z , take x ∈ K∗ that is mapped to 1.
If x ∈ O, then x generates the ideal O \ O∗, otherwise x−1 generates O \ O∗. �
Definition 2.2.3. If p is a place of K, then its valuation ring is denoted by Op.

Theorem 2.2.4. Let K be a finite extension of k(X), where k is a finite field, let
p be a place of K and let Op be its valuation ring. Then Op is a discrete valuation
ring. We have a group homomorphism

| · |p : K −→ R

x 7−→

 (#Op/xOp)
−1 if x ∈ O \ {0}

#Op/x
−1Op if x ∈ K∗ \ O

0 if x = 0

such that (x, y) 7→ |x− y|p defines a metric on K.

Proof. See [8], Theorem I.1.6, p. 3 and Note 2, p. 4. �
Note that in this case k is contained in any valuation ring of K, since if x ∈ k∗

then x−1 is a power of x, because k is finite. This justifies the following definition.

Definition 2.2.5. The degree of a place p ⊂ K, denoted by deg p, is the degree of
the extension k → O/p. We define the function ordp : K∗ → Z to be ordp(x) =
− log#(Op/p)(|x|p). By Kp we denote the completion of K with respect to | · |p.

Theorem 2.2.6. Let K be a finite extension of k(X), where k is a finite field. Then
Kp is a topological field which is complete with respect to | · |p. Let t be an element
that generates p and let Rp be a set of representatives of Op/p in Op containing 0.
Then every element in K∗

p has a unique representation
∑∞
i=n ait

i where n ∈ Z and
ai ∈ Rp with an ̸= 0.

Proof. See [8], Theorem IV.2.6, p. 143. �
Definition 2.2.7. We make the unit group K∗

p into a topological group by giving
it the induced topology of Kp. The subset of Kp given by {x ∈ Kp : |x|p ≤ 1} is a
subring, which we denote by Ap.

Example 2.2.8. Consider the case K = k(X). Then the valuation rings of K
are the rings {ab ∈ k(X) : ordf (a) ≥ ordf (b)} where f ∈ k[X] is an irreducible
polynomial, of which a place corresponds to the maximal ideal generated by f ,
and the ring {ab ∈ k(X) : deg a ≤ deg b}, of which the place is the maximal ideal

generated by X−1 (which is also called the place at infinity, denoted by ∞). If f is
the place corresponding to an irreducible polynomial f ∈ k[X] and Rf is a set of
representatives of k[X]/fk[X] in k[X], then Kf = {

∑∞
i=−n aif

i : n ∈ Z, ai ∈ Rf}
and Af = {

∑∞
i=0 aif

i : ai ∈ Rf}. In the case of the place ∞ we have k(X)∞ =
k((X−1)) and A∞ = k[[X−1]].

Definition 2.2.9. Let K be a finite field extension of k(X), where k is a finite
field. The adele ring of K, denoted by AK , is defined by∏

p

′
Kp = {(xp)p ∈

∏
p

Kp : xp ∈ Ap for all but finitely many p}.

We put a topology on AK by taking the sets
∏

p∈P Op×
∏

p̸∈P Ap as a base for the
open subsets where P is a finite set of places of K and Op is an open subset of Kp
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for all p ∈ P . This makes AK into a topological ring. Now A∗
K can be described

as follows:

A∗
K =

∏
p

′
K∗

p = {(xp)p ∈
∏
p

K∗
p : xp ∈ A∗

p for all but finitely many p}.

The topology on A∗
K is obtained by a classical trick: we give AK × AK the

product topology and we consider the embedding A∗
K ⊂ AK ×AK given by x 7→

(x, x−1). Then we give the image of A∗
K the relative topology from AK × AK ,

which makes it into a topological group. We call A∗
K the idele group of K.

Proposition 2.2.10. The topology on A∗
K is generated by the open subsets

∏
p∈P Op×∏

p̸∈P A
∗
p where P is a finite set of places of K and Op is an open subset of K∗

p for
each p ∈ P .

Proof. Denote by S the topology mentioned in the second part of Definition
2.2.9 and denote by T the topology mentioned in the proposition. Take a set of
the form

∏
p∈P Op ×

∏
p̸∈P A

∗
p ∈ T where P is a finite set of places of K and Op

is an open subset of K∗
p . Note that for all places p the set Op is open in K∗

p if

and only if Op is an open subset of Kp. Also, the map x 7→ x−1 is continuous on
Kp and hence on A∗

K with topology T . This shows that the map T → S given by
X 7→ ({(x, x−1) : x ∈ X}) is a bijection, which we wanted to prove. �
Proposition 2.2.11. For any x ∈ K∗ the element (x)p is an element of

∏
pA

∗
p.

Proof. It is sufficient to show that any element x ∈ K∗ is only contained in
finitely many places of K. In the case that K = k(X), use example 2.2.8. For the
general case, see [8], Corollary I.3.4, p. 14. �

So the diagonal embedding K → AK makes AK into a K-algebra.

Definition 2.2.12. We define A∗
K,1 to be {(xp)p ∈ A∗

K :
∑

p(deg p) ordp xp = 0}.

Proposition 2.2.13. The map A∗
K → Z given by (xp)p 7→

∑
p(deg p) ordp xp is a

continuous group homomorphism with kernel A∗
K,1.

Proof. By definition of A∗
K the map is well defined. To show continuity it

suffices to show that A∗
K,1 is open in A∗

K . Clearly A∗
K,1 contains

∏
pA

∗
p, which is

open in A∗
K . Since A∗

K,1 =
∪
x∈A∗

K,1
x
∏

pA
∗
p it follows that A∗

K,1 is also open in

A∗
K . �

Remark 2.2.14. One might ask whether the map from Proposition 2.2.13 is sur-
jective. If we choose an algebraic closure K̄ of K and let k̄ be the algebraic closure
of k in K̄, then the map has image nZ where n = [K ∩ k̄ : k]. So the map is
surjective if and only if K ∩ k̄ = k. See [8], Corollary V.1.11, p. 164.

Definition 2.2.15. The diagonal embedding K∗ → A∗
K gives rise to a topological

group A∗
K/K

∗, the idele class group of K, which we denote by CK . The idele class
group gets the quotient topology from A∗

K .

The following theorem is called Artin’s product formula.

Theorem 2.2.16. Let x ∈ K∗. Then
∑

p(deg p) ordp xp = 0.

Proof. In the case that K = k(X), use Example 2.2.8. For the general case,
see [8], Theorem V.I.I, p. 158 (this is also investigated in the next chapter). �
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Now the following definition is justified.

Definition 2.2.17. We define CK,1 to be to be AK,1/K
∗.

Note that CK,1 is open in CK .

Theorem 2.2.18. The map A∗
K → Z given by (xp)p 7→

∑
p(deg p) ordp xp and the

induced map CK → Z give rise to exact sequences

1 −→ A∗
K,1 −→ A∗

K −→ Z

and

1 −→ CK,1 −→ CK −→ Z.

We have A∗
K

∼= A∗
K,1 × Z and CK ∼= CK,1 × Z as topological groups.

Proof. Since the map A∗
K → Z is a non-trivial homomorphism there is n > 0

such that we have short exact sequences

1 −→ A∗
K,1 −→ A∗

K −→ nZ −→ 0

and

1 −→ CK,1 −→ CK −→ nZ −→ 0.

Any short exact sequence of abelian groups with Z on the third position splits.
Since Z has the discrete topology any section is continuous. Hence both sequences
also split as sequences of topological abelian groups. �

Generally there are no canonical sections.

3. L-functions of an idele class group

Definition 2.3.1. Let G be a topological group. A character on G is a contin-
uous group homomorphism ω : G → C∗, where C∗ gets the usual topology. The
characters of G form a group which we denote by X (G).

So a character on A∗
K is a continuous group homomorphism ω : A∗

K → C∗.
The following theorem is completely obvious but nevertheless important.

Theorem 2.3.2. Let G be a topological group, let N be a normal subgroup of G
and let i : G→ G/N be the natural map that induces the quotient topology on G/N .
Then the map X (G/N) → X (G) which maps ω to ω ◦ i is injective with image the
characters of G that are trivial on N .

Proof. Obvious. �

So there is an isomorphism between the group of characters of A∗
K that are

trivial on K∗ and the group of characters of CK .

The following lemma enables us to define a conductor of a character of an idele
group.

Lemma 2.3.3. Let G be a topological group and let {Ni}i be a set of open subgroups
of G such that for any open neighbourhood V of 1 ∈ G there is i such that Ni ⊂ V .
Let ω : G→ C∗ be a character of G. Then there is j such that Nj ⊂ kerω. If G is
compact, then ω has finite image.
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Proof. Let V be the open neighbourhood of 1 ∈ C∗ given by {x ∈ C : 0 <
Rex < 2}. Then the only subgroup of C∗ contained in S is {1}. Since there is
i such that Ni ⊂ ω−1S and ω(Ni) is a group it follows that Ni ⊂ ω−1{1}, hence
Ni ⊂ kerω. If G is compact, then any open subgroup has finite index in G, so Ni
has finite index in G. Hence kerω also has finite index in G, so the image of ω is
finite. �
Corollary 2.3.4. Let K be a finite extension of k(X) where k is a finite field, let
p be a place of K and let ω : K∗

p → C∗ be a character. Then there is n ∈ Z>0 such
that 1 + pn ⊂ kerω.

Proof. Note that {1+ pn}n∈Z>0 is a local base for neighbourhoods of 1 ∈ K∗
p

and apply Lemma 2.3.3. �
This justifies the following definition.

Definition 2.3.5. Let ω : A∗
K → C∗ be a character and let P be the set of places

of K. Let p ∈ P and let ωp : K∗
p → C∗ be the map ω ◦ πp with πp : K∗

p → A∗
K

the embedding on the K∗
p -axis. We define a function r : P → Z≥0 where r(p) = 0

if A∗
p ⊂ kerωp and r(p) = min{n ∈ Z>0 : 1 + pn ⊂ kerωp} otherwise. If r(p) > 0,

we say that ω ramifies at p. We define the conductor of ω to be the formal sum∑
p∈P r(p) · p.

Lemma 2.3.6. Let ω : A∗
K → C∗ be a character and let P be the set of places of

K. Then there are only finitely many p ∈ P where ω ramifies.

Proof. By Proposition 2.2.10 we see that any open set of A∗
K contains a set

of the form
∏

p∈P 1 ×
∏

p̸∈P A
∗
p where P is a finite set of places of K. Assuming

that
∏

p∈P Op ×
∏

p̸∈P A
∗
p is contained in the kernel of ω we see that ω can only

ramify at the places in P , so only at finitely many places. �
In geometric terms this implies that the conductor of ω is an element of Div(K).

Corollary 2.3.7. Let ω : A∗
K → C∗ be a character. Then ω(x) =

∏
p ωp(xp) and

ωp(xp) = 1 for all but finitely many places p.

We need one more lemma.

Lemma 2.3.8. For each N ∈ Z>0 the set {p ∈ P : deg p ≤ N} is finite.

Proof. In the case that K = k(X), use Example 2.2.8. For the general case,
see [8], Theorem I.4.11, p. 18. �

Now we are ready to define L-functions for the idele class group.

Definition 2.3.9. Let K be a finite extension of k(X) with k a finite field, let
ω =

∏
p ωp be a character of CK and let Pω be the set of places of K where ω does

not ramify. Define a function λω : Pω → C∗ given by λω(p) = ωp(x) with x a prime
element in Kp. Then we define the L-function L(T, ω) to be

L(T, ω) =
∏

p∈Pω

1

1− λω(p)T deg p
∈ C[[T ]].

The special case ω = 1 gives rise to the function L(T, 1), which is the well
known zeta-function of K. Now we can state the famous Riemann Hypothesis for
function fields.
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Theorem 2.3.10. Let K be a finite extension of k(X) with k a finite field with q
elements. Choose an algebraic closure K̄ of K and let k̄ the algebraic closure of k
in K̄. Let n = [K ∩ k̄ : k] and let 1 be the trivial character of CK . Then L(T, 1),
which is also denoted by ZK(T ), can be written as

ZK(T ) =
P (T )

(1− Tn)(1− (qT )n)

with P ∈ 1 + TZ[T ] and the zeros α of P satisfy |α| = 1√
q .

Proof. See [2], Theorem 12.2.1, p. 64 and Corollary 14.3.1, p. 77 for the case
n = 1. For general n, use [4], Proposition 8.18, p. 111. �

Example 2.3.11. If K = k(X), then it is easy to show that

ZK(T ) =
1

(1− T )(1− qT )

and hence P = 1.

From now on we will restrict to the case K = k(X) with k a finite field. In
this case, a lot more can be said. A brief summary of the following can be found
in Appendix V of [9].

Definition 2.3.12. Let k(X) be the field of rational functions over a finite field k.
Denote by f the place of k(X) corresponding to a monic irreducible polynomial f

and denote by ∞ the place X−1k[X−1](X−1). By k̂[X] we denote the ring
∏

fAf.

In the remainder of this section we will stick to the notation above. We will
also be using the diagonal embedding k(X) → Ak(X) without comment.

Theorem 2.3.13. The map

s : A∗
k(X) −→ k(X)∗

((xf)f, x∞) 7−→ c∞ ·
∏
f

fordf xf ,

where c∞ is the leading coefficient of x∞, is a homomorphism of topological groups
that is the identity on k(X)∗. The kernel of s is the subgroup

k̂[X]
∗
×
(
⟨X⟩ · (1 +X−1k[[X−1]])

)
.

Furthermore, the exact sequence

1 −→ k(X)∗ −→ A∗
k(X) −→ Ck(X) −→ 1

splits and the map

u : Ck(X) −→ k̂[X]
∗
×
(
⟨X⟩ · (1 +X−1k[[X−1]])

)
x 7−→ x · 1

s(x)

is an isomorphism of topological groups.
Finally the restriction of u to Ck(X),1 gives rise to an isomorphism of topological

groups between Ck(X),1 and k̂[X]
∗
×
(
1 +X−1k[[X−1]]

)
.
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Proof. First we are going to determine the kernel of s. Exactly the elements
((xf)f, x∞) ∈ A∗

k(X) such that ordf xf = 0 for all finite places f and such that

the leading coefficient of x∞ is equal to 1 are mapped to 1. So this is k̂[X]
∗
×(

⟨X⟩ · (1 +X−1k[[X−1]])
)
. It is clear that s is a group homomorphism. To show

that s is continuous it suffices to show that s−1(1) is open in A∗
k(X). This is the

kernel of s, which we already determined as k̂[X]
∗
×
(
⟨X⟩ · (1 +X−1K[[X−1]])

)
,

which is open in A∗
k(X). Now consider the exact sequence

1 −→ k(X)∗ −→ A∗
k(X) −→ Ck(X) −→ 1.

The map s is a retraction of the sequence since s is the identity on k(X)∗. Naturally
we have a section u : x 7→ x· 1

s(x) . The maps are visualized in the following diagram:

1 // k(X)∗ // A∗
k(X)

s
ww

// Ck(X)

u
ww

// 1.

It is clear that the image of u is equal to k̂[X]
∗
×
(
⟨X⟩ · (1 +X−1k[[X−1]])

)
.

Also, u is injective since it is a section. Hence u induces an isomorphism of groups

between Ck(X) and k̂[X]
∗
×
(
⟨X⟩ · (1 +X−1k[[X−1]])

)
. Also, u is clearly a contin-

uous map since it is a composition of continuous maps. Hence we have shown that

Ck(X) and k̂[X]
∗
×
(
⟨X⟩ · (1 +X−1k[[X−1]])

)
are isomorphic as topological groups.

We have u(Ck(X),1) = k̂[X]
∗
× (1 +X−1k[[X−1]]), since imu = ker s. �

Definition 2.3.14. Let g ∈ k[X] ̸=0. Then we define Vg to be the group (1 +

gk̂[X]) ∩ k̂[X]
∗
.

Lemma 2.3.15. For any g ∈ k[X] ̸=0 we have a natural group isomorphism

k̂[X]
∗
/Vg

∼−→ (k̂[X]/gk̂[X])∗

and a natural ring isomorphism

k̂[X]/gk̂[X]
∼−→ k[X]/gk[X].

Proof. Use the fact that for any v ∈ k̂[X] there is a h ∈ k[X] uniquely

determined modulo g such that v ∈ h+ gk̂[X]. �

So for each g ∈ k[X] ̸=0 we have a natural isomorphism k̂[X]
∗
/Vg

∼−→ (k[X]/gk[X])∗.

Lemma 2.3.16. All elements of X
(
k̂[X]

∗
×
(
1 +X−1k[[X−1]]

))
have finite im-

age.

Proof. It is sufficient to show that all characters of k̂[X]
∗
have finite image,

since we already proved that all characters of 1 + X−1k[[X−1]] have finite image
in Theorem 2.1.2. We are going to apply Lemma 2.3.3. We already know that

for all A∗
f we can take {Ni}i = {1 + fnAf}n∈Z>0 . Hence for k̂[X]

∗
we can take

{Ni}i = {Vg}g∈k[X ]̸=0
. Note that k̂[X]

∗
is compact by Tychonoff’s theorem. Hence

the conditions of 2.3.3 are satisfied and it follows that any character of k̂[X]
∗
has

finite image. �
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So Lemmas 2.3.15 and 2.3.16 show that for any character ω on k̂[X]
∗
there is g ∈

k[X ]̸=0 such that Vg ⊂ kerω and ω can be viewed as a character on (k[X]/gk[X])∗.

Definition 2.3.17. Let h ∈ k[X] ̸=0. Then we define h◦ ∈
∏

fA
∗
f to be the element

(xf)f where xf = h if h ̸∈ f and xf = 1 if h ∈ f.

Theorem 2.3.18. Write any character of Ck(X),1 as (ω1, ω∞) where ω1 is a char-

acter of k̂[X]
∗
and ω∞ is a character of 1 +X−1k[[X−1]]. Let Xprimitive be the set

of primitive characters of k[X]. Define χ1 as the map on k[X] which comes from

the induced map ω̄1 : k̂[X]
∗
/Vg → C∗ where g is the monic polynomial of minimal

degree such that Vg ⊂ kerω1. Then the map

π : X (Ck(X),1) −→ Xprimitive

(ω1, ω∞) 7−→ (χ1, ω∞)

is bijective and for all h such that (h, g) = 1 we have ω1(h
◦) = χ1(h), where h

◦ is
as in Definition 2.3.17.

Proof. By Lemma 2.3.16 we know there is g ∈ k[X] such that Vg ⊂ kerω1,
and there is a unique monic g of minimal degree having this property. The obtained
(χ1, ω∞) is primitive because g is chosen of minimal degree. This shows that π is
well defined. Now it is straightforward to show that π is bijective. For any character

(χ1, χ∞) we can make χ1 into a character ω1 on k̂[X]
∗
by 2.3.15, in this way the map

that maps (χ1, χ∞) to (ω1, χ∞) is the inverse of π. The last part of the theorem

follows immediately since h◦ ∈ h+ gk̂[X]. �

Remark 2.3.19. Clearly we have skipped the ⟨X⟩-part of ⟨X⟩ ·(1+X−1k[[X−1]]),
we restrict to characters of Ck(X),1. The reason is that the additional characters
we get make the typography uglier and are of no use in this thesis. We could have
made Theorem 2.3.18 work for the complete group by extending the definition of
a character of k[X]. Instead of a pair (χ1, χ∞) we would get a triple (χ1, χ∞, χZ)
where χZ(f) is defined to be xdeg f for some fixed x ∈ C∗.

Now let us recall some important maps. Let ω : Ck(X) → C∗ be a character
and let p be a place of k(X). Then rω(p) = 0 if A∗

p ⊂ kerω and rω(p) = min{n ∈
Z>0 : 1 + pn ⊂ kerω} otherwise where 1 + pn is embedded in CK on the K∗

p -axis.
If ω does not ramify at p (so rω(p) = 0), then λω(p) = ω(x) where x is a generator
of p, embedded in CK on the K∗

p -axis.

Theorem 2.3.20. Let ω = (ω1, ω∞) : Ck(X) → C∗ be a character that is trivial

on ⟨X⟩ in ⟨X⟩(1 +X−1k[[X−1]]). Let π be the isomorphism of Lemma 2.3.18 and
let (g, δ) be the conductor of π(ω) (ω can be viewed as a character of Ck(X),1 since

it is trivial on ⟨X⟩ in ⟨X⟩(1 +X−1k[[X−1]])). Then for any finite place f of k(X)
with monic generator f we have rω(f) = ordf g. We have δ = rω(∞). Also, if ω
does not ramify at f we have λω(f) = π(ω)(f−1). If ω does not ramify at ∞ we
have λω(∞) = 1.

Proof. First we deduce from Theorem 2.3.18 that g is the monic polynomial
of minimal degree such that Vg ⊂ kerω1. Now we look at what happens to the
place at infinity. Let x =

∑n
i=−∞ ciX

i with all ci ∈ k and cn ̸= 0 be an element of
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A∗
∞, viewed as an element of Ck(X) by embedding on the k(X)∗∞-axis. We have

ω(x) = ω(
1

cn
· x) = ω1(

1

cn
) · ω∞(

1

cn
· x).

Hence ω does not ramify at∞ (so r(∞) = 0) if and only if ω1 is trivial on k
∗ and ω∞

is trivial. Otherwise rω(∞) is the smallest n ∈ Z>0 such that (1+X−nk[[X−1]]) ⊂
kerω∞. This shows that rω(∞) = δ. If ω does not ramify at ∞ we indeed have
λω(∞) = ω(1, . . . , X−1) = ω∞(X−1) = 1.

Now let f be a place with monic generator f . View A∗
f as a subset of Ck(X) by

embedding on the k(X)∗f -axis. Determining whether ω ramifies at f is equivalent

to determining whether ω1(x) = 1 for all x ∈ k̂[X]
∗
. We will make use of Theorem

2.3.18. We know that g is the monic polynomial of minimal degree such that
Vg ⊂ kerω1. If f does not divide g then gAf = Af, hence ω does not ramify at f. If
f does divide g, then gAf = fmAf for some m > 0. Since g is of minimal degree it
follows that rω(f) = m. This shows that rω(f) is equal to the number of factors of
f in g. Since ω∞ maps ⟨X⟩ to 1 we have ω∞(f−1) = ω∞(Xdeg ff−1). So if ω does
not ramify at f, we have

λω(f) = ω(1, . . . , f, . . . , 1) = ω((1, . . . , f, . . . , 1) · f−1) = ω1((f
◦)−1)ω∞(Xdeg ff−1)

where f◦ is as in Definition 2.3.17. Finally by the last part of Theorem 2.3.18 we
have

ω1((f
◦)−1)ω∞(Xdeg ff−1) = π(ω)(f−1),

exactly what we wanted to prove. �
The theorem yields the following corollary, which relates the L-functions.

Corollary 2.3.21. Let χ be a primitive character of k[X] and let ω be the character
of Ck(X),1 such that π(ω) = χ−1. Extend ω to a character of Ck(X) by ω(X) = 1.
Let (g, δ) be the conductor of χ and let g be the conductor of ω. Then deg g + δ =
deg g and

L(T, χ) = L(T, ω)(1− T )max{0,1−δ}.

Proof. Note that the conductors of χ−1 and χ are the same. The rest follows
immediately from Theorem 2.3.20. �



CHAPTER 3

Class field theory

1. Some algebraic number theory

Definition 3.1.1. Let K be a finite extension of k(X) with k a finite field, let L
be a finite extension of K and let p be a place of K with valuation ring Op. If q is
a place of L, we say that q lies above p, denoted by q | p if Op = Oq ∩K. If q lies
above p we define f(q | p) to be the dimension of Oq/q as Op/p-vector space and

we define e(q | p) to be the number such that qe(q|p) = pOq. We define r(p) to be
the number of places lying above p. Often we just use the letters f, e and r if it is
clear which extension is meant.

Theorem 3.1.2. Let K be a finite extension of k(X) with k a finite field, let L be a
finite extension of K and let p be a place of K. Then

∑
q|p f(q | p)e(q | p) = [L : K].

The proof of this theorem in the case that L is separable over K can be found
in [7]. We will give a sketch here. In the following lemma, let q be a place lying
above p.

Lemma 3.1.3. We have f(q | p)e(q | p) = [Lq : Kp].

Proof. See [7], Theorem 3.7, p. 26. �

Lemma 3.1.4. The canonical map Kp ⊗K L →
∏

q|p Lq is an isomorphism of

Kp-algebras.

Proof. See [7], Theorem 3.8, p. 26 for the special case where L is separable
over K; see [4], Proposition 7.2, p. 81 for the general case. �

Now we can easily prove 3.1.2. As a Kq-vector space Kp ⊗K L is isomorphic

to K
[L:K]
p and each Lq is as a Kp-vector space isomorphic to K

[Lq:Kp]
q . Now 3.1.3

proves 3.1.2.
The following theorem is known as the weak approximation theorem.

Theorem 3.1.5. Let K be a finite extension of k(X) with k a finite field and let
S be a finite set of distinct places of K. Let T be a subset of S. Then there exists
x ∈ L such that |x|p > 1 if p ∈ T and |x|p < 1 if p ∈ S \ T .

Proof. See [8], Theorem I.1.3, p. 11.
�

2. Galois extensions

Theorem 3.2.1. Let K be a finite extension of k(X) with k a finite field, let L/K
be a finite Galois extension with Galois group G and let p be a place of K. Then
G acts transitively on the set of places of L lying above p.

21
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Proof. First note that G indeed acts on the set of places of L lying above p,
since if q is a place lying over p then σOq is clearly also a discrete valuation ring
with maximal ideal σq. Moreover we have σq∩K = p since σ is the identity on K.
Now suppose that there are places q1 and q2 lying above p such that Gq1∩Gq2 = ∅.
By 3.1.5 there is x ∈ L such that |x|q > 1 if q ∈ Gq1 and |x|q < 1 if q ∈ Gq2.
Note that NL/Kx is an element of K (in the next section we will get back to the
definition of the norm), so |NL/Kx|q1 = |NL/Kx|q2 . Now on one hand we have

|NL/Kx|q1 =

∣∣∣∣∣∏
σ∈G

σ(x)

∣∣∣∣∣
q1

=
∏
σ∈G

|x|σ−1(q1) > 1

and on the other hand we have

|NL/Kx|q2 =

∣∣∣∣∣∏
σ∈G

σ(x)

∣∣∣∣∣
q2

=
∏
σ∈G

|x|σ−1(q2) < 1

which is a contradiction. �
This theorem yields us the following important corollary.

Corollary 3.2.2. Let K be a finite extension of k(X) with k a finite field, let L/K
be a finite Galois extension and let p be a place of K. Let q be any place of L
lying above p. Then f(q | p) and e(q | p) do not depend on the choice of q and
[L : K] = rf(q | p)e(q | p).

Proof. This is an immediate consequence of Theorem 3.1.2, since for any q, q′

lying above p there is σ ∈ Gal(L/K) such that σ(q) = q′ and as a consequence
σ(Oq) = Oq′ . �

So if L/K is a Galois extension, the variables f and e do not depend on the
chosen extension of a place.

Definition 3.2.3. Let K be a finite extension of k(X) with k a finite field, let
L/K be a finite Galois extension with Galois group G, let q be a place of L. We
define the decomposition group of q in G, denoted by Gq, to be the subgroup of G
given by {σ ∈ G : σ(q) = q}. Note that we have a natural map

Gq → Gal((Oq/q)/(Op/p))

We define the kernel of this map to be the inertia group of q, denoted by Iq.

Note that Iq is a normal subgroup of Gq.

Theorem 3.2.4. Let K be a finite extension of k(X) with k a finite field, let L/K
be a finite Galois extension with Galois group G, let p be a place of K and let q be
a place of L lying above p. Then the order of Gq is equal to fe. Also, Lq/Kp is a
finite Galois extension. If G = Gal(L/K), then there is a natural isomorphism from
Gq to Gal(Lq/Kp), where Gq is the subgroup of G given by {σ ∈ G : σ(q) = q}.

Proof. By theorem 3.2.1 we know that Gq consists of r places. Also there is
a well known bijection Gq ↔ G/Gq, which shows that r = #(G/Gq). Hence we
have #Gq = fe. Clearly every element of Gq can be extended to an automorphism
of Lq being the identity on Kp. By Lemma 3.1.3 we know that [Lq : Kp] = fe.
Since #AutKp

Lq ≤ [Lq : Kp] with equality if and only if Lq/Kp is Galois, we have
proved that the natural embedding of Gq in AutKp

Lq is an isomorphism, and that
Lq/Kp is Galois. �
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Now we are going to determine the order of Iq.

Theorem 3.2.5. Let K be a finite extension of k(X) with k a finite field, let L/K
be a finite Galois extension with Galois group G, let q be a place of L, let Gq be
the decomposition group of q and let Iq be the inertia group of q. Then we have a
short exact sequence

1 −→ Iq −→ Gq −→ Gal((Oq/q)/(Op/p)) −→ 1

Proof. Apply the map in 3.2.4 and use [7], p. 39. �
Corollary 3.2.6. The order of Iq is equal to e.

Proof. We know that the order of Gq is fe by 3.2.4. By definition we have
[Oq/q : Op/p] = f , so this is also the order of the Galois group. Hence by 3.2.5 the

order of Iq is equal to fe
f , thus equal to e. �

Definition 3.2.7. The coset of Gq/Iq that is mapped to the Frobenius map of
Gal((Oq/q)/(Op/p)) is denoted by (q, L/K), which we call the Frobenius symbol.

In the case that L/K is unramified at q it is clear that (q, L/K) is a generator
of Gq.

3. Norms

We recall an important definition.

Definition 3.3.1. Let K be a field and let L be a finite extension of K. Then for
any a ∈ L we have a map fa : L→ L given by x 7→ ax. We define

NL/Ka = detK(fa),

which is an element of K. For any subgroup U ⊂ L∗ we define

NL/KU = {NL/Kx : x ∈ U},
which is a subgroup of K∗.

Note that NL/KL
∗ ⊂ K∗, but it is generally not easy to determine which

subgroup this is. The following theorem is well known.

Theorem 3.3.2. Let K be a field, let L be a finite extension of K and let L̄ be
an algebraic closure of L. Let Ksep be the separable closure of K in L and let
i = [L : Ksep] be the inseparability degree of L/K. Then for any x ∈ K we have

NL/Kx =
∏

σ∈HomK(L,L̄)

σ(x)i.

Proof. See [6] for example. �
Theorem 3.3.3. Let K be a finite extension of k(X) with k a finite field, let L/K
be a finite extension and let p be a place of K. Then

NL/Kx =
∏
q|p

NLq/Kp
x.

Proof. We make use of lemma 3.1.4 which says that the canonical mapKp⊗K
L→

∏
q|p Lq is an isomorphism. Since any K-basis for L is a Kp-basis for Kp ⊗K

L, we see that NL/Kx = NKp⊗KL/Kp
x, and by 3.1.4 we have NKp⊗KL/Kp

x =∏
q|pNLq/Kp

x, which is what we wanted to prove. �
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Lemma 3.3.4. Let x ∈ Kp. Then |x|q = |x|[Lq:Kp]
p .

Proof. First suppose x ∈ Op \ {0}. Then x ∈ Oq. We have

|x|q = #(Oq/xOq)
−1 = #(Oq/q)

− ordq x = (#(Op/p)
f )− ordq x =

(#(Op/p)
f )−e ordp x = (#(Op/xOp)

−1)fe = |x|[Lq:Kp]
p .

Now suppose x ∈ Kp \ Op. Then x−1 ∈ Oq. Since we have |x−1|q = |x|−1
q , we

can just use the argument above. Finally if x = 0 the lemma is obvious, hence the
lemma has been proved. �

Lemma 3.3.5. Let x ∈ Lq. Then |NLq/Kp
x|p = |x|q.

Proof. We know by Theorem 3.3.2 that NLq/Kp
x =

∏
σ∈HomKp (Lq,L̄q)

σ(x)i

where i is the inseparability degree of Lq/Kp. Let M be a splitting field of Lq

over Kp. Then we can corestrict any element in HomKp
(Lq, L̄q) to an element of

HomKp
(Lq,M). Moreover, M is also a local field with a unique place r that lies

above p and q. So we have

|NLq/Kp
x|p =

∣∣∣∣∣∣
∏

σ∈HomKp (Lq,L̄q)

σ(x)i

∣∣∣∣∣∣
p

=

∣∣∣∣∣∣
∏

σ∈HomKp (Lq,M)

σ(x)

∣∣∣∣∣∣
i

[M:Kp]

r

,

using Lemma 3.3.4 (for any element x ∈ Kp we have |x|[M :Kp]
p = |x|r so also

|x|p = |x|
1

[M:Kp]

r ). Since r is fixed under the action of Gal(M/Kp) we have∣∣∣∣∣∣
∏

σ∈HomKp (Lq,M)

σ(x)

∣∣∣∣∣∣
i

[M:Kp]

r

=
∏

σ∈HomKp (Lq,M)

|x|
i

[M:Kp]

σ−1(r) = |x|
[Lq:Kp]

[M:Kp]

r = |x|q,

again making use of Lemma 3.3.4. This proves the lemma. �

Corollary 3.3.6. We have x ∈ Aq if and only if NLq/Kp
x ∈ Ap.

Theorem 3.3.2 and Corollary 3.3.6 justify the following definition.

Definition 3.3.7. Let K be a finite extension of k(X) with k a finite field, let
L/K be a finite extension and let x ∈ AL. Then we define

NL/K(x) =

∏
q|p

NLq/Kp
(xq)


p

,

which is an element of AK , and for any subgroup U ⊂ A∗
L we define

NL/K(U) = {NL/Kx : x ∈ U},

which is a subgroup of A∗
K . In the same manner we can define for any subgroup

U ⊂ CL the subgroup NL/K(U) of CK .

By Theorem 3.3.3 we see that the map NL/K |L is just the regular norm. We
also see that for any place q of L lying above a place p of K the map NL/K |Lq

on
the Lq-axis is the regular norm NLq/Kp

.
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4. The main theorem

Now we have all the ingredients to formulate the heavy theorem which we will
need.

Theorem 3.4.1. Let K be a finite extension of k(X) with k a finite field. Let Gab
K

be the Galois group of the maximal abelian extension of K, which is a topological
group ([6]). Then there is a continuous injective homomorphism

a : CK → Gab
K

such that for each finite extension L of K that is contained in Kab we have an
induced isomorphism

ā : CK/NL/KCL
∼−→ Gal(L/K)

and for each place p of K the map ā restricts to isomorphisms

K∗
p ·NL/KCL/NL/KCL

∼−→ Gp

and
A∗

p ·NL/KCL/NL/KCL
∼−→ Ip.

Moreover, for each open subgroup H of CK of finite index there is precisely one
subfield L of Kab, finite over K, such that NL/KCL = H.

Proof. See [9], Theorem 6, p. 275, Corollary 2, p. 277 and Corollary 2, p.
279. �
Definition 3.4.2. If L and H are as in the last part of Theorem 3.4.1, we say that
L is the class field to H.

Now we can state the most important ingredient of the proof of Theorem 2.1.10.
The proof is similar to the proof of the number field case, see [3], Theorem 1, p.
230.

Theorem 3.4.3. Let K be a finite extension of k(X) with k a finite field and let
L be a finite abelian extension of K. Let H be NL/KCL and let X (CK/H) be the
group of characters of CK/H. Then∏

ω∈X (CK/H)

L(T, ω) = ZL(T ).

Proof. Since the extension is abelian, it is Galois in particular. So by 3.2.2
for any place p of K we have [L : K] = fer = f(q | p)e(q | p)r where r is the
number of places lying above p. Hence we can write pL = (q1 . . . qr)

e where for
each place qi we have deg qi = deg pf . So we have

ZL(T ) =
∏
q

1

1− T deg q
=
∏
p

∏
q|p

1

1− T f deg p

where p runs over all places of K and q runs over all places of L. We know that
L(T, ω) =

∏
p

1
1−λω(p)Tdeg p for all ω ∈ X (CK/H), where the product is taken over

all places of K where ω does not ramify. So it is sufficient to prove the theorem
at each factor p. Denote by X (CK/H, p) ⊂ X (CK/H) the subgroup of characters
that do not ramify at p. Then it suffices to prove that

(1−W f )r =
∏

ω∈X (CK/H,p)

(1− λω(p)W ).
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where W = T deg p.

We have K∗
pH/H

∼= Gp and A∗
pH/H

∼= Ip by Theorem 3.2.4 and Theorem
3.4.1. We have #K∗

pH/A
∗
pH = #Gp/Ip = f by Corollary 3.2.6 and Theorem 3.4.1.

Moreover, by Theorem 3.2.5 it follows that Gp/Ip and hence K∗
pH/A

∗
pH is cyclic.

Let it be generated by an element π̄ ∈ K∗
pH/A

∗
pH, which we choose such that

π generates p. Then the character ψ of K∗
pH/A

∗
pH that maps π to ζf generates

X (K∗
pH/A

∗
pH). Since all the characters in X (K∗

pH/A
∗
pH) are determined by the

image of π̄, it follows that the elements of X (K∗
pH/A

∗
pH) are the characters that

send π̄ to ζif , with 0 ≤ i ≤ f − 1.

Note that we have a surjective homomorphism X (CK/H) → X (A∗
pH/H) given

by restriction. The kernel of this homomorphism is X (CK/H, p), the subgroup
of characters that do not ramify at p. We also have a surjective homomorphism
X (CK/H) → X (K∗

pH/H) given by restriction. Hence we have a surjective homo-
morphism X (CK/H, p) → X (K∗

pH/A
∗
pH), where each fiber has r elements. So we

have ∏
ω∈X (CK/H,p)

(1− λω(p)W ) =
∏

ω∈X (K∗
pH/A

∗
pH)

(1− ω(π̄)W )r =

f∏
i=0

(1− ζifW )r = (1−W f )r.

This is what we wanted to prove. �

5. The proof of Theorem 2.1.10

Now we are almost ready to prove Theorem 2.1.10. We mention one more result
without proof.

Theorem 3.5.1. Let K be a finite extension of k(X) with k a finite field and
let ω be a character of CK that is non-trivial on CK,1. Then L(T, ω) ∈ C[T ]. If
K = k(X) then the degree of L(T, ω) is equal to deg f− 2, where f is the conductor
of ω.

Proof. See [9], Theorem 6, p. 134. �

Theorem 3.5.2. Let K be a finite extension of k(X) with k a finite field with q
elements and let ω be a character of CK that is non-trivial on CK,1 and trivial on
the ⟨X⟩-part of CK (as in Theorem 2.3.13). Then all zeroes α of L(T, ω) satisfy
|α| = 1√

q .

Proof. Let H be the kernel of ω, then H is open and of finite index. So by
the last statement of Theorem 3.4.1 there is a finite abelian extension L/K such
that L is the class field to H. By Theorem 3.4.3 we know that∏

ψ∈X (CK/H)

L(T, ψ) = ZL(T )

and by Theorem 2.3.10 it follows that all zeroes α of
∏
ψ∈XH

L(T, ψ) satisfy |α| =
1√
q and all poles β of

∏
ψ∈X (CK/H) L(T, ψ) satisfy |β| = 1 or |β| = 1

q . By Theorem

3.5.1 we know that all L(T, ψ) except L(T, 1) are polynomials in C[T ]. Moreover,
Theorem 2.3.10 again tells us that L(T, 1) = ZK(T ) is a rational function of which
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all poles β satisfy |β| = 1 or |β| = 1
q . Combining all this, it follows that all zeroes

α of all the factors L(T, ω) satisfy |α| = 1√
q , which proves the theorem. �

Now let χ = (χ1, χ∞) be a character of k(X) with modulus f , where k has q
elements. Let ψ1 be the map that induces χ1 such that ψ = (χ1, χ∞) is primitive
and let g be the conductor of χ. As in Proposition 2.1.9 can we write

L(T, χ) = L(T, ψ) ·
∏
h

(1− ψ(h)T deg h)

where ψ is the primitive character inducing χ and h ranges over the monic irre-
ducible factors of f . By Corollary 2.3.21 we know there is a character ω of Ck(X)

with conductor g and r(∞) = δ such that

L(T, ψ) = L(T, ω)(1− T )max{0,1−δ}

and deg g = deg g + δ. Assume ψ is not principal, then ω is not trivial on Ck(X),1.
Then by Theorem 3.5.1 we know that L(T, ψ) is a polynomial of degree deg g−2 =
deg g − 2 + δ and by Theorem 3.5.2 we know that all zeroes of α of L(T, ψ) satisfy
|α| = 1√

q . Hence substituting in the formula of Proposition 2.1.9 we see that there

are α1, . . . , αm ∈ C, where m = deg g − 2 + δ, such that |αi| =
√
q for 1 ≤ i ≤ m

and such that

L(T, χ) =
m∏
i=1

(1− αiT ) · (1− T )max{0,1−δ} ·
∏
h

(1− ψ(h)T deg h)

where h ranges over all monic irreducible factors of f . This completes the proof of
Theorem 2.1.10.





CHAPTER 4

Applications

1. The main tools

Definition 4.1.1. Let k be a finite field and let f ∈ k[X] ̸=0. Then we define
Φ(f) = #(k[X]/fk[X])∗.

Theorem 4.1.2. Let k be a finite field with q elements and let f ∈ k[X] ̸=0. Then
the group X (f, c) has order Φ(f) · qc−1.

Proof. By Lemma 2.1.2 we see that the number of elements of X (f, c) is equal
to #Hom((k[X]/fk[X])∗,C∗) ·#Hom(1 +X−1k[[X−1]]/1 +X−ck[[X−1]],C∗). It
is well known that for each finite abelian group A we have #Hom(A,C∗) = #A,
so it follows that the number of characters with modulus (f, c) is indeed equal to
Φ(f) · qc−1. �

The following theorem is a well known orthogonality relation.

Theorem 4.1.3. Let k be a finite field and let f ∈ k[X] ̸=0, let c ∈ Z>0, let a ∈ k[X]
and g ∈ k[X]monic be such that (a, f) = (g, f) = 1, let b = (b1, . . . , bc−1) ∈ kc−1 and

let b′ = 1 +
∑c−1
i=1 biX

−i mod X−ck[X−1]. Then∑
χ∈X (f,c)

χ(g)χ1(a)χ∞(b′) = Φ(f)qc−1δ(g, a, b′)

where we have δ(g, a, b′) = 1 if g ≡ a mod f and g
Xdeg g ≡ b′ mod X−ck[X−1] and

δ(g, a, b′) = 0 otherwise.

Proof. First suppose that g ≡ a mod f and g
Xdeg g ≡ b′ mod X−ck[X−1].

Then ∑
χ∈X (f,c)

χ(g)χ1(a)χ∞(b′) =
∑

χ∈X (f,c)

1 = #X (f, c).

by Theorem 4.1.2.

Now suppose that g ̸≡ a mod f or g
Xdeg g ̸≡ b′ mod X−ck[X−1]. Then there

is ψ ∈ X (f, c) such that ψ1(a)ψ∞(b′) ̸= ψ(g). We have

ψ(g)ψ1(a)ψ∞(b′)
∑

χ∈X (f,c)

χ(g)χ1(a)χ∞(b′) =

∑
χ∈X (f,c)

ψ(g)χ(g)ψ1(a)χ1(a)ψ∞(b′)χ∞(b′) =
∑

χ′∈X (f,c)

χ′(g)χ′
1(a)χ

′
∞(b′).

Hence, since ψ(g)ψ1(a)ψ∞(b′) ̸= 1, it follows that
∑
χ∈X (f,c) χ(g)χ1(a)χ∞(b′) =

0. �
29
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Definition 4.1.4. We define An,f =
∑
j deg j where j ranges over all monic irre-

ducible factors of f such that deg j | n. We define Bn,f =
∑
j deg j where j ranges

over all monic irreducible polynomials that do not divide f such that deg j | n and
deg j < n.

The next theorem is a generalization of what is done in [4], pp. 44-45.

Theorem 4.1.5. Let k be a finite field with q elements, let χ be a character of
k[X] with modulus (f, c) and conductor (g, δ) and let L(T, χ) be the L-function of
χ. Then we have

T
d log

dT
L(T, χ) =

∞∑
n=1

anT
n

where all an are complex numbers such that an = qn − An,f if χ is principal and

|an| ≤ (deg g + δ − 2)qn/2 +max{0, 1− δ}+An,f −An,g if χ is not principal.

Proof. In both cases we use Theorem 2.1.10. In the case that χ is principal
we have

T
d log

dT
L(T, χ) = T

d log

dT

(
1

1− qT
·
∏
h

(1− T deg h)

)
where h ranges over all monic irreducible factors of f . Using geometric expansions
we see that

T
d log

dT

(
1

1− qT
·
∏
h

(1− T deg h)

)
=

∞∑
n=1

qnTn −
∑
h

( ∞∑
n=1

(deg h)Tn deg h

)
.

So the coefficient of T d log
dT L(T, χ) at Tn is equal to qn −

∑
h deg h where h ranges

over all monic irreducible factors of f such that deg h | n. This proves the first case
of the theorem.

In the case that χ is non-trivial we have

T
d log

dT
L(T, χ) =

T
d log

dT

(
deg g−2+δ∏

i=1

(1− αiT ) · (1− T )max{0,1−δ} ·
∏
h

(1− ψ(h)T deg h)

)
where h ranges over all monic irreducible factors of f that do not divide g and ψ is
the primitive character that induces χ. Again making use of geometric expansions
we see that

T
d log

dT
L(T, χ) =

−
deg g−2+δ∑

i=1

∞∑
n=1

(αiT )
n −max{0, 1− δ}

∞∑
n=1

Tn −
∑
h

∞∑
n=1

(deg h)ψ(h)nTn deg h.

So the coefficient of T d log
dT L(T, χ) at Tn is equal to −

∑deg g−2+δ
i=1 αni −max{0, 1−

δ}−
∑
h(deg h)ψ(h)

n
deg h where h ranges over all monic irreducible factors of f that

do not divide g such that deg h | n. By the triangle inequality this proves the
second part of the theorem. �
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Theorem 4.1.6. Let k be a finite field with q elements and let χ be a character of
k[X] with modulus (f, c) and conductor (g, δ). Let In be the set of monic irreducible
polynomials of degree n with n > 0. Then∑

h∈In

χ(h) =
qn −An,f −Bn,f

n

if χ is principal and∣∣∣∣∣∑
h∈In

χ(h)

∣∣∣∣∣ ≤ (deg g + δ − 2)qn/2 +max{0, 1− δ}+An,f −An,g +Bn,f
n

otherwise. Furthermore, we have An,f ≤ deg f and An,f − An,g ≤ deg f − deg g

and we have Bn,f ≤ q
n
2

+1−1
q−1 .

Proof. The trick is to calculate T d log
dT L(T, χ) in a different way, namely via

Proposition 2.1.8. We have

T
d log

dT
L(T, χ) = T

d log

dT

 ∏
h∈k[X]

1

1− χ(h)T deg h


where the product is taken over the monic irreducible polynomials h in k[X]. The

standard calculation using geometric series shows that the coefficient of T d log
dT L(T, χ)

at Tn is equal to
∑
h(deg h)χ(h)

n
deg h where the sum is taken over all monic irre-

ducible h such that deg h | n. First suppose that χ is principal. Then we know by

Theorem 4.1.5 that the coefficient of T d log
dT L(T, χ) at Tn is equal to qn −An,f . So

we have an equality ∑
h

(deg h)χ(h) = qn −An,f

where the sum is taken over all monic irreducible h such that deg h | n. Hence we
see that ∑

h∈In

nχ(h) = qn −An,f −
∑
j

(deg j)χ(j)

where the latter sum is taken over all monic irreducible j such that deg j | n and
deg j < n. This proves the first part of the theorem.

In the case that χ is nontrivial, Theorem 4.1.5 shows that that the coefficient
of T d log

dT L(T, χ) at Tn is at most (deg g+ δ− 2)qn/2 +max{0, 1− δ}+An,f −An,g.
So we have ∣∣∣∣∣∑

h

(deg h)χ(h)
n

deg h

∣∣∣∣∣ ≤
(deg g + δ − 2)qn/2 +max{0, 1− δ}+An,f −An,g

where the sum is taken over all monic irreducible h such that deg h | n. In this case
we have∣∣∣∣∣∑
h∈In

nχ(h)

∣∣∣∣∣ ≤ (deg g+δ−2)qn/2+max{0, 1−δ}+An,f−An,g+

∣∣∣∣∣∣
∑
j

(deg j)χ(j)
n

deg j

∣∣∣∣∣∣



32 4. APPLICATIONS

where the latter sum is taken over all monic irreducible j such that deg j | n and

deg j < n. Now using the triangle inequality on
∣∣∣∑j(deg j)χ(j)

n
deg j

∣∣∣, the second

part of the theorem has been proved.

For the third part, note that the sum of the degrees of the factors of f is
equal to deg f , so An,f cannot be bigger than deg f . More precisely, we have
An,f = deg f −

∑
h(nh − 1) deg h where h ranges over the irreducible h such that

deg h | f and deg h | n, and where nh is the number of factors of h in f . This way
we immediately see that An,g ≥ deg g−

∑
h(nh− 1) deg h and hence An,f −An,g ≤

deg f−deg g. The first part also shows that the number of irreducible polynomials of

degree n is at most qn

n (take f = 1 and χ principal). So using geometric expansions

we have Bf,n ≤ q
n
2

+1−1
q−1 . �

We also have the following slightly weaker bound which is more suitable for the
applications.

Corollary 4.1.7. For all n > 0 we have∣∣∣∣∣∑
h∈In

χ(h)

∣∣∣∣∣ ≤ (deg f + c− 2)qn/2 +Bn,f
n

.

Proof. We have

(deg g + δ − 2)qn/2 +max{0, 1− δ}+An,f −An,g +Bn,f ≤

(deg g + c− 2)qn/2 +An,f −An,g +Bn,f

since c ≥ 1 per definition. Moreover,

(deg g+ c−2)qn/2+An,f −An,g+Bn,f ≤ (deg g+ c−2)qn/2+deg f −deg g+Bn,f .

by the last part of Theorem 4.1.6. Since deg f − deg g ≤ qn/2(deg f − deg g) we
have

(deg g + c− 2)qn/2 + deg f − deg g +Bn,f ≤ (deg f + c− 2)qn/2 +Bn,f ,

which proves the corollary. �

Remark 4.1.8. In the next two sections we will mostly be using Corollary 4.1.7
since usually the conductor (g, δ) in Theorem 4.1.6 is not known. In special cases
where g or δ is known one might achieve stronger bounds by using Theorem 4.1.6
though.

2. Multiplicative groups

Theorem 4.2.1. Let k be a finite field with q elements and let f ∈ k[X] such
that f ̸= 0. Let An,f and Bn,f as in Definition 4.1.4. Then for any n such that

qn > (deg f − 1)qn/2 + An,f + 2Bn,f the set of monic irreducible polynomials in
k[X] of degree n that are coprime to f generates (k[X]/fk[X])∗.

Proof. Let n ∈ Z>0 and suppose the group generated by Jn (the set of monic
irreducible polynomials of degree n that are coprime to f) in (k[X]/fk[X])∗ is not
equal to (k[X]/fk[X])∗. Then there is a maximal subgroupM such that Jn ⊂M (
(k[X]/fk[X])∗. There is a nontrivial homomorphism χ1 : (k[X]/fk[X])∗ → C∗

such that M = kerχ1.
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We know by 4.1.6 that

#Jn =
qn −An,f −Bn,f

n
.

Since Jn is contained in kerχ1 and χ1 is nontrivial, we can also bound Jn in another
way. Clearly, we can extend χ1 to a character χ with modulus (f, 1). We have

#Jn =
∑
h∈Jn

1 =
∑
h∈Jn

χ(h) =
∑
h∈In

χ(h)

using that χ(h) = 1 for all h ∈ Jn and χ(h) = 0 if (h, f) ̸= 1. Now we can apply
Corollary 4.1.7, which tells us that∣∣∣∣∣∑

h∈In

χ(h)

∣∣∣∣∣ ≤ (deg f + c− 2)qn/2 +Bn,f
n

,

so we have

#Jn ≤ (deg f − 1)qn/2 +Bn,f
n

since c = 1. Hence for any n such that

qn −An,f −Bn,f
n

>
(deg f − 1)qn/2 +Bn,f

n
we have a contradiction. It follows immediately that for any n such that

qn > (deg f − 1)qn/2 +An,f + 2Bn,f

Jn cannot be contained in any maximal subgroup M of (k[X]/fk[X])∗. So in
this case the elements of Jn generate (k[X]/fk[X])∗, which is what we wanted to
prove. �

Theorem 4.2.1 yields us some interesting corollaries.

Corollary 4.2.2. Let k be a field with q elements and let f ∈ k[X] be irreducible
of degree greater than 1. Then (k[X]/f · k[X])∗ is generated by the set of residue
classes of the monic linear polynomials if deg f < q1/2 + 1.

Proof. Theorem 4.2.1 tells that the monic linear polynomials will generate
(k[X]/fk[X])∗ if q > (deg f −1)q1/2+A1,f +2B1,f . Since f is irreducible of degree
greater than 1 we have A1,f = B1,f = 0. So just getting deg f to the left of the
equation proves the corollary. �

The following corollary is Theorem 1.1.1 from the introduction.

Corollary 4.2.3. Let k be a field with q elements, let f ∈ k[X] ̸=0 and let n ∈
Z>0. Then (k[X]/fk[X])∗ is generated by the set of residue classes of the monic
irreducible polynomials of degree n coprime to f if n ≥ 2 logq(deg f + 4).

Proof. Suppose
n ≥ 2 logq(deg f + 4),

then
qn/2 ≥ deg f + 4.

So then it follows that

qn − (deg f + 3)qn/2 − deg f = qn/2(qn/2 − deg f − 3)− deg f ≥
(deg f + 4)(deg f + 4− deg f − 3)− deg f = 4 > 0.
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So we have

qn > (deg f + 3)qn/2 + deg f.

Further rewriting shows

qn > (deg f − 1)qn/2 + deg f + 4qn/2.

Note that we have qn/2+1−1
q−1 < 2q

n
2 , so

qn > (deg f − 1)qn/2 + deg f + 2
qn/2+1 − 1

q − 1
.

Now we use the fact that

An,f + 2Bn,f ≤ deg f + 2
qn/2+1 − 1

q − 1

(this is the last part of Theorem 4.1.6). Hence it follows that

qn > (deg f − 1)qn/2 +An,f + 2Bn,f .

Now Theorem 4.2.1 proves the corollary. �

3. Primes in arithmetic progressions

In this section we are going to prove a function field-version of Dirichlet’s theo-
rem on primes in arithmetic progressions. We recall the definition and the theorem
already stated in the introduction.

Definition 4.3.1. Let a, f ∈ k[X] ̸=0 such that (a, f) = 1, let b = (b1, . . . , bc−1) be
an element of kc−1 for c ∈ Z>0 and let n ∈ Z>0. Then we define Sn(a, f, b, c) be
the set of monic irreducible polynomials g of degree n such that g ≡ a mod f and
g
Xn ≡ 1 +

∑c−1
i=1 biX

−i mod X−ck[X−1].

Theorem 4.3.2. Let a, f ∈ k[X] ̸=0 such that (a, f) = 1, let b be an element of
kc−1 for c ∈ Z>0 and let n ∈ Z>0. Then∣∣∣∣#Sn(a, f, b, c)− qn−c+1

nΦ(f)

∣∣∣∣ ≤ max{ q
q−1 , deg f + c− q−2

q−1} · q
n/2

n
.

Proof. We make use of the orthogonality relation in Theorem 4.1.3. Let
X (f, c) be the group of characters with modulus (f, c). Let b′ = 1 +

∑c−1
i=1 biX

−i.
Then the orthogonality relation tells us that∑

χ∈X (f,c)

χ(g)χ1(a)χ∞(b′) = Φ(f)qc−1

if g ≡ a mod f and g
Xdeg g ≡ b′ mod X−ck[X−1], and∑

χ∈X (f,c)

χ(g)χ1(a)χ∞(b′) = 0

otherwise. So this shows that∑
g

∑
χ∈X (f,c)

χ(g)χ1(a)χ∞(b′) = #Sn(a, f, b, c)Φ(f)q
c−1
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where the first sum is taken over all monic irreducible polynomials g of degree n.
Rewriting shows that

#Sn(a, f, b, c) =
1

Φ(f)qc−1

∑
χ∈X (f,c)

∑
g

χ(g)χ1(a)χ∞(b′)

where the second sum is taken over all monic irreducible polynomials g of degree
n. If χ = χ0, the principal character, then we have by Theorem 4.1.6∑

g

χ(g)χ1(a) =
qn −An,f −Bn,f

n
.

We take qn

n to the left in the equation, hence we have

#Sn(a, f, b, c)−
qn

nΦ(f)qc−1
=

1

Φ(f)qc−1

 ∑
χ∈X (f,c)\{χ0}

∑
g

χ(g)χ1(a)χ∞(b′)− An,f −Bn,f
n


so in particular ∣∣∣∣#Sn(a, f, b, c)− qn

nΦ(f)qc−1

∣∣∣∣ =∣∣∣∣∣∣ 1

Φ(f)qc−1

 ∑
χ∈X (f,c)\{χ0}

∑
g

χ(g)χ1(a)χ∞(b′)− An,f −Bn,f
n

∣∣∣∣∣∣ .
The left side of the equation is already as in the theorem. We need to estimate the
right side, this comes down to estimating∣∣∣∣∣∣

∑
χ∈X (f,c)\{χ0}

∑
g

χ(g)χ1(a)χ∞(b′)− An,f +Bn,f
n

∣∣∣∣∣∣ .
Now we apply Corollary 4.1.7. First, applying a triangle inequality, we have∣∣∣∣∣∣

∑
χ∈X (f,c)\{χ0}

∑
g

χ(g)χ1(a)χ∞(b′)− An,f +Bn,f
n

∣∣∣∣∣∣
≤

∑
χ∈X (f,c)\{χ0}

∣∣∣∣∣∑
g

χ(g)

∣∣∣∣∣+ An,f +Bn,f
n

.

For all non-trivial characters we have∣∣∣∣∣∑
g

χ(g)

∣∣∣∣∣ ≤ (deg f + c− 2)qn/2 +Bn,f
n

.

Note that there are Φ(f)qc−1 − 1 characters that are non-trivial, so we get∣∣∣∣#Sn(a, f, b, c)− qn−c+1

nΦ(f)

∣∣∣∣ ≤
(Φ(f)qc−1 − 1)(deg f + c− 2)qn/2 +Φ(f)qc−1Bn,f +An,f

nΦ(f)qc−1
.
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We would like to estimate (Φ(f)qc−1−1)(deg f+c−2)qn/2+An,f by Φ(f)q
c−1(deg f+

c − 2)qn/2. Then by the facts that Bn,f ≤ qn/2+1−1
q−1 and q

n
2

+1−1
q−1 < q

q−1 · qn/2 the

main theorem follows.

We have

(Φ(f)qc−1 − 1)(deg f + c− 2)qn/2 +An,f ≤ Φ(f)qc−1(deg f + c− 2)qn/2

if and only if

An,f ≤ (deg f + c− 2)qn/2.

We know that An,f ≤ deg f . So the inequality is always satisfied if c > 1. Now
assume c = 1. Then we would like to know in which cases we have

An,f ≤ (deg f − 1)qn/2.

If deg f > 3 this is always the case since 4 < 3
√
2 ≤ 3qn/2. In the case that

deg f = 2 or deg f = 3 the inequality is satisfied if n > 1. So it is clear which
exceptions we need to treat.

First suppose deg f = 0 and c = 1. Then, since Φ(f) = 1, we have

(Φ(f)qc−1 − 1)(deg f + c− 2)qn/2 +Φ(f)qc−1Bn,f +An,f
nΦ(f)qc−1

=

Bn,f
n

<

q
q−1 · qn/2

n
which is correct.

Now suppose deg f = 1 and c = 1. Then, since Φ(f) = q − 1, we have

(Φ(f)qc−1 − 1)(deg f + c− 2)qn/2 +Φ(f)qc−1Bn,f +An,f
nΦ(f)qc−1

=

(q − 1)Bn,f + 1

n(q − 1)
≤ qn/2+1 − 1 + 1

n(q − 1)
=

q
q−1 · qn/2

n

which is again correct.

Now suppose deg f > 1, c = 1 and n = 1. Then #Sn(a, f, b, c) = 0 or

#Sn(a, f, b, c) = 1. Also, q
n−c+1

nΦ(f) = q
Φ(f) < 1. So∣∣∣∣#S1(a, f, b, c)−

qn−c+1

nΦ(f)

∣∣∣∣ = ∣∣∣∣#S1(a, f, b, c)−
q

Φ(f)

∣∣∣∣ < 1,

confirming the theorem.
�

Finally we calculate a lower bound on n such that #Sn(a, f, b, c) > 0.

Corollary 4.3.3. If n > 2(c+ deg f + logq(deg f + c− q−2
q−1 )) we have

#Sn(a, f, b, c) > 0.
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Proof. Assume

n > 2(c+ deg f + logq(deg f + c− q − 2

q − 1
)).

Then we also have

n/2− c− deg f > logq(deg f + c− q − 2

q − 1
)

and

qn/2−c−deg f > deg f + c− q − 2

q − 1
.

Since qdeg f > Φ(f) we have

qn/2−c

Φ(f)
> deg f + c− q − 2

q − 1
.

Multiplying by qn/2

n , we finally get

qn−c

nΦ(f)
>

(deg f + c− q−2
q−1 )q

n/2

n
,

implying that #Sn(a, f, b, c) > 0 if q
q−1 ≤ deg f + c − q−2

q−1 . This is the case if

deg f + c ≥ 2, so the only exception we have to consider is deg f = 0 and c = 1.
Since we know #Sn(1, 1, (), 1) > 0 for all n ≥ 1, the corollary has been proved.

�
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