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CHAPTER 1

Introduction

1. Arithmetic in k[X]

Just as in Z, there are several problems in k[X] with &k a finite field that are
much easier to formulate than to prove. One of them is the following theorem.

Theorem 1.1.1. Let k be a field with q elements, let f € k[X].o and let n €
Z-o. Then (k[X]/fk[X])* is generated by the set of residue classes of the monic
irreducible polynomials of degree n coprime to f if n > 210gq(deg f+4).

A proof of this theorem will be given in Chapter 4 of this thesis.

Theorem 1.1.1 has an analogue in Z. Let n € Z-( and assume the extended
Riemann hypothesis (see the next section). Then (Z/nZ)* is generated by the set
of residue classes of the numbers coprime to n that are smaller than 2(logn)?. A
proof of this theorem can be found in [1].

Another theorem to be proved in this thesis has a well known analogue in
Z. Dirichlet’s theorem on primes in arithmetic progressions states that for all
a,b € Zsq such that (a,b) = 1 the set of primes p such that p = a mod b is
infinite. A stronger statement tells that if 7, ;() is the number of primes p smaller
than = such that p = a mod b, then
Tap(T) logx 1

where ¢(b) = #(Z/bZ)*. This is called the prime number theorem on arithmetic
progressions, see [3], Theorem 4, p. 315.

If we replace Z~ by the set of monic polynomials in k[X] with k a finite field
there is no ‘exact’ analogue for Dirichlet’s theorem since there is no clear ordering
on k[X] like there is on Zo. So in this case we look, for all a, f € k[X].o such
that (a, f) = 1, at the set of all monic irreducible polynomials g € k[X] of degree
n such that ¢ = a mod f. In fact we can even do more. The set we are going to
estimate is the following.

Definition 1.1.2. Let a, f € k[X]o be such that (a, f) =1, let b= (b1,...,be—1)
be an element of k=1 for ¢ € Z~q. Then we define S, (a, f, b, c) be the set of monic
irreducible polynomials g of degree n such that ¢ = a mod f and g has coefficient
b at X" for 0 < i < c.

Now the analogue of Dirichlet’s theorem on primes in arithmetic progressions
is as follows.
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Theorem 1.1.3. Let a, f € k[X]xo be such that (a, f) =1, let b be an element of
ke~ for c € Zwo and let n € Z~g. Then

gi-e+1|  max{ 4y, deg f + ¢ — =2}/

#S,(a, f,b,¢) — w0 | = -
where &(f) = #(K{X]/ F[X])".

The only ‘ugly’ thing about this theorem is the maximum taken on the right
side on the equation, but this is only relevant if deg f = 0 and ¢ = 1. The similarity
with the Z-case is obvious from the following two corollaries.

Corollary 1.1.4. We have
lim #S,(a, f,b,¢) =
n—roo

and

#5n(a, f,b,¢) 1

nlgrolo #Sn(le()vl) q)(f)qc—l'
A proof of the special case of Corollary 1.1.4 where ¢ = 1 can also be found in
[4]. In [4] one can also find a version of the special case of Theorem 1.1.3 where
¢ = 1. The author did not bother to calculate explicit bounds like in Theorem
1.1.3 though. As far as I know, nobody has ever done this, nor has anybody ever
considered the cases where ¢ > 1.

The main ingredient of the proof of these theorems is the fact that the absolute
value of each zero of each L-function of the projective line over k (see Definition
2.1.7 in the next chapter) is either 1 or ﬁ. The complete theorem is formulated in

Theorem 2.1.10. A sketch of the proof can be found in [5]. The sketch given in [5]
is very brief and its only reference, namely Appendix V of [9], is not easy to read.
So it seemed a nice task to work through the proof of this theorem and write down
a detailed proof.

2. Riemann hypotheses

The proof of Theorem 2.1.10 is a consequence of the so called “Riemann hy-
pothesis for function fields”. In this section I will give a sketch of various Riemann
hypotheses and how they are related.

One of the main open problems in mathematics is the Riemann hypothesis.
This hypothesis states properties about a certain complex valued function ((s), the
so called zeta function. It is defined as follows. One can show that the function
>oo2 ,n~ % is analytic on the set {s € C : Res > 1}. Then it can be shown that
this function has a unique analytic continuation to C\ {1}, in this way we obtain
¢(s). The Riemann hypothesis states that all zeros of ¢ in the region {s € C: 0 <
Res < 1} satisfy Res = .

One of the generalizations of the Riemann hypothesis, called the extended
Riemann hypothesis, is the following. Let x be a character of Z, that is a map
X : Zso — C for which there exists n € Z~o and a group homomorphism y’ :
(Z/nZ)* — C* with the property that x(a) = x'(a mod n) for all a € Z~( with
ged(a,n) =1 and x1(a) =0 for all a € Zs( with ged(a,n) # 1. Now one can show
that Y07, x(n)n~% is analytic on the set {s € C : Res > 1} and can be uniquely
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continued to an analytic function on C\ {1}. This function is often denoted by
L(s,x). The extended Riemann hypothesis states that all zeros of L(s,x) in the
region {s € C: 0 < Res < 1} satisfy Res = % The statement of the extended
Riemann hypothesis implies the Riemann hypothesis since we can take x to be the

map that sends all elements of Z>( to 1.

Another generalization of the Riemann hypothesis, called the generalized Rie-
mann hypothesis, is as follows. Let K be a number field and let Z be the set of
nonzero ideals of Of, the ring of integers of K. Let Ny ,q : Z — Z~o be the norm
function of the ideals. Then it can be shown that ), 7 (Nk,q(I))”* is analytic on
the set {s € C : Res > 1} and can be uniquely continued to an analytic function
on C\ {1}. This function is often denoted by (x(s). The generalized Riemann
hypothesis states that all zeros of (x(s) in the region {s € C : 0 < Res < 1}
satisfy Res = % The statement of the generalized Riemann hypothesis implies the
extended Riemann hypothesis, but not trivially. In fact the proof of this is similar
to what is done in chapter 3 of this thesis, in the number field case it is just a little

bit more complicated since one needs to worry about convergence.

All these conjectures have analogues in k[X] where k is a field with ¢ elements.
In this case the zeta-functions are always functions in ¢~°. So it is convenient to
do the substitution ¢=° = T. The statement of the zeros having real part % then

changes into the zeros having absolute value ﬁ. The analogue of the extended

Riemann hypothesis is the main theorem of this thesis. In section 1 of chapter 2
we give an explicit version. The classical Riemann hypothesis should then be the
case were the character is trivial. In the case of the classical Riemann hypothesis
the analogue is not too interesting though. It merely states that all the zeros of
the rational function Wllﬂﬂ“) € C(T) have absolute value iq, which is obvious
since this function does not have any zeros. Why this is analogous to the classical
Riemann hypothesis follows from the generalized version.

The analogue of the generalized Riemann hypothesis is the theorem people
usually mean when they speak of the Riemann hypothesis for function fields (which
is no hypothesis at all, since it was proved by Weil in 1948). A proper definition
in terms of ideles is given in Chapter 2. Chapter 3 is devoted to proving why the
Riemann hypothesis for function fields implies our main theorem by means of class
field theory.






CHAPTER 2

L-functions

1. L-functions of the projective line

Just as we can define Dirichlet characters on Z~(, we can define characters on
the set of monic polynomials of k[X] (denoted by k[X]monic) Where k is a finite
field. For convenience we generalize this definition a bit.

Definition 2.1.1. Let k be a finite field. Let x; : k[X] — C be a map for
which there exists a nonzero polynomial f € k[X]monic and a group homomorphism
Xy ¢ (k[X]/fk[X])* — C* with the property that x1(h) = x}(h mod f) for all
h € k[X] with ged(h, f) =1 and x1(h) = 0 for all h € k[X] with ged(h, f) # 1. Let
Xoo : 14+ X 1E[[X~!]] — C* be a group homomorphism such that there is ¢ € Z~q
with 1 4+ X ~k[[X ~1]] C ker Xoo. A character of k[X] is a map X : k[X]monic — C
defined by x(h) = x1(h)Xeo (X~ 4e8%D).

Lemma 2.1.2. Let x be a character of k[X]|. Then the pair (X1, Xoo) S uniquely
determined by x.

PROOF. Let x = (X1, Xoo) and let f € k[X]monic and ¢ € Z~¢ be as in Definition
2.1.1. Let ¢ = (¢1,%) with corresponding monic polynomial g. Now suppose
x = ¥ and take h € k[X]monic arbitrary. Then there exists d € Z~( such that
1+ X 9k[[X71)] C ker xoo and 1 + X~ 9Kk[[X Y]] C kert)o,. Moreover, there is
j € k[X] such that

X~ e til9) (4 jgf) € 14+ X R[X ).
Hence we have
Xoo (X~ EIHIID (b 4 g f)) = thoe (X~ 9EHID (4 g f)) = 1.

So we have x(h+jgf) = x1(h+jfg) = x1(h) and Y (h+jgf) = Y1(h+jfg) = 1(h).
Since we assumed that x = v this shows that x; = ¢1. Then it immediately follows
that Yoo = Yoo, hence (X1, Xoo) is uniquely determined by x. O

It follows immediately that for any character x and for any hi, he € k[X] we
have x(hiha) = x(h1)x(h2). Now we will give some more useful definitions.

Definition 2.1.3. Let x = (X1, Xoo) be a character. If imyx C {0,1} we call x
principal. With a monic polynomial f that comes from y; and a ¢ € Z~( that
comes from Yo, we define a pair (f,c) to be a modulus of x. We denote the set of
characters with modulus (f,¢) by X(f,c).

Note that X(f,c) is a group by pointwise multiplication. Next we are going to
define the notion of a primitive character. The following lemma is useful.

Lemma 2.1.4. Let f € k[X|monic and let ¢ € Zso. Write f = [[, pi"" with all p;
monic irreducible such that p; # p; if i # j and all n; > 0. Then for any character

9
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X = (X1, Xoo) with modulus (f,c) there are characters (x,n:,1) € X(p;”,1) such
that x = (I]; X7, Xoo). We have an isomorphism

X(f,e) = HX(p;?i,l)xX(Lc)

X ()i Xoo)
ProOOF. Use the Chinese remainder theorem and Lemma 2.1.2. O
Let f € k[X]monic. Let f = [[,pi"" with all p; monic irreducible such that

pi 7 pj if i # j and all n; > 0 be the prime factorization of f. Then for each p;
and m; such that 0 < m; < n; we have an injective map

Hom((k[X]/pi" - k[X])", C*) — Hom((k[X]/p]" - K[X])",C"),
so we have an injective map (which is an inclusion if m,; > 0)
Wpi,mi,ni : X(p’;nl? 1) — X(p?17 1)'
Let ¢ € Z~g. Then for each d such that 1 < d < ¢ we have an injective map
Hom((1+ X 'k[[X1)))/(1+ X k[[X 1)), C*) —
Hom((1 + X HA[[X 1))/ (1 + X kX)), C),
so we get an inclusion
X(1,d) — X(1,c¢).

Definition 2.1.5. Let x = (x1,Xc0) be a character with modulus (f,c). Let
f =11, p;" with all p; monic irreducible be the prime factorization of f. Write x
like [ ; x,»i like in Lemma 2.1.4. Let m, i, », be as above. We say that a character

Y = (1,%00) induces x if the following two conditions are met.

e There are m; € Z>o and maps (x,m:,1) € X(p;",1) such that ¢ =

IL Xpmi and for all i we have mp, m, n, (X7, 1) = (X 1).

e We have Y50 = Xoo-
We call x primitive if x is only induced by itself. Let g be the polynomial [, pf
where each k; € Z>( is the smallest number such that there exists (Xp;_ci,l) €
X(pF, 1) with 7p, , ., (Xp;;i, 1) = (x,ri,1). Let d € Zo be the smallest number
such that (1,x0) € X(1,d). We define the conductor of x to be the pair (g,?)
where § = d if x1|g+ Or X0 is nontrivial and § = 0 otherwise.

Proposition 2.1.6. FEach character x with modulus (f,c) is induced by a unique
primitive character ¢ with modulus the conductor of x. For each h € k[X] with

(h, f) =1 we have x(h) = ¢¥(h).
PRrROOF. Obvious from the construction. O

To these characters we can associate L-functions.

Definition 2.1.7. The L-function L(T,x) associated to a character y of k[X] is
defined by the formal power series

L(T,x) = ) x(W)T*=" € C[T]]
h

where the sum is taken over the monic polynomials & in k[X].
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Each L-function satisfies an Euler product.

Proposition 2.1.8. We have
1

L(T,x) = _
( 7X) 1;[ 1— X(h)Tngh
where the product is taken over the monic irreducible polynomials h in k[X].

PRrROOF. Standard. O

Proposition 2.1.9. Let ¢p be the primitive character with conductor (g,0) that
induces x. Then we have

L(T,x) = L(T,¢) - [ (1—¢(r)T=)
hek[X]

where h ranges over all monic irreducible factors h of f that do not divide g.
Proor. Compare the factors of L(T, x) and L(T, ) in the Euler product. O
The following theorem is the main theorem of the thesis.

Theorem 2.1.10. Let x = (x1,Xoo) b€ a character on k[X] with modulus (f,c),
where k has q elements. Let (g,d) be the conductor of x. Then:

i. If x is principal, then

1 e,
LTX) = 17 T —1eEn)
h

where h ranges over all monic irreducible factors of f.
ii. Ifx is not principal then there are vy, . . .,y € C, where m = deg g—2+9,
such that |a;| = \/q for 1 <i <m and such that

m

L(Tx) =[]0 = a1y - (1 =100k T (1 = x(yTe?)
i=1 n

where h ranges over all monic irreducible factors of f that do not divide
g.
The first part of the theorem is very easy. If x = (x1,1) is principal with

modulus (f,c) then x is induced by the primitive character ¢¥» = (1,1) which has
conductor (1,0). We see that

> 1

BT = S = > r) =

h n=1

where h ranges over the monic polynomials of k[X], since there are exactly ¢¢ monic
polynomials of degree d. Now we use Proposition 2.1.9 to see

L(T, X) = L(T,'(/}) . H(l _ w(h)Tdegh) _ - _1qT H(l . Tdeg h)
h h

where h ranges over the monic irreducible factors of f. This proves the first part
of Theorem 2.1.10.

The second part of Theorem 2.1.10 is significantly more difficult. The proof
will be given at the end of Chapter 3.
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Now we will calculate a couple of examples to give evidence for this theorem.

Example 2.1.11. Let £k = Fa. Let x = (X1, Xoo) be a character with modulus
f=X3+X+1 where x1 : k[X] — C maps X to (7, where (7 is a primitive seventh
root of unity and X is the trivial map. We are going to calculate L(T),x). First
we note that L(T, x) will be a polynomial of degree at most 2 by 2.1.10 (degg = 3
and § = 0), so we only need to calculate x(g) where g is a polynomial of degree 0,
1, or 2. We have

LT,x)= Y, X(WTW" =1 46T + 5T
hek[x]monic

So we need to calculate s; and sp. Let o a zero of f. We see that a® = a+1,a0* =
o> +a,0® =a’+a+1,a8 =a®+1,a" = 1, in this way we have expressed
all polynomials of degree less than 3 in terms of powers of a. So we see that
X1(X) =Cr,x1(X +1) = (3, 50 851 = (7 + (3. We have x1(X?) =&, x1(X?+1) =
Goxi(X?+X) = ¢ xai(X2+ X +1) = (2, 50 s2 = (7 + (¢ + (7 + (7. Hence we
have

L(T,x) =1+ (G + )T + (G + G + G + )T,

We immediately see that 1 is a zero of L(T), ), since Z?Zl (i = —1. Now we can
find the other zero by dividing out 1 — T'. We see:

Lit,x) = (1 =T = ((F+ G + G +)T).
We see that ¢ + (2 + (F + (2 = —(1 + (7 + ¢3). Since we only want to determine
an absolute value, it is sufficient to calculate |1 + (7 + ¢3|?. We have

6

1+G+EP = 1+G+E) 1+ G+ ) = I+G+E)A+E+G) =2+ =2
1=0

This shows that |1 + {7 + (3| = v/2, hence the theorem has been confirmed.

Example 2.1.12. Let k = F3 = {0,1,—1}. Let x = (X1, Xoo) be a character with
modulus f = X such that x; is the map that sends —1 to —1 and 1 to 1 and y is
the map that sends 1 + X! to (3, where (3 is a primitive third root of unity, and
maps 1+ X 2k[[X!]] to 1. We see that g = 1 and § = 2. By Theorem 2.1.10 we
know that L(T, x) has degree 1. So we see that

L(T,x) =1+ (G — G3)T.
Since (3 — (2 = /=3 we have |(3 — (3| = /3, which again confirms the theorem.

2. Ideles
First we recall some important definitions and theorems about valuations.

Definition 2.2.1. Let K be a field. A valuation ring of K is a subring O C K
such that for all z € K* one has x € O or 27! € O. If in addition K*/O* = Z we
call O a discrete valuation ring. A place p of K is a maximal ideal of a valuation
ring O C K.

Theorem 2.2.2. Any valuation ring is a local ring. If a valuation ring is discrete
its place is a principal ideal.
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PROOF. Let O be a valuation ring. Then it is easy to check that O\ O* is an
ideal of O, so O is a local ring. If K*/O* 2 Z | take x € K* that is mapped to 1.
If 2 € O, then x generates the ideal O \ O*, otherwise x~1 generates O\ O*. 0O

Definition 2.2.3. If p is a place of K, then its valuation ring is denoted by O,.

Theorem 2.2.4. Let K be a finite extension of k(X), where k is a finite field, let
p be a place of K and let Oy be its valuation ring. Then Oy is a discrete valuation
ring. We have a group homomorphism

|-]p: K— R
(#0y/20p)~" if x € O\ {0}
T — #0,/z710, ifxe K*\O
0 ifx=0
such that (z,y) = [z — y|, defines a metric on K.
PRrROOF. See [8], Theorem 1.1.6, p. 3 and Note 2, p. 4. O

Note that in this case k is contained in any valuation ring of K, since if x € k*
then 7! is a power of z, because k is finite. This justifies the following definition.

Definition 2.2.5. The degree of a place p C K, denoted by degp, is the degree of
the extension k — O/p. We define the function ord, : K* — Z to be ord,(z) =
—logu (o, /p)([z]p). By K, we denote the completion of K with respect to |- [,.

Theorem 2.2.6. Let K be a finite extension of k(X), where k is a finite field. Then
K, is a topological field which is complete with respect to | -|,. Let t be an element
that generates p and let R, be a set of representatives of Op/p in O, containing 0.
Then every element in K has a unique representation DOy a;t" where n € Z and
a; € Ry with a, # 0.

PROOF. See [8], Theorem IV.2.6, p. 143. O

Definition 2.2.7. We make the unit group K into a topological group by giving
it the induced topology of K,. The subset of K, given by {z € K, : |z], <1} is a
subring, which we denote by A,.

Example 2.2.8. Consider the case K = k(X). Then the valuation rings of K
are the rings {$ € k(X) : ordy(a) > ords(b)} where f € k[X] is an irreducible
polynomial, of which a place corresponds to the maximal ideal generated by f,
and the ring {¢ € k(X) : dega < degb}, of which the place is the maximal ideal
generated by X 1 (which is also called the place at infinity, denoted by oo). If § is
the place corresponding to an irreducible polynomial f € k[X] and Ry is a set of
representatives of k[X]/fk[X] in k[X], then K; = {3°°  a;f':n € Z,a; € Ry}
and A; = {d"2paif' : a; € Ry}. In the case of the place co we have k(X)) =
E((X™1) and Ao = K[[X ).

Definition 2.2.9. Let K be a finite field extension of k(X), where k is a finite
field. The adele ring of K, denoted by A, is defined by

H/KP = {(zp)p € I—IK,3 :xy € A, for all but finitely many p}.
p p

We put a topology on A i by taking the sets HpeP O, x HpéP A, as a base for the
open subsets where P is a finite set of places of K and O, is an open subset of K,
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for all p € P. This makes Ak into a topological ring. Now A% can be described
as follows:

!/
Aj = H Ky ={(zp)p € HK;‘ sz € Ay for all but finitely many p}.
p p
The topology on A% is obtained by a classical trick: we give Ag X Ag the
product topology and we consider the embedding A} C Ag x Ak given by x —
(z,z7'). Then we give the image of A% the relative topology from Ax x Af,
which makes it into a topological group. We call A7 the idele group of K.

Proposition 2.2.10. The topology on A}, is generated by the open subsets HpeP O, x
Hpgp Ay, where P is a finite set of places of K and Oy is an open subset of K for
each p € P.

PROOF. Denote by S the topology mentioned in the second part of Definition
2.2.9 and denote by T the topology mentioned in the proposition. Take a set of
the form [[,.p Op x [[,zp Ay € T where P is a finite set of places of K and O,
is an open subset of K. Note that for all places p the set Oy is open in Ky if
and only if O, is an open subset of K,. Also, the map = — z~! is continuous on
K, and hence on A} with topology 7. This shows that the map 7 — S given by
X — ({(x,271) : z € X}) is a bijection, which we wanted to prove. O

Proposition 2.2.11. For any x € K* the element (x), is an element of Hp A5

ProoF. It is sufficient to show that any element x € K* is only contained in
finitely many places of K. In the case that K = k(X), use example 2.2.8. For the
general case, see [8], Corollary 1.3.4, p. 14. O

So the diagonal embedding K — A makes Ak into a K-algebra.
Definition 2.2.12. We define A% 1 to be {(zp)p € A% - Zp(deg p)ord, z, = 0}.

Proposition 2.2.13. The map A}y — Z given by (zp)p = >_,(degp) ordy x is a
continuous group homomorphism with kernel Aj ;.

PRrOOF. By definition of A% the map is well defined. To show continuity it
suffices to show that Aj ; is open in Aj. Clearly A}, contains [, Ay, which is
open in Az Since Ay, = UzeA’;( Lz [1, 45 it follows that Aj ; is also open in
A% ’ 0

Remark 2.2.14. One might ask whether the map from Proposition 2.2.13 is sur-
jective. If we choose an algebraic closure K of K and let k be the algebraic closure
of k in K, then the map has image nZ where n = [K Nk : k]. So the map is
surjective if and only if K Nk = k. See [8], Corollary V.1.11, p. 164.

Definition 2.2.15. The diagonal embedding K* — A7 gives rise to a topological
group A%, /K*, the idele class group of K, which we denote by Cx. The idele class
group gets the quotient topology from Aj.

The following theorem is called Artin’s product formula.

Theorem 2.2.16. Let x € K*. Then ), (degp)ordy z, = 0.

PROOF. In the case that K = k(X), use Example 2.2.8. For the general case,
see [8], Theorem V.I.I, p. 158 (this is also investigated in the next chapter). a
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Now the following definition is justified.
Definition 2.2.17. We define Ck 1 to be to be Ag 1/K*.
Note that C'x 1 is open in Ck.

Theorem 2.2.18. The map Ay — Z given by (xy), — >_,(degp) ord, z, and the
induced map Cx — Z give rise to exact sequences
l— Ak, — Ax —Z
and
1—Ckg1 — Cx — Z.
We have A}, = A*K,1 x Z and Ck = Ck 1 X Z as topological groups.

PRroor. Since the map Aj — Z is a non-trivial homomorphism there is n > 0
such that we have short exact sequences

l— Ay, — A —nZ—0

and
1—Cgy — Cx —nZ —0.
Any short exact sequence of abelian groups with Z on the third position splits.

Since Z has the discrete topology any section is continuous. Hence both sequences
also split as sequences of topological abelian groups. [l

Generally there are no canonical sections.

3. L-functions of an idele class group

Definition 2.3.1. Let G be a topological group. A character on G is a contin-
uous group homomorphism w : G — C*, where C* gets the usual topology. The
characters of G form a group which we denote by X (G).

So a character on A% is a continuous group homomorphism w : Ay — C*.
The following theorem is completely obvious but nevertheless important.

Theorem 2.3.2. Let G be a topological group, let N be a normal subgroup of G
and leti: G — G/N be the natural map that induces the quotient topology on G/N.
Then the map X(G/N) — X(G) which maps w to w o i is injective with image the
characters of G that are trivial on N.

ProoOF. Obvious. O

So there is an isomorphism between the group of characters of Aj that are
trivial on K* and the group of characters of C'x.

The following lemma enables us to define a conductor of a character of an idele
group.

Lemma 2.3.3. Let G be a topological group and let {N;}; be a set of open subgroups
of G such that for any open neighbourhood V of 1 € G there is i such that N; C V.
Let w: G — C* be a character of G. Then there is j such that N; C kerw. If G is
compact, then w has finite image.
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PROOF. Let V be the open neighbourhood of 1 € C* given by {x € C: 0 <
Rez < 2}. Then the only subgroup of C* contained in S is {1}. Since there is
i such that N; C w™1S and w(NV;) is a group it follows that N; C w™'{1}, hence
N; C kerw. If G is compact, then any open subgroup has finite index in G, so N;
has finite index in G. Hence ker w also has finite index in G, so the image of w is
finite. U

Corollary 2.3.4. Let K be a finite extension of k(X) where k is a finite field, let
p be a place of K and let w : K5 — C* be a character. Then there is n € Zq such
that 1 + p™ C kerw.

PROOF. Note that {1 +p"}necz., is a local base for neighbourhoods of 1 € K
and apply Lemma 2.3.3. O

This justifies the following definition.

Definition 2.3.5. Let w: A} — C* be a character and let P be the set of places
of K. Let p € P and let wy : K — C* be the map w o my with m, : K7 — Aj
the embedding on the Kj-axis. We define a function r : P — Z>q where 7(p) = 0
if Ay C kerwy and 7(p) = min{n € Zs¢ : 1+ p" C kerw, } otherwise. If r(p) > 0,
we say that w ramifies at p. We define the conductor of w to be the formal sum
Zpep T(p) - p.

Lemma 2.3.6. Let w: A}, — C* be a character and let P be the set of places of
K. Then there are only finitely many p € P where w ramifies.

Proor. By Proposition 2.2.10 we see that any open set of A} contains a set
of the form [[,cp1 x [[,¢p Ay where P is a finite set of places of K. Assuming
that J[,cp Op x [[,¢p A} is contained in the kernel of w we see that w can only
ramify at the places in P, so only at finitely many places. [l

In geometric terms this implies that the conductor of w is an element of Div(K).

Corollary 2.3.7. Let w: A} — C* be a character. Then w(x) = [, wy(zy) and
wy(zy) =1 for all but finitely many places p.

We need one more lemma.
Lemma 2.3.8. For each N € Z~q the set {p € P :degp < N} is finite.

PRrROOF. In the case that K = k(X), use Example 2.2.8. For the general case,
see [8], Theorem 1.4.11, p. 18. O

Now we are ready to define L-functions for the idele class group.

Definition 2.3.9. Let K be a finite extension of k(X) with k a finite field, let
w= Hp wyp be a character of C'x and let P,, be the set of places of K where w does
not ramify. Define a function A, : P,, = C* given by A, (p) = wp(x) with  a prime
element in K. Then we define the L-function L(T,w) to be

LTw =[] TW Sxelival
peP,, w

The special case w = 1 gives rise to the function L(T, 1), which is the well
known zeta-function of K. Now we can state the famous Riemann Hypothesis for
function fields.
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Theorem 2.3.10. Let K be a finite extension of k(X) with k a finite field with q
elements. Choose an algebraic closure K of K and let k the algebraic closure of k
in K. Letn = [K Nk :k] and let 1 be the trivial character of Cx. Then L(T,1),
which is also denoted by Zk (T), can be written as

P(T)

Zg(T) =
(1=T™)(1 = (¢T)")
with P € 1+ TZ[T] and the zeros o of P satisfy |a| = ﬁ
PROOF. See [2], Theorem 12.2.1, p. 64 and Corollary 14.3.1, p. 77 for the case
n = 1. For general n, use [4], Proposition 8.18, p. 111. |

Example 2.3.11. If K = k(X), then it is easy to show that

1
Z0) = o)A = D)

and hence P = 1.

From now on we will restrict to the case K = k(X) with k£ a finite field. In
this case, a lot more can be said. A brief summary of the following can be found
in Appendix V of [9].

Definition 2.3.12. Let k(X)) be the field of rational functions over a finite field k.
Denote by f the place of k(X) corresponding to a monic irreducible polynomial f

—

and denote by oo the place X ~'k[X '] x-1). By k[X] we denote the ring []; A;.

In the remainder of this section we will stick to the notation above. We will
also be using the diagonal embedding k(X) — Ajx) without comment.

Theorem 2.3.13. The map

((xf)fvmoo) — Cxo ~Hfordfl'f’
i

where coo 15 the leading coefficient of x~, is a homomorphism of topological groups
that is the identity on k(X)*. The kernel of s is the subgroup

*

KIX] x ((X) - 1+ XTTRIXTT)) -
Furthermore, the exact sequence

splits and the map

—

w: Cpxy — k[X] > ((X) - (1+ XTTR[[X 1))
1
Ts@)
s an isomorphism of topological groups.
Finally the restriction of u to Cy(x),1 gives rise to an isomorphism of topological
groups between Cix), and k/[}]* x (1+ X k[[X1)).

T
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PrOOF. First we are going to determine the kernel of s. Exactly the elements
((z)f; %) € Aj(x) such that ordjzy = 0 for all finite places j and such that

*

the leading coefficient of =, is equal to 1 are mapped to 1. So this is H)?] X
((X)- (14 X'k[[X1])). It is clear that s is a group homomorphism. To show
that s is continuous it suffices to show that s~!(1) is open in Aj(x)- This is the

kernel of s, which we already determined as H)?]* x ((X)-(1+ X 'K[X)),
which is open in AZ( X) Now consider the exact sequence

1 — k(X)" — Af ) — Crx)y — L.

The map s is a retraction of the sequence since s is the identity on k(X)*. Naturally
we have a section u : x — x- ( 3 The maps are visualized in the following diagram:

S u

TN TN

It is clear that the image of u is equal to H)?] x ((X) - (1+ X R[[X1)).
Also, u is injective since it is a section. Hence u induces an isomorphism of groups

between Cj,(x) and @ x ((X) - (1+X1E[[X71]])). Also, u is clearly a contin-
uous map since it is a composition of continuous maps. Hence we have shown that

Cr(x) and H)?]* x ((X)- (14 X:lk[[X_l]])) are isomorphic as topological groups.
We have u(Cy(x)1) = k[X] x (14 Xk[[X~1]]), since imu = kers. O
Definition 2.3.14. Let g € k[X].o. Then we define V, to be the group (1 +
gk[X]) NE[X] .
Lemma 2.3.15. For any g € k[X].o we have a natural group isomorphism
KXV, s (IX]/gkIX])

and a natural ring isomorphism
k[X]/gk[X] —  k[X]/gk[X].

PrROOF. Use the fact that for any v € ﬁ)?] there is a h € k[X] uniquely
determined modulo g such that v € h + gk[X]. O

So for each g € k[X]..o we have a natural isomorphism k[ ] /Vy = (k[X]/gk[X])*.

Lemma 2.3.16. All elements of X (k/[)a x (1 —|—X*1k[[X’1]])> have finite im-
age.

Proor. It is sufficient to show that all characters of H)?] have finite image,
since we already proved that all characters of 1 + X ~1k[[X ~!]] have finite image
in Theorem 2.1.2. We are going to apply Lemma 2.3.3. We already know that

for all A} we can take {N;}; = {1 + f”Af}n€z>0 Hence for H)?]* we can take
{Ni}i = {Vy}gerx]., Note that k[X] is compact by Tychonoff’s theorem. Hence

the conditions of 2.3.3 are satisfied and it follows that any character of k/[)?]* has
finite image. O
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So Lemmas 2.3.15 and 2.3.16 show that for any character w on k/[)?]* thereis g €
k[X]0 such that V; C kerw and w can be viewed as a character on (k[X]/gk[X])*.

Definition 2.3.17. Let h € k[X]..0. Then we define h° € J[; A} to be the element
(w5); where x5 = hif h € § and z; = 1 if h € .

Theorem 2.3.18. Write any character of Cy(x),1 as (w1, wee) where wy is a char-

—

acter of k[X]* and weo 18 a character of 1+ X 'E[[X Y], Let Xpyimitive be the set
of primitive characters of k[X]. Define x1 as the map on k[X]| which comes from
the induced map w1 : k[X] [V, — C* where g is the monic polynomial of minimal
degree such that V; C kerwy. Then the map

(A X(Ck(X),l) — Xprimitivc
(Wi, wee) > (X1, Woo)

is bijective and for all h such that (h,g) = 1 we have w1 (h®) = x1(h), where h° is
as in Definition 2.5.17.

PrOOF. By Lemma 2.3.16 we know there is g € k[X] such that V; C kerws,
and there is a unique monic g of minimal degree having this property. The obtained
(X1,Weo) is primitive because g is chosen of minimal degree. This shows that  is
well defined. Now it is straightforward to show that 7 is bijective. For any character

— %
(X1, Xoo) We can make 7 into a character w; on k[X] by 2.3.15, in this way the map
that maps (x1,Xeo) t0 (w1, Xoo) is the inverse of 7. The last part of the theorem

follows immediately since h° € h + gk[X]. O

Remark 2.3.19. Clearly we have skipped the (X)-part of (X)-(1+X 'k[[X 1)),
we restrict to characters of Cx) 1. The reason is that the additional characters
we get make the typography uglier and are of no use in this thesis. We could have
made Theorem 2.3.18 work for the complete group by extending the definition of
a character of k[X]. Instead of a pair (X1, Xco) We would get a triple (X1, Xoco, XZ)
where yz(f) is defined to be z9°8/ for some fixed z € C*.

Now let us recall some important maps. Let w : Cy(x) — C* be a character
and let p be a place of k(X). Then r,(p) = 0 if A; C kerw and r(p) = min{n €
Z-o:1+4p" C kerw} otherwise where 1+ p™ is embedded in Ck on the Ky -axis.
If w does not ramify at p (so r,(p) = 0), then A\, (p) = w(x) where z is a generator
of p, embedded in Ck on the Kj-axis.

Theorem 2.3.20. Let w = (w1, W) : Cy(x) — C* be a character that is trivial
on (X) in (X)(1+ X Yk[[X1]]). Let 7 be the isomorphism of Lemma 2.5.18 and
let (g,0) be the conductor of m(w) (w can be viewed as a character of Cy(x)1 since
it is trivial on (X) in (X)(1 + X *k[[X~Y]])). Then for any finite place | of k(X)
with monic generator f we have 1,(f) = ordy g. We have § = r,(c0). Also, if w
does not ramify at § we have A\, (f) = 7(w)(f~1). If w does not ramify at co we
have \,(c0) = 1.

ProOF. First we deduce from Theorem 2.3.18 that ¢ is the monic polynomial
of minimal degree such that V, C kerw;. Now we look at what happens to the
place at infinity. Let x = " c; X" with all ¢; € k and ¢,, # 0 be an element of

1=—00
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A%, viewed as an element of Cy(x) by embedding on the k(X)3 -axis. We have

w(z) = w(in z) = wl(i) -ww(i 7).

Hence w does not ramify at co (so r(oo) = 0) if and only if wy is trivial on &* and we
is trivial. Otherwise 7,,(00) is the smallest n € Z~q such that (1+ X "k[[X~!]]) C
ker woo. This shows that r,(c0) = §. If w does not ramify at co we indeed have
Ao(00) =w(l,...,. XN =wo (X7 =1

Now let § be a place with monic generator f. View A%" as a subset of C(x) by
embedding on the k(X )}k—axis. Determining whether w ramifies at § is equivalent

to determining whether w;(xz) =1 for all x € k/[)?]* We will make use of Theorem
2.3.18. We know that g is the monic polynomial of minimal degree such that
Vg Ckerw;. If f does not divide g then gA; = Ay, hence w does not ramify at f. If
f does divide g, then gA; = f™A; for some m > 0. Since g is of minimal degree it
follows that 7, (f) = m. This shows that r,(f) is equal to the number of factors of
fin g. Since ws maps (X) to 1 we have woo (f71) = woo (X987 f~1). So if w does
not ramify at f, we have

A =w@ooy fyo D) =w((@, o fyo 1) ) = wi((F°) Hwso (X987 f71)
where f° is as in Definition 2.3.17. Finally by the last part of Theorem 2.3.18 we
have

wi((f°) Dweo (X4 71 = m(w)(f ),

exactly what we wanted to prove. ([l
The theorem yields the following corollary, which relates the L-functions.

Corollary 2.3.21. Let x be a primitive character of k[ X] and let w be the character
of Crxy,1 such that m(w) = x~'. Eztend w to a character of Crixy by w(X) = 1.
Let (g,0) be the conductor of x and let g be the conductor of w. Then degg + 6 =
degg and

L(T, x) = L(T,w)(1 — T)max{0:1=3}

PRrROOF. Note that the conductors of x ! and x are the same. The rest follows

immediately from Theorem 2.3.20. (]



CHAPTER 3

Class field theory

1. Some algebraic number theory

Definition 3.1.1. Let K be a finite extension of k(X) with & a finite field, let L
be a finite extension of K and let p be a place of K with valuation ring O,. If q is
a place of L, we say that q lies above p, denoted by q | p if Op, = Oy N K. If q lies
above p we define f(q | p) to be the dimension of Oy/q as O, /p-vector space and
we define e(q | p) to be the number such that q°(1®) = pO,. We define r(p) to be
the number of places lying above p. Often we just use the letters f,e and r if it is
clear which extension is meant.

Theorem 3.1.2. Let K be a finite extension of k(X) with k a finite field, let L be a
finite extension of K and let p be a place of K. Theny_ ., f(a | ple(q|p) = [L: K].

The proof of this theorem in the case that L is separable over K can be found
in [7]. We will give a sketch here. In the following lemma, let q be a place lying
above p.

Lemma 3.1.3. We have f(q|p)e(q|p) = [Lq : Kp).
PROOF. See [7], Theorem 3.7, p. 26. O

Lemma 3.1.4. The canonical map K, @x L — []
K -algebras.

alp Ly is an isomorphism of

PROOF. See [7], Theorem 3.8, p. 26 for the special case where L is separable

over K; see [4], Proposition 7.2, p. 81 for the general case. O

Now we can easily prove 3.1.2. As a Kg-vector space K, ®k L is isomorphic
to K,EL:K] and each L is as a Kj-vector space isomorphic to K(EL":K”]. Now 3.1.3
proves 3.1.2.

The following theorem is known as the weak approximation theorem.

Theorem 3.1.5. Let K be a finite extension of k(X) with k a finite field and let
S be a finite set of distinct places of K. Let T be a subset of S. Then there exists
x € L such that |z|, > 1 ifpeT and |z|, <1 ifpe S\T.

PROOF. See [8], Theorem 1.1.3, p. 11.

2. Galois extensions

Theorem 3.2.1. Let K be a finite extension of k(X) with k a finite field, let L/ K
be a finite Galois extension with Galois group G and let p be a place of K. Then
G acts transitively on the set of places of L lying above p.

21
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PROOF. First note that G indeed acts on the set of places of L lying above p,
since if q is a place lying over p then 00, is clearly also a discrete valuation ring
with maximal ideal o0q. Moreover we have cq N K = p since o is the identity on K.
Now suppose that there are places q; and qs lying above p such that Gq1 NGqe = @.
By 3.1.5 there is « € L such that |z|q > 1if ¢ € Gq; and |z|q < 1 if q € Gqa.
Note that N,k is an element of K (in the next section we will get back to the
definition of the norm), so |Ny /x|, = |Nr/Kx®|q,. Now on one hand we have

|NL/K$|q1 = H o(x)| = H |x|a*1(q1) >1

q ceG

and on the other hand we have

|Nz/klq, = H o(x)| = H [Z]g-1(q0) <1

q2 ceG

which is a contradiction. O

This theorem yields us the following important corollary.

Corollary 3.2.2. Let K be a finite extension of k(X) with k a finite field, let L] K
be a finite Galois extension and let p be a place of K. Let q be any place of L
lying above p. Then f(q | p) and e(q | p) do not depend on the choice of q and

[L:K]=rf(q|ple(q|p)

PROOF. This is an immediate consequence of Theorem 3.1.2, since for any q, q’
lying above p there is ¢ € Gal(L/K) such that o(q) = q’ and as a consequence
U(Oq) = Oq/. (I

So if L/K is a Galois extension, the variables f and e do not depend on the
chosen extension of a place.

Definition 3.2.3. Let K be a finite extension of k(X) with k a finite field, let
L/K be a finite Galois extension with Galois group G, let g be a place of L. We
define the decomposition group of q in G, denoted by G, to be the subgroup of G
given by {0 € G : 0(q) = q}. Note that we have a natural map

Gq = Gal((Oq/a)/(Oy /p))
We define the kernel of this map to be the inertia group of q, denoted by 1.

Note that I, is a normal subgroup of Gj.

Theorem 3.2.4. Let K be a finite extension of k(X) with k a finite field, let L/ K
be a finite Galois extension with Galois group G, let p be a place of K and let q be
a place of L lying above p. Then the order of Gq is equal to fe. Also, Lq/K, is a
finite Galois extension. If G = Gal(L/K), then there is a natural isomorphism from
G4 to Gal(Lq/K,), where Gq is the subgroup of G given by {o € G : o(q) = q}.

PrOOF. By theorem 3.2.1 we know that Gq consists of r places. Also there is
a well known bijection Gq <+ G/G,, which shows that r = #(G/G,). Hence we
have #G4 = fe. Clearly every element of G4 can be extended to an automorphism
of Lq being the identity on K,. By Lemma 3.1.3 we know that [Lq : K,] = fe.
Since # Autg, Ly < [Lq : K] with equality if and only if Ly/K) is Galois, we have
proved that the natural embedding of G in Autg, Lq is an isomorphism, and that
Ly/K, is Galois. O
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Now we are going to determine the order of Ig.

Theorem 3.2.5. Let K be a finite extension of k(X) with k a finite field, let L/ K
be a finite Galois extension with Galois group G, let q be a place of L, let Gy be
the decomposition group of q and let I be the inertia group of q. Then we have a
short exact sequence

1 — Ig — Gq — Gal((Oq/4)/(Op /b)) — 1
ProOOF. Apply the map in 3.2.4 and use [7], p. 39. O
Corollary 3.2.6. The order of I is equal to e.

Proor. We know that the order of G is fe by 3.2.4. By definition we have

Oq/q: Op/p] = f, so this is also the order of the Galois group. Hence by 3.2.5 the
q p

order of I is equal to %, thus equal to e. (]

Definition 3.2.7. The coset of G4/I, that is mapped to the Frobenius map of
Gal((Oq/q)/(0yp/p)) is denoted by (q,L/K), which we call the Frobenius symbol.

In the case that L/K is unramified at q it is clear that (q, L/K) is a generator
of Gy.

3. Norms

We recall an important definition.

Definition 3.3.1. Let K be a field and let L be a finite extension of K. Then for
any a € L we have a map f, : L — L given by = +— ax. We define
NL/K(Z = detK(fa),
which is an element of K. For any subgroup U C L* we define
NL/KU = {NL/KJ} T e U},
which is a subgroup of K*.

Note that Np,xL* C K*, but it is generally not easy to determine which
subgroup this is. The following theorem is well known.

Theorem 3.3.2. Let K be a field, let L be a finite extension of K and let L be
an algebraic closure of L. Let K5P be the separable closure of K in L and let
i = [L : K®°P] be the inseparability degree of L/K. Then for any x € K we have

Npjgz = H o(z)".
o€Homp (L,L)
PROOF. See [6] for example. O

Theorem 3.3.3. Let K be a finite extension of k(X) with k a finite field, let L/ K
be a finite extension and let p be a place of K. Then

Nijxe =[] Ney/w,e.
alp
ProoF. We make use of lemma 3.1.4 which says that the canonical map K, ® g
L — [14)p Lq is an isomorphism. Since any K-basis for L is a Kp-basis for K} ®x
L, we see that Ny xx = Nk, e,1/K,2, and by 3.1.4 we have Nk o, /K, T =
qup Np, /K, 2, which is what we wanted to prove.
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Lemma 3.3.4. Let x € K,. Then |z|q = |x\LL“:K"].
PRrROOF. First suppose z € O, \ {0}. Then z € O;. We have
j2lq = #(0q/20q) ™" = #(Oq/q)~ 17 = (#(Op/p)7) " e " =

(#(0,/p)]) 7¢I ™ = ($(0, /20,) 1) = |2 |fF).

Now suppose z € K, \ Op. Then 27! € Of. Since we have |¢7'q = |z[;!, we
can just use the argument above. Finally if = 0 the lemma is obvious, hence the
lemma has been proved. ([l

Lemma 3.3.5. Let x € Lq. Then |Np i, zlp = |7|q-

ProOF. We know by Theorem 3.3.2 that Ni_/r,* = [, cmom, (La.Ly) o(x)t
» (Las

where i is the inseparability degree of Lq/K,. Let M be a splitting field of L,
over K. Then we can corestrict any element in Homg, (Lq,Eq) to an element of
Homg, (Lg, M). Moreover, M is also a local field with a unique place v that lies
above p and q. So we have

i
[M:Kp]

\NL,,/K.,$|p = H U(@i = H o(r) )

o‘EHomKP (Lq,L_q) P oc€Homp,, (Lq,M)
using Lemma 3.3.4 (for any element z € K, we have |x\LM:K"] = |z|; so also
1
|z, = |x\t[M:K”] )- Since t is fixed under the action of Gal(M/K,) we have

[M:Kp] (Lg:Kp)

I e@ = I k5= =,

oc€Homg, (Lq,M) o€Homg,, (Lq,M)

T

again making use of Lemma 3.3.4. This proves the lemma. (I

Corollary 3.3.6. We have x € Ay if and only if Np /k,* € Ap.
Theorem 3.3.2 and Corollary 3.3.6 justify the following definition.

Definition 3.3.7. Let K be a finite extension of k(X) with k a finite field, let
L/K be a finite extension and let x € A. Then we define

Nijx(@) = | [ Nea/x, (@a) |
qlp P

which is an element of Ak, and for any subgroup U C A} we define
NL/K(U) = {NL/K'T 1 xr e U},

which is a subgroup of A}.. In the same manner we can define for any subgroup
U C Cg the subgroup Ny, /i (U) of Ck.

By Theorem 3.3.3 we see that the map N, k|r, is just the regular norm. We
also see that for any place q of L lying above a place p of K the map Ny x|z, on
the Lg-axis is the regular norm Ny /.
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4. The main theorem

Now we have all the ingredients to formulate the heavy theorem which we will
need.

Theorem 3.4.1. Let K be a finite extension of k(X) with k a finite field. Let G52
be the Galois group of the maximal abelian extension of K, which is a topological
group ([6]). Then there is a continuous injective homomorphism
a:Cx — G2

such that for each finite extension L of K that is contained in K* we have an
induced isomorphism

a: CK/NL/KCL ;> Gal(L/K)
and for each place p of K the map a restricts to isomorphisms

K; - NpkCrL/NpxkCL — G,
and

A; . NL/KCL/NL/KCL — Ip.

Moreover, for each open subgroup H of Ck of finite index there is precisely one
subfield L of K, finite over K, such that Np/kCr=H

PRrOOF. See [9], Theorem 6, p. 275, Corollary 2, p. 277 and Corollary 2, p.
279. O

Definition 3.4.2. If L and H are as in the last part of Theorem 3.4.1, we say that
L is the class field to H.

Now we can state the most important ingredient of the proof of Theorem 2.1.10.
The proof is similar to the proof of the number field case, see [3], Theorem 1, p.
230.

Theorem 3.4.3. Let K be a finite extension of k(X) with k a finite field and let
L be a finite abelian extension of K. Let H be Ny, Cr, and let X(Ck /H) be the
group of characters of Cx/H. Then

II L@w=2z.D).
weX(Crc/H)

PROOF. Since the extension is abelian, it is Galois in particular. So by 3.2.2
for any place p of K we have [L : K] = fer = f(q | p)e(q | p)r where r is the
number of places lying above p. Hence we can write pL = (q;1...q,)¢ where for
each place q; we have degq; = deg pf So we have

ZL(T) = H Tdegq H H Tf degp
p

q
where p runs over all places of K and q runs over all places of L. We know that
L(T,w) =TI, W for all w € X(Ck/H), where the product is taken over
all places of K where w does not ramify. So it is sufficient to prove the theorem
at each factor p. Denote by X (Ck/H,p) C X(Ck/H) the subgroup of characters
that do not ramify at p. Then it suffices to prove that
a-whr= J[ «a-rm@w)

weX(Ck /H,p)
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where W = Tdesgp,

We have K;H/H = Gy, and AjH/H = I, by Theorem 3.2.4 and Theorem
3.4.1. We have #K;H/A H = #G, /1, = f by Corollary 3.2.6 and Theorem 3.4.1.
Moreover, by Theorem 3.2.5 it follows that G /I, and hence K;H/AyH is cyclic.
Let it be generated by an element 7 € KjH /A;H , which we choose such that
7 generates p. Then the character ¢ of KjH /A;H that maps m to (; generates
X(K,H/A H). Since all the characters in X'(K;H/A;H) are determined by the
image of 7, it follows that the elements of X'(K;H/A;H) are the characters that
sendﬁto(},with()gigffl.

Note that we have a surjective homomorphism X' (Cr /H) — X (AyH/H) given
by restriction. The kernel of this homomorphism is X (Ck/H,p), the subgroup
of characters that do not ramify at p. We also have a surjective homomorphism
X(Ck/H) — X(K;H/H) given by restriction. Hence we have a surjective homo-
morphism X(Cr /H,p) — X (K, H/A;H), where each fiber has 7 elements. So we
have

I a-xew= I[I a-w@mw)r=

weX(Ck /H,p) wEX(K;H/ALH)
f .
[Ta-¢gw)y =@a-wiy.
i=0
This is what we wanted to prove. ([l

5. The proof of Theorem 2.1.10

Now we are almost ready to prove Theorem 2.1.10. We mention one more result
without proof.

Theorem 3.5.1. Let K be a finite extension of k(X) with k a finite field and
let w be a character of Cx that is non-trivial on Ck 1. Then L(T,w) € C[T]. If
K = k(X)) then the degree of L(T,w) is equal to degf — 2, where § is the conductor
of w.

PrOOF. See [9], Theorem 6, p. 134. O

Theorem 3.5.2. Let K be a finite extension of k(X) with k a finite field with q
elements and let w be a character of Ck that is non-trivial on Ck 1 and trivial on
the (X)-part of Ck (as in Theorem 2.3.13). Then all zeroes a of L(T,w) satisfy
ol = .

V4

PROOF. Let H be the kernel of w, then H is open and of finite index. So by
the last statement of Theorem 3.4.1 there is a finite abelian extension L/K such
that L is the class field to H. By Theorem 3.4.3 we know that

[I z@w)=2z.1)
YeEX(Cr /H)
and by Theorem 2.3.10 it follows that all zeroes o of [[ ¢ x,, L(T’ %) satisty |a| =
% and all poles 8 of [[ e x oy ) L(T,¥) satisty [B] =1 or |8 = % By Theorem
3.5.1 we know that all L(T, ) except L(T,1) are polynomials in C[T]. Moreover,
Theorem 2.3.10 again tells us that L(T,1) = Zx(T) is a rational function of which
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all poles 8 satisfy |8 =1 or || = % Combining all this, it follows that all zeroes

a of all the factors L(T,w) satisfy |a| = %1, which proves the theorem. O

Now let x = (x1, Xoo) be a character of k(X) with modulus f, where k has ¢

elements. Let ¢; be the map that induces x; such that ¢ = (x1, Xeo) 18 primitive
and let g be the conductor of x. As in Proposition 2.1.9 can we write

L(T,x) = L(T,¢) - [ [(1 = ¢(n)T=")
h
where 1 is the primitive character inducing x and h ranges over the monic irre-
ducible factors of f. By Corollary 2.3.21 we know there is a character w of Cj(x
with conductor g and r(occ) = ¢ such that

L(T,v) = L(T,w)(1 — T)max{o,l_g}

and degg = degg + . Assume 1 is not principal, then w is not trivial on Cjx) 1.
Then by Theorem 3.5.1 we know that L(7,) is a polynomial of degree degg—2 =
deg g — 2+ 4 and by Theorem 3.5.2 we know that all zeroes of « of L(T, ) satisty
la| = ﬁ. Hence substituting in the formula of Proposition 2.1.9 we see that there
are ai,...,a, € C, where m = degg — 2 + ¢, such that |o;| = /g for 1 <i <m
and such that

L(T,x) = H(1 _ ociT) . (1 _ T)max{o,1—a} ) H<1 B w(h)Tdegh)
i=1 N
where h ranges over all monic irreducible factors of f. This completes the proof of
Theorem 2.1.10.






CHAPTER 4

Applications

1. The main tools

Definition 4.1.1. Let k be a finite field and let f € k[X]zo. Then we define
O(f) = #(K[X]/ FR[X])".

Theorem 4.1.2. Let k be a finite field with q elements and let f € k[X].o. Then
the group X (f,c) has order ®(f) - ¢~ *.

ProoOF. By Lemma 2.1.2 we see that the number of elements of X (f, ¢) is equal
to # Hom((k[X]/fk[X])*,C*) - # Hom(1 + X 1k[[X1]]/1 + X ¢k[[X1]],C*). It
is well known that for each finite abelian group A we have # Hom(A, C*) = #A,
so it follows that the number of characters with modulus (f,¢) is indeed equal to

(f) - q“ O
The following theorem is a well known orthogonality relation.

Theorem 4.1.3. Let k be a finite field and let f € k[X]x, let ¢ € Zyg, let a € k[X]
and g € k[X]monic be such that (a, f) = (g, f) =1, let b= (by,...,b._1) € k! and
let b =1+ 55 b; X7 mod X °k[X~']. Then

D xX@xi(@)xeot) = ®(f)g" " 3(g, a,b)
XEX(f,c)

where we have 6(g,a,b") =1 if g =a mod f and w5 =b" mod X~¢k[X~1] and
0(g,a,b") =0 otherwise.

PROOF. First suppose that g = a mod f and 7 = b mod X “k[X 1.
Then
> x@xa(@xe®) = D 1=#X(f0).
XEX(f,c) XEX(f,c)

by Theorem 4.1.2.

Now suppose that g # a mod f or w5 # 0" mod X °k[X~']. Then there
is 1 € X(f, ¢) such that 11 (a)ts(b') # ¥(g). We have

(9 (@) DY x(9)x1(a)xeo (V) =

XEX(fsc)
> @)x(@¥(a)x1(@) e M)x®) = > X(9Xi(a)xa )
XEX(f,c) X' €X(f.c)
Hence, since ()11 (a)too (V') # 1, it follows that >° v . X(9)x1(a)Xeo (V) =
0. (]

29
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Definition 4.1.4. We define A4,, = Zj deg j where j ranges over all monic irre-
ducible factors of f such that degj | n. We define B,, y =3 ; deg j where j ranges
over all monic irreducible polynomials that do not divide f such that degj | n and
degj < n.

The next theorem is a generalization of what is done in [4], pp. 44-45.

Theorem 4.1.5. Let k be a finite field with q elements, let x be a character of
E[X] with modulus (f,c) and conductor (g,6) and let L(T,x) be the L-function of
x- Then we have

1
TﬂL T, %) ZanT”

where all a, are complex numbers such that a, = q" — A,y if x is principal and
lan| < (degg + 0 — 2)g™/? + max{0,1 — 6} + A, s — An 4 if X is not principal.

PROOF. In both cases we use Theorem 2.1.10. In the case that x is principal

we have
d log dlog deghy
dT LT =T dT (1 —qT H -1

where h ranges over all monic irreducible factors of f . Using geometric expansions
we see that

dl 1 €, - n mn - n de
T d;g <1_qT .E[(1_ngh)> :;q ™ -3 (Z(degh)T dgh).

h n=1

So the coefficient of Tddl;gL(T7 x) at T™ is equal to ¢" — ), degh where h ranges
over all monic irreducible factors of f such that degh | n. This proves the first case
of the theorem.

In the case that x is non-trivial we have

dlog
dT

dlog deg g—2+6
TdiT ( H 1-—a;T)-(1— T)max{O,lfé} ) H(l _ w(h)Tdegh)>
h

=1

T

L(T7 X) =

where h ranges over all monic irreducible factors of f that do not divide g and % is
the primitive character that induces y. Again making use of geometric expansions

we see that

dlog B
T—=L(Tx) =

deg g—24+35 oo

- Z Z(OQ - ma,X{O 1-— 6} Z T — Z Z deg h TLTTL deg h'
=1 n=1

h n=1

So the coefficient of T4 L(T', ) at T is equal to — S840 o max{0,1 —
0} —> ", (deg h)tp(h)Te® where h ranges over all monic irreducible factors of f that
do not divide g such that degh | n. By the triangle inequality this proves the
second part of the theorem. O
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Theorem 4.1.6. Let k be a finite field with q elements and let x be a character of
k[ X] with modulus (f,c) and conductor (g,d). Let I,, be the set of monic irreducible
polynomials of degree n with n > 0. Then

- An - Bn
> x(h) = Tl
hel,

if x is principal and

> x(h)

hel,

< (degg+ 6 —2)¢"/? + max{0,1 — 6} + Ap f — Apy + Bn s

n

otherwise. Furthermore, we have Ay ¢ < deg f and A,y — A,y < deg f —degg
Tl
q AR

and we have By <

ProOF. The trick is to calculate T ddl;gL(T, X) in a different way, namely via

Proposition 2.1.8. We have

dlog

T
dr

dlog 1
L(T,x)=T I | —_—
( 7X) dT 1— X(h)Tdcgh
hek[X]

where the product is taken over the monic irreducible polynomials h in k[X]. The

standard calculation using geometric series shows that the coefficient of T4 dl;g L(T, x)

at T" is equal to ), (deg h)x(h)@&% where the sum is taken over all monic irre-
ducible h such that degh | n. First suppose that y is principal. Then we know by
Theorem 4.1.5 that the coefficient of T%L(T, x) at T™ is equal to ¢™ — A, y. So
we have an equality
> _(degh)x(h) = g" — An s
h

where the sum is taken over all monic irreducible h such that degh | n. Hence we
see that

> nx(h) =q" — Any— > (degj)x(j)

hel, J

where the latter sum is taken over all monic irreducible j such that degj | n and
deg j < m. This proves the first part of the theorem.

In the case that x is nontrivial, Theorem 4.1.5 shows that that the coeflicient

of TddI;gL(T, x) at T™ is at most (deg g+ 8 —2)¢"/2 +max{0,1 -6} + A, ; — A, 4.

So we have

> (deg h)x(h)T&w

h
(degg + 6 — 2)¢™? + max{0,1 — 6} + Ap s — A,y

where the sum is taken over all monic irreducible h such that degh | n. In this case
we have

> nx(h)

hel,

<

< (deg g+6—2)q" > +max{0, 1=6}+ Ay s — An g +| > _(deg j)x(j) ®&7

J
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where the latter sum is taken over all monic irreducible j such that degj | n and
degj < n. Now using the triangle inequality on Ej(degj)x(j)ﬁ;j , the second

part of the theorem has been proved.

For the third part, note that the sum of the degrees of the factors of f is
equal to deg f, so A, s cannot be bigger than deg f. More precisely, we have
A, p=degf—>",(n, —1)degh where h ranges over the irreducible h such that
degh | f and degh | n, and where nj, is the number of factors of h in f. This way
we immediately see that A, ; > degg—>", (nn, —1)degh and hence A, y — A, 4 <
deg f—degg. The first part also shows that the number of irreducible polynomials of
degree n is at most % (take f = 1 and x principal). So using geometric expansions
gzt 0

we have By, < 15—

We also have the following slightly weaker bound which is more suitable for the
applications.

Corollary 4.1.7. For all n > 0 we have

> x(h)

hely,

< (degf+c—2)q"/2+Bn7f.
- n

PRrROOF. We have
(degg+ 6 — 2)q"/2 +max{0,1 -6} + An s —Ang+Bnys<
(deg g + ¢ —2)g"/? + An,f — Ang+ Bny

since ¢ > 1 per definition. Moreover,
(degg +c— 2)qn/2 + An,f - An,g + Bn,f S (deg g +c— 2)qn/2 + deg f - deg g + Bn,f~

by the last part of Theorem 4.1.6. Since deg f — degg < ¢™/?(deg f — degg) we
have

(degg +c—2)¢"/? + deg f — degg + By < (deg f + ¢~ 2)¢"/* + By 1,
which proves the corollary. O

Remark 4.1.8. In the next two sections we will mostly be using Corollary 4.1.7
since usually the conductor (g,d) in Theorem 4.1.6 is not known. In special cases
where g or ¢ is known one might achieve stronger bounds by using Theorem 4.1.6
though.

2. Multiplicative groups

Theorem 4.2.1. Let k be a finite field with q elements and let f € k[X] such
that f # 0. Let A, ; and B, ; as in Definition 4.1.4. Then for any n such that
q" > (deg f — 1)q™/? + A, + 2B,.; the set of monic irreducible polynomials in
k[X] of degree n that are coprime to f generates (k[X]/fk[X])*.

PROOF. Let n € Z~( and suppose the group generated by J,, (the set of monic
irreducible polynomials of degree n that are coprime to f) in (k[X]/fk[X])* is not
equal to (k[X]/fk[X])*. Then there is a maximal subgroup M such that J,, C M C
(k[X]/fk[X])*. There is a nontrivial homomorphism x; : (k[X]/fk[X])* — C*
such that M = ker 1.
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We know by 4.1.6 that
sy, =L _A";f =B

Since J,, is contained in ker y; and x; is nontrivial, we can also bound J,, in another
way. Clearly, we can extend x; to a character y with modulus (f,1). We have

#=> 1= x(h)="Y_ x(h)
hed, hed, hel,

using that x(h) = 1 for all h € J, and x(h) = 0 if (h, f) # 1. Now we can apply
Corollary 4.1.7, which tells us that

(deg f +¢— 2)q"/2 + By, s
n b

<

so we have
(deg f — 1)q"/? + By
n

#Jn <
since ¢ = 1. Hence for any n such that

qn - An,f - Bn7f > (degf B 1)qn/2 + Bmf
n n

we have a contradiction. It follows immediately that for any n such that
¢" > (deg f —1)q"? + Ay g +2Bn s

Jn cannot be contained in any maximal subgroup M of (k[X]/fEk[X])*. So in
this case the elements of J,, generate (k[X]/fk[X])*, which is what we wanted to
prove. O

Theorem 4.2.1 yields us some interesting corollaries.

Corollary 4.2.2. Let k be a field with q elements and let f € k[X] be irreducible
of degree greater than 1. Then (k[X]/f - k[X])* is generated by the set of residue
classes of the monic linear polynomials if deg f < ¢/ + 1.

PROOF. Theorem 4.2.1 tells that the monic linear polynomials will generate
(k[X]/fk[X])* if ¢ > (deg f —1)¢"/? + Ay s + 2By ;. Since f is irreducible of degree
greater than 1 we have A; y = By 5 = 0. So just getting deg f to the left of the
equation proves the corollary. [l

The following corollary is Theorem 1.1.1 from the introduction.

Corollary 4.2.3. Let k be a field with ¢ elements, let f € k[X]z0 and let n €
Z-o. Then (k[X]/fk[X])* is generated by the set of residue classes of the monic
irreducible polynomials of degree n coprime to f if n > 2log,(deg f +4).

PROOF. Suppose
n > 2log,(deg f +4),
then
¢"/? > deg f + 4.
So then it follows that
q" — (deg f +3)¢"* — deg f = ¢"/*(¢"/* — deg f —3) —deg f >
(deg f +4)(deg f+4—degf—3)—degf=4>0.
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So we have
> (deg f + 3)¢™/? + deg f.

Further rewriting shows

q" > (deg f — 1)¢"/? + deg f + 4¢™/>.

Note that we have % < 2g%, so
n/2+1 _ 1
>(degf71)q"/2+degf+2q .
Now we use the fact that
n/2+1 _ 1
Ap g+ 2B, <deg f+2 7

(this is the last part of Theorem 4.1.6). Hence it follows that
qn > (deg.f - l)qn/Q + An,f + 2Bn,f

Now Theorem 4.2.1 proves the corollary. O

3. Primes in arithmetic progressions

In this section we are going to prove a function field-version of Dirichlet’s theo-
rem on primes in arithmetic progressions. We recall the definition and the theorem
already stated in the introduction.

Definition 4.3.1. Let a, f € k[X]o such that (a, f) =1, let b= (b1,...,b.—1) be

an element of k7! for ¢ € Z~( and let n € Z~g. Then we define S,(a, f,b,c) be

the set of monic irreducible polynomials g of degree n such that ¢ =a mod f and
=1+ b X7 mod X °k[X 1.

Theorem 4.3.2. Let a, f € k[X].o such that (a, f) = 1, let b be an element of
ket for ¢ € Zwo and let n € Z~o. Then

qn—c+1

n®(f)

PrOOF. We make use of the orthogonality relation in Theorem 4.1.3. Let
X(f,c) be the group of characters with modulus (f,c). Let & =1+ >/, Lh X0
Then the orthogonality relation tells us that

Z x(9)x1(a)xoo (V) = ®(f)gc ™t
XEX(f.c)
=0 mod X~°k[X~'], and

Z x(9)x1(a)xoo (V) =0

XEX(f.c)

max{ 7 l,degf—i—c—g%?}-q"/2

n

‘#Sn(avfy ba C) -

if g=a mod f and

Xdegg

otherwise. So this shows that

S Y x@a@xe®) = #Su(a, £,b,)@(f)

g Xx€E€X(f,c)
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where the first sum is taken over all monic irreducible polynomials g of degree n.
Rewriting shows that

#Sn(a7 f7 ba C) (f) c—1 Z ZX Xl Xoo(b/)
XEX(f,c) g

where the second sum is taken over all monic irreducible polynomials g of degree
n. If x = xo, the principal character, then we have by Theorem 4.1.6

> x(giae) = LA

We take %ﬂ to the left in the equation, hence we have

n

#Sn(a, f,b,¢c) — W =

1 An, _Bn,
W Z ZX g)x1(a (b/) %

XEX(f,e)\{x0} 9

so in particular
n

‘#Sn(a,f,b,@ el

- S ) x@xala)xe ) - Ang = Brg

(b c—1
(e xeX (o xo} 9 "

The left side of the equation is already as in the theorem. We need to estimate the
right side, this comes down to estimating

S S @) - At

XEX(FNxo} @ "

Now we apply Corollary 4.1.7. First, applying a triangle inequality, we have

Z ZX 9)x1(a)xoe (V') — Ang + Bus :; Bt

X€X(f.e)\{xo} 9

< 2

> x(9)| +
XEX(f.e)\{xo} | 9

For all non-trivial characters we have

> x(g)| < (deg f +c=2)q"* + By

- n
g

Ans+ Bns
el

Note that there are ®(f)g°~! — 1 characters that are non-trivial, so we get

qn—c+1

na(p) | =
(®(f)gt —1)(deg f + ¢ — 2)q”/2 + q)(f)qc_an,f + A s
n®(f)qe=? '

‘#Sn(a7 fv bv C) -
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We would like to estimate (®(f)q®~*—1)(deg f+c—2)q ”/2+A by ®(f)g° (deg f+

n/
¢ —2)g"?. Then by the facts that B, ; < 4 ;ﬂ La 1 < q%l - q"™? the
main theorem follows.

‘We have
(@(f)g*" = 1)(deg f + ¢ = 2)¢""* + Ay p < D(f)g" " (deg [+ ¢ — 2)g"/?
if and only if
Ap < (degf+c— 2)q"/2.

We know that A, s < deg f. So the inequality is always satisfied if ¢ > 1. Now
assume ¢ = 1. Then we would like to know in which cases we have

Ap s < (deg f — 1)q”/2.

If deg f > 3 this is always the case since 4 < 3v/2 < 3¢™/2. In the case that
deg f = 2 or deg f = 3 the inequality is satisfied if n > 1. So it is clear which
exceptions we need to treat.

First suppose deg f = 0 and ¢ = 1. Then, since ®(f) = 1, we have
(@(f)g" " = 1)(deg f + ¢ —2)¢"? + ®(f)¢° ' Bu.s + Ans _
n®(f)gt
9 .
B, ¢ < —1 4
n n

n/2

which is correct.

Now suppose deg f =1 and ¢ = 1. Then, since ®(f) = g — 1, we have
(®(f)g" " —1)(deg f +c—2)¢""> + ©(f)q° ' By + Anyy _

n®(f)g!
(q_l)Bmf_'_l<qn/2+1_1+1:q%91,qn/2
n(g=1) =  n(g-1) n

which is again correct.

Now suppose degf > 1, ¢ = 1 and n = 1. Then #S,(a, f,b,c) = 0 or

—+1
#Sn(a, f,b,c) = 1. AISO,WZQU)<1 So

n—c+1

#Sl(aafab”:)_ii <17

confirming the theorem.

Finally we calculate a lower bound on n such that #S,,(a, f,b,c) > 0.

Corollary 4.3.3. Ifn > 2(c+deg f +log,(deg f + ¢ — g%?)) we have
Sp(a, f,b,¢) >0
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PRrROOF. Assume
q—2

n > 2(c+deg f +log,(deg f +c — ﬁ))
Then we also have
n/2 —c—degf > log,(deg f +c— Z:—?)
and
gM/?emdeef S deg f +c— 3:7?
Since ¢4°8f > ®(f) we have
q;/(?_)c >deg f+c— Z:%

Multiplying by #, we finally get

¢ (degfte- =2)g"/?
n®(f) n ’

implying that #S,(a, f,b,c¢) > 0 if ﬁ < degf+c— g%f. This is the case if
deg f + ¢ > 2, so the only exception we have to consider is deg f = 0 and ¢ = 1.
Since we know #5S,,(1,1,(),1) > 0 for all n > 1, the corollary has been proved.

O
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