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Abstract

This thesis is about transport of solutes across a biological membrane, a
‘lipid bilayer’. The goal is to create a template of differential equations,
which is applicable to many types of molecules and ways of transport.
The approach aims to be abstract but aplicable and built up entirely
from biophysics and clearly stated, reasonable assumptions.
Free diffusion over the membrane will be considered explicitely, from which
Ficks law will be derived. An ion-trap mechanism will also be specifically
considered.
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1 Context and composition
We will consider transport through a biological membrane, a lipid bilayer. Such
a membrane consists of lipid molecules arranged such that they have their hy-
drophobic tails put together on the inside of the membrane and on the border
of the membrane the hydrophillic heads. We consider this membrane to be in
an environment of water, potentially with solutes like ions and glucose. They
create a membrane with a width of two molecules, typically 4-6 nm thick.

It is important to notice that the lipid bilayer is in a liquid state, so solutes can
dissolve into the membrane if the chemical properties of the solute allow it. On
both sides of this membrane we have compartments: the interior compartment,
which we call ‘inside’, and the exterior compartment, which we call ‘outside’.
Together with the membrane itself, we have the three compartments we will
consider. For instance, the membrane could represent the plasma-membrane,
with the inside being the cytoplasm, or it could be the membrane of the Endo-
plasmatic Reticulum (ER), in which case the cytoplasm would be the outside
and the ER the inside.
The goal is to model and analyse the change in concentration of a certain solute
over time given initial concentrations for all the compartments.

1.1 First assumptions
To gain a simple but reasonable abstract model, we shall make some assump-
tions.

The problem becomes very complex if we were to consider all the particles
seperately. This would lead to the use of spacial coordinates and modelling over
107 particles. This is too complicated for practical use, so we will assume the
different compartments to be ‘well-stirred’. This gives rise to the following:

Assumption A1. Every compartment has a uniform distribution of particles,
so a concentration which is constant over the whole space of that compartment.
These concentrations are denoted CO, CI and CM for the outside, inside and
membrane respectively.

The total number of particles in the system at a certain time can be calcu-
lated from the concentrations. Let VO, VI and VM denote the volumes of the
outside, inside and membrane respectively. At a given time the total number of
particles is VO · CO + VI · CI + VM · CM . We shall not consider what happens
to CO, CI and CM other than transport into and out of the membrane. This
gives rise to the following:
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Assumption A2. No particles get into or out of the system of three compart-
ments. Only particles moving from one compartment to another will influence
the concentrations. In other words, we have a closed system.

Assumption A2 gives that the total number of particles in the system VO ·
CO + VI · CI + VM · CM is constant over time.

1.2 Model of transport
For the transport, we have four types of movement. These are described by the
following functions of flux of particles:

• The movement from the inside into the membrane, denoted as J−I .

• The movement from the outside into the membrane, denoted as J−O .

• The movement from the membrane to the inside, denoted as J+
I .

• The movement from the membrane to the outside, denoted as J+
O .

J−O J+
I

J+
O J−I

Outside Membrane Inside

Although these functions are not specified yet, they give rise to a system
of differential equations. The net movement of particles into a compartment
is given by the total movement into it, minus the total movement out of it.
If we divide this by the volume of that compartment, we get the change of
concentration over a unit of time. Let t denote the time. We get a system of
Ordinary Differential Equations (ODEs):

dCO

dt
=

1
VO

(J+
O − J−O )

dCM

dt
=

1
VM

(J−O − J+
O + J−I − J+

I )

dCI

dt
=

1
VI

(J+
I − J−I )

Notice that (A2) is satisfied:

d

dt
(VOCO + VICI + VMCM ) = VO

dCO

dt
+ VI

dCI

dt
+ VM

dCM

dt

= J+
O − J−O + J+

I − J−I + J−O − J+
O + J−I − J+

I

= 0

This model is very abstract and can be applied to a large class of transport
systems. The specific form of the equations varies with the specific system we
are considering. We start out by analysing what happens in simple diffusion.
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2 Simple Diffusion
The first model we will analyse is simple diffusion over the membrane. This
means that we will consider particles that can dissolve back and forth from the
membrane, into the outside compartment or the inside compartment. No par-
ticular molecules in the membrane regulate this absorbtion into the membrane
and release of particles.

2.1 Biophysics
To further specify and analyse the model, we need to derive functions J . When
we consider our system from a microscopic level, biophysical consideration will
yield a more detailed description.
Particles in a compartment move around rapidly due to diffusion. They some-
times hit the border of this compartment with another compartment. In the
event of a particle hitting the border, the particle either bounces off and stays in
the compartment or it dissolves into the other compartment. A particle could
e.g. be in the outside compartment and hit the membrane. There is a probabil-
ity it gets dissolved in the membrane and a complementary probability that it
bounces off. So the movement of particles per unit of time going into the mem-
brane from the outside is, due to the law of large numbers, the frequency of hits
on the membrane from the outside times the probability of uptake. Hence we
get the following functions:

• We have fOM , fMO, fIM and fMI , where fij , i, j ∈ {O,M, I} is the
frequency with which particles hit the border of compartment j, from
inside compartment i. These frequencies depend on Ci, the concentration
in the compartment in which the particles reside.

• We have pO, pM and pI , with pi, i ∈ {O,M, I} the probability that, in
the event of a particle hitting the border of compartment i, the particle
dissolves into compartment i. They depend on Ci, the concentration in
the compartment the particle dissolves into.

The figure below illustrates a situation where a particle (A) moves in the outside
compartment and hits the border with the membrane.

Membrane

Outside A

fOM (CO) 1− pM (CM )

pM (CM )

We now have:

J−O = fOM (CO) · pM (CM )

J+
O = fMO(CM ) · pO(CO)

J−I = fIM (CI) · pM (CM )

J+
I = fMI(CM ) · pI(CI)
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2.2 Further assumptions
The frequency with which particles hit the border of a compartment increases
with the concentration in that compartment. It is not unreasonable to say that
this is a linear relation. Also we shall assume that the frequency function of
hits on the border is equal for both borders of the membrane compartment.

Assumption A3. There exist constants kO, kM , kI > 0 such that each function
fij(Ci), i, j ∈ {O,M, I} is linear in Ci and given by

fij(Ci) = kiCi

We say the functions pO, pM and pI are analytic, for if the concentration
varies only a little, the probability for a solute to dissolve into a compartment
varies very little. We say they are also strictly decreasing, because if the amount
of particles in a compartment increases, it is less likely a solute hitting the border
will dissolve into the membrane. So we assume a certain property of saturation.
As these functions represent a probability we will assume they have a positive
value smaller or equal to 1.

Assumption A4. pO, pM and pI take values in (0, 1], are analytic and
strictly decreasing functions of CO, CM and CI respectively where

lim
CO→∞

pO(CO) = 0, lim
CM→∞

pM (CM ) = 0, lim
CI→∞

pI(CI) = 0

With these new assumptions, we can rewrite the functions which describe
the flux of particles and the system of ODEs.

J−O = kOCO · pM (CM )

J+
O = kMCM · pO(CO)

J−I = kICI · pM (CM )

J+
I = kMCM · pI(CI)

dCO

dt
=

1
VO

[kMCMpO(CO)− kOCOpM (CM )]

dCM

dt
=

1
VM

[kOCOpM (CM )− kMCMpO(CO) + kICIpM (CM )− kMCMpI(CI)]

dCI

dt
=

1
VI

[kMCMpI(CI)− kICIpM (CM )]

2.3 Time-scale Analysis
The membrane is very thin compared to the outside and inside, so VM is very
small compared to VO and VI . Therefore, CM will change rapidly in comparison
to the change of CO and CI . This means that CM at any time during the
diffusion process will be very close to its equilibrium value induced by CO and
CI and the system of ODEs.
This relation induces a reasonable assumption to simplify our system of ODEs,
setting the equation for dCM

dt equal to zero and letting it follow CO and CI .
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Assumption A5. We have CM = C∗M , with C∗M a quasi steady state, which is
the function of CO and CI , such that dC∗

M

dt = 0.

Further motivation of this approach is given in Section 4.
To further specify the function C∗M we will work out this relation:

dC∗M
dt

= 0

1
VM

[−kOCOpM (C∗M ) + kMC∗MpO(CO)− kICIpM (C∗M ) + kMC∗MpI(CI)] = 0

− pM (C∗M )(kOCO + kICI) + kMC∗M (pO(CO) + pI(CI)) = 0

kMC∗M
pM (C∗M )

=
kOCO + kICI

pO(CO) + pI(CI)
(1)

This is an implicit relation, which cannot be further solved for C∗M , because
the functions pO, pM and pI are not specified in detail. However, we have the
following:

Lemma 1. For any given values of CO, CI ≥ 0, there is only one value C∗M ≥ 0
for which (1) is satisfied.

Proof. For these values, (1) gives a unique value of kM C∗
M

pM (C∗
M ) , because the right

part of the equation solely depends on CO and CI . This value is positive,
because kO, kI are positive by assumption A3 and therefore kOCO + kICI is
non-negative. pO and pI are positive by assumption A4.
The fraction at the left hand side in (1) only depends on C∗M . The numerator
is an increasing linear function. And by assumption A4, we know that the
denominator is decreasing, nonzero and analytic. Therefore the whole fraction
must be strictly increasing and analytic in terms of C∗M . For C∗M = 0, the whole
fraction is 0, so the left part of the equation is continuous and strictly increasing
from 0. Moreover, as C∗M → ∞, C∗

M

pM (C∗
M ) → ∞ by assumption A4. The value

we must find is non-negative, so there is exactly one value of C∗M which satisfies
(1).

Remark. We can thus consider C∗M as a function of CO and CI . Notice that
if CO or CI increases, the right side of (1) increases. The left side is a strictly
increasing function of C∗M . Thus, to satisfy equation (1), C∗M , must increase.
So C∗M is strictly increasing as function of CO and CI seperately.

2.4 Steady State
Now we have a model with two variables. It is given by the old system of ODEs
and the implicit relation (1). We denote:

dCO

dt
= FO(CO, CI) =

1
VO

[kMC∗MpO(CO)− kOCOpM (C∗M )]

dCI

dt
= FI(CO, CI) =

1
VI

[kMC∗MpI(CI)− kICIpM (C∗M )]

kMC∗M
pM (C∗M )

=
kOCO + kICI

pO(CO) + pI(CI)
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By assumption A2 we know

d

dt
(VOCO + VICI + VMC∗M ) = 0

VO
dCO

dt
= −

(
VI

dCI

dt
+ VM

dC∗M
dt

)
By assumption A5 we know dC∗

M

dt = 0, so

VO
dCO

dt
= −VI

dCI

dt

This means that whenever dCI

dt = 0, it follows that dCO

dt = 0, which gives a
steady state.

We denote C∗O and C∗I the steady state values for CO and CI respectively.
We derive:

FI(C∗O, C∗I ) = 0

0 =
1
VI

[−kI · C∗I · pM (C∗M ) + kM · C∗M · pI(C∗I )]

0 = −kI · C∗I +
kmC∗M

pM (C∗M )
· pI(C∗I )

Notice that equation (1) gives us an expression for the fraction above.

0 = −kI · C∗I +
kO · C∗O + kI · C∗I
pO(C∗O) + pI(C∗I )

· pI(C∗I )

kI · C∗I · (pO(C∗O) + pI(C∗I )) = pI(C∗I ) · (kO · C∗O + kI · C∗I )
kI · C∗I · pO(C∗O) = pI(C∗I ) · kO · CO

kI · C∗I
pI(C∗I )

=
kO · C∗O
pO(C∗O)

(2)

Remark. This is again an implicit expression, not further specified nor solvable,
because the functions pO, pM and pI are not further specified. But (2) is
essential for our further analysis to prove the following lemmas and theorem.

Lemma 2. For every value of C∗O ≥ 0 there is exactly one value of C∗I for
which (C∗O, C∗I ) is the steady state of the system. We call the graph of this
relation between C∗I and C∗O the I-nullcline.
Moreover, in this relation C∗I →∞ as C∗O →∞.

Proof. (C∗O, C∗I ) is the steady state of the system if and only if (2) is satisfied.
For a given C∗O ≥ 0, the right hand side of (2) is fixed. We call this value S. S
is non-negative for the numerator is non-negative because kO > 0 and C∗O ≥ 0
and the denominator is positive by assumption A4.
We set f(C∗I ) = kI ·C∗

I

pI(C∗
I ) , the left hand side of (2). We have f(0) = 0. Fur-

thermore, we see that the numerator of f increases linearly as C∗I increases,
the denominator decreases strictly, is analytic and nonzero due to assumption
A4. Therefore f is continuous and strictly increasing. Moreover f(C∗I )→∞ as
C∗I →∞, so there is exactly one solution to the equation f(C∗I ) = S. Thus for
every C∗O there is exactly one C∗I such that (2) is satisfied.
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Remark. We see that on the I-nullcline, if C∗O increases, S increases, so to satisfy
(2), C∗I must also increase. Thus the I-nullcline describes a strictly increasing
function C∗I in terms of C∗O.

Lemma 3. The assumption that we have a closed system (A2) implies that in
the model CI follows a strictly decreasing function of CO

Proof. Assumption A2 gives us that for every CO(0), CI(0), the total amount
of particles N , given by

N := VO · CO(0) + VI · CI(0) + VM · C∗M (CO(0), CI(0))

is constant. We derive from this, at any time t a relation for CI in terms of CO.

N = VO · CO(t) + VI · CI(t) + VM · C∗M (CO(t), CI(t))
VI · CI(t) = N − VO · CO(t)− VM · C∗M (CO(t), CI(t))

CI(t) =
1
VI

(N − VO · CO(t)− VM · C∗M (CO(t), CI(t))) (3)

We see that the function implied by (3) is strictly decreasing:
At any time (3) is satisfied.

1. If at a certain time CO increases, N − VO · CO decreases. For fixed CI ,
C∗M also increases, so (3) is no longer satisfied. So CI must decrease which
means that C∗M increases slightly and (3) is again satisfied.

2. If at a certain time CO decreases, N − VO · CO increases. For fixed CI ,
C∗M also decreases, so (3) is no longer satisfied. So CI must increase which
means that C∗M decreases slightly and (3) is again satisfied.

Under assumptions A1-A5 we can now prove from these lemmas the main
result of this section:

Theorem 4. For every starting values of CO(0), CI(0) ≥ 0, there is exactly one
solution for the steady state, (C∗O, C∗I ).

Proof. Lemma 2 gives us that all possibilities for steady state, regardless of the
starting values is given by the I-nullcline, which is strictly increasing from 0
to ∞. We know that, at any time, (2) is satisfied, which implies a decreasing
function for CI in terms of CO. If we now start at CO = 0 and increase CO,
the curve imlpied by (2) will be downwards and the curve implied by (2) will
go upwards. Therefore there will be exactly one meeting point, because the
I-nullcline tends to infinity. To illustrate:

O CO

CI

I-nullcline

CI = 1
VI

(N − VOCO − VMC∗M )

(C∗O, C∗I )
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Remark. The derivation that the model without the quasi steady state assump-
tion A5 has a unique steady state is completely similar, for we would set all
differential equations equal to zero and could start our reasoning from the fact
that dCM

dt = 0, which then satisfies (A5). The rest of the derivation and lemmas
is therefore valid to find that also the full model has exactly one steady state.
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3 Ficks Law
Ficks law is commonly used (Keener et al) to describe the flux of particles
through a biological membrane. Ficks law is stated as follows for the solute X
(Blom et al).

Law (Fick).

ΦX(t) = A
KXDX

l
(CO(t)− CI(t))

In this expression:

• ΦX(t) is the flux of X-type particles over the membrane at time t.

• AKXDX

l are some constants representing the influence of some biological
properties of the solute and membrane. They are considered here only as
being constant and positive. In section A.1 they are specified.

So in the form of a differential equation we have:

dCI

dt
=

1
VI

A
KXDX

l
(CO(t)− CI(t))

We notice the following:

1. It is linear in terms of CO and CI .

2. There are no constant terms.

3. The steady state is at CO = CI

We would like Ficks law to follow from the model we have just derived.

3.1 Taylor expansion
Our model so far is not necessarily linear, so for Ficks law to follow from it, let
us consider the first order Taylor expansion of FI around (CO, CI) = (C0

O, C0
I ).

We see:

FI(CO, CI) ≈ FI(C0
O, C0

I )

+
∂FI

∂CO
(C0

O, C0
I )(CO − C0

O) +
∂FI

∂CI
(C0

O, C0
I )(CI − C0

I )

We choose (C0
O, C0

I ) on the I-nullcline, where FI(C0
O, C0

I ) = 0.
Lemma 2 tells us that we can consider C0

I as an increasing function of C0
O on

the I-nullcline, denote: C0
I (C0

O)

Lemma 5. For any C0
O ≥ 0, C0

I (C0
O), we have

∂FI

∂CO
(C0

O, C0
I (C0

O)) · C0
O +

∂FI

∂CI
(C0

O, C0
I (C0

O))
dC0

I

dC0
O

(C0
O) · C0

O = 0 (4)
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Proof. ∀C0
O ≥ 0, using implicit differentiation,

0 = FI(C0
O, C0

I (C0
O))

0 =
d

dC0
O

[
FI(C0

O, C0
I (C0

O))
]

0 =
∂FI

∂CO
(C0

O, C0
I (C0

O)) +
∂FI

∂CI
(C0

O, C0
I (C0

O))
dC0

I

dC0
O

(C0
O)

0 =
∂FI

∂CO
(C0

O, C0
I (C0

O)) · C0
O +

∂FI

∂CI
(C0

O, C0
I (C0

O))
dC0

I

dC0
O

(C0
O) · C0

O

With these initial values on the I-nullcline, we have for our Taylor expansion,
because FI(C0

O, C0
I ) = 0:

FI(CO, CI) ≈ ∂FI

∂CO
(C0

O, C0
I )(CO − C0

O) +
∂FI

∂CI
(C0

O, C0
I )(CI − C0

I )

=
∂FI

∂CO
(C0

O, C0
I )CO +

∂FI

∂CI
(C0

O, C0
I )CI

−
(

∂FI

∂CO
(C0

O, C0
I )C0

O +
∂FI

∂CI
(C0

O, C0
I )C0

I

)
We noticed before, that in Ficks law, there are no constant terms. So, for it to
follow from our model, the constant terms given above must be zero:

∂FI

∂CO
(C0

O, C0
I )C0

O +
∂FI

∂CI
(C0

O, C0
I )C0

I = 0 (5)

We compare (5) to (4).

∂FI

∂CO
(C0

O, C0
I )C0

O +
∂FI

∂CI
(C0

O, C0
I )C0

I = 0

=
∂FI

∂CO
(C0

O, C0
I ) · C0

O +
∂FI

∂CI
(C0

O, C0
I )

dC0
I

dC0
O

(C0
O) · C0

O

So the constant terms are zero if we have the following relation for C0
I (C0

O)

dC0
I

dC0
O

(C0
O) · C0

O = C0
I (C0

O) (6)

We can derive what this means by integration:

dC0
I

dC0
O

(C0
O) · C0

O = C0
I (C0

O)

1
C0

I

dC0
I

dC0
O

=
1

C0
O

log(C0
I ) = log(C0

O) + c

C0
I = aC0

O (7)

This means that the constant terms are zero if the I-nullcline is linear.
We know that the I-nullcline is described by (2). This equation does not neces-
sarily imply a linear relation. So Ficks law does not follow from our model yet.
It is clear that we have to make more assumptions about the model we observe.
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3.2 Symmetry in simple diffusion
In simple diffusion over the membrane, we now have different functions kOCO,
kICI and different functions pO(CO), pI(CI). However, we can assume that on
both sides of the membrane, the solute acts in a similar way. If the concentration
of particles is equal on both sides, the number of particles that hit the border
of the membrane on both sides must be about equal, for the membrane has
the same surface area, because the membrane is only two molecules thick. We
shall therefore assume kO = kI . Notice though that this implicitly means that
the molecules of the solute are small, for inside the cell, the diffusion rate is
smaller for very large molecules because it is crowded with all kinds of solutes
and organelles.
Based on the same arguments we can assume that the probability functions pO

and pI are also equal.

Assumption A6. We have symmetry on both sides of the membrane. kO = kI

and for x ≥ 0, pO(x) = pI(x).
Notation: k = kO = kI , p(x) = pO(x) = pI(x)

3.3 Ficks Law
Now we can derive the following:

Lemma 6. If CO and CI are on the I-nullcline, then CO = CI

Proof. CO and CI are on the I-nullcline. If we substitute the functions we have
from (A6) into (2), we get that the following expression is valid.

k · CO

p(CO)
=

k · CI

p(CI)
CO

p(CO)
=

CI

p(CI)
(8)

• If CO = CI , CO

p(CO) = CI

p(CI) .

• If CO > CI , assumption A4 gives us that p(CO) < p(CI), so 1
p(CO) > 1

p(CI) .
Therefore CO

p(CO) > CI

p(CI) , which contradicts (8). Thus CO 6> CI .

• If CO < CI , assumption A4 gives us that p(CO) > p(CI), so 1
p(CO) < 1

p(CI) .
Therefore CO

p(CO) < CI

p(CI) , which contradicts (8). Thus CO 6< CI .

We must conclude that CO = CI .

Remark. Lemma 6 gives us that the I-nullcline is represented by CI = CO,
which satisfies (7) for a = 1. So the constant terms of the Taylor expansion
equal zero.
This means that the Taylor expansion now equals

∂FI

∂CO
(C0

O, C0
I )CO +

∂FI

∂CI
(C0

O, C0
I )CI

Thus from Lemma 5 and 6 we can now conclude that:
∂FI

∂CO
(C0

O, C0
I ) = −∂FI

∂CI
(C0

O, C0
I )
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Thus by this derivation we have that the Taylor expansion of our model
equals

dCI

dt
≈ ∂FI

∂CO
(C0

O, C0
I )CO +

∂FI

∂CI
(C0

O, C0
I )CI

=
∂FI

∂CO
(C0

O, C0
I )(CO − CI) (9)

This is Ficks law if ∂FI

∂CO
(C0

O, C0
I ) is the right value. We know it has to be positive

Lemma 7. For (C0
O, C0

I ) on the I-nullcline we have:

∂FI

∂CO
(C0

O, C0
I ) > 0

Proof.

FI(CO, CI) =
1
VI

kMC∗M (CO, CI)pI(CI)− kICIpM (C∗M (CO, CI))

We fix CI at C0
I . Now:

• if CO is slightly increased from C0
O, C∗M increases, as it is increasing in

CO and therefore pM (C∗M ) decreases. This means FI(CO, C∗I ) > 0

• if CO is slightly decreased from C0
O, C∗M decreases, as it is increasing in

CO and therefore pM (C∗M ) increases. This means FI(CO, C∗I ) < 0

We know that FI(CO, CI) consists only of analytical functions of CO and CI . It
is positive to the right of the I-nullcline, it is negative to the left of the I-nullcline,
so in passing it, from left to right, it must be increasing. So

∂FI

∂CO
(C0

O, C0
I ) > 0

Remark. Thus we now have Ficks law.
Lemma 7 means that the linearisation around the steady state value is stable.
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4 Numerical Analysis
Assumption A5 was a simplification from the full model we had before, with
three variables. We would like to compare the full model and the simplified
model with only two variables. To do this numerically, we need to have explicit
functions p and pM in order to be able to solve equation (1) for C∗M . We want
them to be decreasing, positive and analytic. We can for instance use

p(C) =
e

1 + C
C = CO or C = CI

pM (CM ) =
eM

1 + CM
(10)

with e, eM ∈ R+ the initial probabilities at C = 0, C∗M = 0 respectively. If we
plot these functions, we see:

We will use these explicit functions to simulate both the full model and the
simplified model with (A5).

4.1 The full model
We can program from this, in XPPaut code, the full three-dimensional model.
We choose e = 0.6, eM = 0.5, k = 1 and kM = 0.8. We set similar to our
reasoning VM << VI , but still computable. The results are graphs given in
Section 4.3

c0’=(km*cm*(e/(1+c0))-k*C0*(em/(1+cm)))/v0
cm’=(k*c0*(em/(1+cm))+k*ci*(em/(1+cm))-km*cm*((e/(1+c0))+(e/(1+ci))))/vm
ci’=(km*cm*(e/(1+ci))-k*ci*(em/(1+cm)))/vi
par k=1,km=0.8,v0=5,vm=0.1,vi=1
param e=0.6,em=0.5
init c0=1,cm=0,ci=0
@ dt=0.05,total=150,ylo=0,yhi=1,xlo=0,xhi=30,xp=t,yp=ci
done

14



4.2 The simplified model
We substitute these functions into (1).

kMC∗
M

pM (C∗
M )

=
k(CO + CI)

p(CO) + p(CI)

(kMC∗
M )(1 + C∗

M )

eM
=

k(CO + CI)
e

1+CO
+ e

1+CI

0 = C∗
M

2
+ C∗

M −
eMk(CO + CI)

kM

“
e

1+CO
+ e

1+CI

”

C∗
M =

−1 +

vuut1 + 4
eMk(CO + CI)

kM

“
e

1+CO
+ e

1+CI

”
2

C∗
M =

1

2

0B@−1 +

vuut1 +
4eMk(CO + CI)

kM

“
e

1+CO
+ e

1+CI

”
1CA (11)

We can program from (11), in XPPaut code, the simplified two-dimensional model.
We choose the same constants as for the full model: e = 0.6, eM = 0.5, k = 1 and
kM = 0.8. VM << VI , but still computable. The results are graphs given in subsection
4.3

c0’=(km*cm(c0,ci)*(e/(1+c0))-k*c0*(em/(1+cm(c0,ci))))/v0
ci’=(km*cm(c0,ci)*(e/(1+ci))-k*ci*(em/(1+cm(c0,ci))))/vi
aux cm(x,y)=(1/2)*(-1+sqrt(1+((4*em*k*(x+y))/(km*(e/(1+x)+(e/(1+y)))))))
par k=1,km=0.8,v0=5,vm=0.1,vi=1
param e=0.6,em=0.5
@ dt=0.05,total=150,ylo=0,yhi=1,xlo=0,xhi=30,xp=t,yp=ci
done
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4.3 The simplified model vs the full model
The full model (solid lines) and the simplified model (dotted lines)

CO vs time

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

CM (C∗
M for simplified model) vs time

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30
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CI vs time

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

We see that the models are almost completely the same. The equilibrium seems
to be somewhat higher in the simplified model.
This is because they have a different total amount of particles, because the initial
conditions are different. For the full model, CM is initially not at the equilibrium
value for (CO, CI) = (1, 0), but at 0. For the simplified model, C∗

M is, by assumption
A5, at the equilibrium value for (CO, CI) = (1, 0), which is at C∗

M (1, 0) = 0.4718.
So for the total amount of particles we have:

Full model vs Simplified model
VO · 1 + VM · 0 + VI · 0 VO · 1 + VM · 0.4718 + VI · 0

1 · VO < 1 · VO + 0.4718 · VM

But because VM is very small, this error is negligible for realistic biological conditions.
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5 Transport with buffering in the interior com-
partment

The buffer mechanism we will consider is based on the model described in Blom et al,
Chapter 4:

Models for uptake and accumulation by diffusion of solutes, such as alkal-
oids, that associate with protons to charged forms.

In Blom et al, the uptake of alkaloids by plant cells is described. The plant cells placed
in an environment with alkaloids at a low concentration. The alkaloids accumulate in
the cell. They find that in the cell, the alkaloids rapidly react with free protons and
that alkaloids with bound protons can no longer freely diffuse through the membrane,
because the cross-membrane potential prevents them from crossing the cellular mem-
brane (Fall et al). This results in a higher concentration of alkaloids in the interior
compartment than the outside compartment.

5.1 Buffer Mechanism
We will discus the buffering reaction described in Blom et al. in a more general way
using the model we have created.

We have some type of particle X, which can move freely over the membrane. In the
interior compartment, we will have some compound B, ‘buffer’, which cannot diffuse
through the membrane. It can bind X in the reaction (∗), yielding the compound XB,
which cannot cross the membrane either. We have:

X + B
k−

k+

XB (∗)

J+
X = k− · [XB]

J−X = k+ · [X] · [B]

J+
B = k− · [XB] = J+

X

J−B = k+ · [X] · [B] = J−X

where

• J+
X and J+

B , are the total amount of particles X and B respectively formed out
of XB per unit of time.

• J−X and J−B , are the total amount of particles X and B respectively formed into
XB per unit of time.

• [X], the concentration in the inside of the membrane of the unbuffered molecule
X

• [XB], the concentration in the inside of the membrane of the buffered molecule
XB

• [B], the concentration in the inside of the membrane of the Buffer molecule B

• k+ and k− reaction rates of the buffering process.

X diffuses freely over the membrane, therefore we can apply the model for simple
diffusion described before using assumptions A1, A2, A3, A4 and A6. If we take the

18



buffering process into account, we have the following model.

dCO

dt
=

1

VO
(−kCOpM (CM ) + kMCMp(CO))

dCM

dt
=

1

VM
(k[X]pM (CM )− kMCMp([X]) + kCOpM (CM )− kMCMp(CO))

d[X]

dt
=

1

VI
(−k[X]pM (CM ) + kMCMp([X])) +

1

VI
(J+

X − J−X )

d[XB]

dt
=

1

VI
(J−X − J+

X)
d[B]

dt
=

1

VI
(J+

X − J−X )

As this is a different model, we cannot use the derivation steps made before in simple
diffusion.

5.2 Time scale Analysis
We will assume that the buffering reaction is fast compared to the diffusion over the
membrane. This means that we can assume a quasi steady state for this reaction.

Assumption A7. The buffer reaction is in equilibrium and every change in [X] will
be instantaneously corrected to the equilibrium

This means that J+
X − J−X = 0 = J+

B − J−B ⇒
d[XB]

dt
= 0 = d[B]

dt
. This defines the

quasi steady state values [XB]∗ and [B]∗ for [XB] and [B] respectively as functions
of [X].
We define: CI = [X] + [XB]∗, the total concentration of the compound X.
Now, we have

dCI

dt
=

d[X]

dt
+

d[XB]∗

dt

=
d[X]

dt
+

1

VI
(J−X − J+

X)

=
d[X]

dt

As the diffusion reaction over the membrane of X is the only thing changing CI , we
can now consider CI as the variable, defining [X] = [X]∗(CI) a quasi steady state.
Now [B]∗ and [XB]∗ are also functions of CI . Assuming (A5), we can now rewrite the
system of ODEs.

dCO

dt
=

1

VO
(−kCOpM (C∗

M ) + kMC∗
Mp(CO))

0 =
1

VM
(k[X]∗pM (C∗

M )− kMC∗
Mp([X]∗) + kCOpM (C∗

M )− kMC∗
Mp(CO))

dCI

dt
=

1

VI
(−k[X]∗pM (C∗

M ) + kMC∗
Mp([X]∗))

5.3 Fixed unbound buffer concentration
In some mechanisms (like the alkaloids binding with protons, Blom et al), we know
that the concentration of free buffer molecules is kept constant by another process in
the cell, i.e. [B]∗ is constant. We denote k̂+ = k+ · [B]∗, which is constant. We can
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now derive the following:

−k+ · [B]∗ · [X]∗ + k− · [XB]∗ = 0 CI = [X]∗ + [XB]∗

k− · [XB]∗ = k̂+ · [X]∗ CI = [X]∗ +
k̂+

k−
[X]∗

[XB]∗ =
k̂+

k−
[X]∗ CI =

 
1 +

k̂+

k−

!
[X]∗

[X]∗ =
k−

k− + k̂+

CI (12)

(12) is an explicit relation. Let K =
k−

k−+k̂+
, note that K < 1. We substitute this into

our membrane diffusion model.

dCO

dt
=

1

VO
(−kCOpM (C∗

M ) + kMC∗
Mp(CO))

0 =
1

VM
(kKCIpM (CM )− kMC∗

Mp(KCI) + kCOpM (C∗
M )− kMC∗

Mp(CO))

dCI

dt
=

1

VI
(−kKCIpM (C∗

M ) + kMC∗
Mp(KCI))

We substitute into this model the shifted variables (CO, ĈI) = (CO, K · CI). Which
gives

dCO

dt
=

1

VO
(−kCOpM (C∗

M ) + kMC∗
Mp(CO))

0 =
1

VM

“
kĈIpM (CM )− kMC∗

Mp(ĈI) + kCOpM (C∗
M )− kMC∗

Mp(CO)
”

dĈI

dt
=

K

VI

“
−kĈIpM (C∗

M ) + kMC∗
Mp(ĈI)

”
Now we have exactly the same model as in subsection 2.4. The system is shifted, so
when we have a certain value ĈI , CI is larger ( 1

K
ĈI), but because the shift is linear,

it retains all properties we used. So the same results are valid.
The results are as follows: This system has a unique steady state where CO = ĈI

and the first order Taylor expansion is:

FI ≈
∂FI

∂CO
(C0

O, Ĉ0
I )(CO − ĈI)

This means that we have an equilibrium at CI = 1
K

CO and as 0 < K < 1 this means
accumulation. The value 1

K
is called the accumulation ratio. And for the Taylor

expansion we have the following.

dCI

dt
≈ ∂FI

∂CI
(C0

O, C0
I )(CO −K · CI) (13)
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A Suggestions for further research

A.1 Physical constants in Ficks law
Ficks law gave the differential equation:

dCI

dt
=

1

VI
A

KXDX

l
(CO(t)− CI(t))

In this differential equation the constant terms are given by biological properties.

• VI is the volume of the inside.

• A is the area of the membrane.

• KX is the partition coefficient of solute X in the membrane.

• DX is the diffusion coefficient of solute X in the membrane.

• l is the thickness of the membrane.

Ficks law was derived in Section 3 for ∂FI
∂CO

(C0
O, C0

I ) = 1
VI

AKXDX
l

. It can be researched
if the properties that influence FI and thereby ∂FI

∂CO
(C0

O, C0
I ) also influence 1

VI
AKXDX

l

and in what manner. This gives more insight into the way these constants vary for
different types of sulutes and cells.

A.2 Fixed total buffer concentration
Section 5.2 ends with an buffered system, where the concentrations [B]∗, [X]∗ and
[XB]∗ are not yet specified, but only set at their quasi steady state values depending
on CI . We then discussed the specific form where [B]∗ was constant.

In this Section we consider a system in which there is a fixed total amount of buffer
molecules in the interior. One may think of B as a buffer protein. The total amount
is kept fixed by constitutive expression of the corresponding gene, counteracting con-
tinuous degeneration of this protein in the cytoplasm.

So we have some constant M for which at any time M = [B]∗ + [XB]∗. Then the
complete system would be different, for we would have:

M = [B]∗ + [XB]∗ → [B]∗ = M − [XB]∗

CI = [X]∗ + [XB]∗ → [XB]∗ = CI − [X]∗

[B]∗ = M − CI + [X]∗

(A7) : J+
X − J−X = 0 → k−[XB]∗ − k+[X]∗[B]∗ = 0

k−(CI − [X]∗)− k+[X]∗(M − CI + [X]∗) = 0

([X]∗)2 +

„
k−
k+

+ M − CI

«
[X]∗ − k−

k+
CI = 0

We set Keq =
k−
k+

→

[X]∗ =
1

2

“p
(Keq + M − CI)2 + 4KeqCI − (Keq + M − CI)

”

[X]∗(CI) =
1

2
(Keq + M − CI)

 
−1 +

s
1 +

4KeqCI

(Keq + M − CI)2

!
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So the quasi steady state [X]∗ is not a simple linear function of CI . One could simplify

further for the right conditions. For
4KeqCI

(Keq + M − CI)2
<< 1:

[X]∗(CI) ≈
1

2
(Keq + M − CI)

„
1

2

4KeqCI

(Keq + M − CI)2

«
=

KeqCI

Keq + M − CI

So even when the expression is simplified in such a way, we still have an expression
for [X]∗, which is not linear. This gives an entirely different model. This means we
cannot use the derivations in section 2.4.

It could be researched what the behaviour of this model is.
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B Index of notation
B Buffer compound.

CI The concentration in the inside.
C0

I The specific CI from which we derive a Taylor expansion.
C∗

I CI in steady state.
C0

I (C0
O) A function C0

I of C0
O which represents the I-nullcline.

CM The concentration in the membrane.
C∗

M The concentration in the membrane in quasi steady state
as a function of CO and CI .

CO The concentration in the outside.
C0

O The specific CO from which we derive a Taylor expansion.
C∗

O CO in steady state.
ĈI = K · CI

e Starting value of p.
eM Starting value of pM .
ER Endoplasmatic Reticulum.

fIM The amount of particles hitting the border of the membrane
from the inside per unit of time.

fMI The amount of particles hitting the border of the inside
from the membrane per unit of time.

fOM The amount of particles hitting the border of the membrane
from the outside per unit of time.

fMO The amount of particles hitting the border of the outside
from the membrane per unit of time.

FI The function of CO and CI that gives dCI
dt

.
FO The function of CO and CI that gives dCO

dt
.

I-nullcline Given by FI = 0.
J−I The movement from the inside into the membrane.
J+

I The movement from the membrane into the inside.
J−O The movement from the outside into the membrane.
J+

O The movement from the membrane into the outside.
J+

X The amount of X forming out of XB per unit of time.
J−X The amount of X forming into XB per unit of time.
J+

B The amount of B forming out of XB per unit of time.
J−B The amount of B forming onto XB per unit of time.
kO The slope of fOM after assuming A3.
kM The slope of fMO and fMI after assuming A3.
kI The slope of fIM after assuming A3.
k Notation for k = kI = kO after assuming (A6).

k+ Reaction rate for binding of B.
k− Reaction rate for unbinding of XB.
k̂+ = k+ · [B] for constant [B].
K The part of X that is free when the buffering reaction is in equilibrium.
M = [B] + [XB].
N The total amount of particles in the system.
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pI The probability that a particle dissolves into the inside
given that this particle just hit the border of the inside, as a function of CI .

pM The probability that a particle dissolves into the membrane
given that this particle just hit the border of the membrane, as a function of CM .

pO The probability that a particle dissolves into the outside
given that this particle just hit the border of the outside, as a function of CO.

p Notation for p = pI = pO after assuming (A6).
t time.

VO The volume of the outside.
VM The volume of the membrane.
VI The volume of the inside.
X The compound we consider.

XB The compound X with bound buffer compound.
[B] Concentration of B in the inside.

[B]∗ [B] in quasi steady state as a function of CI .
[X] Concentration of X in the inside.

[X]∗ [X] in quasi steady state as a function of CI .
[XB] Concentration of XB in the inside.

[XB]∗ [XB] in quasi steady state as a function of CI .
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