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1. Abstract

In this thesis we take a closer look at the ideal structure of non-principal ideal
rings with only finitely many ideals. I this thesis rings are assumed to be commu-
tative.
We wish to show that for every natural number, strictly greater than five, there is
a non-principal local ideal ring with exactly that many ideals. We succeeded for
all natural numbers up to 1050. After quickly repeating some useful lemmas in
the first segment we explore some of the more general structure of rings with only
finitely many ideals in the second. In particular we prove that every ring with only
finitely many ideals can be written as a finite product of principal ideal rings and
finite rings.
In the third segment, aptly named bounds, we find an upper and a lower bound for
the number of ideals of certain rings:

Theorem 1.1. Take any finite local non-principal ideal ring (R,m). Let n ∈ Z≥1
its number of ideals.
Take the smallest d ∈ Z≥0 such that the number of subspaces of a d-dimensional
vector space over the residue field is greater than or equal to n − 1. Then one has
that (R/m)d+1 ≤ #R ≤ #(R/m)n−3.

Furthermore we find that the finite local rings with the most ideals for a fixed
length are rings of which the maximal ideal is a vector space over the residue field.
Then in the fourth section we take a closer look at the general ideal structure of
rings proving amongst other things that the number of ideals of fixed length is 1
modulo the cardinality of the residue field.
In the last part we study three families of rings in an attempt to find a non-principal
ring local ring with precisely n ideals for every n ∈ Z>5:

Theorem 1.2. For every n ∈ Z≥0 such that n ≤ 5 there are no non-principal ideal
rings with exactly n ideals. For every n ∈ Z>5 such that n < 1051 there is a local
non-principal ideal ring with exactly n ideals.

2. Preliminaries

Most statements in this section will not be proven, but we will provide references.
We will only work with commutative rings in this thesis.

Definition 2.1. An ideal J of a ring R is called maximal in an ideal I ⊆ R if
J ( I and for every ideal J ⊆ K ⊆ I we have K = J or I = K. An ideal is called
maximal if it is maximal in the ideal (1).

Definition 2.2. A ring R is called noetherian if for every ascending chain I1 ⊆
I2 ⊆ . . . of ideals of R there is an n ∈ Z>0 such that In = In+1 = . . .. Equivalently
a ring is noetherian if and only if all of its ideals are finitely generated (see chapter
7 of [1]).

Definition 2.3. A ring R is called artin if for every descending chain I1 ⊇ I2 ⊇ . . .
of ideals of R there is an n ∈ Z>0 such that In = In+1 = . . ..

Definition 2.4. A 0-dimensional ring is a non-zero ring such that every prime
ideal is maximal.

Proposition 2.5. A non-zero ring R is artin if and only if it is noetherian and
0-dimensional.
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Proof. See [1] thm. 8.5. �

Lemma 2.6. Every finite domain R is a field.

Proof. Take a 6= 0 in R. The map from R to R that sends x to ax is injective
because R is a domain. This map is therefore a bijection as R is finite. Hence there
is an x ∈ R such that ax = 1, meaning a has an inverse. Hence R is a field. �

Definition 2.7. A ring R is called local when it has a unique maximal ideal m.
Notation: (R,m).

Theorem 2.8. An artin ring A is uniquely (up to isomorphism) a finite direct
product of local artin rings.

Proof. See [1] Prop. 8.6. �

Lemma 2.9 (Nakayama’s lemma). For R a ring and M a finitely generated R-
module and a an ideal in the intersection of all maximal ideals of R, we have that

i. aM = M ⇐⇒M = 0;
ii. let N be a submodule of M then N + aM = M ⇐⇒ N = M .

Proof. See [1, thm 2.6, 2.7]. �

Lemma 2.10. For any ring R and finite decreasing sequence of ideals ending at
zero R = I0 ⊇ I1 ⊇ I2 ⊇ . . . ⊇ In = 0 we have |R| = |I0| =

∏n
i=1 |Ii−1/Ii|.

Proof. For I ⊇ J ideals |I| = |J | · |I/J | holds. The result follows. �

Corollary 2.11. In an artin local ring (R,m) there is an n ∈ Z>0 such that
0 = mn = mn+1 = . . ..

Proof. The decreasing sequence R ⊇ m ⊇ m2 ⊇ . . . must become constant after a
finite number of steps by 2.3. So there is an n ∈ Z>0 such that mn = mn+1 = . . ..
The ideal m is the only maximal ideal and so it is contained in the intersection of
all maximal ideals of R. Hence we can apply Nakayama’s lemma 2.9 (i). We have
mn = mmn so by 2.9 we get 0 = mn = mn+1 = . . .. �

Definition 2.12. The length of a finite strictly decreasing chain of modules over a
ring R is defined to be the number of modules in this chain minus 1. Let M be an
R-module, if every descending chain of submodules starting with the module M is
finite then the length of that module is defined to be the maximum length of such
a chain.
We write lengthR(M) for the length of M as an R-module.

Note that there may be several paths to calculate the length, however they all
have the same value, for the proof see [1] pg. 76.

Definition 2.13. Let n, k, q ∈ Z≥0 such that q is a prime power, which is not one,
and k ≤ n. Define

(
n
k

)
q

to be(
n

k

)
q

:=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
.
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Note that
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
=

(qn − 1)q(qn−1 − 1) . . . qk−1(qn−k+1 − 1)

(qk − 1)q(qk−1 − 1) . . . qk−1(q1 − 1)
=

(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q1 − 1)

which is congruent to (−1)k
(−1)k (mod q) = 1 (mod q).

Definition 2.14. Define

N(n, q) :=

n∑
k=0

(
n

k

)
q

.

Lemma 2.15. Let V be a vector space of dimension n ∈ Z≥0 over Fq, a field
of cardinality q ∈ Z≥0, then the number of k-dimensional subspaces of V equals(
n
k

)
q
.The total number of subspace is N(n, q) =

∑n
k=0

(
n
k

)
q
.

Proof. Let i ∈ {1, . . . , k}. If we have i many linearly independent vectors they
span a i-dimensional subspace. There are qn − qi elements outside of this sub-
space. If we take such an element it is clear that it is linearly independent with
the i-dimensional subspace as together they span a bigger subspace. Any element
in the i-dimensional subspace is clearly not linearly independent. This means by
induction that there are (qn−1)(qn− q) . . . (qn− qk−1) ways to choose a basis for a
i-dimensional subspace of V . Note that we are counting the ways in which we can
choose such vectors and not the number of different bases.
Therefore the number of ways we can choose k independent vectors in a n-dimensional
vector space is (qn − 1)(qn − q) . . . (qn − qk−1).
We have now also shown that the number of ways we can choose a basis that would
span the same subspace is (qk−1)(qk−q) . . . (qk−qk−1). In conclusion the number
of subspaces of dimension k of a vector space of dimension n over a finite field of
size q is equal to

(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
=

(
n

k

)
q

.

The number of subspaces of such a vector space is therefore

N(n, q) =

n∑
k=0

(
n

k

)
q

.

�

3. Rings with only finitely many ideals

In this chapter we will gain some more insight in the structure of rings with
finitely many ideals.

Lemma 3.1. Let (R,m) be a local artin ring. The following are equivalent:
(i) R is a principal ideal ring;
(ii) m is a principal ideal;
(iii) dimR/mm/m

2 ≤ 1;

(iv) For all ideals I ⊂ R there is a i ∈ {0, 1, . . . , lengthR(R)} such that I = mi.
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Proof. (i)⇒(ii): The ring R is a principal ideal ring so all its ideals are principal;
m is an ideal of R, so it is a principal ideal.
(ii)⇒(iv): Let π ∈ R be such that m = (π), such an element exists as m is gen-
erated by one element. By 2.11 the sequence R ⊇ m ⊇ m2 . . . is constantly zero
after finitely many steps. Let a be an ideal such that a ⊆ m. If a = 0, then
i = lengthR(R) suffices, so we assume a 6= 0. Now let j be the largest integer such
that a ⊆ mj . There is an element a ∈ a such that a ∈ mj \mj+1. Therefore a = sπj

for some unit s. After all if s is not a unit, then s would be of the form πt for some
t ∈ R. This would mean that a = πj+1t 6∈ mj \ mj+1, which is a contradiction.
Hence mj = (πj) = (a) ⊆ a ⊆ mj so mj = a. This means that in such a ring all
ideals are of the form mi for some i ∈ {0, 1, . . . , lengthR(R)}.
(iv)⇒(i) Take R a ring such that for all ideals I ⊂ R there is an integer i ∈
{0, . . . , lengthR(R)} such that I = mi. Then the ideals are linearly ordered by in-
clusion. So if an ideal has 2 generators a, b we can assume without loss of generality
that (a) ⊆ (b). From this it follows that b generates the ideal on its own. Hence R
is a principal ideal ring.
(ii)⇒(iii): The ideal m is generated by one element so we can take π ∈ R such that
m = (π). The homomorphism R → m/m2 that maps 1 to π ∈ m/m2 is surjective.
As this map has kernel a kernel contained in m the quotient map R/m→ m/m2 is
a surjective homomorphism as well. Therefore the dimension of m/m2 is less than
or equal to the dimension of R/m over R/m, which is 1.
(iii)⇒(ii)
The vector space m/m2 is of dimension 1 or 0 over R/m. So there is an element
π ∈ R such that (R/m)π = m/m2 and so Rπ + m2 = m. We can apply 2.9 (ii),
because m is contained in the intersection of all maximal ideals and is finitely gen-
erated, this gives us m = Rπ.

�

Lemma 3.2. A local ring (R,m) is finite if and only if R/m is finite and R is artin.

Proof. ⇒: The ring R is finite so the residue field R/m is finite and R is obviously
artin.
⇐: The ring R is an artin ring so by 2.11 there is a n ∈ Z≥0 such that

R ⊇ m ⊇ m2 ⊇ . . . ⊇ mn = 0.

The dimension of mi/mi+1 over R/m is finite because m is finitely generated and
every generator of mi/mi+1 is the image of some generator of m under the natural
projection. The cardinality of R, which is

∏n
i=0 |mi/mi+1| by 2.10, must then also

be finite.
�

Theorem 3.3. A ring R has only finitely many ideals if and only if R is the prod-
uct of an artin principal ideal ring and a finite ring.

Proof. The ideals of products of rings are products of the ideals of those rings. If
the rings in product all have only finitely many ideals then the product has only
finitely many ideals.
⇐: Let Q be a 0-dimensional principal ideal ring. We can write Q as the product
of local rings by 2.8. By 3.2 we know that all of these local rings are finite. Clearly
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finite rings have only finitely many ideals, as they have only finitely many subsets,
concluding this part of the proof. ⇒:
The ring R is artin therefore it can be seen as the product of local artin rings by
2.8. The implication holds if these local artin rings are either principal ideal rings
or finite rings. Assume this is not the case and one of these rings (Q,m) is an
infinite artin local non-principal ideal ring. Then by 3.2 we see Q/m is infinite as
Q is local and artin. We can apply 3.1, as Q is not a principal ideal ring and is
artin and local, yielding that m/m2 has dimension greater than 1 over Q/m. As
Q/m is infinite and m/m2 has a dimension higher than 1. The vector space m/m2

has infinitely many submodules. These submodules can be lifted to ideals of R,
therefore this is in contradiction with the assumption that R has only finitely many
ideals. Hence Q is finite. This means that R is the product of artin local principal
ideal rings and finite rings. So we can write R as product of an artin principal ideal
ring and a finite ring.

�

4. Bounds

It will in general be useful to have an upper and lower bound for the number of
elements in a finite local non-principal ideal ring (R,m) ring based on its number
of ideals.

Lemma 4.1. Let R be a ring. Let M be an R-module with a maximal submodule
N (M . Then there is a maximal ideal m ⊂ R such that M/N ∼= R/m.

Proof. Take a ∈ M \ N then N ( N + aR ⊆ M and so by maximality we have
N + aR = M . Therefore the map R → M/N : r 7→ ra is a surjection. If we
divide out by the kernel of this map, call it K, this reduces to an isomorphism.
The ideal K must be maximal in R as every ideal between R and K can be lifted
to a submodule of M/N . Therefore one has I/J ∼=R R/m, for some maximal ideal
m. �

Lemma 4.2. For (R,m) a finite local non principal ideal ring with exactly n ideals
and d ∈ Z≥2 such that d = dimR/m(m/m2). We have the following:

#R = #(R/m)lengthR(R) ≤ #(R/m)n−N(d,#R/m)+d ≤

#(R/m)n−N(2,#R/m)+2 ≤ #(R/m)n−3.

Proof. Combining 2.12, 2.10 and 4.1 gives us the first equality.
By 2.13 there are at least N(d,#R/m) subspaces of m/m2. Hence for a local non-
principal ring we have at least

N(d,#R/m)

modules in between m and m2 whilst lengthR(m/m2) = d. Note that

n ≥ lengthR(R/m) +N(d,#R/m) + lengthR(m2)

≥ lengthR(R/m) + lengthR(m/m2) + (N(d,R/m)− d) + lengthR(m2)

= lengthR(R) +N(d,#R/m)− d.
Therefore
n−N(d,#R/m) + d ≥ lengthR(R) which gives us the second inequality.
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Note that N(d,#R/m) − d ≥ N(2,#R/m) − 2 as a vector space of dimension
m ∈ Z≥0 has more than one subspace of any dimension r if 0 < r < m. Therefore
the third inequality holds. Then n − N(2,#R/m) + 2 ≤ n − 3 gives us the last
equality. �

For a finite local non-principal ideal ring R this gives us an upper bound for #R
based on the number of of ideals it has and the cardinality of its residue field R/m.

We will now give a lower bound by showing that:

Lemma 4.3. Let (R,m) be a finite local ring. Let V be an R/m-vector space of
length n ∈ Z≥0. Take any k ∈ {1, . . . , n − 1}. Then for M any non-isomorphic
R-module of length n we have that V has more submodules of length k than M has.

Let R be an artin ring. For any finitely generated R-module M take a submodule
N . We can make the following exact sequence:

0 // N // M // M/N // 0.

If we then take another submodule B0 of M we get the following commutative
diagram with exact rows:

0 // N // M // M/N // 0

0 // A = N ∩B0
//

OO

B0
//

OO

C = B0/A

OO

// 0

If we can find out how many submodules B fit this diagram at the place of B0

for certain A,C we have a way of counting the number of submodules of M .

Lemma 4.4. Let (R,m) be a finite local ring. Take V a 1-dimensional R/m-vector
space, and N a finite R-module.
Then the following are equivalent:
(i) For for all R-modules A ⊆ N we have #HomR(V,N/A) ∼= #N/A;
(ii) N = N [m], where N [m] are the elements of N which are annihilated by m
(which means N is an R/m module).

Proof. (ii)⇒ (i): Note that we can see V as an R-module which is annihilated by
m. For every generator v ∈ V module homomorphisms from V to N/A are uniquely
determined by its image. Let A ⊂ N be a submodule. The image of v under any
R-module homomorphism from V to N/A is annihilated by m, as v is annihilated
by m. Hence v is an element of (N/A)[m], and can be any element of (N/A)[m].
Therefore we have HomR(V,N/A) ∼= N/A[m] = N/A, because N [m] = N .
(i) ⇒ (ii): Take A = 0 ⊆ N then we have #HomR(V,N/A) = #HomR(V,N)
which, with the same reasoning as before, is #N [m]. �

Lemma 4.5. Let (R,m) be a local ring. Let M be a R-module with submodule
N . Let A ⊆ N respectively C ⊆ M/N be submodules of N respectively M/N . Let
SN,A,C be the set of submodules B of M making the following commutative diagram
with exact rows.
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The arrows in this diagram represent the natural maps:

0 // N // M // M/N // 0

0 // A //

OO

B //

OO

C

OO

// 0.

For every B ∈ SN,C,A define σ(B) ∈ HomR(C,M/A) as the composition of the

natural maps C
∼→ B/A and B/A→M/A. Suppose B0 ∈ SN,A,C . Then the map

φ : SN,C,A → HomR(C,N/A)

B 7→ σ(B)− σ(B0)

is a bijection.

Proof. Assume that there is B0 ∈ SN,A,C . Note that for any B ∈ SN,A,C we have
the following diagram:

M/N

C
∼ //

66

B/A // M/A
?�

OO

We will call this diagram D. In this diagram the arrows between C and B/A
represent the isomorphisms and the rest the natural injections.

By the commutativity of the diagram from the lemma the diagram D is com-
mutative as well. For every B this gives us an induced map, call it σ(B) ∈
HomR(C,M/A), from C to M/A. Note that for all such B the map σ(B)− σ(B0)
is a homomorphism from C to M/A. The induced map from C to M/N is the same
for all possible modules B. Hence σ(B)−σ(B0) can be viewed as a homomorphism
from C to N/A. We have hereby constructed the map φ.

We will now construct the inverse. Let f be an element of HomR(C,N/A). Note
that f can be seen as an element of HomR(C,M/A). The map g := f + σ(B0)
is then a homomorphsim from C to M/A as sum of two such homomorphisms.
Let π be the map from M to M/A. Then, as both π and g are homomorphisms,
π−1(g(C)) is a submodule of M . We have A ⊂ B, as A = π−1(0). Now we need
to show that there is a surjective map from B to C such that A is its kernel. In
other words we need to prove that there is an isomorphism from π(B) = B/A to
C, note that B/A = g(C) as g(C) ⊂M/A and π−1(g(C)) = B. We already have a
surjective homomorphism from C to g(C), namely g. We will now show that g is
injective. Take c ∈ C such that g(c) = 0 then

f(c) + σ(B0)(c) = g(c) = 0.

Note that f(c) ∈ N/A and σ(B0)(c) ∈ B0/A as such f(c), σ(B0)(c) ∈ B0∩N/A = 0.
Therefore σ(B0)(c) = 0 and as σ(B0) is injective this means that c = 0. Hence g is
an isomorphism and g−1 ◦ π is a surjective map to C from B which has the image
of A as a kernel. Call the map that sends an element f ∈ HomR(C,N/A) to such
a submodule ψ.
For x ∈ C we have

φ(ψ(f))(x) = φ(π−1(f + σ(B0)(C))(x) =

σ(π−1((f(C) + σ(B0)(C)))(x)− σ(B0)(x) = f(x) + σ(B0)(x)− σ(B0)(x).
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The third equality holds because π−1 sends an element to its inverse image under
the natural mapping from M to M/A whilst σ practically mods out by A. Note
that

ψ(φ(B)) = ψ(σ(B)− σ(B0)) =

π−1(σ(B)− σ(B0) + σ(B0)(C)) = π−1(σ(B))(C)) = π−1(B/A) = B.

We get the last equality as B is the only submodule of M that is mapped to B/A
by π. Therefore φ and ψ are each others two sided inverses. Hence the map φ is
the bijection we were looking for. �

Proof of lemma 4.3. Let N ⊂ M be a maximal module in M . Let A be the set of
submodules of N and let B be {0,M/N}. Set Tk ⊂ A×B to be the set of pairs of
which the lengths sum to k. Then it suffices to show that

∑
(C,D)∈Tk

#SN,C,D ≤(
n−1
k−1
)
#(R/m)

(#(R/m))n−k +
(
n−1
k

)
#(R/m)

=
(
n
k

)
#(R/m)

with equality if and only if

k = 0 or if M is a vector space. Afterall
∑

(C,D)∈Tk
#SN,C,D is the number of

submodules of M of length k by a combination of 4.4 and 4.5. We will prove this
by induction on the length n of the module M .
For any n ∈ Z≥0 there is always one module of length k for k ∈ {0, n}.
The lemma is true for n = 1 as for k ∈ {0, . . . , n− 1} = {0} the only module that
can possibly have length k is 0.
Take m ∈ Z≥1. Assume the lemma holds for all n < m. Let M be a module of
length m. Take any k ∈ {1, . . . ,m − 1}. By 4.1 M/N is a 1-dimensional vector
space over R/m. Note that every submodule of M of length k is an element of
SN,C,D for a unique pair (C,D) ∈ T , because of the additivity of the length over
exact sequences. We then have that the number of submodules of M of length
k equals

∑
(C,D)∈Tk

#SN,C,D. Furthermore by 4.5 we have
∑

(C,D)∈Tk
#SN,C,D ≤∑

(C,D)∈Tk
#HomR(D,N/C) where this is an equality if and only if for all the

combinations of A and C the set SN,A,C is non-empty. It is clear that if M is a
vector space SN,A,C is non-empty. Note that by 4.4 we have

∑
(A,C)∈Tk

#HomR(C,N/A) =∑
A⊂N :lengthR(A)=k−1#HomR(M/N,N/A) +∑
A⊂N :lengthR(A)=k#HomR(0, N/A) ≤∑
A⊂N :lengthR(A)=k−1#(N/A) +∑
A⊂N :lengthR(A)=k1

with equality if N = N [m].
By induction ∀i ∈ {0, . . . ,m − 1} we have that N has the most ideals of length
i iff it is a vector space or i = 0, in both cases it has

(
n−1
i

)
#(R/m)

of them, call

this result (1). Furthermore for a submodule A of N of length k we have that
#N/A = (#(R/m))n−k. Therefore from our induction hypothesis it follows that

∑
A⊂N :lengthR(A)=k−1

#(N/A) ≤
(
n− 1

k − 1

)
#(R/m)

(#(R/m))n−k,
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∑
A⊂N :lengthR(A)=k

1 ≤
(
n− 1

k

)
#(R/m)

with equality iff N is a vector space. This is last part follows from the fact that if
N is a vector space we clearly have equality and if N is not a vector space then by
result (1) we have ∑

A⊂N :lengthR(A)=k−1

#(N/A) ≤
(
n− 1

k − 1

)
#(R/m)

(#(R/m))n−k,

∑
A⊂N :lengthR(A)=k

1 <

(
n− 1

k

)
#(R/m)

as k 6= 0. This means we have equality if and only if N = N [m]. Note that
N = N [m] means that N is a vector space. Now all we need to prove is that if
M has such a maximal submodule N which is a R/m-vector space then M is a
R/m-vector space. Take M a module with such a submodule N . Take C = 0 then
there is an N ′ ∈ SN,C,M/N ] such that:

0 // N // M // M/N

��

// 0

0 // 0 //

OO

N ′ //

OO

M/N //

OO

// 0

is a commutative diagram where the rows are exact sequences. Note that the
arrow between M/N and M/N as well as the arrow between N ′ and M/N are
isomorphsims. Therefore by the commutativity of the diagram the sequence:

0 // N // M // M/N // 0

Hence we find that the diagram is split. Hence we have M = N ⊕M/N . Which
is therefore an R/m-vector space as sum of two such vector spaces. If M is a vector
space we know that the number of ideals of length i equals

∑
(C,D)∈Tk

#SN,C,D

by 4.4 and 4.5 and by 2.14 it equals
(
n−1
k−1
)
#(R/m)

(#(R/m))n−k +
(
n−1
k

)
#(R/m)

=(
n
k

)
#(R/m)

. Therefore we have∑
(C,D)∈Tk

#SN,C,D ≤
(
n− 1

k − 1

)
#(R/m)

(#(R/m))n−k+1 +

(
n− 1

k

)
#(R/m)

with equality if and only if M is a vector space or k = 0. �

Lemma 4.6. Take any finite local ring (R,m) which has precisely n ideals.
Take the smallest d ∈ Z≥0 such that N(d,#R/m) + 1 ≥ n. Then one has that
(R/m)d+1 is a lower bound for the number of elements in that ring. The maximal
ideal of any ring that reaches this lower bound is a vector space over its residue field.
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Proof. To prove this we need to show that for a finite local ring with maximal ideal
m and length d + 1, where d ∈ Z≥0, the maximal ideal m cannot have more than
N(d,#R/m) sub-ideals. This is a result of 6.9 as m is, like all ideals, an R-module,
and 6.9 states that m has the maximal number of submodules if it is a vector space.
By definition N(d,#R/m) is the number of submodules of a vector space this size.

�

Proof of Theorem 1.1. The first part holds by 4.6. The second by 4.2. �

This, given R/m, gives us a lower bound for the number of elements of any finite
local ring.

Note that from the upper and lower bound it follows that there are no non prin-
cipal local artin rings with less than 6 ideals, as the lowerbound exeeds the upper-
bound. Hence, to give more of an idea what these bounds mean, I will demonstrate
the lower and upper bounds for rings with 6 to 10 ideals. As both the bounds are
dependent on the residue field of the local ring we will give the upper and lower
bound as function of number of ideals and number of elements in the residue field.
Note that the residue fields are finite fields and therefore their cardinality is a prime
power. We will later see a family of rings that reaches the lower bound.

#R/m Number of ideals Lower bound Upper bound
2 6 23 23

2 7 24 24

3 7 33 33

2 8 24 24

3 8 34 34

4 8 43 43

2 9 24 25

3 9 34 35

4 9 44 44

5 9 53 53

2 10 24 27

3 10 34 36

4 10 44 45

5 10 54 54

5. Diagrams

Definition 5.1. Let (R,m) be a local ring. We define (J : m) := {x ∈ R such that
xm ⊆ J}. This is clearly an ideal.

Lemma 5.2. In a local ring (R,m) for any ideal I we have that:

i. I/mI is a vector space over R/m.

ii. (I : m)/I is a vector space over R/m

Proof. (i): It is clearly a module over R and m is in the kernel of the module action
as for all x ∈ I we have mx ⊆ mI.
(ii): Note that I ⊆ (I : m) as Im ⊂ I. Therefore (I : m)/I is well defined. It is
clearly a module over R and m is in the kernel of the module action by definition
of (I : m). �
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It would be ideal for us if for some ideal structure we could determine whether
there is a ring with that structure or not. We cannot do this, however we can derive
quite a lot of other information from diagrams of ideals.

Lemma 5.3. Let (R,m) be a local noetherian ring. Then the following hold for
any ideal I ⊆ R.

i. There is a bijection between the set of ideals {J : J ⊆ I such that J is
maximal in I} and hyperplanes in I/mI, which is given by J 7→ J/mI.

ii. There is a bijection between the set of ideals {J : I ⊆ J such that I is
maximal in J} and 1-dimensional sub-vector spaces of (I : m)/I, which is
given by J 7→ J/I.

Proof. (i): For such a maximal ideal J we have mI ⊆ J , because J + mI 6= I by
2.9 as J 6= I. The module I/mI is a vector space over R/m by 5.2. Our bijection is
the one that sends an ideal J to J/mI ⊆ I/mI. If we have two different such ideals
then when dividing out by mI they will be mapped to two different hyperplanes,
they are mapped to hyperplanes because there can not be anything in between their
image and I/mI.
(ii): For an ideal J in which I is maximal we have mJ ⊆ I, because if this were not
the case by maximality of I in J we have mJ + I = J and by 2.9 (ii) we would have
J = I which is a contradiction. Hence we have J ⊆ (I : m). The module (I : m)/I
is a vector space over R/m by 5.2. Our bijection is the one that sends an ideal J to
J/I ⊆ (I : m)/I. If we have two different such ideals then as they both contain I
they are mapped to different subspaces if we divide out by I they are also mapped
to 1-dimensional subspaces because I is maximal in them.

�

Theorem 5.4. Let (R,m) be a local ring with finitely many ideals. Let q = #R/m
if R/m is finite and 0 otherwise. Then for i ∈ {0, 1, . . . , lengthR(R)} we have
#{I ⊆ R : lengthR(I) = i} ≡ 1 (mod q).

Proof. Note that lengthR(R) is finite as R has only finitely many ideals. For q = 0
we know that R/m is infinite. Then by 3.2 the ring is infinite and then because it
is local by 3.3 it is a principal ideal ring. Utilising 3.1 we know all its ideals are of
the form mi and so the theorem holds in this case.
For q 6= 0 we will prove it by induction on i ∈ {0, 1, . . . , lengthR(R)}. For i = 0 it is
clear as (0) is the only one of that length. Let N ∈ {0, . . . n}. Assume the theorem
holds for all n < N . With 2.13, 2.15 and 5.3 for every ideal of length N there are
1 (mod q) of length N − 1 contained in it and for every ideal of length N − 1 there
are 1 (mod q) ideals of length N which contain it. Hence we have:

1 (mod q) ≡ #{I : I ⊆ R, lengthR(I) = N − 1}
≡ #{(I, J) : I ⊆ R, lengthR(I) = N − 1, lengthR(J) = N, I ⊆ J}
≡ #{J : J ⊆ R, lengthR(J) = N}.

Therefore the theorem holds for N as well, so by induction it holds for all N ∈
{0, 1, . . . , length(R)}. �

We also know that two rings with the same diagrams do not necesarily have
to be isomorphic. For example Z[X,Y ]/(2, X2, Y 2, XY ) and Z[X]/(4, X2, 2X) are
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not isomorphic and both of them have the following diagram:

R

(a, b) = m

(a) (b) (a+ b)

0

where for the first ring we take a = X en b = Y and for the second one we take
a = X en b = 2. These rings are not isomorphic as in the first ring we have 1+1 = 0
and in the second we have 1 + 1 = 2 6= 0.

6. Families of rings

Let n ∈ Z≥0. We will try to create a finite local non-principal ideal ring with
exactly n ideals. For this reason we will study certain families of rings.

6.1. Family 1.

Definition 6.1. For p ∈ N prime and n, d ∈ Z≥1, where d > 1 if n = 1, let Vd
signify a vector space over Z/pZ of dimension d. Define the commutative group
Rn,p,d to be Z/pnZ ⊕ Vd. Then define a commutative multiplication · : Rn,p,d ×
Rn,p,d → Rn,p,d by setting it to be the normal multiplication on the subset Z/pnZ×
Z/pnZ, the module action on Z/pZ× Vd and the trivial map, sending all elements
to 0, on Vd × Vd.

It will soon become clear that this is a ring and that the generators of the maximal
ideal of this ring are p and the generators of Vd as a vectorspace. Therefore if we
had allowed d = 1, n = 1, which would imply that p = 0, the maximal ideal would
only have one generator, wich would mean the ring is a principal ideal ring which
we are not interested in.

Lemma 6.2. The group Rn,p,d with the multiplication defined in this way is a finite
local ring with maximal ideal m = (p)⊕ Vd and residue field Z/pZ.

Proof. First we will check the ring axioms. The requirements for addition are met
by definition. The multiplication is associative on the three sets it is defined on
therefore the multiplication must be associative. Take a, b, c ∈ Rn,p,d. If a, b ∈ Vd
or a, b ∈ Z/pnZ then we have c(a + b) = ca + cb, because Z/pnZ and Vd work
distributively on Vd and Z/pnZ. If a ∈ Z/pnZ, b ∈ Vd the product c(a + b) is
defined to be ca+ cb. Therefore the addition is distribitive.
The ideal m := (p) ⊕ Vd is maximal as Rn,p,d/((p) ⊕ Vd) = Fp which is a field.
Note that every element not contained in this ideal is of the form a ⊕ v where
a ∈ (Z/pnZ)∗ and v ∈ Vd which has a−1 ⊕ −a−2v as its inverse. This means that
every element outside of m is a unit. Therefore m is the unique maximal ideal.

�
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Lemma 6.3. The ring Rn,p,d is a non-principal ideal ring with precisely (N(d +
1, p)−N(d, p)) · (n− 1) +N(d, p) + 1 ideals.

Proof. Take a non-zero element a ∈ m. By definition of Rn,p,d there is a unique
i ∈ {1, . . . , n} such that there are b ∈ (Z/pnZ)∗, c ∈ Vd for which a = bpi + c.
Let I ( Rn,p,d and then let a ∈ I be an element of which the corresponding
i ∈ {1, · · · , n} is minimal amongst the elements of I. Then we have I ⊂ (pi) ⊕ Vd
by minimalitly of i, note that this would not hold for any larger i. We also get
(pi+1) ( (a), as long as a 6= 0 as in that case pi+1 = pn+1 = 0. Note that therefore
(p)i+1 ( I ⊂ (p)i ⊕ Vd. Note that (pi−1) 6⊂ I as then i− 1 would be the minimal i
found. This means for an ideal there are at most two elements i, j ∈ {1, · · · , n− 1}
such that (p)i+1 ( I ⊂ (p)i ⊕ Vd, (p)j+1 ( I ⊂ (p)j ⊕ Vd.
This means that if i ∈ {1, · · ·n− 1} the ideals J such that (p)i+1 ( J ⊂ (p)i ⊕ Vd
for which (p)j ( J ⊂ (p)j ⊕ Vd does not hold for any j ∈ {i+ 1, . . . , n} correspond
to the subspaces of (p)i ⊕ Vd/(p)i+1 which are not contained in (p)i+1 ⊕ Vd/(p)i+1.
Note that (p)i+1 ⊕ Vd/(p)i+1 = 0⊕ Vd which is a d dimensional subspace of (p)i ⊕
Vd/(p)

i+1 = (p)i/pi+1 ⊕ Vd which is a d+ 1 dimensional subspace. So the number
of all the ideals I ( Rn,p,d not contained in Vd is (n − 1)(N(d + 1, p) − N(d, p)).
For i = n the set {i + 1, . . . , n} is empty so here we need to simply count all the
subspaces of (p)i ⊕ Vd/(p)i+1 = (0)⊕ Vd/(0) = 0⊕ Vd.
Therefore this ring has precisely (N(d+1, p)−N(d, p)) · (n−1)+N(d, p)+1 ideals.
Note that (p)1⊕ Vd/(p)2 is a d+ 1 dimensional vector space as d > 0 its dimension
is more than 2 therefore this ring is not a principal-ideal ring.

�

6.2. Family 2.

Definition 6.4. Let q be a prime power. Let m,n ∈ Z≥2. Let Fq be a field of
cardinality q and let Fqm be a field extension over Fq of degree m. Define Pq,m,n as
the inverse image of Fq of the morphism π from Fqm [X]/(Xn) to Fqm that mods
out by the unique maximal ideal (X).

Lemma 6.5. The set Pq,m,n is a finite local ring with maximal ideal

m := X · Fqm [X]/(Xn) ∩ Pq,m,n.

Proof. Since Pq,m,n is the inverse image of a ring under a ring homomorphism, it
is a ring itself.
The ring Fqm [X]/(Xn) is finite so Pq,m,n is finite too.
It is clear that m = (X · Fqm [X]/(Xn)) ∩ Pq,m,n is an ideal in Pq,m,n as it is equal
to X · Fqm [X]/(Xn) as set which is an ideal in Fqm [X]/(Xn). All the elements
outside of the maximal ideal are units in Fqm [X]/(Xn) and the first coordinate of
their inverses map is the inverse of their first coordinates which are therefore in Fq

so they are units in Pq,m,n as well. Therefore m = X ·Fqm [X]/(Xn)∩Pq,m,n is the
unique maximal ideal. �

Proposition 6.6. The ring Pq,m,n is a non-principal ideal ring and has precisely
(n−1)(N(m, q)−1)+2 ideals. By taking quotients of rings of this form we can create
non-principal ideal rings which have precisely (n−2)(N(m, q)−1)+2+(N(d, q)−1)
ideals for any d ∈ Z≥0 such that d ≤ m and d > 1 if n = 2.

Proof. Define F := Fqm [X]/(Xn). Note that as the maximal ideals of Pq,m,n and
F are the same sets their powers must be the same as well. Hence mi = XiF . We
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have:

XF ⊆ Pq,m,n ⊆ F
and so for any ideal I ( Pq,m,n we have:

XFI ⊆ I ⊆ FI.
There is an i ∈ {1, . . . n} such that

FI = XiF

as F is a local principal ideal ring. Then

XFI = XXiF = Xi+1F

follows. Combining this information gives us that for every non-zero ideal I ( Rq,o,n

there is a unique i ∈ {1, . . . , n − 1} such that mi+1 ( I ⊆ mi as for two different
such i1, i2 we have mi1 \mi1+1 ∩mi2 \mi2+1 = ∅. So every ideal apart from Pq,m,n

and 0 can uniquely represented as a non-zero subspace of a vector space of the
form mi/mi+1, for some i ∈ {1, . . . , n − 1}. Note that mi/mi+1 is a 1 dimensional
vector space over Fqm so #mi/mi+1 = #Fqm = #(Fq)m = #Pq,m,n/m. We note
that this implies that Pq,m,n is not a principal ideal ring. Note that there are n− 1
vector spaces of the form mi/mi+1, for some i ∈ {1, . . . , n − 1}. So the number of
ideals this ring has is (n − 1)(N(m, q) − 1) + 2. We can divide out by any ideal
I ( m such that dim(m/(m2 + I)) > 1, which means the resulting ring is still a non
principal-ideal ring. Note that any ideal I ⊂ m2 satisfies m/(m2 + I) > 1 and any
ideal which corresponds to a subspace in m/m which is not m2 and of which the
dimension is 2 lower than that of m/m2. In this way we can effectively vary the
dimension of mn−1/mn anywhere from 0 to m as long as mn−1 is not the maximal
ideal in which case the dimension must be at least 2. Therefore we can create rings
with exactly (n − 2)(N(m, q) − 1) + 2 + (N(d, q) − 1) ideals for every d ≤ m such
that d > 1 if n = 2. �

6.3. Family 3.

Lemma 6.7. Take n ∈ Z>0, q ∈ N with q a prime power. Let V be a n dimensional
vector space over Fq, for Fq some field of cardinality q. Let Hi, i ∈ {1, . . . n}, be
hyperspaces such that V ∩

⋂
i∈S⊂{1,...,n}Hi is a n −#S dimensional vector space.

Then the number of subspaces of V which are not contained in any of the Hi is∑n
i=0(−1)i

(
n
i

)
N(n− i, q).

Proof. In this proof for W ⊆ V a subspace we write N(W ) for the number of
subspaces of W . By the inclusion-exclusion principle |{W ⊆: ∃i : W ⊆ Hi}| =∑n

i=1N(Hj)−
∑n

1=i1<j N((Hi ∩Hj)) + . . .+ (−1)nN(
⋂n+1

i=1 Hi) note that the in-
tersection of m of such hyperplanes is a vector space of co-dimension m by choice
of Hi. Therefore N(

⋃n
i=1Hi) =

∑n
i=1N(n − 1, q) −

∑n
1=i1<j N(n − 2, q) + . . . +

(−1)n+1N(0, q) =
∑n

i=1(−1)i+1
(
n
i

)
N(n − i, q). Therefore all the subspaces of a

vector space not contained in such subspaces is N(n, q)− |{W ⊆: ∃i : W ⊆ Hi}| =∑n
i=0(−1)i

(
n
i

)
N(n− i, q). �

Definition 6.8. Let n ∈ Z>1,m1, . . . ,mn ∈ Z>1, where mi 6= 1 for at least two i ∈
{1, . . . n}, and let q be a prime power in N. Define Oq,n,m1,m2,...,mn

as the subring of
F := Fq[X]/(X)m1×Fq[X]/(Xm2)× . . .×Fq[X]/(Xmn) consisting of the elements
a ∈ F such that π1(a) = π2(a) = . . . = π(a). Here πi : F → Fq is the map that
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takes the i-th coordinate, which can be written as a0 + a1X
1 + . . .+ ami−1X

mi−1,
to a0 ∈ Fq.

Lemma 6.9. The ring Oq,n,m1,m2,...,mn is a non-principal ideal ring and has exactly

1 +
∑

S⊆{1,...,n}

(

#S∑
i=0

(−1)i
(

#S

i

)
N(#S − i, q))

∏
e∈S

(me − 1)

ideals.

Proof. Fix q, n,m1, . . .mn and define O = Oq,n,m1,m2,...,mn
. For i ∈ {1, . . . , n}

define Xi to be the element which is zero on every coordinate but i where it is X.
It is clear that (X1, . . . , Xn) ⊂ O is the unique maximal ideal of O. Call it m.
For i ∈ {1, . . . n} define pi to be the function from O to Z which sends the i-th
coordinate of an element in O which can be written as a0+a1X

1+. . .+ami−1X
mi−1

to the first interger j ∈ Z≥0 such that aj 6= 0, if there is no such element (that is if
a0 + a1X

1 + . . .+ ami−1X
mi−1 = 0) we define the image to be mi.

Let I ( O be an ideal. Define di := min(pi(I)). Note that for any element
a ∈ O such that pi(a) = 0 we get that πi(a) is non-zero. This means that π1(a) 6=
0, π2(a) 6= 0, . . . , πn(a) 6= 0. Therefore a must be a unit and so (a) = O. Hence we
have di ∈ {1, . . .mi}.
For every a ∈ I we have that a ∈ (Xd1

1 , . . . , Xdn
n ) as a =

∑
i ciX

di
i X

pi(a)−di

i for

ci ∈ Fq[X]/(X)mi units, this is an element of (Xd1
1 , . . . , Xdn

n ) as pi(a) − di ≥ 0.

Therefore we have I ⊆ (Xd1
1 , . . . , Xdn

n ). Note that for every i ∈ {1, . . . , n} we have

an a ∈ I such that pi(a) = di and so a · c−1i Xi = Xdi+1
i where ci ∈ Fq[X]/(X)mi is

any unit such that ciX
di
i is the i-th coordinate of a. Hence we have

m(Xd1
1 , . . . , Xdn

n ) = (Xd1+1
1 , . . . , Xdn+1

n ) ( I ⊆ (Xd1
1 , . . . , Xdn

n ),

this gives us a map which sends an ideal I ( O to a tuple di. Note that for such a
sequence of di’s and an ideal (Xd1+1

1 , . . . , Xdn+1
n ) ( I ⊆ (Xd1

1 , . . . , Xdn
n ) such that

I is mapped to di we get that

I/(Xd1+1
1 , . . . , Xdn+1

n )

is not contained in any hyperspace of the form

(Xd1+1
1 , Xd2

2 , . . . , Xdn
n )/(Xd1+1

1 , . . . , Xdn+1
n ), . . . ,

(Xd1
1 , . . . X

dn−1

n−1 , X
dn+1
n )/(Xd1+1

1 , . . . , Xdn+1
n ),

(here we only count these spaces if they are in fact hyperspaces and not the whole
vector space which can happen if for some i ∈ {1, . . . , n} we have di = mi) more-
over any subspace outside of all such hyperspaces corresponds to an ideal which
gets mapped to this tuple di. This means that we can count the number of non-
zero ideals I ( O by counting all the subspaces of the vector spaces of the form
(Xb1

1 , . . . , X
bn
n )/m(Xb1

1 , . . . , X
bn
n ) where bi ∈ {1, . . .mi}, which are not contained in

subspaces of the form

(Xb1+1
1 , Xb2

2 , . . . , X
bn
n )/(Xb1+1

1 , . . . , Xbn+1
n ), . . . ,

(Xb1
1 , . . . X

bn−1

n−1 , X
bn+1
n )/(Xb1+1

1 , . . . , Xbn+1
n ).

The dimension of a vector space of this form over the residue field Fq is equal to
the number of bi such that bi 6= mi.
For S ⊂ {1, . . . n} the number of such vector spaces for which bi 6= mi for all i ∈ S
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is
∏

e∈S(me − 1) by 6.7, the requirements for 6.7 are clearly met, the number of

subspaces we have to count for all such vector spaces is
∑n

i=0(−1)i
(
n
i

)
N(n− i, q).

This means that there are∑
S⊆{1,...,n}

(

#S∑
i=0

(−1)i
(

#S

i

)
N(#S − i, q))

∏
e∈S

(me − 1).

in m so there are

1 +
∑

S⊆{1,...,n}

(

#S∑
i=0

(−1)i
(

#S

i

)
N(#S − i, q))

∏
e∈S

(me − 1)

ideals in total.
�

Proof of theorem 1.2. The case n < 5 follows from the fact that the lowerbound
exceeds the upperbound for this n which means it is impossible to make such a
ring.
We have come to this interval for local non-principal ideal rings by simply letting
a computer grind the possibilities we have gotten from our three families of rings.
Because of the time required to run the program only numbers up to a 1200 were
checked. Furthermore we couldn’t actually calculate all the possiblilities because
that would take too long. �
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