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Introduction

Introduction

This master’s thesis, or mémoire, is in fact a reading report on J.C.Jantzen’s book “Representations
of Algebraic Groups”. The aim of this thesis is to offer a quick way to understand the simple
modules for reductive groups, so little of this material is original.

The thesis contains three main parts: the correspondence between simple modules and domi-
nant weights of reductive groups, Steinberg’s Tensor Product Formula, and the Linkage theorem.

The classification of all simple modules is the main context of chapter 1. The main conclusion
is given by corollary [1.2.7:

Proposition 0.0.1. The L(\) with A € X(T)4 are a system of representatives for the isomor-
phism classes of all simple G-modules.

Here X(T')4 is a subset of the characters of the reductive group given by G. And we will see
that L(\)’s which we construct later are all the simple modules of G.

Based on chapter 1, Steinberg’s Tensor Formula (corollary 2.2.14), which we will prove in
chapter 2, offers a way to treat simple modules L(A) as the tensor products of some simple
modules of its Frobenius Kernels, namely:

Proposition 0.0.2. Let Ao, A1, ..., A\ € X1(T) and set A\ =>_1" p'\;. Then:

LX) = L(do) ® LM @ -+ @ L(Apn) ™.

Here the upper index means some twist by Frobenius morphism.

On the other hand, the Linkage theorem (corollary [3.2.11)) offers a necessary condition for the
weights of a given simple module:

Corollary 0.0.3. Let A\, u € X(T);. If Extg(L(N), L(p)) # 0, then A € W, - p.

The proposition comes from some careful observation of the actions of reflections on the char-
acter space X (T') and the study of higher cohomology groups of simple modules. We will give
a detailed description of these in chapter 3. But this part may be not so satisfactory, as the
comprehension of this theorem will be part of my future study.
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Chapter 0

Preliminaries

As the title hinters, there is no main context that dominates the whole chapter. The general aim of
this chapter is to do some preparations for the later three chapters, and clarify some concepts and
notations. The reader may just sketch the concepts and definitions, or even jump this chapter if
they are already familiar with, and go back when they need a reference in the later three chapters.

0.1 Representations of Algebraic Groups

We will give a quick introduction on representation theory for general algebraic groups which is the
basis of the whole thesis. And the induction functor Ind introduced here will play an important
role in the latter part of this thesis.

0.1.1 Conventions

Let k be an arbitrary ring, and let A denote a k-algebra. A k-functor is a functor from the
category of k-algebras to the category of sets. Obviously, any scheme X defines a k-functor by
X (A) = Homg—schemes (X, Spec(4)). Any k-module M also defines a k-functor M, by M,(A) =
M ®y, A.

A k-group functor is a functor from the category of all k-algebras to the category of groups.
For convenience, we define a k-group scheme to be a k-group functor that is represented by an
affine scheme over k. An algebraic k-group is a k-group scheme which can also be represented
by an algebraic affine scheme. It is well-known that each k-group scheme has an Hopf algebra
structure of its coordinates ring k[G]. For example, we have the additive group G, = Spec k[T
and multiplicative group G, = Spec k[T, T~1].

Now let G be a k-group scheme and M a k-module. A representation of G on M ( or a G-
module structure on M) is an operation of G on the k-functor M, such that each G(A) operates
on M,(A) = M ® A through A-linear maps. Such a representation gives for each A a group
homomorphism G(A) — Ends(M ® A)*. There is an obvious notion of a G-module homomor-
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phism between two G-modules M and M’. The k-module of all such homomorphism is denoted
by Homg (M, M').

For example, for G a k-group scheme, we have the left reqular representations derived from the
action of G on itself by left multiplications. We shall denote the corresponding homomorphisms
G — GL(k[G]) by p;. Similarly, we have the right reqular representations and p,. Furthermore,
the conjugation action of G on itself gives rise to the conjugation representation of G on k[G].

The representations of G on the k-module k, for example, correspond bijectively to the group
homomorphisms form G to GL; = Gy, i.e., to the elements of X(G) = Hom(G, G,). For each
A € X(G) we denote k considered as a G-module via A by k. In case A = 1 we simply write k.

It is a fact that giving a G-module M is equivalent to giving a comodule M, which is given by
a linear map Ay : M — M ® k[G] (For example, see [M]|, proposition 3.2).

0.1.2 Twisting with Ring Endomorphism

A representation over k of a group can also be twisted by a ring endomorphism ¢ of k. If M is a
k-module, then let M%) be the k-module that coincides with M as an abelian group, but where
a € k acts as ¢(a) does on M. Now let ¢ : Al — Al be a morphism such that each v(A) is a ring
endomorphism on A'(A4) = A and such (k) is bijective. So let ¢ = (k)~!. Then ¢, : f — o f
is a ring endomorphism of k[G] = Mor(G, A'), but not, in general, k-linear. If we change the
k-structure on k[G] to that of k[G](?), then 1), is a k-algebra homomorphism: k[G](¢) — k[G]. If
M is a G-module, then the comodule map Ay : M — M ® k[G] can also be regarded as a k-linear
map:
M@ — (M @ k[G)® = M@ @ k[G])®

If we compose with idy; ® 1), we get a k-linear map M(®) — M) k[G]. We can check that it
gives a comodule of k[G], and hence a G-module M (),

0.1.3 Induction Functor

Let G be a k-group functor and H a subgroup functor of G. Every G-module M is an H-module
in a natural way: restrict the action of G(A) for each k-algebra to H(A), In this way we get a
functor:

Res% : {G — modules} — {H — modules}

which is obviously exact.
Now we define the right adjoint functor Indfl as:

Indjy ={f € Mor(G, Ma) | f(gh) = h™" f(9)
for all g € G(A), h € H(A) and all k-algebras A}

There is an equivalent way to define the induction functor. By regarding M ® k[G] as a G x H-
module: G operates trivially on M and left regular representation on k[G] and H acts normally on
M and right regular representations on k[G], and we can prove that (M ® k[G])¥ is a G-module
and is exactly Ind$; M. For details, see [J] T 3.3.
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We can prove that the functor Ind is in fact a right adjoint functor of functor Res, and we
denote it the formula Frobenius Reciprocity:

Homg (N, Ind$, M) = Homy (Res§ N, M) (0.1)

Let G’ be a flat k-group scheme operating on G through automorphisms and let H be a flat
subgroup scheme of G stable under G’. We can form the semi-direct products H x G’ and G x G’
naturally, and we can regard H x G’ as a subgroup scheme of G x G’. On the other hand, as
G’ normalizes H, it operates also on Indg M. Therefore we get on Indg M a structure as a
G x G'-module. We have the following isomorphism of (G x G’)-modules:

mdS M =~ nd$2S, M

for any H x G'-module M which acquires a H-module structure naturally.

0.1.4 Induction Functor, Geometric Interpretation

Now let G be a flat k-group scheme acting on X a flat k-scheme X such that X/G is a scheme.
(Here we understand X/G to be the k-functor A — X(A)/G(A)). We have a canonical map
7: X — X/G. For each G-module M, we associate a sheaf £ (M) = Zx,q(M) on X/G:

ZL(M)(U) ={f € Mor(n~'U, M,) | f(zg) =g~ f(x)

0.2
for all x € (771U)(A),g € G(A) and all A} 0:2)
If 7=1U is affine, then we have Mor(7~1U, M, ) = M, (k[r~'U] = M®k[r~1U]. This is a G-module
via the given action on M and the operation on k[r~1U] derived from the action on 71U C X.
So obviously we have:
LM)U) = (M @ k[ 'U)C.

In fact, by an elementary argument, we have that .Z’(M) is a sheaf of 0x;-modules. It is called
the associated sheaf to M on X/G.

Following the notations of last subsection, it is easy to see that we have:
mdY M = Z2(M)(G/H) = H(G/H, £ (M)). (0.3)

Note the last cohomology group is the cohomology of sheaves.

0.1.5 Simple Modules

In this subsection, we assume k is a field. As usual, a G-module is called simple if M # 0 and
if M has no G-submodules other than 0 and M. It is called semi-simple if it is a direct sum of
simple G-submodules. For any M the sum of all its simple submodules is called the socle of M
and denoted by socg M (or equivalently soc M if it is clear which G is considered). It is the largest
semi-simple submodule of M. For a given simple G-module F, the sum of all simple G-submodules
of M isomorphic to E is called the E-isotypic component of socg M and denoted by (socg M)Eg.
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The socle series or (ascending) Loewy series of M
0 C socyt M = socg M C socog M C socg M C ...

is defined iteratively through soc(M/soc;—1 M) = soc; M/soc;_1 M.

Any finite dimensional G-module M has a composition series (or Jordan-Hélder series). The
number of factor isomorphic to a given simple G-module FE is independent of the choice of the
series. It is called the multiplicity of E as a composition factor of M and usually denoted by
[M:E])or [M:E].

For any G-module M and any simple G-module E, the map ¢ ® e — ¢(e) is an isomorphism:
Homg(E, M) ®p E = (socg M) g (0.4)
where D = Endg(E).

The radical radg M of a G-module M is the intersection of all maximal submodules. If
dim M < oo, then radg M is the smallest submodule of M with M/radg M semi-simple.

0.1.6 Injective Modules

We define an injective G-module to be an injective object in the category of all G-modules. We give
without proof the following propositions about injective modules, which gives a clear description
of these objects:

Proposition 0.1.1. 1. For each flat subgroup scheme H of G the functor Indg maps injective
H-modules to injective G-modules.

2. Any G-module can be embedded into an injective G-module.

3. A G-module M 1is injective if and only if there is an injective k-module I such that M is
isomorphic to a direct summand of I ® k[G] with I regarded as a trivial G-module.

Proof. See |J] T 3.9. O

Proposition 0.1.2. 1. For each simple G-module E there is an injective G-module Qg (unique
up to isomorphism) with E = soc Q.

2. An injective G-module is indecomposable (as a direct sum of injective submodules) if and
only if it is isomorphic to Qg for some simple G-module E.

Proof. See |J]| T 3.16. O

The module Qg mentioned above is called the injective hull of E. More generally, we can
find for each G-module M an injective G-module @ /( unique up to isomorphism) with soc M =

soc Q-
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0.1.7 Cohomology

Now we assume that G is a flat group scheme over k and H a flat subgroup scheme of G. It is
easy to see that the G-modules form an abelian category, and by proposition (0.1.1, the category
contains enough injective modules. So we can apply general theory of cohomology theories. For
example, the fixed point functor from {G-modules} to {k-modules} is left exact. We denote its
derived functors by M — H™(G, M), and call H"(G, M) the n*® cohomology group of M.

In this memoir, another very important functor is Ind, by subsection [0.1.4, we have:

Proposition 0.1.3. Let G be a flat k-group scheme and H a subgroup scheme of G such that
G/H is a scheme (e.g. H is closed in G).

1. There is for each H-module M and each n € N a canonical isomorphism of k-modules:

R"Ind§ M = H"(G/H, %,u(M)). (0.5)

2. If G/H is noetherian, then R*Ind$ = 0 for all n > dim(G/H).

3. Suppose that k is noetherian and that G/H is a projective scheme. For any H-module M
that is finitely generated over k, each R™ Indg M is also finitely generated over k.

Another important tool is to study the functor Ind’s Grothendieck’s Spectral Sequence:

Proposition 0.1.4. Let . : € — €' and .F' : €' — €" are additive functors where €, €' and
€' are abelian categories having enough injectives. If F' is left exact and if F maps injective
objects in category € to acyclic for F', then there is a spectral sequence for each object M in €
with differential d, with bidegree (r,1 —r), and

E}P™ = (R"F") o (R"F)M = R"™™(F' o F)M.

Note that if H' and H are flat subgroup scheme of G with H C H’, we have Indg =
Indg, o Indg , then applying Grothendieck’s spectral sequence, we have:

Proposition 0.1.5. We have spectral sequence:

E}™ = (R"Ind$,)(R™ Ind¥ Y M = (R Ind$) M

Similarly, we give the following propositions without proof:

Proposition 0.1.6. Let N be a G-module that is flat as a k-module. Then we have for each
H-module M and each n € N an isomorphism:

R"Ind$ (M @ N) = (R"Ind$ M) ® N.

Proof. See |J] T 4.8. O

Proposition 0.1.7. Let H be a flat subgroup scheme of G with N C H. Suppose that both G/N
and H/N are affine. Then one has for each H/N-module M and each n € N an isomorphism of
G-modules:

7 ~ G/N
(R Ind§)M = (R" Indg}/\)M.
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Proof. See |J| I 6.11. O

Proposition 0.1.8. Let G’ be a flat k-group scheme that operates on G. We can therefore form
the semi-direct product G x G'. We assume that G’ stablizes the subgroup scheme H of G, we
have:

Res&*¢ oR"Ind$7%%, = R" Ind$, o ResH 9" .

Proof. See |J| I 4.11. O

0.2 Algebras of Distributions

Here we will talk on the distributions of algebraic groups and some elementary properties. The
algebra of distributions over an algebraic group is an important tool for our further study of
algebraic groups and their representations.

0.2.1 Distributions on a Scheme

Let X be an affine scheme over k and x € X (k). Set I, = {f € k[X] | f(x) = 0}. A distribution
on X with support in x of order < n is a linear map p : k[X] — k with p(I?*1) = 0. These
distributions form a k-module that we denote by Dist, (X, z). We have:

(K[X]/I2TY)* = Homy, (k[X]/I2H k) = Dist,, (X, ) C k[X]*.

Obviously Disto(X, ) 2 k* = k, and for any n:
Dist,, (X, z) = k @ Dist,! (X, z),
where
Dist! (X, x) = {u € Dist,, (X, x)|u(1) = 0} = (I,/IN)*.

For a u € Dist, (X, ), we call u(1) its constant term and elements in Dist, (X, z) are called
distributions without constant term. The k-module Dist] (X, 2) = (I,/I12)* is called the tangent
space to X at x and is denoted by T, X.

The union of all Dist, (X, z) in k[X]* is denoted by Dist(X,z) and its elements are called
distributions on X with support in x:

Dist(X, z) = {u € k[X]*[Fn € N: p(I;™") = 0} = | ] Dist} (X, )

n>0
This is obviously a k-module. Similarly, Dist™ (X, z) = Un>o Dist;" (X, z) is a k-module.

For each f € k[X] and p € k[X]*, we define fu € k[X]* through (fu)(f1) = w(ff1) for all
f1 € k[X]. In this way k[X]* is a k[X]-module. As each I"*! is an ideal in k[X], obviously each
Dist,, (X, ) and hence also Dist(X, x) is a k[X]-submodule of k[X]*.
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Now let ¢ : X — Y be a morphism of affine schemes and we have ¢* : k[Y] — k[X]. Then
(¢0*) ', = Iy for all z € X(k), hence qb*(Ig&;) C I"™! and ¢* induces a linear map k[Y]/
Ig(";; — Kk[X]/I?! which gives a linear map:

(d¢), : Dist(X, ) — Dist(Y, ¢(x))
with (d@), : Dist,(X,z) C Dist, (Y, ¢(x)) and (d¢).(Dist, (X, )) C Dist} (Y, ¢(x)) for all n.

We can also prove that if Y is a open subscheme of X containing x, then the open immersion
¢ :Y — X induces an isomorphism: (d¢), : Dist(Y, z) — Dist(X, z).

0.2.2 Infinitesimal Flatness

Let X be an affine scheme over k and let z € X (k). We call X infinitesimal flat at x if each
k[X]/I2T! with n € N is a finitely presented and flat k-module. In this case, we have the following
properties:

1. If X is infinitesimally flat at x, then X} is infinitesimally flat in x for each k-algebra k'.
There are natural isomorphisms: Dist, (X, x) ® k' 2 Dist, (X, x) and Dist(X,z) @ k' =
Dist( X, x).

2. If X and X' are infinitesimally flat in x resp. 2/, then X x X’ is infinitesimally flat in
(z,z"). There is an isomorphism Dist(X, z) ® Dist(X’, 2") & Dist(X x X', (z,2’)) mapping
S o Disty (X, 2) ® Disty—p, (X', 2") onto Dist,, (X x X', (z,2”)) for each n € N.

3. By applying (2), we consider the diagonal morphism dx : X — X x X. Let us regard
the tangent map (ddx ), as a map A’y , : Dist(X,z) — Dist(X,z) ® Dist(X,z). it makes
Dist(X, x) into a coalgebra. In fact, we have: if X is infinitesimally flat, then Dist(X, z)
has a natural structure as a cocommutative coalgebra with a counit. Tangent maps are
homomorphisms for these structures.

0.2.3 Distributions on a Group Scheme

Let G be a group scheme over k. In this case we set:

Dist(G) = Dist(G, 1).

*

We can make Dist(G) into an associative algebra over k. For any u,v € E[G]* we can define

product uv as:
w k[G) 2 kG @ kG " ko k — k.

So we have an associative algebra structure with eg : 4 — p(1) its neutral element.

By computation, we have: if y € Dist,(G) and v € Dist,,(G), then: [u,v] = v —vp €
Disty+m—1(G). So Dist(G) has a structure as a filtered associative algebra over k such that the
associated graded algebra is commutative. We call Dist(G) the algebra of distributions on G. On
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the other hand, we can prove [Dist;} (G),Dist (G)] C Dist;’,,,_;(G). This shows in particular
that Dist] (G) is a Lie algebra, which we denote by Lie G, and call it the Lie algebra of G.

The conjugation action of G on itself yields a representation of G on k[G] that stabilizes I,
which is the ideal defining 1, hence also all I, We get thus G-structure on all k[G]/I7, hence
also on all Dist,,(G) = (k[G]/I}""")*, provided that G is infinitesimally flat. The representation
of G on Lie(G) = Dist] (G) constructed is called the adjoint representation of G. We use the
notation Ad for this representation of G' on Dist(G) and all Dist,,(G), Dist; (G).

0.2.4 Distributions on A"

First let us consider as an example X = A! = Spec,, k[T]. Note at point z = 0, and I, = (T).
The k-module k[X]/I7*! is free and have residue classes of 1 = T°, T = T*T?,... ,T". Define
¥, € K[T]* through 7, (T™) = 0 for n # r and ~,(IT") = 1. Then obviously Dist(A!,0) is a free
k-module with basis (v,),en and each Dist,,(A!,0) is a free k-module with basis (7,)o<r<n-

This can be generalized to A™ = Spec;, k[T1,...,Ty] for all m. For each multi-index a =
(a(1),a(2),...,a(m)) € N™, set T* = Tf(1)~-~TﬁL(m) and denote by 7, the linear map with
Ya(T®) = 0 if @ # b and 7,(T*) = 1. One easily checks that Dist(A",0) is free over k with all 7,
its basis, and that Dist,,(A™,0) is free over k with all v, with |a| = Y"." | a(i) < n as a basis.

0.2.5 Distributions on G, and G,,

Firstly let us look at the additive group G = G,. As a scheme we may identify G, = Spec k[T
with Al. Therefore we have already described Dist(G,) as a k-module in section 0.2.4. We have
A(T)=1®T+T®1, hence A(T") =>""" T*® T"*. This implies:

n—+m
TnVYm = n Yn+m

Hence:
7= nlvn.

So Dist(G,,¢) can be identified with the polynomial ring C[v1], and Dist(G, z) with the Z-lattice
spanned by all %I,l In general Dist(G,) = Dist(G,z) ®z k.

Let us now consider the multiplicative group Gy, = Spec,, k[T, T~!]. Then I, is generated by
T — 1. The residue classes of 1, (T — 1), (T —1)2,..., (T — 1)" form a basis of k[G,]/I]""". There
is unique §,, € Dist(Gy,) with 6,((T — 1)) =0 for 0 < i < n and 6, ((T —1)") = 1. From this and
binomial expansion of T" = ((T'— 1) + 1) one gets 6,(T™) = (") for all n € Z and r € N.

So all §, with r € N form a basis of Dist(G,), and all §, with » < n form a basis of Dist,, (Gy,).
Oneget AT-1)=T-1)(T-1)+(T-1)®14+1® (T —1) from A(T) =T ®T, hence

min(r,s)

_1)!
5,05 = Z ((r+81)'5r+si

—~ (r— i)(s — i)l
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In particular, we have:
P8, =616, —1)... (6 —r+1)

So if k is a Q-algebra, then ¢, = (f}) Therefore Dist(G,, ¢) = C[d1], and Dist(G,, z) is a Z-lattice
in Dist(G,, c) generated by all. In general Dist(Gy,) = Dist(G,z) Q k.

0.2.6 G-modules and Dist(G)-Modules

Let G be a group scheme over k. Then any G-module M carries a natural structure as a Dist(G)-
module. One sets for each p € Dist(G) and m € M:

pm = (idpy @ p) o Apr(m),
i.e., the operation of y on M is given by
M 2¥ M @ k[G] ‘M M @ k= M.
It is trivial to verify that this gives M a Dist(G)-module structure. And obviously we have:
Home (M, M') C Hompige(ay (M, M').
Applying the description above we have:
Proposition 0.2.1. 1. Any G-submodule of a G-module M is also a Dist(G)-submodule of M.
2. If m € M%, then pm = pu(1)m for all p € Dist(G).
3. If m € My, then um = pu(\)m for all p € Dist(G) and A € X(G) C k[G].

0.3 Finite Algebraic Groups

The main aim of this section is to prepare for the chapter 2. There we will treat some “Frobenius
Kernels”, which are in general a special kind of finite algebraic groups. So the propositions proved
here will give a corresponding version of propositions in chapter 2.

0.3.1 Finite Algebraic Groups and Measures
A E-group scheme G is called a finite algebraic group if dim k[G] < oo. It is called infinitesimal if
it is finite and its ideal Iy = {f € k[G] | f(1) = 0} is nilpotent.

Recall k[G] is a Hopf algebra. It has both an algebra structure and a coalgebra structure.
As dim k[G] < oo, its dual space k[G]* hence acquire an algebra structure from the coalgebra
structure of k[G] and a coalgebra structure from the algebra structure of k[G].

In fact we have:

Proposition 0.3.1. The functor R — R*, ¢ — ¢¥* is a self-duality on the category of all finite
dimensional Hopf algebra.
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As far as we know, there is an anti-equivalence of categories:
{ group schemes over k } — { commutative Hopf algebras over k }.
So we have
{finite algebraic k-groups} — {finite dimensional cocommutative Hopf algebras over k}.

We denote this Hopf algebra k[G]* by M(G) and call it the algebra of all mesures on G. We
have an obvious embedding G(k) = Homy_aigebra(k[G], k) — M(G): To each g € G(k), there is
a Dirac measure §y : f — f(g). We can check that the multiplication in G(k) agrees with the
multiplication in M(G).

As G is finite, we obviously have Dist(G) C M(G) and G is infinitesimal if and only if M(G) =
Dist(G).

Let R be a finite dimensional Hopf algebra. If M is an R-module, then M is an R*-comodule
in a natural way: Define the comodule map M — M ® R* = Hom(R, M) by mapping m to
a — am. If M is an R-module, then M is an R*-module in a natural way: Define the action of
any p € R* as (idy ® p) o Apr where Apy 0 M — M ® R is the comodule map. For two such
comodules M7, Ms a linear map ¢ : M7 — My is a homomorphism of R-comodules if and only if
it is a homomorphism of R*-modules. So we have equivalence of categories:

{R-comodules} = { R*-modules}

In particular, we have:
{G-comodules} = {M(G)-modules}

It is clear that Dist(G) C M(G) give the same operation as we have given in [0.2.6/ and the
statement in [0.2.6] also works for M (G).

The representation of G on k[G] through p; and p, leads to two representations of G on M (G),
hence to two structures of M (G)-modules on M (G). One can checks that any p € M(G) operates
on M(G) as left multiplication by u when we deal with p;, and as right multiplication with p~*
when we deal with p,..

In fact we have the following lemma describing M (G) as a G-module:

Lemma 0.3.2. If we regard M(G) and k[G] as G-module by the same action of G(e.g. left
reqular representation or right regular representation), then the G-modules M(G) and k[G] are
isomorphic. In particular, we have dim M(G)G =1

Proof. See |J] 8.7. O

Now we call a projective object in the category of all G-modules simply a projective G-module.
So we see they correspond under the equivalence of categories to the projective M (G)-modules.
This shows that each G-module is a homomorphic image of a projective G-module. The repre-
sentation theory of finite dimensional algebras shows that for each simple G-module FE, there is a
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unique(up to isomorphism) projective G-module @ with Q/rad(Q) = E. It is called the projective
cover of E.

On the other hand, as we have k[G] & M(G), and with proposition [0.1.1, we see that a finite
dimensional G-module is projective if and only if it is injective. So there is a bijection E +— E’ on
the set of simple G-modules such that the injective hull Qg is the projective cover of E’, i.e

QE/rad(QE) = El

This bijection will be described at the end of next subsection.

0.3.2 Invariant Measures

We call an element in M(G)¥ (resp. M(G)Y) a left invariant measure (resp. right invariant
measure) on G. The description of left and right representations of M(G) on itself in [0.3.1
implies:

M(G)f = {po € M(G)|ppo = p(1)po} for all € M(G)
and

M(G)f = {po € M(G)|pop = pu(1)po} for all p € M(G)
So M (G)ZG is stable under right multiplication by elements of M(G), hence an M (G)— and G-

submodule of M(G) with respect to the right regular representation. As dim M (G) = 1, this
gives a character ¢ € X(G) C k[G]. So we have for g € G(A) and any A:

pr(9) (1o ® 1) = 10 ® dc:(g) for all jug € M(G)y’
This character d¢ is called the modular function of G. We call G unimodular if 6¢ = 1.

There is also a natural structure as a k[G]-module on M(G): For any f € k[G] and p € M(G)
we define fu through

(fu)(fr) = p(f 1)
for all f; € k[G]. We claim that for any f € k[G],u € M(G), and g € G(A):

pi(9)(fr) = (pu(g)f)(pi(g))

Indeed we have:

()(fu)(f) (fu)oplg " )(f") =n(ff op(g™))
1((pr(9) ) (pe(9) ) = (pi(9) £)(oup) (f)

Now if M is a G-module, then we denote by M' the (G x G)-module that is equal to M as a
vector space and where the first factor GG operates as on M and the second factor operates trivially.
Similarly M is defined. For A\ € X(G) we shall usually write \! and A" instead of (ky)! and (ky)".
We regard k[G] and M (G) as (G x G)-modules with the first factor operating via p; and the second
on via p,. And we have the following proposition describing M (G) as a k[G]-module.

Proposition 0.3.3. Let g € M(G)lG, o # 0. Then f — fuo is an isomorphism of k[G]-modules
and of (G x G)-modules:
kGl ® (dg)" =2 M(G).
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Proof. See |J] 8.12. O

Remark 0.1. It is obvious rom the definition and from left regular G-action described above
shows that the map is a homomorphism of k[G] and of (G x G)-modules.

Furthermore, we have:

Proposition 0.3.4. Let E be a simple G-module and @ a projective cover of E. Then:

soc@Q =2 EQ®dg.

Proof. |J] 8.13. O

0.3.3 Coinduced Modules

Any closed subgroup H of finite algebraic group G is itself a finite algebraic k-group. We can
identify M (H) with the subalgebra {y € M(G) | u(I(H)) = 0} where I(H) is the ideal corresponds
to H.

Now we define a functor from {H-modules } to {G-modules} by
Coind§ M = M(G) ®@pr(my M
for any H-module M. We call this functor the coinduction from H to G.
We have obviously:
Proposition 0.3.5. The functor Coindg is right exact.
For any H-module the map iy, : M — Coind$ M with ip;(m) = 1 ® m is a homomorphism of

H-modules. The universal property of the tensor product implies that for each G-module V' we
get an isomorphism:

Home (Coind$ M, V) = Hompy (M, Res$ V), ¢ — ¢oin.

So the functor Coind$ is left adjoint to Res$.

Now we give the following proposition without proof about the relationship between induction
functor and coinduction functor:

Proposition 0.3.6. Let H be a closed subgroup of G. Then we have for each H-module M an
isomorphism:
Coind$, = Ind% (M @ ((0a)|ar 07"))

Proof. |J] 18.17. O

And we have the following dual proposition:
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Proposition 0.3.7. Let H be a closed subgroup of G and M a finite dimensional H-module, then:

(Indf M)* = Ind (M* @ ((66)|m 65"))
Proof. |J] I 8.18. O

And we give the following proposition which is quite important for the study Frobenius kernels:

Proposition 0.3.8. Let G’ be a k-group scheme operating on G through group automorphisms.
Then G’ operates naturally on k[G] and M(G). The space M(G)lG is a G'-submodule of M(G)
and the operation of G' on M(G)lG is given by some x € X(G'). If up € M(G)IG, uw # 0, then
the map f — fuo is an isomorphism k|G| @ x & M(G) of G'-modules. If G is a closed normal
subgroup of G’ and if we take the action of G’ by conjugation on G, then x|¢ = dq.

Proof. We can form the semi-direct product G x G’ and make it operate on G such that G acts
through left multiplication and G’ as given. This yields representations of G x G’ on k[G] and
M (G) that yield the operation considered in the proposition when restricted to G’ and yield the
left regular representation when restricted to G. Hence M (G)lG are the fixed points of the normal
subgroup G of G x G’, hence a G’-submodule.

It is now obvious that G’ operates through some y € X(G’) on M(G)ZG and that f — fug is
an isomorphism k[G] ® x = M(G) of G’-modules. Suppose finally that G is a normal subgroup
of G’ and that we consider the conjugation action of G’ on G. Then each g € G(A) C G'(A)
acts through the composition of p;(g) and p.(g) on M(G) ® A, hence through p,(g) on po ® 1.
Therefore the definition shows x(g) = 0¢(g)- O
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Chapter 1

Simple Modules for Reductive
Groups

Our main aim in this chapter is to prove corollary [1.2.7, which is the basis for our further study
in the last two chapters. We will give a sketch introduction on reductive groups to clarify the
notations and concepts at first. Then we go directly to construct L(\) which will be proved to be
simple. We will prove that L()) in fact determines all the simple modules of algebraic groups. At
last, We will give the dual theory at the end of this chapter, which will be useful for our study in
the last chapter, the Linkage Theorem.

1.1 Reductive Groups and Root Systems

We will give a quick tour of the main properties of reductive groups. It is not suitable for those
people who are not familiar with them. For detailed study, the reader may refer to those famous
books, like [B].

1.1.1 Reductive Groups
Here we assume k to be field. Now we assume Gz to be a split and reductive algebraic Z-group.
Set G4 = (Gz)a for any ring A and G = Gy,.

Then G is for any algebraically closed field K a reduced K-group, and it is a connected and
reductive K-group. The ring Z[Gz] is free, so k[G] is free and hence G is flat.

Let Ty, be a split mazimal torus of Gz. Set Ta = Tz X Spec(A) for any ring A and T = T.
Then T is isomorphic to a direct product of, say, r copies of the multiplicative group over Z. The
integer r is uniquely determined and is called the rank of G.

For any algebraically closed field K, the group Tk is reduced and it is a maximal torus in G .
The k-group T is isomorphic to Gy," and X (T') = X(17) = Z". Any T-module M has a direct

17
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decomposition into weight spaces:

M = @ M.

AEX(T)

Here the set of all A with M) # 0 is called the weight space of M. and we can define its formal
character:

chM = > tk(My)e(N). (1.1)
AeX(T)

Apply the argument above to the adjoint representation on Lie(G), then the decomposition

has the form:
LieG = LieT & P (Lie G)a (1.2)
a€ER

Here R is the set of non-zero weights of Lie G. So (1.2) amounts to
(Lie@)p = LieT

The elements of R are called the roots of G with respect to T, and the set R is called root system
of G with respect to T. For any o € R the root subspace (Lie(G))q is a free k-module of rank 1.

Let p = %ZQGRQ.

1.1.2 Root Systems

A subset R of an euclidean space E (with inner product ( , )) is called a root system in E if the
following axioms are satisfied:

1. R is finite, spans F, and does not contain 0.

2. If @ € R, the only scaler multiples of o in R are +a.

3. If a € R, the reflection s, defined by s,(3) = 5 — % leaves R invariant.

4. If a, B € R, then (3,a) = 2B.0) 7

(ev,c)

It is a fact that R, the set of the roots of G, contained in X (T') ®z R forms a root system of G
which coincide with the root system given by its semi-simple Lie algebra. In fact we can define:

Y(T) = Hom(Gy,, T)

which has a natural structure of an abelian group.Then for any A € X(T') and any ¢ € Y (7)),
we have Ao ¢ € End(G,,) = Z, which gives the pairing ( , ) and induces the isomorphism
Y(T) = Homz(X(T),Z). Tt is also a fact that the root system contains a base S, which is defined
by:

1. S is a basis of E.

2. Each root 8 € R can be written as § =Y ko« with « € S and k, € N.
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The root in S is called simple root. If we choose a positive system Rt C R, then it gives a
relationship in R, and it also gives a unique base denoted by S.

Here we define the Weyl group of R to be W = (s, | @« € R). Note any g contained in
Ng(T)(A), the normalizer of T(A) acts through conjugation on T'(A), hence also linearly on
X(T(A)). Here we assume A is integral, and hence X (T(A)) = X(T'). And we have W = (N¢g(T)/
T)(A)) = Na(T)(A)/T(A).

On the other hand, we see that the Weyl group is generated by the simple reflections with
respect to the positive system R, i.e., by all s, with a € S. So we can define the length (w) of
any w € W to be the smallest m such that there exists 31, 82,...,8m € S with w = sg,s3, ... 53,
So l(w) =0 if and only if w =1 and I(w) = 1 if and only if w = s, with a € S.

1.1.3 Regular Subgroups

For each a € R there is a root homomorphism:
To: Gu,— G

with
trat ™! = 24(a(t)a)

for any k algebra A and all t € T(A), a € A, such that the tangent map dx, induces an isomor-
phism:
dz, : LieG, = (Lie G),.

Such a root homomorphism is uniquely determined up to a unit in k.

The functor A — z,(Ga(A)) is a closed subgroup of G denoted by U,. It is called the root
subgroup of G corresponding to . So z, is an isomorphism G, = U, and we have:

LieU, = (Lie G),.

For any a € R there is a another homomorphism:
(ba : SL2 — G

such that for a suitable normalizaiton of z, and z_:

Pa (é ‘11) — 24(a) and dq (2 (1)) — 2_o(a).

For any A and a € A. we have
10(@) = 2u@)2-o(-a aul@) =00 (1 ) € Na(T)(A)

and
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0" (@) = ne(@)na(1) " = éa (8 a91> € T(A)

for any a € A* and any A. Obviously o € Y(T). It is the coroot or dual root corresponding to
a.

A subset R’ C R is called closed if (Na+NpB)NR C R’ for any a, 8 € R'. Tt is called unipotent
(resp. symmetric) if R’ N (—R') = I(resp. R’ = —R’).

For any R’ C R unipotent and closed we denote by U(R’) the closed subgroup generated by
all U, with @ € R'. In fact, we have an isomorphism of schemes(but not of group schemes):

I1 va=v®)

aER/

And obviously:
LieU(R) = @ (LieG)a
acR/
Each U(R’) is connected and unipotent. It is isomorphic to A™ with n = |R/| as a scheme. It is
normalized by T'.

If R C R is symmetric and closed, then let G(R’) be the closed subgroup of G generated by
T and by all U, with « € R’. Then

LieG(R) =LieT ® @D (LieG)a (1.3)
aEeR/

The k-group G(R’) is split, reductive, and connected. It contains T" as a maximal torus. Its root
system is exactly R’.

We can take in particular some I C S and set Ry = RNZI. Then R is closed and symmetric.
Set Ly = G(R;). Then Ly is split and reductive with Weyl group isomorphic to Wi = (sq|a € I).

1.1.4 Bruhat Decomposition

Both Rt and —R™ are unipotent and closed subsets of R. Weset U™ = U(R") and U = U(—R™).
Then BT =TUt =T x Ut and B =TU =T x U are Borel subgroups with BN BT = T. Note
that B corresponds to the negative roots.

Let us choose for w € W a representative v € Ng(T')(k), then we have wUs ™ = Uyy(a). As W
permutes the positive systems simply transitively, there is a unique wg € W with wo(R*) = —R™.
Let wg € Ng(T) be a representative of wy, then Uty * = Ut and By ' = BY.

For any I C S the subsets R* — Ry and (—R*) — Ry of R are closed and unipotent, hence
Uf =U(R* — Ry) and Uy = U((—R*) — Ry) are closed subgroups of G. In fact we have that L;
normalizes U;r and U;. One has UIJr NL;=1=U;N Ly, so we get semi-direct product inside G:
P]:LIU]:LID(UI andP+:L1UI+:L1|><UI+.

The Py (resp. P;) with I C S are called the standard parabolic subgroups containing B (resp.
BY), and Ly is called the standard Levi factor of P; (and of P;") containing T'. Furthermore, U;
(resp. U;") is the unipotent radical of Py (vesp. P;").
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For any k-algebra k' that is a field, G(k’) is decomposed as the disjoint union:
G(K)= | BK)uB(K).
weW

This is called the Bruhat Decomposition of G(k'). In fact, the Bruhat decomposition implies that
the wUT B with w € W form an open covering of G. In particular

I[ VaxTx J[ V-az=U'B
aERT aERT
is an open set which covers the unit of G.
And we also have:

Proposition 1.1.1. Any regular function on \J,cq $oU™(k)B(k) UUT (k)B(k) can be extended
to the whole G(k).

Proof. See [J] II 1.19 (8). O

1.1.5 The Algebra of Distributions

Set for any a € R
Xo = (dzo)(1) € (LieGz)a,

where we regard z, as a homomorphism G, 7 — Gz. Choose a basis ¢1,--- , ¢, of Y(Iy) = T(T)
and set for each 7
H; = (d¢);(1) € Lie(T7)

As we have seen, the origin of G is contained in the open subscheme UTTU which is a product
of copies of Gy, and G,. So we have that (H;)1<i<, is a basis of Lie(T7) and (H;)1<i<r, (Xa)acr
is a basis of Lie(G7z). By section [0.2, we have:

1. G is infinitesimal

2. The multiplication induces an isomorphism of k-modules

®aer+ Dist(Uy) ® Dist(T) Qe g+ Dist(U_q) = Dist(G) (1.4)

1.1.6 G-Modules

Any T-module M has a weight space decomposition M = @AeX(T) M. The operation of Dist(T)

on M can be described as follows: Any H;,, acts on M) as multiplication by ((A;fﬁ) by the
definition of H; ,, and the action of Dist(Gy,).

If M is a G-module and if w € Ng(T')(k) is a representative of some w € W, then an elementary
calculation shows:
WMy = Mz (1.5)
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for all X € X(T). So rk My = rk M,,(»).

We can regard Dist(G) as a G-module under the adjoint action, hence also a T-module. Then
we have for all « € R and all n € N:

Xa,n € Dist(G)n,o and Dist(T") C Dist(G),, (1.6)

Indeed, we can identify k[U,] with a polynomial ring in one variable Y,,, which is a weight vector
of weight —a for the adjoint action of T as kY, = (LieU,)*. Then Y has weight —na and the
“dual” vector X, , weight no.

If M is a TU,-module for some a € R, then 1.6/ implies for all A and n:

XaynM,\ C MnoH»)w (].7)

Let M be a BT-module. Suppose A € X (T') is maximal among all weights of M (with respect to
some R+). So X + na is not a weight of M for all & € R and n > 0, hence XanMy = 0. Note

Za(@)m®1)=Ay(me1)|r= = Z(mn QT"™)|r=a = Z(Xav”m) ® a™. (1.8)

n>0 n>0

So finally we have:

Proposition 1.1.2. If A is mazimal among the weights of M, then My C MU,

1.1.7 The Case GL,,

The general linear groups are the simplest examples of reductive groups. Fix n € N, n > 2 and
take G = GL,,. The conventions and notations introduced below will be used whenever we look
at this example.

For all 4, j (1 <4,j < n) let E;; be the (n x n)-matrix over k with (¢, j)-coefficient equal to
1 and all other coefficients equal to 0. The E;; form a basis of M, (k). Let us denote the dual
basis of M, (k)* by X;; (1 <4i,j <n). So the X;; are the matrix coefficients on M, (k) and k[G]
is generated by the X;; an by det(Xij)_l.

We choose T C GL,, as the subfunctor such that T'(A) consists of all diagonal matrices in
GL, (A) for all A, ie., T = V({X;;]¢ # j}). Then T is isomorphic to a direct product of n-
copies of Gy,. Then ¢; = X;|r(1 < i < n) forms a basis of X(T), and the €;(1 < i < n) with
ei(a) = > ;4 Ejj + ab;; form a basis of Y(T'). One has (€;, €;) = d;;.

The root system has the form:
R={e—¢|1<1,j<ni#j}

For Lie algebra, we have (Lie G),
(for i # 7):

= kE;; (for i # j) and (LieG)g = >, kE;;. We take

—€;

Te,—¢;(a) =1+ aEj;
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and
a b
Pe;—c; (C d) = Z Enn +aFBy + bEj; + cEy + dEj;.
h#i,j
One has (¢; — €)Y = €, — ¢; for all 7,j. The Weyl group permutes {e1,€2,...,€,} and can be

identified with the symmetric group S,: Map any w € W to the permutation o with w(e;) = €, ;)
for all 4. Then s, ., is mapped to the transposition (7,7). The composition of this isomorphism
with the canonical map Ng(T) — W admits a section: Map any o to the permutation matrix
S Ey(),i- The element wy corresponds to the permutation o with (i) = n + 1 — for all i.
We choose as system of positive roots:

Rt ={e—¢ |i<i<j<n} (1.9)

Then
S:{ai:q—ﬁi+1 | 1§Z<7”L} (110)

The centre of G is isomorphic to Gyy,:

1%

Gn 2 Z(G), a— aZEii
i=1

The Borel subgroup B (resp. BT) is the functor associating to each A the group of lower (resp.
upper) triangular matrices in GL,,(A). Furthermore, U(A) (resp. UT(A)) consists of all matrices
in B(A) (resp. BT(A)) such that all diagonal entries are equal to 1.

Let us identify GL, and GL(k™) via the canonical basis ej,es,...,e, of k™. Set V; =
(ény€n—1,.-.,ent1—i) for 1 <i <mn. Then B is the stabilizer of the flag (V3 C Vo C --- C V,,_1),
ie, B= ﬂ?;fStabG(Vi). The stabilizer of any partial flag (V;, C V;, C--- CV; ) with 1 < iy <
ig < -+ < i, is the parabolic subgroup P; with I = {a; | 1 <i<m, i #n—ipfor 1 <h <r}.
One has in particular

Stabg(Vi) =Ps_q, ;.

1.2 Simple G-Modules

The contents of this section may be divided into three parts, the first three subsections give the
general theory for simple modules, which will play an important role both in chapter 2 and chapter
3. The dual theory have corresponding theories for Frobenius kernels in chapter 2, but it will be
only used in chapter 3 for the study of higher cohomology groups. And at last we will give an
example for simple modules.

1.2.1 Simple Modules for Borel Groups

Before talking about simple modules for reductive groups, we look into simple modules for Borel
groups, or more generally, TU-modules at a special case at first.
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Suppose G” = H x G’ with H a diagonalizable and G’ a unipotent group scheme. We set for
each A € X(H):
Yy = Ind$ k.

We have k[G”] = Ind®" k = Ind$ Ind k = Ind$’ k[H] by transitivity of induction. As H is
diagonalizable, we have k[H| = ©xcx(#)ka, hence:

k[G"] = @xex(m)Ya-

As Y, is isomorphic to k[G’] as a G’-module (by p; for k[G']). Note the only simple module of
the unipotent group is k, hence socy k[G'] = k[G']Y =k, i.e.

Proposition 1.2.1. Y, is indecomposable and injective G-module.

Each A € X(H) can be extended to an element of X (G"”) having G’ as kernel. We also denote
this extension by A and the corresponding G’-module, by k. For each G’-module M the subspace
M is a H-submodule. Because H is diagonalizable, it is a direct sum of one dimensional H (note
also a G”-)-submodules of the form ky with A\ € X(H). This shows in particular that MY is a

semi-simple G”’-module. As G’ is unipotent, ME % 0 for any simple G”-module. There for k)
with A € X(H) are all simple G”-modules and we have:

socqg M = MG,.
For any G'’-module M. And we have

Yy =Ind$ ky = Ind2*% &y = nd$ ky = k[G'] @ k».

1.2.2 The Simple Module L(\)

As in the first section, we assume that k is a field and G is a reductive group coming from reductive
group over Z. Note U and U™ are unipotent, so we have for any G-module V # 0:
VU £0and VU #£0. (1.11)

As T normalizes U and U™, these two subspaces are T-submodules of V', hence direct sums of their
weight spaces. For any A € X (T') the A-weight space of V'V is the sum of all simple B-submodules
in V isomorphic to ky (similarly for U and BT). We shall write X instead of k) whenever no
confusion is possible. So we can also express [1.11] as follows:

There are A\, N € X(T') with Homp(\, V) # 0 # Homp+ (X, V).
If dim V' < oo, then there are A\, N € X (T') with:

Homp(V,\) # 0 # Homp+ (V, \).

Using Frobenius reciprocity (0.1), this implies
Homg(V, Ind$ \) # 0 # Home(V, Ind$G ) (1.12)
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Now we use the notation: ' _
H(M) = (R Tnd$) (M)

for any B-module M and any i € N. And we shall write H(\) = H(k)).
Proposition 1.2.2. Let A\ € X(T) with H°()\) # 0.

1. We have dim H'(\)U" =1 and HO(A)U" = HO(\),
2. Each weight p of HO()\) satisfies wo\ < pu < .

Proof. Recall that

H(\) = {f € k[G] | f(gb) = A(b)"'f(g)
for all g € G(A), b€ B(A) and all A}.

The operation of G is given by left translation. So any f € HO(A\)U" satisfies

flustuz) = N(t)~" £(1)

for uy € UT(A), t € T(A), uy € U(A) and for all A. Thus f(1) determines the restriction of f to

U* B, hence also f, as UT B is dense in G. This implies dim H° ()\)UJr < 1. The equality follows
from [1.11 and our assumption H°(\) # 0.

Furthermore, the evaluation map € : H°(\) — A, f — f(1) is a homomorphism of B-modules
and is injective on HO(A)U". This implies

H°(\) € H'(\)a.
Assume 4 to be a maximal weight of HO()\), then H°(\), € H°(A)U" by proposition .12, So
finally we have HO(A\)x = HO(A\)Y" and p < A for each weight z of HO(\).
If 41 is a weight of H°()\), then so is wop by [1.5, and hence wou < A and woA < p. O
Corollary 1.2.3. If H°()\) # 0, then socg H°(\) is simple.

Proof. 1f Ly, Ly are two different simple submodules of H()), then Ly & Ly C H°(\), hence

L11]+ @ L2U+ Cc H°(\)U" and dim HO()\)U+ > 2 and leads to a contradiction. Therefore socg H())
has to be simple. O

Now we set
L(\) = socg H°(\)

for any A\ € X(T) with HO(\) # 0.
Proposition 1.2.4. 1. Any simple G-module is isomorphic to exactly one L(\) with A € X(T)
and H°(\) # 0.

2. Let A € X(T) with HO(\) # 0. Then LAY = L(\)x and dim LAY = 1. Any weight p
of L(\) satisfies woX < pu < X. The multiplicity of L(\) as a composition factor of H°(\) is
equal to one.
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Proof. For 2, As L(A)U" # 0 the formulas L(\)Y" = L(\), and dim L(A)U" = 1 follow immedi-
ately form proposition[1.2.2 The same is true for woA < g < \. Finally, the multiplicity of L(\) in
HO()) is at least one by construction, but cannot be strictly larger as dim L(\), = 1 = dim H(\),
and as V — V), is an exact functor.

For 1, the existence follows from [1.12] the uniqueness from the formula L(A\)U" = L(\), in 2.

O

Remark 1.1. 1. This proposition shows that A is the largest weight of L(A) with respect to
<. Tt is custom to call it the highest weight of L(\) and to call L(\) the simple G-module
with highest weight .

2. Using woUty ' = U™ we see:
dim L(\)Y =1 and L(A\)Y = L(\)wyr
Corollary 1.2.5. Let A € X(T) with H°(\) # 0. The module dual to L(\) is L(—wo).

Proof. For any finite dimensional T-module V' the p-weight space of V* is naturally identified
with (V_,)*. So the weights of V* are exactly the —u with p a weight of V.

In the case of L(\) this implies that the weights p of L(\)* satisfy woA < —pA, hence —A <
1 — woA, and that —woA will occur. As L(A)* is simple, it has to be isomorphic to L(—woA). O

1.2.3 Determination of Simple G-Modules

Set

X(T); = e X(T) | (\,a¥)>0foral aeS}

=\ X(T) | (\aY)>0forallac R} (1.13)

The elements of X (T) are called the dominant weights of T(with respect to RT).

Proposition 1.2.6. Let A € X(T). The following are equivalent:

1. X\ is dominant
2. HO(\) #0

3. There is a G-module V with (VU ), # 0

Proof. (3) = (2) Using a composition series of a suitable finite dimensional submodule of V' we
reduce to the case V is a simple. Now (2) follows from [1.2.4.

(2) = (1) Suppose H(A\) # 0. So so A with o € R is a weight of H%(\), hence s, A < A. Now
Sad = A — (X, aV)a, so (X, a¥)a > 0, hence (\,a¥) > 0.
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(1) = (2) We may assume £k is algebraically closed. We can regard G(k) as a variety over k
and have to find a regular function f : G(k) — k, f # 0 such that f(gtu) = \(t)~1f(g) for all
g€ Gk), teT(k), ueUk)

Consider the function fy on the open subvariety Ut (k)T (k)U (k) C G(k) given by fi(uitus) =
A#)~! for all uy € U*(k), t € T(k), uz € U(k). Obviously fy # 0. As the restriction map
k[G] — K[UTTU] is injective, We just have to show f\ € k[G]. Then automatically fy € H°(\)
and HO(\) # 0.

We want to show that fy can be extended to a regular function on each $,U(k)B(k) U
U*(k)B(k). Then it can be extended also to Y = U™ (k)B(k) U J,cg 5UT (k)B(k), as for all
a, 8 € S the extensions coincide on $, U™ (k)B(k) N $3U (k)B(k) UU™ (k)B(k) which is dense in
G(k), hence also on $, U (k)B(k) N sgU T (k)B(k).If f) extends to Y, then it can extends to the
whole G(k) by proposition 1.1.1l

Let us consider now a fixed simple root a € S. Set U;” = (Us|3)0,8 # ). Then Ut =
UtU, = U x U, and §, normalizes U;". So

5aUT (k)B(k) = Uf (k)$aUq (k) B(E).

The group U, (k) consists of all z4(a) with @ € k. The map (u1,a,t,u) — ui$arq(a)tu is an
isomorphism of varieties U;" (k) x k x T'(k) x U(k) — $,U*(k)B(k). By computation we have:

$atq(a) = zo(—a HNaV(—a Vz_o(a™h)
for all @ # 0. Then

Udata(a)tu = uze(—a MY (—a Ntz _o(a(t)a™u € UT(k)B(k)

and
Fa(uisaza(@tu) = MO @Y (—a=) ™! = A®) " (=a) ¥,

As (\,aV) > 0 this function on U; (k) x (k — {0}) x T(k) x U(k) can be uniquely extended to a
regular function on U; (k) x k x T(k) x B(k) hence fy can be extended to $,U T (k)B(k) as regular
function.

(2) = (3) This is obvious. O

Corollary 1.2.7. The L(\) with A € X(T)+ are a system of representatives for the isomorphism
classes of all simple G-modules.

Proposition 1.2.8. Let A € X(T)y. Then

Endg H°(\) = k = Endg(L(\))

Proof. Using Frobenius reciprocity, we have:

Endg H°(\) =2 Homp(H®()\), \) € Homz(H°()), \)

>~ Hom(H°(\)x, \) = k (1-14)

On the other hand, the identity map is a non-zero element in Endg H°()), so Endg H°(\) = k.
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Similarly,
Endg L(A\) € Homg(L(A), H*(\)) = Homp(L(A), \) (L.15)
¢ Homz(L(\), A) & Hom(L(\)y, A) = k. |
As Endg L(X) # 0, we have Endg L(\) = k. O

So we see that the center Z(G) of G acts on H°(\) through scalars. As Z(G) C T and as
HO(X) # 0, this scalar has to be the restriction of A to Z(G). More generally, we have:

Proposition 1.2.9. For each A\ € X(T) the group Z(G) acts on each H°(\)through the restriction
of A to Z(G).

1.2.4 Dual Theory for Simple Modules

First, we introduce an important automorphism for reductive groups G:
Proposition 1.2.10. There is an anti-automorphism 7 of G with 7% = idg and T|r = idr and

T(Ua) =U_q for all a € R.

So for a G-module M, we define the G-module " M through the following ways: Take "M = M*
as a vector space, but define the action of G on ¢ € M* via g¢ = ¢ o 7(g). So it is easy to see
chM =ch™M and "("M) = M as 72 = 1. If M is simple, then is "M. As they share the same
maximal weight, we have:

Proposition 1.2.11. "L(A) = L(A) for all A € X(T')+.

Note an exact sequence 0 — M; — M — My — 0 of finite dimensional G-modules gives the
exact sequence: 0 - "My - "M — "M; — 0

By the knowledge of cohomology theory, we have:

Extg (M, My) = Extg ("M, ™ Ms)

Applying this to simple modules, we have:
Proposition 1.2.12. Ext&(L(N), L(p)) = Ext&(L(p), L(N))

By proposition[0.1.3, we have dim H°(\) > 0. So we can define for each A € X(T) a G-module

by:
V(A = H(—woA)* (1.16)

The automorphism o of G defined by o(g) = T(1ng™ "ty ') stabilizes B and induces —wq on

X(T). So “H°(\) = H°(—wp)). Twisting a module with the conjugation of (1) produces an
isomorphic module. Hence we also get:

V(A =TH(N)

Lemma 1.2.13. Let A € X(T)..
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1. There are for each G-module M functorial isomorphisms:
Homg (V(N), M) 2 Homp+ (A, M) = (MU"),

2. The G-module V(\) is generated by a BT -stable line of weight . Any G-module generated
by a BT -line of weight \ is a homomorphic image of V().

Proof. For 1., note H?(—woA) C k[G]® (—wo)) = Mor(G, (—woA),), and we consider map € which
sends f € Mor(G, (—woA)q) to f(1) € —woA. We get the canonical isomorphisms:

Home (V(N), M) = Homg(M*, H(—woA)) = Homp (M*, —wo) (1.17)
=~ Hompg(woA, M) = Homp+ (A, M) '

mapping any ¢ at first to ¢*, then to eo¢*, to poe*, and finally to woopoe* = powgoe*. So we get
an isomorphism v : Homg(V(X), M) = Homp+ (A, M) which is given by: v(A)(¢) = ¢poy(idy-(n))-

For 2., set v = y(idy (x))(1). Obviously v is a B¥-eigenvector of weight X. If ¢ : VI(A) — M’ is
a homomorphism of G-modules with ¢(v) = 0, then v(¢) = ¢ o y(idy(»)) = 0, hence ¢ = 0. This
shows that V' ()) is generated by v. For any G-module M and any BT -eigenvector m € M of weight
A we have a BT-homomorphism A\ — M with 1 — m, hence a G-homomorphism V(\) — M with
v — m. If m generates M, then M is a homomorphic image of V(X). O

By duality, we obviously have:
V(N /radg V() = L(N). (1.18)
Proposition 1.2.14. Let \,u € X(T)4+ with u 2 \. Then:
ExtL(L(\), L()) = Home(radg V (), L()).

Proof. We get from the short exact sequence
0—-radgV(A) = V(A) = L(A) —0
a long exact sequence:
0 — Homa(L(N), L(1)) — Homg(V (N), L(4)) — Home (radg V(\), L(1))
— Bxth (L), L)) — Bxth (VON), () — .. (119)

Any homomorphism from V() to the simple G-module L(p) has to factor through V/(\)/radg V().
So we see that the first map in [1.19/is an isomorphism Homg(L(A), L(p)) = Homeg(V(A), L(w)).
So the proposition will follow from [1.19 as soon as we show that Extg (V(A), L(u)) = 0.

Consider an exact sequence of G-modules
0— L(p) > M-V —0. (1.20)

Choose some v € M), that is mapped to a Bt-eigenvector generating V(\). By our assumption A
is a maximal weight of M, therefore v is a BT-eigenvector of weight A. So the G-submodule M’
of M generated by v is a homomorphic image of V(\) by lemma [1.2.13. On the other hand, it is
mapped onto V(A). So M’ has to be isomorphically onto V/(A) in[1.20/ and has to be a complement
to the kernel L(p). So the exact sequence splits, hence Extg(V (), L(p)) =0 O
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By duality, we have:
Corollary 1.2.15. Ext{(L(p), L(N)) = Homg(L(p), HO(X)/ socg HO(N)).

1.2.5 Examples of Simple Modules

Now we describe the simple modules for a special case. Let G = GL,, with n > 2, let us use the
notations introduced in subsection [1.1.7/ and set V = k™. Let P = P,, q,.....a,,_, D€ the stabilizer
in G of the line ke, C k™ = V. There is a character w € X (P) such that

g(en 0y 1) =ep® w(g)71

for all g € P(A) and any A.

We have for any r € N:
HO(rw|r) = Ind$ (rw) 2 Ind% Indf (rw) = Ind$ (rw @ Ind5 k) = IndS (rw),
using the transitivity of induction, and Ind% k = k[P/B] = k.

Let k be an algebraically closed extension of k. As all groups concerned are reduced we have:

Ind(rw) = {f € k[G] | f(gg1) = w(g1) " f(g) for all g € G(k), g1 € P(k)}.

Set H equal to the kernel of w in P. We see that every f € Indg(rw) is invariant under right
translation by elements of H(k). The map g — ge, induces an isomorphism of varieties G(k)/
H(k) = G(k)e, = (V@ k) — {0} as the tangent map is obviously surjective. So k[G(k)/H (k)] =
E[(V ® k) —0]. But V ® k is a smooth, hence normal variety of dimension at least two. Any
regular function on (V ® k) — 0 extends to V ® k. So k[G(k)/H (k)] = k[G/H] ® k and there is a
natural map S(V*) = k[G/H], here S(V*) denotes the symmetric algebra of V*. As it becomes

an isomorphism after tensoring with k, it was one already before. Hence
S(V*) = k[G/H).

To any f € S(V*), there corresponds g — f(ge,). If gi € P(k), then gie, = w(g1) en, hence
flggien) = f(w(g1)"tgen). So we have:

md%(rw) = {f € S(V*)|f(av) = a" f(v) for all a € k and v € V @ k}.

This space is obviously equal to S™(V*), the homogeneous part of degree r in S(V*):

md%(rw) = HO(rw) = S™(V*).

If we denote the basis of V* dual to ey, ..., e, by X1,..., X, then we can identify S(V*) with
the polynomial ring in Xy,..., X, and S"(V*) with the subspace of homogeneous polynomials of

degree r. The weight of each e; is ¢;, so each X; has weight —¢; and any monomial Xf(l) L xpm)

has weight —>_" | a(i)e;. Therefore all different monomials in S”(V*) have a different weight,

each weight space in S”(V*) has dimension one and is spanned by one monomial Xf(l) . Xz(")
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with Y7 a(i) = . We have w = ¢,, So X/ is the unique monomial of weight rw that has to
span H(rw),, = HO(rw)V". So,
L(rw) = Dist(U) X},

The representation of G on S(V*) and on any S"(V*) can be constructed via base change from
the representation of Gz = GLj, z on S(V) resp. S™(V,), where V7 is the natural representation
of Gz. These Gz-modules are lattices in the corresponding representations of Gg on S (Vd) resp.
S™(V§). So we can compute the action of any Xo m (o € R, m € N) on S"(V*) from the action
of corresponding element in Dist(Gg).

We have Lie G = M, (k) and X, = E;; if o = ¢; — ¢;. Then X, , = (E;;)"/n! in Dist(Gg).
From FE;je; = d;e; we get F;; X; = —6;; X, hence
a(l a(n ma(z) a(l a(i)—m y-a(j)+m
Eij,le()”'Xn():(_l) <m>(HXl())Xz() Xj(])+ )
14,

In particular, for the case n = 2, this implies:

T r i
Lirw) =Y kEnmX; =Y k:(m) XmXy
m=0

m>0

So if char(k) = p # 0, then L(rw) is spanned by the X{"XJ ™™ with p /(). If char(k) = 0,
then L(rw) = S™(V*).
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Chapter 2

Frobenius Kernels

In this chapter, we give a proof for Steinberg’s Tensor Formula, i.e., corollary 2.2.14. We first give
the general theory for Frobenius kernels which is quite elementary in the first section. Then in
the second section we will give a detailed study on the structure of the Frobenius kernels based on
the knowledge of reductive groups and the modules of Frobenius kernels based on the knowledge
of finite algebraic groups. And finally we will prove corollary 2.2.14.

2.1 General Theory of Frobenius Kernels

2.1.1 Frobenius Morphism

Now we assume k to be a perfect field of characteristic p. For each k-algebra A and each m € Z
we define A™) as a k-algebra that coincide with A as a ring but where each b € k operates as
b»~" does on A. Trivially A(®) = A. So we have:

Homy,_q14(AT™ A) = Homy,_gy4(A, A'™) (2.1)
for all m € Z. For each k-algebra, each m € Z and r € N the map:
At AT AT g gP”
is a homomorphism of k-algebras.

We now define for any k-functor X and any r € N a new k-functor X () by
XM(A) = X (AC)
for all k-algebras A.
Furthermore, we define a morphism Fy : X — X (") through
FR(4) = X () s X(4) = X(AC7) = XO(4)

33
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and by (2.1), we have
(Spec,, R)(™ = Spec,, (R™)

Furthermore, F'y has as comorphism R") — R, f— fr".

If k = IFp, then obviously X = X for all r and any k-functor X. If X is affine and if Fy
is an endomorphism of X with F%(f) = f? for all f € k[X], then obviously F% = (Fx)". More
generally, if X has an F,-structure, then we can identify X () with X.

2.1.2 Frobenius Kernels

Let G be a k-group functor. Then obviously each G is also a k-group functor and Fl is a
homomorphism of k-group functors. Its kernel G, = ker(F)" is a normal subgroup functor of G
that we call the 7" Frobenius kernel of G. So we have an ascending chain:

GicGyCcGzC...
of normal subgroup functors of G.

For example the 7" Frobenius kernel of G, is G,, = Speck[T]/T" and the r*® Frobenius
kernel of Gy, is Gy, = ppr = Speck[T]/(T" — 1).

Let I; be the ideal defining 1. Obviously G is the closed subscheme of G defined by 3 . ; k[G] I
Therefore k[G,] is finite dimensional and the ideal of 1 in k[G,] is nilpotent. Hence

Proposition 2.1.1. Each G, is an infinitesimal k-group.
Choose fi,..., fm € Iy such that f; + I? forms a basis of I; /I?. Then m = dim LieG and f;

generate [; as an ideal. One has obviously dim k[G,] < p"™™ for all r, and equality holds if 1 is a
simple point of G. So we have

Proposition 2.1.2. If G is reduced, then dim k[G,] = p" 4™ for all r € N.

And for the Frobenius map, we have the following proposition:
Proposition 2.1.3. If G is a reduced algebraic k-group, then each F{ induces isomorphisms G/
G, =G and G' /G, = (G, for all v > 7.

Proof. See |J] T9.5. O

Proposition 2.1.4. Let G be a reduced algebraic k-group and r € N. Then G operates on
Dist(GT)lGT through character:
g det(Ad(g))" ",

where Ad denotes the adjoint representation of G on LieG.
Proof. Recall from [0.3.8| that the conjugation action of G on G, leads to representations of G on

k[G,] and M(G,) = Dist(G,) is a one dimensional submodule on which G has to operate through
some character x € X(G).
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Set ¢ = p” and choose fi, ..., fm € I; such that the f; + I? form a basis of 11/52. Let f; be the

image of f; in k[G,]. As G is reduced, hence 1 a simple point, the monomials f1“* fo** ... f,“"
with 0 < a(i) < ¢ for all ¢ form a basis of k[G,].

We can identify k[G,] with the factor ring k[T4,...,T,,]/ (T}, ..., T%) of the polynomial ring
k[T1,...,T,). It is therefore a graded ring in a natural way. Any endomorphism ¢ of the vector
space Y i~ kf; induces an endomorphism of the graded algebra k[G,]. As F =[[;", £ is the
only basis element of degree m(q — 1), it has to be mapped under ¢ into a multiple ¢(¢)F of itself.
Obviously ¢ +— ¢(¢) has to be multiplicative. This implies c(¢) = det(4)?* for all ¢, as this is
obviously true for ¢ in upper or lower triangular form, hence for all ¢ by multiplicativity. This
extends easily to any k-algebra A and any endomorphism of Y 7" | k fi ® A as c(¢) is obviously a
polynomial in the matrix coefficients of ¢.

This can be applied in particular to the operation of any g € G(A) for any k-algebra A on
k[G,] ® A derived from the conjugation action on G,. Then the action of g on

Y kfi® A= (L/I})® A= LieG" ® A
=1

is dual to the adjoint action on Lie G ® A, hence has determinant equal to det(Ad(g))~!. So this
implies:

gF = det(Ad(g))~" " VF

Consider now ug € Dist(GT)lGT, po # 0. If po(F) = 0, then uo(k[G.]f) = 0 by the definition
of the k[G,]-module structure on Dist(G,) as in[0.3.2. So Dist(G,)(F') = 0 by proposition [(0.3.3.
This is a contradiction, so we must have uo(F') # 0. Then

X(9)1o(F) = (g10)(F) = po(g™ " F) = det(Ad(g))" "o (F)
implies x(g) = det(Ad(g))?~*. O

Note that the Dist(G,) forms an ascending chain of subalgebras of G, and one has:

Dist(G) = | Dist(G,).

r>0

For some group scheme G, e.g., G is irreducible, the set of Dist(G)-submodules of G-modules M
is exactly the set of G-submodules, so we give the following claims without proofs.

Proposition 2.1.5. If G is irreducible:

1. If M is a G-module, then ME = N,~oMC".
2. If M, M'" are G-modules, then Homg(M, M') = N,~o Homeg, (M, M').

3. Let M be a G-module and N a subspace of M. Then N is a G-submodule if any only if it is
a Gr-submodule for all r € N.

4. If M is a G-module with dim M < oo, then there is ann € N with ME = MSr for all r > n.

5. If M, M’ are G-modules with dim(M®M') < oo, then there is ann € N with Homeg (M, M') =
Homg, (M, M) for all r > n.
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2.1.3 Frobenius Twists of Representations

For any vector space M over k and any r € N we denote by M) the vector space that is equal
to M as an abelian group and where any a € k operates as a?  does on M. If M is a G-module,
then we have a natural structure as a G-module on each M) with ~ > 0 by section 0.1.2.

Suppose now that M has a fixed F,-structure, so we have an F,-subspace M’ C M with
M’ ®F, k = M. We get then a Frobenius endomorphism Fj; on M and on each M ® A = M’ ®F, A
through F,,(m’ ® a) = m’ ® a?. Each F}, is an isomorphism of A-modules M @ A — M) @ A.
Suppose that G is defined over F, and denote the corresponding Frobenius endomorphism by
Fg : G — G. If the representation of G on M is defined over F), (i.e., if Fg(g9)Fam(m) = Fa(gm)
for all m € M, g € G(A)), then we can define a new representation of G on M by composing the

given G — GL(M) with F, : G — G. Then Fﬁ;) : M — M) is an isomorphism of G-modules if
we take the new structure on M just defined and on M (") as defined.

2.2 Frobenius Kernels for Reductive Groups

In this section we assume p to be a prime number and assume that k is a perfect field of charac-
teristic p, let ¢ = p". And G a reductive group scheme arise from Gy.

2.2.1 Structure of G,

As G arises from Gz through base change we also get GG from GF, through base change. Therefore
any G(") is isomorphic to G, and there is a Frobenius endomorphism F = Fg : G — G such that

we get any F(; as G 2 a=agn using suitable isomorphism. We get in particular for all r:
G, = ker(F").

We also have T' = (Tf, ), and Uy = (Uar, )k for all a. So F stabilizes T' and all U,. We get any
To from x4z : Goz = Uz and we have X (T') = X(Tz). Therefore the isomorphisms G, = U,
and T 2 (Gy,)"(where r = rk T') are compatible with the usual Frobenius endomorphisms on G,
and Gy,. This implies (for all A):

F(t)y=1t’ forallt € T(A) (2.2)

and
F(z4(a)) = x4(aP) for all @ € R,a € A. (2.3)
All the groups introduced before (e.g.B,B*,P;,P;",U(R'),L;) are F-stable and F restricts to

a Frobenius endomorphism on them.

Lemma 2.2.1. The multiplication induces isomorphisms of schemes(for any r)

I Uar x T J] U 2US X T, x U, 2 G,

a€ERT a€ERTt
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Proof. As 1 is contained in the open subscheme UTTU of G its inverse image G, = F~"(1) is
contained in F~"(UTTU) = UTTU. The multiplication induces isomorphism of schemes:

[[ UaxTx [] Ua=2U" xTxU=UTTU
aERT aERT

where 1 corresponds to the element having all components equal to 1. Now F' stabilizes all factors
and induces the Frobenius endomorphism on each of them. This implies the lemma. O

Lemma 2.2.2. The elements

H Xa n(a) HHL m(i) H X—a n’(a)y 0< n(a)am(i)vn/(a) < pr

a€ERt a€ER*t

form a basis of Dist(G,)

Proof. By lemma above we have an isomorphism of vector spaces:

® Dist(Us,») ® Dist(T, ® Dist(U_q,r) = Dist(G,).
a€Rt a€Rt

Now we use the notations in [0.2.5. Note Dist(G, ) is the subalgebra of Dist(G) spanned by all
p € Dist(G) such that p(7T97%) = 0 for all i > 0. So Dist(G, ) = Zq o kym. For g, we see that
Dist(4) consists of all v € Dist(Gy,) with v(T%(T9—1)) = 0 forall i € Z By calculation we have
5, (TH(T9 1)) =0foralli e Zif 0 <n < q. AsdimDist(ss,) = g, we have Dist(15) = S0_§ kd,.

And the description above completes the proof if we take X, ;o) and X_, /(o) to be the basis
of Dist(Ga,r) and H,, ;) be the basis of Dist(G,, ) mentioned above. O

Recall that G (resp.B, BT) operates on G,. (resp. B,.,B;") through conjugation leading to a rep-
resentation on Dist(G,.) (resp. Dist(B,), Dist(B;")), and that then Dist(Gr)lG* (resp. Dist(BT)ZBT,

+
Dist(B;“)ng ) is a one dimensional submodule by propositions (0.3.8 and 2.1.4.
Proposition 2.2.3. 1. The action of G on Dist(Gr)lG" is trivial.

2. The action of B =TU on Dist(B,.)]’" is trivial on U and is given by —2(p" — 1)p on T.

3. The action of BY =TU™ on Dist(B;“)lBj is trivial on U and is given by —2(p" —1)p on T.

Proof. 1. The adjoint representation of G on LieG factors through G/Z(G), which is semi-
simple and admits no character. Hence det oAd = 1 and the claim follows from proposition
2.1.5

2. We have Lie B = LieT @ ®,cr+(Lie G) . Hence :

det(Ad(t)) = N0+ > (= = —2p(t)

a€Rt

for any t € T(A), so T acts by proposition 2.1.4 on Dist(B,.);" via (p” — 1)(—2p). On the
other hand, the unipotent group U admits no character, hence U has to operate trivially.
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3. Proof is just like above.

Corollary 2.2.4. Let M be a B,-module and M’ a B;F-module. Then we have

1. Coindg: M = Indg:(M ®2(p" —1)p),

2. Coind%

i M= Indg’:‘r (M' @ (=2(p" — 1)p)).

In case dim M < oo resp. dim M’ < oo, we have

1. (Ind§r M)* = Ind§ (M* @ 2(p" — 1)p),

2. (Indgg M')* = Indg’} (M"™ @ (=2(p" —1)p)).

Proof. This follows from proposition [2.2.3/ and subsection [0.3.3. O

2.2.2 Induced and Coinduced Modules

Any A € X(T) defines by restriction a character of T;., which we usually also denote by A. We get
from the restriction an exact sequence:

0—-p"X(T)— X(T)— X(T,)—0
where the first map is the inclusion.

By extending its restriction to 7). trivially to U, or U, any A € X (T') defines a one dimensional
module (usually denoted by A) for B, and B;f. We can induce and coinduce these modules to G,
and give the following notations:

Zr(\) = Coind < A,

Z(\) = Ind§r A

So corollary [2.2.4] gives:

Zr(\) = Indg:+ (A =2(p" = 1)p), (2.4)
Z/(X\) = Coind§r (A — 2(p" — 1)p), (2.5)
Zp (A = Z 200" = 1)p = N), (2.6)
Zy(A) = ZI 20" = 1)p—N). (2.7)

And we have dim Z,.(\) = dim Z.(\) = p"|R*| for all A.
As A+ p"v and X have the same restriction to 7., we get:

Zr()‘ +prv) = Zr(>‘>’ (28)
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Z,(A+p"v) = Z,(N). (2.9)
To study Z.(A\) and Z/.(\), now we give a more detailed study for induced and coinduced
modules for Frobenius kernels.

Note that the isomorphism of schemes U," x B, = G, given by the multiplication is compat-
ible with the action of U," by left multiplication on U," and G, with the action of B, by right
multiplication on B, and G,. It is also compatible with the action of T, by conjugation on U’
and by left multiplication on B, and G,. Therefore, the isomorphisms k[G,| = k[U,"] ® k[B,] and
Dist(U,") @ Dist(B,) = Dist(G,.) of vector spaces are compatible with representations of U," (resp.
B, T;) induced by these actions.

We have for any B,-module M:
md§r M = (K[G,] ® M)P" = k{U;] @ (k[B,] @ M)P",

hence:
Ind§ M = kU] @ M

This isomorphism is compatible with the representations of U (acting via p; on k[U;}]) and of
T, (acting as given on M and via the conjugation action on k[U,']). Similarly,

Coind(B;: M = Dist(G,) ®pise(p,) M = Dist(U,}) @ Dist(B,) @pist(s,) M,

hence:
Coind " M = Dist(U,") ® M.

Again this isomorphism of vector spaces is compatible with the representations of U,f and 7.
By interchanging the roles of U, and U," we also get for each B;F-module M’ isomorphisms:
Indgj+ (M) = k[U,] @ M’
and
Coindg}' (M") = Dist(U,) @ M’
of U,-modules and T,-modules.

We have dim k[U,] = p" 4™V = prlB"| a5 U is reduced. This is also the dimension of k[U],
Dist(U,.), and Dist(U,}). So all the induced or coinduced modules considered above have dimension

equal to dim(M)p"IE".

Recall our discussion at the end of subsection 0.3.1, we give a new proposition for the bijection
mentioned in our special case:

Proposition 2.2.5. Let A € X(T).
1. Considered as a Bp.-module, Z.()\) is the projective cover of A and the injective hull of
A=2(p" = 1)p.

2. Considered as a B;Y -module, Z!.()\) is injective hull of A and the projective cover of A—2(p" —
1)p.
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Proof. The injective hull of any simple module for groups like B, = T, x U,;} and B, =T, x U,
has been determined in subsection 1.2.1. The injective hull, say, of A for B, is k[U,|® A, with U}
operating only on the first factor (via p;) and with T, operating through the conjugation action
on k[U,] tensored with the restriction of A. On the other hand, Z/(\) = Indg: A has exactly this
form by description above. Thus we have first part of (2), and second part of (1) can be proved
similarly. And for the projective cover we have proposition 0.3.4. O

2.2.3 Simple G,-Modules

It follows from proposition 2.2.5 that all Z, (A\)V" and Z,(X')U" have dimension one, as these spaces
of fixed points are contained in the B,-resp. the B -socle of the module. On the other hand, we
have MUr #£ 0 # MU for any G.-module M # 0, as U,., U} are unipotent.

Arguing as in corollary [1.2.3 we have;

Proposition 2.2.6. Any Z,(\) and any Z.()\) has a simple socle when considered as a G.-module.

And by dualizing we get:
Proposition 2.2.7. Any Z.(\)/radg, Z.(\) and any Z!(N)/radg, Z.(\) is a simple G.-module.

Generally we have:
Proposition 2.2.8. For any simple G,-module L there are A1, A2, A3, Ay € X(T') with:
L = socg, Z!. (A1) 2 socg, Z-(\2) & Z.(N\3)/radg, Z.(A3)

2.10
= ZT(A4)/ radGT ZT()\4) ( )
Set for all A € X(T)
L.(\) =socg, Z.(\).
Proposition 2.2.9. We have for all A € X(T):
L, (W)U = A, (2.11)
Z.(\)/radg, Z-(A) = L.()\), (2.12)
Endg, L,.(A\) = k. (2.13)

If A is a set of representatives in X(T') for X(T)/p" X (T), then each simple G,-module is isomor-
phic to exactly one Ly(\) with A € A.

Proof. The first formula follows immediately from the definition of L, (\) and proposition 2.2.8|
So we have:
Homp+ (A, Ly(A)) # 0.

Recall that the functor Coind is right adjoint to functor Res, so we have:

0 # Homg, (Coind %7 A, L(\)) = Home, (Z-(A), Lr(\)).
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As L, () is simple, any non-zero homomorphism Z,.(A\) — L,.(\) has to be surjective and to factor
through Z,./radg, Z,(\) which we have shown to be a simple module. So we have the second
formula.

Note that any ¢ € Endg, L,()) stabilizes the line L, (A\)U | hence has an eigenvalue in k. Now
schur’s lemma implies the last formula. O

Remark 2.1. Note that the last formula implies that L,(\) is absolutely irreducible, i.e., that
for each (perfect) field &' C k the (G, )i = (Gg/)r-module L,(A) ® k' is the unique simple (Gj/),-
module such that (T}/), operates via A on the (U,}),-fixed points. Furthermore, we have

s0¢(G), (M @ k') = (socq, M) @ k'
for any G,-module M.

For all g € G(k) and any G,-module M, as described in [0.1.2, we can construct a new G,-
module M.

Proposition 2.2.10. For all g € G(k) and for all simple G-modules L we have 9L = L.

Proof. Obviously the “twist” M — 9M commutes with field extension, so we may assume k is
algebraic closed. Let L = L,(\) and choose v # 0. Any g € BT (k) normalizes U, hence v
is also in ILU" . If ¢ € T.(A) for some A and g € B (k), then g~ 'tg = t(t"1g~'tg) € B} (A)
and t~tg~'tg € UT(A), hence t~tg~'tg € UF(A). The operation of t on YL ® A maps v ® 1 to
(g Hg)(v® 1) in L® A, hence to t(v® 1) = A(ta)(v ® 1). So (9L)U»"+ = Xand 9L = L. As this is
true for any simple G-module and any g € B*(k), and as G(k) is th union of its Borel subgroups,
we get the proposition. O

Now we will show the relationship between the L,(\) and L()). First we introduce a lemma
without proof.

Lemma 2.2.11. Let A € X(T)4 and choose v € L(A)x, v # 0. Then Dist(G,)v is a simple
G-module isomorphic to L,()\).

Set X, (T) ={Ae X(T) | 0< (N aY) <p"forall a € S}, so we have:
X1(T)cXo(T)Cc---Cc X, (T)C...X(T)+.
Proposition 2.2.12. For each A\ € X, (T), the simple G-module L(\) is also simple as a G-

module and is isomorphic to L.(X\) for G,.

Proof. Choose v as in lemma 2.2.11] and set L = Dist(G,)v. We have to show that L = L(\). we
can obviously assume that & is algebraically closed. For each g € G(k) the subspace gL = 9L is
another simple G,-submodule of L()\), so either gL = L or gL N L = 0.

Consider now a simple root a and a representative of s, in Ng(T)(k), e.g., let us take ny(1).
Then nq(1)v # 0. It is easy to show:

P LN r-na =Dist(U_a)v = Y kX_qnv,

n>0 n>0
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hence L(A)x—na = kX_o nv for all n € N, and
L(AN)a—na C Dist(G,)v

for all n < p". Now s,A = A — (A, a¥)a and 0 < (A, ") < p" by assumption. This yields
ng(a)v € Dist(G,)v = L and, therefore, n, (1)L = L. As W is generated by the s, with a € S
and w € W has a representative w € Ng(T')(k) with wL = L.

Using the Bruhat decomposition G(k) = BT (k)wB™ (k) we get gL = L for all g € G(k). So L is
a non-zero G(k)-submodule of the simple G-module L(\). As G is reduced, this implies L = L()),
hence the simplicity of L(\) as a G,-module. O

2.2.4 Steinberg’s Tensor Product Theorem

If M is a G-module, then we can define another G-module structure on M by composing the given
representation G — GL(M) with F" : G — G. We denote this G-module by M.

On the other hand, look at a G-module V' such that G, acts trivially on V. Then the repre-
sentation G — GL(V) factors through G/G,.

We know G/G, = G, more precisly, we have a commutative diagram.

G—">G/G,

BN

G

Therefore V has the form MU for some G-module M, usually denoted by VI="1.

For example, we can apply this G-module V to V" and, more generally, for any G-modules
V, V' with dim V' < oo to Homg, (V', V).

Suppose there is a system X/ (T) of representatives for X (T')/p" X (T) with X/ (T) C X, (T).
Then we have for any G-module M an isomorphism of G-module M an isomorphism of G-modules
by 0.4 and 1.2.8:

socg, M= @ L(\) ® Homg, (L(A), M). (2.14)
AEXL(T)

We can apply the remark above to all Homeg, (L(\), M).
Proposition 2.2.13. We have for all A € X,.(T) and p € X (T)4:

LA +p"pn) = L) @ L)

Proof. We may assume that there is X/ (T) as above and that A € X/ (T'), hence that we can apply
formula2.14/to M = L(A+p" ). As this module is simple, there is only one nonzero summand, and
the corresponding Hom(. .. )!=") has to be simple. Therefore there are X' € X/.(T) and p/ € X(T) 4
with LA + p"p) = L(N) @ L(p/)I"l. Comparing the highest weights yields A\ + p"pu = N + p"p/.
Now A — X € p"X(T) and A\, N € X/(T) imply A = X and then p = p’ and the proposition. [
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By induction, we have
Corollary 2.2.14. (Steinberg’s Tensor Product Theorem)
Let Xy A1y, Am € X1 (T) and set A =31~ p'A;. Then:

L(A\) = L(Xo) ® LA)M @ -+ @ LA™
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Chapter 3

Linkage Theorem

In this chapter, our main aim is the last corollary: corollary [3.2.11. Here we only give the proof
for this important Linkage Theorem. The proof based on two parts, which constitute the first
and the second section: the theory of alcoves and the theory of higher cohomology for induciton
functor. And in the end, we give a proof of linkage theorem by induction.

3.1 Theory for Alcoves

The theory of alcoves is quite independent in this thesis. It studies reflection groups in euclidean
spaces. Here this theory will apply to the action of affine Weyl groups on character space of
reductive groups. The main result of this section is to give the fundamental domain for the affine
Weyl group W, by proposition(3.1.2 and describe the new relation by proposition|3.1.3. The latter
proposition will be used to prove the Linkage Theorem.

3.1.1 W, and Alcoves

Let us denote by sg,, for all § € R and n € N the affine reflection on X (T') or X(T) ® R with:
spn(N) = A= ((\,87) —n)B

for all A\. Set W), equal to the group generated by all sg ), with 3 € R and n € Z. We call W, the
affine Weyl group (with respect to prime p). One easily shows that W), is the semi-direct product
of W and the group pZR acting by translations on X(T') ®z R using s3sg np(A) = A — npg for all
A

W, =W x pZR

We shall consider the dot action w - A = w(A + p) — p of W), on X(T') and X(T) ® R. So we
regard sg np as a reflection with respect to the hyperplane:

e X(T)@zR | (A +p,3") = np}.

45
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The reflection group W, acting on X (7T') ® R defines a system of facets. A facet(for W) is a
non-empty set of the form

F={MeX(T)®zR | (A +p,a") =ngp for all a € R{ (F),

3.1
(N — Dp < (A +p,a”) < ngp for all « € R (F)} 3.1)

for suitable integers n, € Z and for a disjoint decomposition R = R§(F) U Rf (F). Then the
closure F' of F is equal to:

F={eX(T)@zR | A+ p,a”) =nup for all « € Rf (F),

(3.2)
(N — Dp < A+ p,aY) < ngp for all a € R (F)}

We call
F={\eX(T)®zR | (A+p,a’) =nup for all a € R} (F),
(Na — Dp < A+ p,aY) < ngp for all @ € R (F)}
the upper closure of F. Obviously F C F and both F and F are unions of facets.

Any facet F' is an open subset in an affine subspace of X (7T') ® R, more precisely, in {\ | (A +
p, ) = ngp for all @ € RY(F)} using the notations from above. The codimension of this sub-
space is equal to dim(zaeRgf(F) Ra0.

A facet F is called an alcove if Rf (F') = @. Or, equivalently, if F' is an open subset of X (T)®R
of the union of all reflection hyperplanes, i.e., of

XM ezR- |J A +paY) =np}
a€ER*T nEZ

The union of the closures of the alcoves is X (T)) ® R. Any A € X(T) @R and any facet belongs
to the upper closure of exactly one alcove.

We have the following propositions for the action of W, on alcoves.

Proposition 3.1.1. If F is an alcove for W, then its closure F is a fundamental domain for W,
operating on X(T') ®z R. The group W, permutes the alcoves simply transitively.

Proposition 3.1.2. If F' is an alcove for W, then FnNX(T) is a fundamental domain for Wy
operating on X (T).

There is one alcove (standard alcove) which is always chosen as the fundamental domain: Set

C={AeXT)@zR|0<{A+p,a¥)<pforalaecR}.

As {aV]a € S} is linearly independent and as 8V € Y
to show that C # 0, hence C' is an alcove.

aenav forall B € RT, it is elementary
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3.1.2 Relations for Alcoves

Let us introduce an order relation T on X (7). We want A T p to hold if and only if there are
Uiy -y i € X(T) and reflections si,. .., s,41 € W, with

ASs1-A=p1 <soopn = po <o S Spplp—1 = flr S Spp1fle = [y
or if u = A. We have, obviously,

AMpu=A<pand A€ Wy - p.

We can also define an order relation T on the set of alcoves for W,,. Let Cy, C'> be two alcoves.
For any A\ € X(T') N C; there is a unique Az € Co NW,A, as Cs is a fundamental domain for W,.
Then we want the following to hold:

)\1T)\2<=>01T02.

It is elementary to show that the left hand side does not depend on the choice of A\; in C1y N X (T).
As we are not certain that C; N X(T') # @&, we go to another definition.

If « € R and n € Z, then either (A + p,a¥) < np for all A € Cy, or (A + p,a") > np for all
A € Cq. In the first case set C1 T Sanp - C1, and in the second one set s, ,p,C1 T Ci. This is a
definition of s - C; T C; for any reflection s in W), and any alcove C;. Now C; T Cs if and only if
there are reflections s1,...,s,41 in W), with

Cr1s1-C11(s251) C1T...7(8p41...51)-C1=0C4

or if C7y = Cs. It is then obvious that we get an order relation.

Now we give the following proposition which is very important in proving the linkage principle.
To prove this proposition only concerns elementary calculation of inner products and reflections,
but it is really long and tedious. So I omit the proof, and people may refer to [J| II chapter 6 for
the complete proof.

Proposition 3.1.3. Let A € X(T) with (A+p,8Y) >0 forall 3 € S. Let a« € RT and n € N with
0<np<A+p,aY). Let we W with (WS np(XA+p),BY) >0 forall 3 € S. Then wSqnp- AT A
and Wsq pp - A < A.

3.2 Linkage Theorem

3.2.1 Higher Cohomology Groups
We have known much about H°()) in chapter 2. Now we will study its higher cohomologies for
their structures and relations.

Let I C S and let P = Py, following the notations of subsection [1.1.3. As G/ P is projective,
proposition [0.1.3 implies:
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Proposition 3.2.1. If M is a finite dimensional P-module, then each R’ Indg M is finite dimen-
stonal G-module.

Note that the dimension n(P) = dim G/ P is equal to the number of roots a with U, ¢ Py = P,
hence:
n(P) = |RT — Ry|.
So we have:

Proposition 3.2.2. R‘Ind$ = 0 for all i > n(P).

On the other hand, it is not hard to prove that:
Proposition 3.2.3. The tangent sheaf on G/P is £ (Lie G/ Lie P)

So the canonical sheaf is:
n(P)
wep = [\ Z(LieG/Lie P)
n(P)

~ 2( \ (LieG/Lie P)").

(3.4)

The weights of T' on Lie G/ Lie P are the « € R™ — Ry. Therefore /\n(P) (Lie G/ Lie P)* is the
one dimensional P-module corresponding to the weight —2pp where

1
pp =3 Y aeX(T)@zQ (3.5)
a€ERT—R;

Hence:

wag/p =L (—2pp),
In particular

wa B =L (—2p),
so we have the following Serre duality:

Proposition 3.2.4. For any finite dimensional P-module M, the G-module R’ Indg M s dual to
RMP) =i IndG(M* @ (=2pp)). In particular we have, for all A € X(T),

H'(N) = H" (= (A +2p))",
where n = |RT|.
As p= %ZQGR+ a and (p,8Y) =1for all 5 € S. So we see sgp — p € ZR for all § € S, hence
wp—p€ZRC X(T) for all we W = (sg | B € S). This shows that if we define:
w-A=wA+p)—p

for all w € W and A € X(T) ® R, then A € X(T) implies w - A € X(T') for all w € W. Recall that
we have:
Sa - A=8A—a=XA—((\,a")+1)a.

Set P(a) = P{a}.
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Proposition 3.2.5. Let a € S and A € X(T).

1. The unipotent radical of P() acts trivially on R’ Indg(a) A for all i.
2. If (\,a¥) = —1, then R*Ind5* X = 0 for all i

3. If (\,aY) =r >0, then R’ Indg(a) A =0 foralli# 0 and Indg(a) A has a basis vg, vy, ...,
such that for all i(0 <i <r) and A:

tv; = (A —ia)(t)v;  forallt € T(A), (3.6)

zol(a)v; = Z (;) aJv;  foralla € A, (3.7

=0

T_o(a)v; = Z?"(T B i)aj_ivj for all a € A. (3.8)

.
j=i J

. ,aY) < =2, then RPInd,'™ A =0 for alli an nd,'* as a basis vy, V], ...,V
4. If O\ aY 2, then R Ind5 X\ = 0 for alli # 1 and R* Ind5®) X has a basis v}, v} !
where r = —(\, a¥) — 2 such that for all i(0 <i <7r) and A:

tv; = (8q - A — i) (t)v; for allt € T(A), (3.9)
zo(a)v] = i T a = forallae A (3.10)
¢ o\ - i J ’

T_o(a)v) = Z (‘Z) I for all a € A. (3.11)

j=i

Proof. As the unipotent radical of P(«) is contained in U and as U operates trivially on ky = A,
the (1) comes from proposition (0.1.7. Furthermore, we may form the quotients by this unipotent
radical. So we may assume that G = P(«) has semi-simple rank 1. Then G is a factor group of
some group of the form SLy xT] with 77 a torus. This can be done in such a way that T} is the
image of {diagonal matrices in SLy} x T} and such that z, and z_, come form the “standard”
root homomorphism in SLy. So by proposition [0.1.7 again, we may assume G = SLy xT7.

Now proposition (.18 implies that R’ Ind{ is isomorphic to R Ind3%; (A|prstL,) as an SLo-
module. On the other hand, T/ acts on each R’Ind$ A through the restriction of A to T} by

proposition [1.2.9. This is compatible with our results as « vanishes on 7T} and as s, - A — X\ € Za.
We may therefore assume G = SLs.

Now Indg A is described in subsection [1.2.5. The character denoted by w there maps any

(g a01> to a, hence (w, ") =1 and X(T) = Zw. So any A € X(T) is equal to (A, a")w. For

(A, @) =7 >0 we get as Indg A the rt! symmetric power of the dual of the natural representation.
Taking the basis consisting of all monomials and changing some signs, we get the formula (3.0),
(3.7), (3.8) in 3. If (A, ") < 0, then H°(\) = Ind§ X = 0.
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Because of proposition [3.2.2] we have R? Indg = 0 for ¢ # 0,1. So we have to look only at
R! Indg and can now use Serre duality:

H'(\) = HO(—(A+2p))".

If (—(A+2p),aY) <0, ie., if (A\,a") > —2, this is zero. For (\,a",) < —2, we get (3.9), (3.10),
(3.11)) using the dual basis up to sign changes. O

3.2.2 The Proof for Linkage Theorem

We will prove the Linkage Theorem in this part.

Lemma 3.2.6. Let « € S and X € X(T') with (A + p, ") > 0. Then there are finite dimensional
B-modules N§'(A), N{(X), N§(X) with :

ch NY*(A) = ch N5 (\) = Z e(Sa - A+ npa), (3.12)

n

where the sum is over alln € N with 0 < np < (A + p,a") such that there are long exact sequence
of G-modules:

co— H (50 - A) — H7HN) — HY(NF(N) = H (50 - ) — ... (3.13)

and
.= HY(NP(N) — H(NS(N\) — HTHNG(N) — HYPLY(NE) — ... (3.14)

Proof. Let us assume at first p € X(T). We shall write H) (M) = Indg(a) M for any B-module
M.Set r = (A + p,a"). We have described H2(\ + p) quite explicitly in proposition [3.2.5: There
is a basis (v;)p<i<, such that T acts on v; through A+ p —ic, we know how U,, U_, operate and
that each U_g with 8 € RT, 3 # « acts trivially.

It is then clear that H(A + p)~ = >_I_, kv; and that kv, = so(\ + p) are B-submodules of
HY(\+ p). Set HO(A+ p)™ = HO(\ + p)~ /kv,. This yields exact sequences of B-modules that
we tensor with —p, and thus get:

0—HA+p)” @ (—p) = HA+p)®@(=p) =X — 0 (3.15)

and
0= 80 A= HA+p)” @ (—p) = HXA+p)™" @ (—p) =0 (3.16)

Suppose for the moment that r > 2. We can then also form HO(A + p — a). Let us denote the
corresponding basis by 9; (0 <14 < r — 2). The formulas in proposition 3.2.5 imply that the map
v; — (r —4)9;_; induces a homomorphism of B-modules H2(\ + p)™ — HO(X + p — ), hence
also HO(A +p)™ @ (—p) — HY(A+ p — a) ® (—p). Let us denote the kernel, cokernel, and image
of this homomorphism by N{(X), N&(A), N$(A). We have, therefore, short exact sequences of
B-modules:

0— N\ — HXA+p)" @ (—p) — N§(A) — 0 (3.17)

and
0— NS\ — HXA+p—0a)®(—p) — N&(\) — 0. (3.18)
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Furthermore, the explicit description of the map shows that ch N{*(\) = ch N§'(X).

We have (—p,a¥) = —1, hence R*® Indg(a)(—p) = 0 by proposition [3.2.5, hence by using
proposition [0.1.6
R*nd2 @ (M @ (—p)) 2 M ® R* Tnd5® (—p) = 0

For any P(a)-module M, hence by proposition [0.1.5, we have finally R® Ind%(M ® (—p)) = 0.
We can apply this to M = HO(\ + p) and to M = HO(\ + p — ). Therefore formula (3.15) and
(3.18)) above give isomorphisms for each i:

H'(N) 2= H (H (A +p)~ @ (=p)) (3.19)

H'(Ng'(X) = HTHNS (V). (3.20)

We can apply Indg to formula (3.16), (3.17), and get long exact sequence. They contain the
right hand sides of [3.19 resp. [3.20 and we use 3.19 and [3.20! to replace these terms by left hand
sides. Then we get [3.13 and [3.14 with N&(\) = H2(A® p)™ @ (—p).

For r < 1 we set N*(\) =0 for ¢ = 0,1,2. This is certainly compatible with 3.12] and [3.14. If
r =0, then (\,a") = —1 and s, - A = A, hence H*(\) = H*(s,A) = 0 by proposition [3.2.5, and
3.13 holds. If r = 1, then H2(\ + p)™ = 0, hence [3.13/ follows from [3.16 and [3.19/ as above.

This proof the lemma in case p € X(T). In general there is a central extension G' — G
with a split maximal torus 7" — T such that p € X(T") C X(T). We can then carry out the
constructions as above for 7. Let B’ C G’ be the inverse image of B. The B’-modules N§(\)
have all their weights in X (7T'), hence the kernel Z of B’ — B acts trivially and the N}(\) are
B-modules in a natural way. Using R’ Indg N~ R Indgi N for any B-module N, we see that we
have [3.13/ and [3.14! for G. 0

Proposition 3.2.7. (The Strong Linkage Principle) Let A € X (T) with (A + p,a¥) > 0 for all
a € RT andp € X(T),. If L(p) is a composition factor of some H'(w-\) with w € W and i € N,
then p T A

We shall prove this result via induction on A for < in the following context, always assuming
A, i as in the proposition. The first step is the point where the induction hypothesis enters. We
use the notations N()\') as in lemma [3.2.6

Lemma 3.2.8. Let o € S and w € W with (w(X+ p),a¥) > 0. If L(u) is a composition factor
of some H'(N§(w - \)), then u T .

Proof. Because of lemma [3.2.6, it is enough to prove the corresponding result for N{¥*(w - \) and
N§(w - A), hence for each composition factor of these B-modules. Also due to lemma [3.2.6, we
have to look at all H*(\;) with A; of the form \; = s,w - A 4+ npa for some n € N with 0 < np <
(wA + p),aV) = (A + p,w (a)V). By our assumption on A we must have f = w™(a) € RT,
and we can write A\; = sqw - (A — npfB). There are Ag € X(T') and w’ € W with A\; = w’ - Ay and
Ao+ p, 7Yy >0 forall y € RT. As Ay € W - X\ — npB we get from proposition 3.1.3 that As T A
and Ao < A\. We can, therefore, apply the induction hypothesis to Ay and composition factor L(u)
of some H(w' - \a). We get pu T Ao, hence u T X and pp < Ay < \. O
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Proposition 3.2.9. Let i € N and w € W with l(w) # 4. If L(u) is a composition factor of
Hi(w-\), then u T X and p < \.

Proof. Let us suppose at first i < [(w) and use induction on i. If i = 0, then H%(w - \) # 0, hence
w- X € X(T)y. Therefore w- X = A, as {N € X(T) @z R|[(N 4+ p,a¥) >0foralla € RT} is a
fundamental domain for the “dot ” action of W on X (T') ®z R. Futhermore A € X (T'), hence A
has a trivial stabilizer in W (under dot action), hence w - A = X implies w = 1 and l(w) = 0 = 4.
This is a contradiction and settles the case i = 0.

Suppose i > 0. If (w(A+ p),a") >0 for all « € S, then H(w - \) = 0 by . Therefore we can
find some o € S with (w(A+ p),a") < 0 we now apply lemma 3.2.6 to s,wA instead of A\. And we
get that L(u) is either a composition factor of H: =1 (N§ (salw-N)), or of H =1 (s,w-A). In the first
case, we apply lemma [3.2.8 in the second one we use induction over ¢ as [(sqw) = l(w)—1 > i—1.

This settles the case ¢ < I(w). The case i > I(w) follows either using Serre duality, or by
descending induction. O

Proposition 3.2.10. Suppose A € X(T')4+. Then L(X\) is a composition factor with multiplicity
one of each H'™) (w - \) with w € W. Any composition factor L(u) of H'")(w - \) satisfies T \.
Proof. Suppose that either ;1 T A does not hold or that u = A.

For any w € W and any « € S with [(sqw) = l(w) + 1 we have by lemma [3.2.6/ an exact
sequence:

HO(N&(w-N) = H O (5w - A) — H@ (w - \) — HOFY(NS (w - N)). (3.21)

lemma [3.2.8 implies that L(p) is not a composition factor of any H!(N§(w - \)). It is therefore
not a composition factor of the kernel or of the cokernel of the homomorphism H! ")+ (s w-\) —
HY ) (- \).

We can choose a sequence wj,w?,...,w), € W where n = |RT|, such that [(w]) = i for all
i (hence w{ = 1, w), = wy), such that there are simple roots of I(w) with w} = su,w;_, for all
1 <i < n, and such that wl’(w) = w.

By definition of {(w) there are o € S with w = s4,,, " Sas8a;- Set W] = sq,...5q, for
i < l(w). Then l(w;) = i, because l(w;) < i implies I(w) = I(Sq,,, - - - Sa;y, w;) < [(w). We have
l(wwy ') = l(wp) — l(w™") = n — I(w). Therefore there are a; € S with wow™! = s, .. Syt -

Then take w; = sq, ... Say(,,,, w for all i > I(w). We have [(w;) = i as [(w;) < i implies I(wg) < n.

This sequence w{,w}, ..., w, leads, by applying the argument as above to each (w;,;y1)
instead of (w, «), to a sequence of homomorphisms of G-modules:

H™(w), - \) — H" Y w1 - A) — ... — HY (w} - \) — H(w}, - \). (3.22)

n

From the exact sequence we see that L(u) does not occur in the kernel or cokernel of any of the
maps H' " (w]-A) — H*(w}-X). Therefore it occurs in each H*(w}-\) with the same multiplicity

as in the image M of the composed map:

H"™(wo - \) = H™(w), - \) — H(w} - \) = H°(\). (3.23)
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As this applies in particular to = A and as L(])) is composition factor of H%()), it is also one of
M, hence m # 0. We have by Serre duality:

H"™(wo - \) = H™(woA — 2p) = H(—wo)* = V()). (3.24)
Hence for homomorphic image M:
M/radg M = L(\). (3.25)
On the other hand, as M C H°()), we have
socg M = L(A). (3.26)
As L()\) occurs with multiplicity one in H%(\), hence in M, this implies M = L()).

So the only L(u) as above, which is a composition factor of some H')(w - \) is L(\) and it
occurs exactly once. O

Corollary 3.2.11. (The Linkage Principle) Let A\, u € X(T)4. If Extg(L(N), L(p)) # 0, then
rxew, . pu.

Proof. Because of proposition [1.2.12] we may assume p ¥ A. Therefore by corollary [1.2.15, we
have [H°()\) : L(u)] # 0. Hence p € W, - X by strong linkage principle. O
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