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Abstract

In the theory of operators on Riesz spaces an important result states that Riesz homo-
morphisms on a C(Ω)-space are composition multiplication operators. Our aim is to extend
this theorem to, not necessarily Riesz, subspaces of such a C(Ω)-space. The main result
entails the following, Riesz∗ homomorphisms on a pointwise order dense subspace X of C(Ω)
are composition multiplication operators. Furthermore, we use this result to find additional
results on Riesz∗ homomorphisms on these subspaces. We will exhibit, for example, that
the inverse of a bijective Riesz∗ homomorphism on X is again a Riesz∗ homomorphism. As
another corollary of the result we characterize which Riesz∗ homomorphisms on X are even
complete Riesz homomorphisms. Results developed on pointwise order dense subspaces of
C(Ω) can be applied in Sobolev space theory.
As an analogy of the above we will develop a similar theory on subspaces of Lp for a fi-
nite measure space. Most results carry over easily from the C(Ω) case. We will investigate
difference in structure of Riesz∗ homomorphisms between these two type of space.



Introduction

In the theory of Riesz spaces different classes of operators and their properties have been studied
extensively. In particular, Riesz homomorphisms are a main focus in this study. On well-known
function spaces these operators are composition multiplication operators. Contents of this result
are given in [1]. We cite Theorem 4.25 from this book adopted in notation and terminology that
will be used in this text.

Theorem. Let Ω and S be compact Hausdorff spaces. A positive operator T : C(Ω)→ C(S) is
a Riesz homomorphism if and only if there exist a map π : Ω → S and some weight function
η ∈ C(S) such that we have

(Tf)(s) = η(s)f(π(s)) f ∈ C(Ω), s ∈ S. (1)

Moreover, in this case, η = T11Ω and the map π is uniquely determined and continuous on the
set {η > 0}.

An operator T : C(Ω) → C(S) is called a composition multiplication operator if it satisfies (1).
Our aim is to generalize the above characterization theorem to subspaces of C(Ω). We do not
restrict our study to Riesz subspaces Y of C(Ω). On such a space Y we do not have Riesz
homomorphisms.
One approach to avoid this, is to instead study disjointness preserving operators. Here two
elements f and g of a Riesz space are said to be disjoint if |f | ∧ |g| = 0. A positive operator
between two Riesz spaces is a Riesz homomorphism if and only if it is disjointness preserving.
Therefore, the above theorem tells us that all positive disjointness preserving operators between
C(Ω) and C(S) are of composition multiplication type. The notion of disjointness elements
has been extended to partially ordered vector spaces that are not necessarily Riesz spaces in
[8]. Are positive disjointness preserving operators on subspaces of C(Ω) also of composition
multiplication type? Given two positive elements f and g in a Riesz space E one can define
u = f − (f ∧ g) and v = g − (f ∧ g). This u and v are now positive elements of E that are also
disjoint. The existence of this construction gives disjointness preserving operators between Riesz
space a lot of structure, for example that all positive disjointness preserving operators are Riesz
homomorphisms. It is not clear that disjointness preserving operators enjoy the same structure
on subspaces of C(Ω), as the above construction makes critical use of taking the infimum of two
arbitrary elements.
Therefore, our approach is to look at operators that are extendable to a Riesz homomorphism
on a Riesz space. Van Haandel has developed a theory on this topic in his PhD. thesis, [9].
He introduces the notion of pre-Riesz spaces which are spaces that can be embedded as an
order dense subspace of a Riesz space, Xρ, the Riesz completion. On these spaces he has
characterized which operators extend to a Riesz homomorphism on the Riesz completion and he
has called them Riesz∗ homomorphisms. These definitions and results will be discussed in the
Preliminaries section. Our main result, as discussed in chapter 3, is that Riesz∗ homomorphisms
on pointwise order dense subspaces of C(Ω) are composition multiplication operators. Here
a subset X ⊂ C(Ω) is called pointwise order dense if for all f ∈ C(S) and s ∈ S we have
inf{g(s) : g ∈ X, g ≥ f} = f(s). Such a space X is, in particular, a pre-Riesz space so we can
apply the theory of Van Haandel. It turns out that for any operator being extendable to a Riesz
homomorphism on C(Ω) is equivalent with being of composition multiplication type. In the
remainder of this text we will exhibit consequences and analogies, in other function spaces, of
this result.
An operator T : X → Y between partially ordered vector spaces is called a complete Riesz
homomorphism if for all A ⊂ X with inf A = 0 one has inf T (A) = 0 in Y . Obviously all
complete Riesz homomorphisms are in particular Riesz∗ homomorphisms. Using that all Riesz∗

homomorphisms are of composition multiplication type we can impose conditions on the operator
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under which the converse holds aswell. If T is a compostion multiplication operator with maps
η and π as given in (1), then if π is semi open on {η > 0} the operator T is a complete Riesz
homomorphism, where semi open is a weaker condition than being open. We exhibit interactions
between properties of the composition map on {η > 0} and the operator T being a complete
Riesz homomorphism.
As an application of this theory we analyse operators on Sobolev Spaces. We are able to embed
these spaces in the frame of our theory. In the sense that we can view them as pre-Riesz
subspaces of a particular C(Ω) space which are pointwise order dense. As these Sobolev spaces
are Riesz spaces we can conclude by the theory developed that all Riesz homomorphisms on
these spaces are of composition multiplication type.
Similar results as the above theorem also hold for Lp spaces. Which is another example of
a function space that is a Riesz space. One has to be a bit more careful with composition
multiplication operators compared to the continuous function case. This is due to the fact that
elements of a Lp are not determined in every point. Due to results from Rodriguez-Salinas
in [13] we are able to give a sensible definition of composition multiplication operators on Lp

spaces. Several results from the continuous function case then have an obvious analogy for the
Lp spaces. Moreover, in this case the notions of order dense and pointwise order dense coincide.
So all of the theory holds on order dense subspaces of Lp.
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1 Preliminaries

We are interested in partially ordered vector spaces X that can be embedded as an order dense
subspace in a Riesz space, as this will allow us to extend the operators of interest to Riesz
homomorphisms on the Riesz space in which the space lies order-dense. Recall the following
terminology on partially ordered vector spaces as, for example, given in [6].

Definition 1.1. Let Y be a Riesz space and X ⊂ Y a partially ordered vector space.

(i) X is called directed if for all f, g ∈ X there exists an h ∈ X with h ≥ f and h ≥ g.

(ii) X is called Archimedean if for all f, g ∈ X with nx ≤ y for all n ∈ N ones has f ≤ 0.

(iii) X is called order-dense in Y if for all f ∈ Y one has f = inf{g ∈ X : g ≥ f}.

Van Haandel has characterized exactly which subspaces can be embedded in a Riesz space in
the way described above in [9] and has called these spaces pre-Riesz.

Definition 1.2. X is called a pre-Riesz space if for every f, g, h ∈ X such that {f+g, f+h}u ⊂
{g, h}u one has f ≥ 0.

Theorem 1.3 (Van Haandel). The following statements are equivalent.

(i) X is pre-Riesz.

(ii) There exists a vector lattice Y and a bipositive linear map i : X → Y such that i(X) is
order dense in Y and generates Y as a Riesz space.

Moreover, all spaces Y in (ii) are isomorphic as Riesz spaces.

We call the space Y in the above theorem the Riesz completion of X. As all spaces Y with this
property are isomorphic we can talk about the Riesz completion and denote it by Xρ. As these
pre-Riesz space are of great important in this text we want a convenient way of showing when
a space is pre-Riesz. This result is due to Van Haandel.

Theorem 1.4 (Van Haandel). Every pre-Riesz space is directed and every directed Archimedean
partially ordered vector space is pre-Riesz.

For the rest of this section let X be a pre-Riesz space. As mentioned earlier, we want to look
at operators on X that we can extend to its Riesz completion so that we can apply the known
theory of operators on Riesz space. Van Haandel has shown exactly which operators can be
extended this way to Riesz homomorphisms.

Definition 1.5. Let X be a partially ordered vector space and T : X → X an operator. Then
T is called a Riesz∗ homomorphism if for all f, g ∈ X one has T ({f, g}ul) ⊆ {Tf, Tg}ul.

We observe here that every Riesz∗ homomorphism is in particular positive, which is a necessary
property to be extendable to a Riesz homomorphism.

Theorem 1.6 (Van Haandel [9], Theorem 5.6, p.29). Let X and Y be pre-Riesz spaces and
T : X → Y a linear operator. Then there exists a linear Riesz homomorphism T ρ : Xρ → Y ρ

that extend T if and only if T is a Riesz∗ homomorphism.

Let X be a pre-Riesz subspace of C(S) with S a compact Hausdorff space and T : X → X
a Riesz∗ homomorphism. We can then extend T to a Riesz homomorphism Tρ on the Riesz
completion Xρ. Next we want to extend this Tρ to a Riesz homomorphism on C(S) so we can
apply the theorem stated in the introduction to conclude that T is a composition-multiplication
operator. In order to make this extension we need Xρ to be a Riesz subspace of C(S). So we
will show below that this is the case if X is order-dense in C(S).
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Lemma 1.7. Let Y be a Riesz space and X ⊂ Y an order-dense pre-Riesz subspace. Then the
Riesz completion of X is a Riesz subspace of Y , i.e., Xρ ⊂ Y .

Proof. Let Z be the Riesz subspace of Y generated by X. As X is order-dense in Y it is, in
particular, order-dense in Z. The unicity of the Riesz completion in Theorem 1.3(ii) shows now
that Xρ = Z ⊂ Y .

As we have discussed above, it is important that our space X is order-dense in C(S). In the
case that X is a Riesz subspace of Y = C(S), X is usually said to be order-dense in Y if for
all f ∈ Y , f > 0, there exists a g ∈ X with 0 < g ≤ f . (Here we use the notation f > g for
f ≥ g and f 6= 0.) It is then shown in [4, p. 34] that if Y is Archimedean, which is true in the
case when Y = C(Ω), that the above property is equivalent to each positive f ∈ Y being the
supremum of all positive g ∈ X below it. The latter is equivalent to X being order-dense in
Y as in the sense of Definition 1.1. In our case, however, we only assume X to be pre-Riesz.
We take the usual formulation of order-denseness of Riesz subspaces as the definition of being
pervasive in Y . This corresponds to the definition in [7].

Definition 1.8. LetX be a partially ordered subspace of a Riesz space Y . X is called pervasive
in Y if for all positive f ∈ Y , f 6= 0, there exists a g ∈ X such that 0 < g ≤ f .

We can now adopt the proof of Theorem 1.34 on page 31 of [4] to give the following characteriza-
tion of pervasive subspaces. The only issue in adopting the proof that needs some consideration
is the one supremum that is taken. However, it is the supremum of two elements of Y which is
still a Riesz space. This yields the proof of the following theorem.

Theorem 1.9. Let Y be an Archimedean Riesz space and X ⊂ Y a partially ordered vector
subspace. Then X is pervasive in Y if and only if for all positive f ∈ Y we have

f = sup{g ∈ X : 0 ≤ g ≤ f}.

If, in addition, Y is a Dedekind complete Riesz space we have a slightly stronger result for
pervasive subspaces of Y which deals with the existence of infima.

Lemma 1.10. Let Y be a Dedekind complete Riesz space and X ⊂ Y a pervasive partially
ordered vector subspace. For any A ⊂ X where inf A = f holds in X we also have that inf A
exists in Y and equals f .

Proof. Let X and Y be as stated above and A ⊂ X satisfying inf A = f , f ∈ X. As Y is
Dedekind complete, the infimum of A exists in Y as it is bounded from below by f . Let g be a
lower bound of A in Y . Suppose that g ≤ f does not hold. Let e := f ∨g in Y , then it is a lower
bound of A and e > f holds. We can find an h ∈ X, f < h ≤ e as f ∈ X and X is pervasive.
(∃h′ ∈ X : 0 < h′ ≤ h − f, h = h′ + f ∈ X.) The existence of such an h ∈ X contradicts that
inf A = f holds in X. Therefore, g ≤ f must hold and we can conclude that inf A = f holds in
Y .
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2 Spaces of continuous functions

For the rest of this chapter let Ω and S be compact Hausdorff spaces, C(Ω) and C(S) the spaces
of all real-valued continuous functions on Ω and S respectively with the usual ordering. Unless
stated otherwise X ⊆ C(Ω) and Y ⊂ C(S) are partially ordered vector subspaces. Our main
goal of this section is to generalize the characterization theorem of Riesz homomorphisms from
[1, Theorem 4.25] to subspaces of C(Ω). We are looking for a contidition that we can impose on
X that will guarantee that all Riesz∗ homomorphisms on X satisfy equation (1) for all f ∈ X.
It turns out that the following property is exactly what we are looking for.

Definition 2.1. X is called pointwise order dense if for all s ∈ S and f ∈ C(Ω) we have

inf{g(s) : g ∈ X, g ≥ f} = f(s).

For the rest of this section we are only interested in subspaces X ⊂ C(Ω) which are pointwise
order dense. So we start out with a lemma that helps us find subspaces of C(Ω) which are
pointwise order dense.

Lemma 2.2. If X is norm dense in (C(Ω), ‖.‖∞) and contains the constant functions, it is also
pointwise orde dense.

Proof. Suppose X is norm dense and let f ∈ C(Ω) be given. We can now find fn ∈ X with
‖fn − f‖∞ → 0, say ‖fn − f‖∞ ≤ 1

n . Now we define gn := fn + 1
n , as X contains the constant

functions, these gn are in X as well. Also, we have gn ≥ f and

‖f − gn‖∞ ≤ ‖f − fn‖∞ + ‖fn − gn‖∞ ≤
1
n

+
1
n

=
2
n
.

Hence, we have found a sequence (gn) in X above f which converges uniformly, so in particular
pointwise, to f . So X is pointwise order-dense.

Example 2.3. The following subspaces of C[0, 1] are pointwise order dense due to the above
lemma.

(i) C1[0, 1], the space of continuously differentiable functions.

(ii) Polyn[0, 1], the polynomials on [0, 1].

(iii) The space of all piecewise-linear functions on [0, 1].

All of the above examples are norm-dense subspace of C[0, 1]. The three-dimensional space
Polyn2[0, 1] of all polynomials of degree up to 2 is not norm-dense in C[0, 1], however, it is
pointwise order-dense, as follows from arguments in Example 4.4 in [6].

It is interesting to note that in the proof of the above mentioned Example 4.4 in [6] it is
shown that Polyn2[0, 1] is order dense in C[0, 1] through showing it is pointwise order dense. As
obviously the former implies the latter.

2.1 Characterization of Riesz∗ homomorphisms

We wish to characterize Riesz∗ homomorphisms on pointwise order-dense subspaces of C(Ω). So
we start with a lemma linking this property to other useful properties of partially order vector
subspaces of a Riesz space.

Lemma 2.4. If X is pointwise order dense, then X is a pre-Riesz space and X is majorizing
and order-dense in C(Ω).
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Proof. Suppose that X is pointwise order dense. It follows immediately that X must be ma-
jorizing. This means X is also directed. As it is also Archimedean it follows that X is pre-Riesz
by Theorem 1.4. As discussed earlier, it follows from Definition 2.1 that pointwise order-dense
implies order-dense which concludes the proof.

Due to Lemma 2.4 if X is pointwise order dense in C(Ω), then it is, in particular, a pre-Riesz
space. Hence, X has a Riesz completion, Xρ which by Lemma 1.7 is a Riesz subspace of C(Ω).
Next we will show that all Riesz∗ homomorphism on a pointwise order dense subspace of C(Ω)
are composition multiplication operators. Our strategy is to use the Dedekind completeness of
R to be able to extend our operator to a Riesz homomorphism on C(Ω) and apply the Theorem
stated in the introduction.

Theorem 2.5. Suppose X and Y are both pre-Riesz spaces and X a majorizing and order-dense
subspace of C(Ω). If T : X → Y is a Riesz∗ homomorphism, then there exist η : S → R+ and
π : S → Ω such that

(Tf)(s) = η(s)f(π(s)) f ∈ X, s ∈ S.

Moreover, if X is pointwise order dense in C(Ω), then we know in addition that η is continuous
and π is continuous on {η > 0}.

Proof. Let X and Y be given as in the first statement and T : X → Y a Riesz∗ homomorphism.
We extend T to a Riesz homomorphism T ρ : Xρ → Xρ using Theorem 1.6. We fix some s ∈ S
and define the operator Ts : Xρ → R by

Tsf := (T ρf)(s),

which is obviously a Riesz homomorphism. As C(Ω) and R are both Riesz spaces, R is Dedekind
complete and Xρ is a majorizing Riesz subspace of C(Ω) we can apply Corollary 4.36 of [1, p. 153]
to extend Ts to a Riesz homomorphism

T̂s : C(Ω)→ R.

Riesz homomorphisms from C(Ω) to R are characterized in Lemma 4.23 of [1, p. 144]. It tells
us that there exist η(s) ∈ R+ and π(s) ∈ Ω such that

T̂sf = η(s)f(π(s)), f ∈ C(Ω).

So, in particular, we have that

(Tf)(s) = η(s)f(π(s)), f ∈ X, s ∈ S.

In order to show the second part of the statement, suppose that X is pointwise order-dense. We
fix an s ∈ S and take a net (sα) in S which converges to s ∈ S. For any f ∈ X we know that
Tf is continuous, hence we get

η(s)f(π(s)) = (Tf)(s) = lim
α

(Tf)(sα) = lim
α
η(sα)f(π(sα)).

We can find an f ∈ X above the constant one function. Its image Tf is a bounded function, so
we see that η is bounded aswell on S as T is positive. As S is compact there exists a subnet of
(sα), which we will again denote by (sα), which converges to some x ∈ R, which can be done as
S is compact. So we get

η(s)f(π(s)) = x lim
α
f(π(sα)) = xf(lim

α
π(sα)),

for every f ∈ X. Here the first equality follows from the fact that f is bounded and the second
one because it is continuous. We know the limit limα π(sα) exists because the limit of (Tf)(sα)
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exists as Tf is continuous. We take a further subnet, again denoted by (sα), such that π(sα)
converges to some ω ∈ Ω.
Now either η(s) = 0 holds, in which case wee see that x = 0 holds and hence that η is continuous
in s. Or we have that η(s) > 0, in which case x > 0 as we can find a f ∈ X above the constant
one function. So we know that for all f ∈ X we have f(ω) = cf(π(s)) with c = η(s)

x . Suppose
that π(s) 6= ω holds. Then we can find a g ∈ C(Ω) with g(ω) > cg(π(s)) and apply the
pointwise order denseness of X to π(s). We find an f ∈ X with f(ω) > cf(π(s)) which yields a
contradiction with the above equality. Therefore, we get that ω = π(s) = limα π(sα) holds and
then we also get

η(s)f(π(s)) = lim
α
η(sα)f(π(sα)) = lim

α
η(sα)f(π(s)),

for all f ∈ X, so η(s) = limα η(sα) holds and we are done.

From now on let Tη,π denote the composition muliplication operator with multiplication map η
and composition map π on a suitable C(Ω) space, i.e.,

(Tη,πf)(s) = η(s)f(π(s)), f ∈ C(Ω), s ∈ S.

A converse of the above theorem holds as well under the assumption that X is pointwise order
dense. Before we can show this, however, we prove the following lemma that tells us when an
operator is a Riesz∗ homomorphism.

Lemma 2.6. Let Y be a pre-Riesz space. If an operator T : X → Y satisfies

∀f, g ∈ X : inf{Th : h ∈ X,h ≥ f, g} = Tf ∨ Tg,

then it is a Riesz∗ homomorphism, where the infimum en supremum are both taken in the Riesz
completion, Y ρ, of Y .

Proof. Let T : X → Y be an operator satisfying the above property. Let us observe that T is
positive. Suppose that T is not a Riesz∗ homomorphism. Then there exist f, g, h ∈ X such that

h ∈ {f, g}ul and Th /∈ {Tf, Tg}ul.

If for this f and g the infimum inf{Th : h ∈ X,h ≥ f, g} does not exist in Y ρ we are done.
Suppose that is does exist. There exists an h0 ∈ Y ρ with h0 ∈ {Tf, Tg}u while Th � h0.
Therefore, we also have that Th � Tf ∨ Tg holds in Y ρ.
On the other hand, for any k ∈ {f, g}u we have h ≤ k. So by positivity of T we get Th ≤ Tk.
Hence, we get Th ≤ inf{Tk : k ∈ X, k ≥ f, g}. Combining this with the above we get that
inf{Th : h ∈ X,h ≥ f, g} 6= Tf ∨ Tg, by contrapositivity this proves the claim.

With all work done previously, we arrive at the following characterization theorem of Riesz∗

homomorphism on pointwise order dense subspace of C(Ω).

Theorem 2.7. Let X be pointwise order-dense in C(Ω) and let Y be a order-dense pre-Riesz
subspace of C(S). Let T : X → Y be a linear operator. Then the following are equivalent:

(i) T is a Riesz∗ homomorphism.

(ii) There exist η : S → R+ continuous and π : S → Ω continuous on {η > 0} such that
T = Tη,π on X, i.e.,

(Tf)(s) = η(s)f(π(s)), f ∈ X, s ∈ S.

(iii) ∀f, g ∈ X : inf{Th : h ∈ X,h ≥ f, g} = Tf ∨ Tg, in Y ρ.
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Proof. Let X, Y and T be as given in the statement. Theorem 2.5 immediately yields the
implication (i) ⇒ (ii). For the converse, suppose that T = Tη,π on X for some η ∈ C(S)+ and
π : S → Ω continuous {η > 0} and note that Tη,π : Xρ → Y ρ defines a Riesz homomorphism, as
by 1.7 we can view Xρ and Y ρ as Riesz subspaces of C(Ω) and C(S) respectively. Theorem 1.6
now yields the desired result that T is a Riesz∗ homomorphism.
Implication (iii) ⇒ (i) follows immediately from Lemma 2.6. Suppose that (i) holds and let η
and π be as given in that statement. Let f, g ∈ X be given note that since T is positive, Tf ∨Tg
is a lower bound of {Th : h ∈ {f, g}u} in Y ρ. For any lower bound k of {Th : h ∈ {f, g}u} in
Y ρ, which by Lemma 1.7 we can view as an element of C(S), and any s ∈ S we now get that

k(s) ≤ inf{(Th)(s) : h ∈ {f, g}u}
≤ inf{η(s)h(π(s)) : h ∈ {f, g}u}
= η(s)(inf{h(π(s)) : h ∈ {f ∨ g}u})
= η(s)(f ∨ g)(π(s)) = (Tf ∨ Tg)(s),

hence (iii) holds. Here we have used that X is pointwise order dense in C(Ω) in the second last
equality on π(s) ∈ Ω and f ∨ g ∈ C(Ω).

In the rest of this text we will often use the equivalence between (i) and (ii) in both direction.
Property (iii) gives further insight in the order structure of a Riesz∗ homomorphism. Using
the equivalence between (i) and (ii) we will show a result on the inverse of a bijective Riesz∗

homomorphism. Observe that we are going to use the above theorem in both spaces X and Y
so we require both spaces to be pointwise order dense.

Theorem 2.8. Let X and Y be pointwise order dense in C(Ω) and C(S) respectively, X per-
vasive in C(Ω) and let T : X → Y be a bijective Riesz∗ homomorphism. Then the inverse T−1

is also a Riesz∗ homomorphism.

Proof. By Theorem 2.7 we know there exist an η : S → R+ continuous and a π : S → Ω
continuous on {η > 0} such that T = Tη,π on X. Suppose that η(s) = 0 for some s ∈ S.
Then we get that (Tf)(s) = 0 for all f ∈ Im(T ). As Y is majorizing so we can find a g ∈ Y
greater than 1, which can not be in the image of T . This contradicts the bijectivity of T , so η
is non-zero everywhere. Suppose π is not injective, then there exist s1, s2 ∈ S such that s1 6= s2

and π(s1) = π(s2). Now we get for any f ∈ X that

(Tf)(s1) = η(s1)f(π(s1)) = η(s2)
η(s1)
η(s2)

f(π(s2)) =
η(s1)
η(s2)

(Tf)(s2).

So there exists some λ ≥ 0 such that g(s1) = λg(s2) for all g ∈ Im(T ). We can find an f ∈ C(S)
with f(s1) > λf(s2) and as Y is pointwise order-dense, we can find a g ∈ Y above f with
λg(s2) < f(s1) ≤ g(s1). This g is not in the image of T , contradicting its bijectivity. Now we
suppose that π is not surjective and let K := π(S). As π is continuous everywhere, because
we have η > 0, we get that K is compact. So K is a closed proper subset of Ω. By Urysohn’s
lemma we can find an f ∈ C(Ω), positive, f 6= 0, with the support of f contained in S\Ω. As
X is pervasive, we can find a g ∈ X with the same properties. Notice now that Tg = 0 holds
by construction while g 6= 0. This contradicts the injectivity of T . So we have shown that π is
bijective. Let us now define the operator R : X → X by

(Rf)(s) := η−1(π−1(s))f(π−1(s)).

Now we have for all f ∈ X and s ∈ S that

(TRf)(s) = η(s)(η−1(π−1(π(s))))f(π−1(π(s))) = f(s) = (If)(s) = (RTf)(s).

8



Hence, R is the inverse of T . As η−1 and π−1 are both continuous and Y is pointwise order
dense, we can apply Theorem 2.7 again to find that R = T−1 is a Riesz∗-homomorphism.

The above theorem does not hold without assuming that X is pervasive. This is illustrated by
the following example.

Example 2.9. Let S = [0, 1], η = 1, π(s) = 1
2s and X the set of polynomials on S. Notice that

X is pointwise order dense by Example 2.3 and is not pervasive. For all p ∈ X we define

(Tp)(s) = η(s)p(π(s)) = p(
1
2
s).

Notice that Tp is again a polynomial, so T defines an operator on X. Also, by Theorem 2.7,
this T is a Riesz∗-homomorphism. Observe that T is injective. Let g ∈ X be of the form
g(s) = αns

n + ...+ α1s+ α0. Then we can find βi := 2iαi and define f(s) =
∑n

i=0 βis
i. Hence,

we have that Tf = g, so T is surjective. Suppose now that there exist a θ : S → R continuous
and τ : S → S continuous on {θ > 0} such that (T−1f)(s) = θ(s)f(τ(s)). Let us observe that
T11 = 11 holds and hence T−111 = T−1T11 = 11. For any s ∈ S we thus have θ(s) = 1. Now let f
be the identity map on S for any s ∈ S we get

s = (T−1Tf)(s) = (Tf)(τ(s)) = f(
1
2

(τ(s))) =
1
2
τ(s).

So we get that τ(s) = 2s must hold for all s ∈ S, but s 7→ 2s is not a well-defined map on S. So
T−1 can not be of that form, hence, by Theorem 2.7 T−1 is not a Riesz∗-homomorphism.

2.2 Complete Riesz homomorphism

We have seen that the Riesz∗-homomorphism are exactly the composition multiplication opera-
tors on pointwise order dense subspaces of a C(Ω) space. We will now look at a stronger type of
homomorphism, namely the complete Riesz homomorphisms (see [9]). We are going to investi-
gate how being a complete Riesz homomorphism relates to properties of the multiplication and
composition maps η and π of the operator.

Definition 2.10. Let X and Y be partially ordered vector spaces. An operator T : X → Y is
called complete Riesz homomorphism if for all A ⊂ X we have

inf A = 0 ⇒ inf T (A) = 0.

It holds generally that complete Riesz homomorphisms are also Riesz∗ homomorphisms (see [9]).
We will now define two properties that we can impose on π resulting in interesting properties of
the operator Tη,π for any postive η ∈ C(S).

Definition 2.11. A continuous function π : S → Ω is called

(i) semi-open if, for all non-empty U ⊂ S open, the image π(U) has a non-empty interior.

(ii) nowhere constant if, for all non-empty U ⊂ S open, the image π(U) is not a singleton.

For a continuous map π : S → Ω we have the following chain of implications:

π is injective⇒ π is open⇒ π is semi-open⇒ π is nowhere constant.

It turns out that if π is semi-open and η is continuous and positive that Tη,π will be a complete
Riesz homomorphism. We exhibit an example that shows that semi-open is strictly weaker than
open.
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Example 2.12. Let Ω = [−1, 1] and π : Ω → Ω : ω 7→ ω2. Obviously this π is continuous and
not injective. Also, π is not open as π((−1, 1)) = [0, 1) is not open. If we take some U ⊂ [−1, 1]
non-empty and open, then either U ∩ (−1, 0) or U ∪ (0, 1) is also non-empty. Suppose without
loss of generality that V := U ∩ (0, 1) 6= ∅. We then see that π(U) contains π(V ) which has a
non-empty interior, so π is semi-open.

Note that we do not require X to be pointwise order dense in the next two lemmas which
together deal with complete Riesz homomorphisms on X.

Lemma 2.13. For any A ⊂ X+ we have

inf A = 0⇐⇒ ∀U ⊂ S open, ε > 0 ∃f ∈ A, s ∈ U : f(s) ≤ ε.

Proof. Let A ⊂ X+ be given with inf A = 0 and suppose the converse of the right-hand side
holds. Then there is some U ⊂ S open and ε > 0 such that for all f ∈ A and s ∈ U we have
f(s) > ε. So we can find a f ∈ C(S)+, f 6= 0, which is a lower bound of A. As X is assumed
to be order-dense, we can find a g ∈ X with g � 0 and g ≤ f . This contradicts that inf A = 0
holds in X.
For the converse, suppose that inf A = 0 does not hold. Then we can find some g ∈ X a lower
bound of A with g � 0. We can take the positive part g+ of g which is a positive element of
C(S), still a lower bound of A which is not zero. As g+ is continuous, we can find an ε > 0 and
U ⊂ S open with f(s) ≥ g+(s) > ε for all s ∈ U, f ∈ A.

Lemma 2.14. Let η ∈ C(S)+ and π : S → Ω semi-open be given. The operator Tη,π : X → Y
is then a complete Riesz-homomorphism.

Proof. Let η and π be as given and A ⊂ X with inf A = 0. As η is bounded, M := sups η(s)
exists. Suppose that V ⊂ S is open and δ > 0 is given. Let us put U := π(V ) and ε =
δ(M + 1)−1 > 0. As π is semi-open we know that U has a non-empty interior. So by the above
lemma we can find f ∈ A, s ∈ U◦ with f(s) ≤ ε, where U◦ denotes the interior of U . Now there
is some t ∈ V with π(t) = s and we get

(Tf)(t) = η(t)f(π(t)) ≤Mf(π(t)) = Mf(s) ≤Mε ≤ δ.

We can apply the above lemma again to see that inf T (A) = 0 holds, so T is a complete Riesz-
homomorphism.

We now combine the above result with Theorem 2.8 on bijective Riesz∗ homomorphisms that
gives us an alternative way to show when an operator is a complete Riesz homomorphism.

Corollary 2.15. Let X and Y both be pointwise order dense, X pervasive and T : X → Y a
bijective Riesz∗ homomorphism. Then both T and T−1 are complete Riesz homomorphisms.

Proof. Let η and π be as in the proof of Theorem 2.8. Now π is continuous and bijective on the
compact space S, so π is even a homeomorphism. In particular, π and π−1 are semi-open. So
by the above lemma T and T−1 are complete Riesz-homomorphisms.

We have seen that requiring that the composition map π to be semi-open suffices to make an
operator Tη,π a complete Riesz homomorphism. The converse, however, does not generally hold.
It turns out that if we restrict to a bounded and closed interval of R, we can characterize exactly
which composition-multiplication operators are complete Riesz homomorphisms and which are
not. In order to do so, we need the following lemma, which concerns the extendability of complete
Riesz homomorphism.
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Lemma 2.16. If X is pointwise order dense and Tη,π : X → Y is a complete Riesz homo-
morphism, then Tη,π extends to a complete Riesz homomorphism from C(Ω) to C(S) being a
composition-multiplication operator with the same maps η and π.

Proof. Let Tη,π : X → Y be a complete Riesz homomorphism, then obviously we can extend it
to T̂η,π : C(Ω) → C(S), for simplicity we dnote these operators by T and T̂ respectively. We
want to show that this operator is a complete Riesz homomorphism. To this end let A ⊂ C(Ω)
be given with inf A = 0 and let us fix some s ∈ S. We define the set

B := {g ∈ X : ∃f ∈ A, g ≥ f} ⊂ X.

Observe that inf B = 0 holds as X is pointwise order dense and hence order dense in C(Ω).
We have assumed T to be a complete Riesz homomorphism so we get inf T (B) = 0. As T̂ is
positive, zero is a lower bound of T̂ (A). Let h be a lower bound of T̂ (A), then by positivity of
T̂ we get

h(s) ≤ inf{(T̂ f)(s) : f ∈ A}
≤ inf{(Tg)(s) : g ∈ B}.

This shows that h ≤ Tg for all g ∈ B and, therefore, h ≤ 0 as inf T (B) = 0 holds as T is
a complete Riesz homomorphism. We conclude the proof by noting that we have shown that
inf T̂ (A) = 0 holds.

Using the above lemma we conclude this section by giving a full characterization of complete
Riesz homomorphisms Tη,π between closed, bounded intervals on R in terms of the composition
map π.

Theorem 2.17. Let Ω and S be bounded and closed intervals in R and η ∈ C(S)+ and π : S → Ω
a continuous map on {η > 0}. Then Tη,π : X → Y is a complete Riesz homomorphism if and
only if π is nowhere constant on {η > 0}.

Proof. Suppose that π is nowhere constant on {η > 0}. It suffices to show that π is semi-open
so that we can apply Lemma 2.14 and conclude that T is a complete Riesz homomorphism. To
this end let U ⊂ S be open and non-empty. Suppose first that U is contained in {η = 0}. We
can find a π′ which equals π on S\U and such that π′(U) is semi-open, simply by choosing a
small open interval inside U and mapping it onto an open interval in S. As U is contained in
{η = 0} we see that Tη,π = Tη,π′ where the right operator is a complete Riesz homomorphism
by Lemma 2.14. So we assume that U is not contained in {η = 0} and let V ⊂ U be a non-
empty open subset which is disjoint from {η = 0}. As π is nowhere constant on {η > 0}, π(V )
contains some x and y with x 6= y. Now there exist a, b ∈ V with a < b, π(a) = x and π(b) = y
or the other way around. Without loss of generality we can assume that x < y holds aswell.
We restrict π to π̂ : [a, b] → Ω which is continuous. For any x < z < y we can find, by the
Intermediate-Value-Theorem, a c ∈ (a, b) with π(c) = z. Hence, we get (x, y) ⊂ π(V ) which
shows that π(U) has a non-empty interior so π is semi-open.
In order to show the converse, let us suppose that π is not nowhere constant on {η > 0}. Then
there exists some U ⊂ {η > 0} open and non-empty such that π(s) = s0 for some s0 ∈ Ω and all
s ∈ U . We now shrink U , keeping it non-empty and open, such that η(s) ≥ ε for some ε > 0 and
all s ∈ U . By Urysohn’s lemma we know there exists a sequence of continuous fn : C(Ω)→ [0, 1]
which are equal to one in s0 and whose supports are contained in the open balls Bn−1(s0). It is
then clear that inf{fn : n ∈ N} = 0. Suppose that inf{Tfn : n ∈ N} does not exist, then we are
done. So we assume that the infimum does exist. Note that for any n ∈ N and s ∈ U we get

(Tfn)(s) = η(s)fn(π(s)) = η(s)fn(s) ≥ ε.

As this holds for all n ∈ N on an open set U we see that inf{Tfn : n ∈ N} = 0 does not hold.
This shows that Tη,π is not a complete Riesz homomorphism.
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2.3 An Application: Sobolev spaces

As an application of the above theory about Riesz∗-homomorphisms on pointwise order-dense
subspace of C(S), we are going to look at which operators on the Sobolev space W 1,p(Ω) are
composition-multiplication operators. For the rest of this section, let d ∈ N, Ω ⊂ Rd open
and bounded both be given. In order to be able to apply our theory we need that W 1,p(Ω) is
pointwise order dense in C(S) for some compact and Hausdorff space S. The obvious choice for
S is the topological closure of Ω, S = Ω̄. We need to impose an extra condition on Ω for this to
be true. More precisely, Ω need to be a Lipschitz domain, which means that its boundary can
be viewed as being locally the graph of a Lipschitz continuous function. The precise definition
and properties of Lipschitz domains can be found on pages 66 and 67 in [2].

Theorem 2.18. If Ω is a Lipschitz domain and p > d, then W 1,p(Ω) ⊂ C(Ω̄) is pointwise order
dense.

Proof. We use Lemma 2.2 to show that W 1,p(Ω) is pointwise order dense. Before we can begin
to show that W 1,p(Ω) is norm-dense in C(Ω̄), we must first show it is even a linear subspace
of C(Ω̄). We use a Sobolev imbedding theorem by Adams, [2] p.97, which says that if Ω is a
Lipschitz domain in Rd we have

W j+m,p(Ω) ⊂ Cj,λ(Ω̄)

for any 0 ≤ λ ≤ m − p
d . In this notation the space Cj,λ(Ω̄) is the space of all functions

having continuous derivatives up to order j and such that the jth partial derivatives are Hölder
continuous with exponent λ, where 0 ≤ λ ≤ 1. We apply this theorem with j = 0 and m = 1.
We have assumed that d < p, so there exists a 0 ≤ λ ≤ 1− d

p and Adams gives us

W 1,p(Ω) ⊂ C0,λ(Ω̄).

As Hölder continuity implies continuity we get W 1,p(Ω) ⊂ C(Ω̄). Now let f : Ω̄ → R be a
continuous function.

Claim. There exist fn : Ω̄ → R continuous which are smooth on Ω and converge uniformly to
f on Ω̄.

We will show later that these fn must then be elements of W 1,p(Ω), which will conclude the
proof of the norm denseness of W 1,p(Ω) in C(Ω̂).

Proof. First we will extend f to a continuous g : Rd → R with compact support. In order to
find this g we will use a result by Tietze see Theorem 2.47 on page 45 in [3], which says that any
continuous map on a closed subset of a compact Hausdorff space can be continuously extended
to the entire space without increasing the norm. As Ω̄ is bounded, we can find an open U ⊃ Ω̄
and a S ⊃ U compact. We now let A := Ω̄ ∪ (S\U) which is closed in S. Let us define the
function f̃ : A→ R by

f̃(x) =
{
f(x) if x ∈ Ω̄
0 if x ∈ S\U.

Now f̃ is continuous as Ω̄ and S\U are disjoint. By the theorem of Tietze we can find a
continuous extension g : S → R of f̃ . As g now equals zero on S\U , we can continuously extend
it to Rd by putting g equal to zero on Rd\S. Note that g now also has compact support.
Now we define the standard mollifier function ϕ : Rd → [0, 1] by

ϕ(x) :=

{
e
− 1

1−‖x‖2 if ‖x‖ ≤ 1
0 if ‖x‖ > 1.
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For any n ∈ N we also define ϕn(x) := n−dϕ(xn). Note that these ϕn are positive C∞-functions
with compact support that satisfy

∫
Rd ϕn(x)dx = 1. As g is locally integrable and the ϕn are

smooth, distribution theory tells us that all convolutions (g ? ϕn) are also smooth. Next we
will show that these convolutions converge uniformly to g. As g is continuous and has compact
support, it is uniformly continuous. Let ε > 0 be given, then there exists a δ > 0 such that
‖x − y‖ < δ implies |g(x) − g(y)| < ε. Now let n be large enough such that supp ϕn ⊂ Bδ(0).
For any x ∈ Rd we now get

|(g ? ϕ)(x)− g(x)| =
∣∣∣∣∫

Rd

g(x− y)ϕ(y)dy − g(x)
∣∣∣∣ =

∣∣∣∣∫
Rd

(g(x− y)− g(x))ϕn(y)dy
∣∣∣∣

=

∣∣∣∣∣
∫

supp ϕn

(g(x− y)− g(x))ϕn(y)dy

∣∣∣∣∣ ≤
∫

supp ϕn

εϕn(y)dy = ε.

This shows that indeed ‖(g ? ϕn)− g‖∞ → 0. We now let fn be the restrictions of (g ? ϕ) to Ω̄
and we are done.

We are done if we can show that all the fn from the above claim are elements of W 1,p(Ω). We use
a result, the so called ACL characterization of Sobolev spaces, where ACL stand for Absolute
Continuous on Lines, which says that W 1,p(Ω) = ACLp(Ω) holds for all p and Ω. This result is
the content of Theorem 2.1.4 in [14]. Here ACLp(Ω) is the class of Lp functions on Ω which are
absolutely continuous on L ∩ Ω for almost every line L parallel to any coordinate axis, whose
classical first order partial derivatives all lie in Lp(Ω). So, in particular, we see that the space of
all C1-functions on Ω̄ is contained in W 1,p(Ω). Our sequence (fn) in the claim which converges
to f in supremum norm is, therefore, contained in W 1,p(Ω) which concludes the proof.

As a corollary of the ACL characterization of Sobolev spaces described in the proof, we see that
W 1,p(Ω) is a Riesz space. As for any u ∈ W 1,p(Ω) we see that u+ = u ∨ 0 is an element of
ACLp(Ω) again. All Riesz homomorphism are, in particular, Riesz∗ homomorphism so we can
apply our developed theory in the previous sections to Riesz homomorphisms on W 1,p. Most
notably this yields us the following result.

Theorem 2.19. If d ∈ N,Ω ⊂ Rd is a bounded Lipschitz domain, p > d and T : W 1,p(Ω) →
W 1,p(Ω) is a Riesz homomorphism, then there exist η ∈ C(Ω̄)+ and π : Ω → Ω continuous on
{η > 0} such that

(Tf)(ω) = η(ω)f(π(ω)), f ∈W 1,p(Ω), a.e. ω ∈ Ω.

Proof. We have shown in Theorem 2.18 that W 1,p(Ω) is pointwise order-dense in C(Ω̄). Any
Riesz-homomorphism on a Riesz space is in particular also a Riesz∗-homomorphism, so we can
apply Theorem 2.7 on T and we get the desired result.

This result is similar to Theorem 4.4 in [5] by Biegert. It shows that Riesz homomorphisms on
the Sobolev space W 1,p

0 (Ω) have a composition multiplication representation with Ω a non-emtpy
open subset of Rd. Serveral such results are discussed in his paper. Interestingly, Biegert almost
exclusively uses the norm structure of W 1,p to get his result. While in contrast, our theory
developed in this section mostly relies on the order structure of the function spaces. Yet both
theories get similar results on Riesz homomorphisms on W 1,p.
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3 Spaces of measurable functions

For the rest of this section let (Ω,Σ) be a measurable space and L the space of all measurable
functions on this space. Our aim is to develop a characterization of Riesz homomorphism on L

similar as in the continuous function space case. This results in the following theorem.

Theorem 3.1. If T : L→ L is a Riesz homomorphism, then there exist η ∈ L+ and π : Ω→ Ω,
such that

(T11A)(ω) = η(ω)11A(π(ω)) A ∈ Σ, a.e. ω ∈ Ω. (2)

Proof. Let T be a Riesz homomorphism. We first define η := T11 ∈ L which is positive as T is.
The construction of π takes more work and we will need to proof two claims first.

Claim. There exists a map τ : Σ→ Σ such that for all A ∈ Σ we have

T11A = η11τ(A). (3)

Proof. Let A ∈ Σ be given. T respects infima and suprema, so we get

T11A ∧ T11Ac = 0 (4)

T11A ∨ T11Ac = η. (5)

As T11A ∈ L holds, the set τ(A) := [T11A > 0] is measurable. From (4) it follows that T11A and
T11Ac are disjoint and as they are also positive, (5) gives us

T11A = η11[T11A>0] = η11τ(A).

In particular, (3) yields us a map τ from Ω to Σ. Let us also note that this τ is increasing, i.e.,
A ⊂ B ⇒ τ(A) ⊂ τ(B), as the operator T is positive. For any s ∈ Ω we use the notation τ(s)
for τ({s}). We want to show that this τ gives rise to a map from Ω to Ω which is the inverse of
τ on all singleton sets. This map will be the desired π.

Claim. If ω, s, t ∈ Ω with s 6= t are such that ω ∈ τ(s) ∩ τ(t), then η(ω) = 0 holds.

Proof. Using that T is a Riesz homomorphism, we get

T (11{s,t})(ω) = T (11s ∨ 11t)(ω) = T11s(ω) ∨ T11t(ω) = η(ω)

T (11{s,t})(ω) = T (11s + 11t)(ω) = T11s(ω) + T11t(ω) = 2η(ω).

So now we know that for all ω ∈ Ω, either η(ω) = 0 holds in which case we let π(ω) := ω, or
there is exactly one s ∈ Ω with ω ∈ τ(s) in which case we let π(ω) := s. We obtain a map
π : Ω→ Ω which satisfies

T11s(ω) = η11τ(s)(ω) = η11s(π(ω)) s ∈ Ω, a.e. ω ∈ Ω. (6)

We want to show that this equality holds for all indicator functions instead of only the indicator
functions of singletons. To this end we prove the following claim.

Claim. For any A ∈ Σ we have, τ(A) =
⋃
s∈A τ(s).
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Proof. As we have noted earlier, τ is increasing, so the inclusion
⋃
s∈A τ(s) ⊂ τ(A) is immediate.

For the converse, suppose ω ∈ τ(A) is given. By definition of τ it follows that η(ω) > 0. So
there exists an unique t ∈ Ω with ω ∈ τ(t), hence ω ∈ τ(t) ∩ τ(A) holds and we get

ω ∈ τ(t) ∩ τ(A) = [T11t > 0] ∩ [T11A > 0]
= [(T11t ∧ T11A) > 0]
= [T (11t ∧ 11A) > 0].

This last set is empty if t /∈ A, hence

ω ∈ τ(t) ⊂
⋃
s∈A

τ(s).

Let A ∈ Σ be given. We show that (2) holds for this A. For any ω ∈ Ω we have

T11A(ω)
(3)
= η(ω)11τ(A)(ω) = η(ω)11∪s∈Aτ(s)(ω)

= η(ω) ∨s∈A 11τ(s)(ω)
(6)
= η(ω) ∨s∈A 11s(π(ω))

= η(ω)11A(π(ω)).

Corollary 3.2. If T , in addition to being a Riesz homomorphism, respects coutable suprema
we have that equation (2) holds for all measurable functions.

Proof. By linearity of T equation (2) is satisfied for all positive simple functions. As T respects
countable suprema we get that (2) holds for all potisive measurable functions. As T is both
positive and linear equation (2) holds for all measurable functions.

We have exhibited a weakness of L, in particular also that of all Lp(Ω,Σ, µ) spaces with finite
measure space, that not all Riesz homomorphism respect countable suprema or infima. If we
want to show that an analogy of 2.5 for the Lp case holds, we have the problem that L is
not Dedekind complete hence it is not clear how we can extend a Riesz homomorphism on the
Riesz completion to the entire space. To solve both these problems we will restrict our study
to the Lp(Ω) spaces. For the rest of this chapter let (Ω,Σ, µ) be a finite measure space and
1 ≤ p < ∞ be given. Lp(Ω) is now a Dedekind complete space and as we will show later all
Riesz homomorphisms on this space respect countable suprema. Even more notably, Lp is super
Dedekind complete. This result is proved in [12], example 23.3(iv) on page 126.

Theorem 3.3. Let (Ω,Σ, µ) be a finite measure space and 1 ≤ p ≤ ∞. Then Lp(Ω,Σ, µ) is a
super Dedekind complete Riesz space, i.e.

A ⊂ Lp, inf A = 0⇒ ∃fn ∈ A : inf
n
fn = 0.

We will use all these nice properties of Lp in the next sections to investigate the composition
multiplication operators on these spaces.
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3.1 Composition Multiplication Operators on Lp

We have seen why it is advantageous to look at the Lp-spaces instead of Lp. One downside,
however, is that we have to be careful with a lot of properties that are defined pointwise as we are
looking at equivalence classes of measurable functions. So first we need to build a framework in
whichh we can define a composition multiplication operators in a useful manner. The following
ideas are taken from a paper by Rodriguesz-Salinas, [13].
We call a function τ : Σ→ Σ a µ−homomorphism if it satisfies the following two properties

1. µ(τ(
⋃
An)4

⋃
τ(An)) = 0 for every sequence (An) in Σ.

2. µ(τ(
⋂
An)4

⋂
τ(An)) = 0 for every sequence (An) in Σ.

From now on let τ be such a µ−homomorphism on (Σ, µ). Let g =
∑m

n=1 αn11An be some
positive simple function then we define

τ−1(g) = g ◦ τ−1 =
m∑
n=1

α11τ(An).

For any positive, measurable function f we can find a non-decreasing sequence (fn) of Σ−simple
functions such that f = supn fn. So we can also define

f ◦ τ−1 = sup
n
fn ◦ τ−1.

In the paper [13] it is shown that the map f 7→ f ◦ τ−1 is well-defined, linear and preserves both
∧ and ∨.

We will now proof that µ−homomorphisms satisfy additional properties that will be used later
in order to characterize the Riesz∗-homomorphisms on subspaces of Lp.

Lemma 3.4. Let τ : Σ→ Σ be a µ−homomorphism, then

1. f, g ∈ Σ⇒ (f ◦ τ−1) · (g ◦ τ−1) = (fg ◦ τ−1).

2. (fn) ∈ Σ, f = infn fn ⇒ (f ◦ τ−1) = infn(fn ◦ τ−1).

Proof. 1. Let f and g both be positive simple functions of the form f =
∑

n α11An and
g =

∑
m βm11Bm . Then we have fg is also a simple function and

(fg ◦ τ−1) =
∑
n,m

αnβm11τ(An∩Bm)

=
∑
n,m

αnβm11τ(An)11τ(Bm)

= (f ◦ τ−1)(g ◦ τ−1).

Now let f, g be positive measurable functions and fn, gn ∈ Σ positive simple functions such that
f = supn fn, g = supn gn. Then we get

(f ◦ τ−1)(g ◦ τ−1) = sup
n

(fn ◦ τ−1) sup
m

(gm ◦ τ−1)

= sup
n,m

(fn ◦ τ−1)(gm ◦ τ−1)

= sup
n,m

(fngm ◦ τ−1)

= (fg) ◦ τ−1.
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2. If (fn) is such a sequence in Σ with f = infn fn, we can let gn = fn − f . Then we get
infn gn = 0, so by the paper infn(gn ◦ τ−1) = 0. So we see that

inf
n

(gn ◦ τ−1) = inf
n

((fn − f) ◦ τ−1)

= inf
n

((fn ◦ τ−1)− (f ◦ τ−1)) = 0.

It follows that indeed f ◦ τ−1 = infn(fn ◦ τ−1).

In the space Lp(Ω,Σ, µ) we have identified with each other any two functions that are euqal
µ-almost everywhere. In a similar way we want to identify two measurable sets with each other
if their symmetric difference have measure zero. This will be useful in the next section when we
are looking at bijective µ-homomorphisms on Σ. The following ideas are based on observations
made in [10] on pages 166 and 167. For any A,B ∈ Σ we define the equivalence relation

A ∼ B :⇐⇒ µ(A4B) = 0.

Now let Σ′ := Σ/ ∼ be the quotient and note that is a σ-algebra. It is obvious by the definition of
∼ that µ is a well-defined measure on (Ω,Σ′). Additionally, if τ : Σ→ Σ is a µ-homomorphism
then it induces a map τ ′ : Σ′ → Σ′ on the quotient with τ(A) = τ ′(A′) for all A ∈ Σ′ and
representative A of A′. It is then obvious that τ ′ is also a µ-homomorphism.
So from now on if we have some measure space (Ω,Σ, µ) and µ-homomorphism τ : Σ → Σ we
can carry out the above construction. Then we have a measure space such that for all A,B ∈ Σ
either A = B or µ(A4B) > 0 and τ is still a µ-homomorphism.

We have seen in the introduction of this section that it is important that Riesz homomorphsims
on Lp respect countable suprema in showing that they are of composition multiplication type.

Lemma 3.5. Let T : Lp → Lp be a Riesz homomorphism, 1 ≤ p < ∞ and f, fn ∈ Lp be such
that f = supn fn. We then get Tf = supn Tfn.

Proof. Let T, f, fn all be as in the statement. We can assume that the fn are increasing by
replacing fn be the supremum of all previous elements in the sequence. So then gn = f − fn is a
sequence satisfying, gn ↓ 0. By the dominated convergence theorem we get ‖gn‖p =

∫
Ω f

p
ndµ→ 0.

Theorem 4.3 in [4] tells us that all postive operators between a Banach lattice is norm-continuous.
As T is, in particular, positive and Lp is a Banach lattice we can conclude that T is norm-
continuous, hence ‖Tgn‖p → 0. So we can thin our sequence until (Tgn)(ω) → 0 holds µ-a.e.
If h is a lower bound of all Tgn, then we have h(ω) ≤ Tgn(ω) for all n, µ-a.e. ω ∈ Ω. As the
union of countably many sets of measure zero has again measure zero, we conclude that h ≤ Tgn
holds. So we get that h ≤ 0 holds and, therefore, infn Tgn = 0. As T is linear we get

0 = inf
n

(Tgn) = inf
n

(Tf − Tfn) = Tf − sup
n
Tfn.

Which proves the statement.

In particular, this lemma shows that the Riesz homomorphisms on Lp coincide with the complete
Riesz homomorphisms, which is certainly not true in the continuous function case. This result
is contained in the following corollary.

Corollary 3.6. Let 1 ≤ p <∞ and an operator T : Lp → Lp both be given. Then T is a Riesz
homomorphism if and only if it is a complete Riesz homomorphism.
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Proof. In order to show the non-trivial implication, let T : Lp → Lp be a Riesz homomorphism
and A ⊂ Lp be such that inf A = 0. As Lp is super Dedekind complete by Theorem 3.3, we can
find fn ∈ A with infn fn = 0. By the above theorem and the fact that T is positive and linear
we get

0 ≤ inf T (A) ≤ inf
n
Tfn = T inf

n
fn = T0 = 0.

Before we start looking at Riesz∗ homomorphisms on Lp it is important to note the following.
We have assumed above that our measure space is finite. We need this in the following section
so all indicator functions are in our space. It is possible, however, to generalize this to σ-finite
measure spaces. Start with a σ-finite measure space (Ω,Σ, µ) one can construct a finite measure
on the same space and an isometric Riesz isomorphism between the two measure spaces. Then
one can apply all the theory to the latter space and get the result for the former one. We
will give a sketch of this construction below. As our space is σ-finite we can find disjoint and
measurable Sn which cover the space have positive finite measure. We know define a measure
for A ∈ Σ by

ν(A) =
∞∑
n=1

1
2nµ(Sn)

µ(A ∩ Sn).

Note that this ν is finite and absolutely continuous with respect to µ. The Radon-Nikodym
Theorem now tells us there exists a measurable h ≥ 0 such that

ν(A) =
∫
A
hdµ.

As ν(Ω) is finite we see that h is µ-integrable we also know that h > 0 almost surely. Now we
can define an operator J : Lp(ν) → Lp(µ) by Jf := hf . This operator is is linear, bijective,
isometric and a Riesz homomorphism and we are done.

3.2 Riesz∗ homomorphisms on Lp−spaces

Let (Ω,Σ, µ) be a finite measure space and Lp := Lp(Ω,Σ, µ) with 1 ≤ p < ∞ for the rest
of this section. Let τ be a µ-homomorphism and f a measurable function. In the previous
section we have defined (f ◦ τ−1) which we interpret as a composition of the two functions.
Some caution is advised though, as it is not a true composition. However, it does allow us
to talk about composition multiplication operators. If η is a measurable function and τ is a
µ-homomorphism, then we can define

Tη,τf = η(f ◦ τ−1) f ∈ Lp. (7)

The aim of this section will be to show that if X ⊂ Lp is order-dense and T : X → X is positive,
that then T is a Riesz∗ homomorphism if and only if it is of the form as in (7). In order to apply
results from the previous section we need the following to hold.

Lemma 3.7. Let T : Lp → Lp be a Riesz homomorphism then τ(A) := [T11A > 0] is a
µ−homomorphism.

Proof. 1. Let (An) be a sequence in Σ. Then we have that

τ(∪nAn) = [T11∪nAn > 0] = [T (∨n11An) > 0].

As T is a Riesz homomorphism Lemma 3.5 tell us that T11∪nAn = T (∨n11An) = ∨nT11An holds.
So we get

[T (11∪nAn) > 0] = [∨nT11An > 0] = ∪n[T11An > 0] = ∪nτ(An)
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which proves the claim. Analogously, one can proof property 2., so τ is indeed a µ−homomorphism.

Before we can characterize Riesz∗ homomorphisms, we must proof that Riesz homomorphisms
on the Lp are of the desired composition multiplication form. Later we can then extend our
Riesz∗ homomorphisms on an order dense subspace of Lp to a Riesz homomorphism on Lp and
apply the following theorem.

Theorem 3.8. If T : Lp → Lp is a Riesz homomorphism, then there exist η ∈ Lp and a
µ−homomorphism τ : Σ→ Σ such that T = Tη,τ , i.e.

Tf = η(f ◦ τ−1), f ∈ Lp.

Proof. Let T : Lp → Lp be a Riesz homomorphism. We define η and τ in the same way as in
the proof of Theorem 3.1, by the above lemma this τ is a µ−homomorphism and we have

T11A = η11τ(A) = η(11A ◦ τ−1). (8)

Now we use the standard machinery of Lp-spaces to show that (8) holds for all f ∈ Lp. Let
g =

∑m
n=1 αn11An be some positive simple function. Then we get

Tg = T

m∑
n=1

αn11An =
m∑
n=1

αnT11An = η

m∑
n=1

αn(11An ◦ τ−1)

= η((
m∑
n=1

αn11An) ◦ τ−1) = η(g ◦ τ−1).

Now let f be a positive measurable function and (fn) a sequence of positive simple functions
such that f = supn fn. Then we get

Tf = T sup
n
fn = sup

n
Tfn = sup

n
η(fn ◦ τ−1) = (f ◦ τ−1).

Where the second equality follows from Lemma 3.5. For an arbitrary measurable function f , we
can write f = f+−f− with f+, f− positive and measurable. By linearity of T and f 7→ (f ◦ τ−1)
we get the desired result.

In the previous section we showed that Riesz∗-homomorphisms on pointwise order-dense sub-
spaces of C(S) are exactly the composition-multiplication operators. We try to get an analogous
result in the Lp case. As mentioned earlier we do not have a lot pointwise structure in our space.
So we only require our composition-multiplication operators to have a composition map defined
on the σ-algebra instead of on the measure space. This does mean, however, that our result holds
on a larger group of subspaces of Lp. Namely, all the order-dense subspaces. This will be the
contents of Theorem 3.10. For the rest of this section let X be a partially ordered order-dense
subspace of Lp.

Theorem 3.9. If T : X → X is positive such that T = Tη,π on X for some η ∈ Σ and
µ−homomorphism τ : Σ→ Σ, then T satisfies

inf{Th : h ∈ {f, g}u} = Tf ∨ Tg, f, g ∈ X.

Proof. Let f, g ∈ X be given. As T is positive we immediately get the following inequality

inf{Th : h ∈ {f, g}u} ≥ Tf ∨ Tg.

Note here that part of the statement is that the infimum exists. By positivity of T the set is
bounded by below and Lp is Dedekind complete. As we have assumed X to be order dense in
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Lp we can find a sequence hn ∈ X with hn ≥ f ∨ g and f ∨ g = infn hn. Here we also use that
the space Lp is super Dedekind-complete. Now we let B := τ(Ω) and show that on this set the
other inequality holds. The references (1) and (2) below refer to Lemma 3.4.

inf{Th : h ∈ {f, g}u}11B ≥ inf
n

(Thn)11B

= inf
n

(η(hn ◦ τ−1)11B)

(1)
= η inf

n
((hn11A) ◦ τ−1)

(2)
= η((f ∨ g)11A ◦ τ−1)

= η((f ∨ g) ◦ τ−1)11B
= η((f ◦ τ−1) ∨ (g ◦ τ−1))11B
= (Tf ∨ Tg)11B.

All that is left to show is that the equality holds outside of B = τ(Ω). It suffices to show that
Tf is zero outside of τ(Ω) for all f ∈ X, as then both sides of the equality are zero on Ω\B.
Suppose there exists a S ∈ Σ, disjoint from τ(Ω) such that Tf > 0 on S for some f ∈ X. We
then have (Tf)11S = η(f ◦ τ−1)11S = 0 as (f ◦ τ−1) is supported on τ(Ω), this follows from the
definition of (f ◦ τ−1) and the fact that τ is increasing. So we know that µ(S) = 0 must hold
and we are done.

We now arrive to the main result of this section that uses all of the work we have done so far.

Theorem 3.10. Suppose X ⊂ Lp is order-dense and T : X → X is some operator, then the
following are equivalent

(i) ∀f, g ∈ X : inf{Th : h ∈ {f, g}u} = Tf ∨ Tg

(ii) T is a Riesz∗ homomorphism

(iii) There exist η ∈ Σ positive and µ−homomorphism τ : Σ→ Σ such that

Tf = η(f ◦ τ−1), f ∈ X.

Proof. Implication (i) ⇒ (ii) follows from a similar argument as used in Lemma 2.6, replacing
the open set U ⊂ S by a set S ∈ Σ with µ(S) > 0. Now note that X is marjorizing as it is
order dense. Also this means that it is a directed subspace of an Archimedean space, hence it is
pre-Riesz. So its Riesz completion Xρ exists and is a Riesz subspace of Lp. So if (ii) holds we
can extend T to a Riesz homomorphism Tρ : Xρ → Xρ. As Lp is Dedekind complete and Xρ is
majorizing in Lp we can extend T to a lattice homomorphism T̂ on Lp which by Theorem 3.8
has the desired form, which shows (iii). The last implication (iii)⇒ (i) is the same statement
as Theorem 3.9.

We have already seen that on Lp spaces all Riesz homomorphisms are, in particular, also com-
plete Riesz homomorphisms. Using the above theorem we get the following result for pervasive
subspaces of Lp.

Corollary 3.11. Let X ⊂ Lp be pervasive and order dense. Any Riesz∗ homomorphism
T : X → X is a complete Riesz homomorphism.

Proof. Let X and T be given as in the statement. By the above theorem T extends to a Riesz
homomorphism T̂ : Lp → Lp. Let A ⊂ X be such that inf A = 0. As Lp is Dedekind complete
and X is pervasive, Lemma 1.10 tells us that inf A = 0 also holds in Lp. Corollary 3.6 now tells
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us that T̂ is a complete Riesz homomorphism, hence inf T̂ (A) = 0. As A is a subset of X we
have T̂ (A) = T (A) and as X is a subspace of Lp we have that inf T̂ (A) = inf T (A) = 0 holds in
X.

Analogous to the case of continuous functions we can use this theorem to try to show that
bijective Riesz∗ homomorphism have an inverse that is again a Riesz∗ homomorphism. Similarly,
it requires X to be pervasive. The structure of the proof is nearly the same as that of Theorem
2.8 but a bit more involved.

Theorem 3.12. If X is in addition pervasive and T : X → X is a bijective Riesz∗ homomor-
phism, then so is T−1.

Proof. Let T be as in the statement, then we know by Theorem 3.10 that there exist η ∈ Σ
positive and µ-homomorphism τ such that T = Tη,τ . For notation purposes let T̂ be the
extension of T .
Let us define S = {η = 0}. Then we see that for all f ∈ X one has (Tf)11S = 0. Suppose
µ(S) > 0 holds. As X is order-dense we can find a f ∈ X with f ≥ 11S so this f can not be in the
range of T which contradicts the bijectivity of T . hence, µ(S) = 0 holds and the map s 7→ 1

η(s)
is defined almost everywhere. Next we show that τ is bijective. To this end let A,B ∈ Σ be
given with A 6= B and τ(A) = τ(B). From the observation of the previous section we have
µ(A4 B) > 0, so 11A\B > 0 or 11B\A > 0 we assume the first. As X is pervasive we can find a
f ∈ X positive, f 6= 0, with f ≤ 11A\B. As T is both positive and injective we get

0 < Tf ≤ T̂11A\B.

This shows that µ([T̂1A\B > 0]) > 0 holds. This is by definition the same as µ(τ(A\B)) > 0.
As τ is a µ-homomorphism, it preserves the set-theoretic operations (∪,∩, \,4). So we get

0 < µ(τ(A\B) ∪ τ(B\A)) = µ(τ(A)4 τ(B)).

Hence, we get τ(A) 6= τ(B) which gives us a contradiction, so τ is injective. In order to show
that τ is surjective we need the following claim.

Claim. If f ∈ X+, then [Tf > 0] ∈ R(τ), the range of τ .

Proof. Let f ∈ X+ be given and let (fn) be a sequence of positive, simple functions with
f = supn fn and where we have fn =

∑
m αn,m11An,m , with αn,m > 0 and An,m ∈ Σ. Then we

get

[T̂ fn > 0] = [
∑
m

T̂αn,m11An,m > 0]

= ∪m[αn,mT̂11An,m > 0]

= ∪m[T̂11An,m > 0]
= ∪mτ(An,m).

We can now apply Lemma 3.5 to get

[Tf > 0] = [T̂ (sup
n
fn) > 0]

= [(sup
n
T̂ fn) > 0]

= ∪n[T̂ fn > 0]
= ∪n ∪m τ(An,m) = τ(∪n ∪m An,m).
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Now let A ∈ Σ be given, by pervasiveness of X, Theorem 1.9 gives us then

11A = sup{f ∈ X : 0 ≤ f ≤ 11A}.

As Lp is super Dedekind complete by Theorem 3.3 we can find a sequence (fn) in X+, fn ≤ 11A
with 11A = supn fn. Observe that we then have ∪n[fn > 0] ⊂ A. Now let B := A\ ∪n [fn > 0]
and suppose µ(B) > 0. Then all fn must be zero on B and we get for all n ∈ N that

fn ≤ 11A\B < 11A.

As µ(B) > 0 this shows that supn fn < 11A which gives us a contradiction so we get A =
∪n[fn > 0]. As T is bijective we can find gn ∈ X with Tgn = fn. We want to apply the previous
claim on these gn so we have to show that they are positive. We prove the following more general
case.

Claim. If X is pervasive, T : X → X an injective Riesz∗ homomorphism, then T is bipositive.

Proof. Suppose there exists a g ∈ X, g � 0 such that Tg ≥ 0. We then have g− > 0 so by the
pervasiveness of X there exists an h ∈ X with 0 < h ≤ g−. So we get

0 ≤ Th = T̂ h ≤ T̂ g− = (T̂ g)− = (Tg)− = 0.

This shows that Th = 0 holds which now contradicts the injectivity of T .

So our gn are positive and the first claim gives us [Tgn > 0] = [fn > 0] ∈ R(τ), therefore, we
also have A ∈ R(τ) and τ is surjective. Now we can define the operator S : X → X by

Sf = ((
1
η
f) ◦ (τ−1)−1)

which is well-defined by the work done above. Similarly as in the proof of Theorem 2.8 we can
show that TS = IdX = ST . In the proof of Lemma 3.7 we have seen that τ preserves countable
unions and intersections. It is then clear that the same holds for τ−1 which then shows that it
is also a µ-homomorphism. So we can invoke Theorem 3.10 and conclude that T−1 is a Riesz∗

homomorphism.

In all of the above theorems, we have looked at operators T : X → Y that are of the form
Tf = η(f ◦ τ−1). It is interesting to note that, in the paper [11] of Halmos and Neumann, it is
shown that µ-homomorphisms on the σ-algebra induce maps on the underlying space Ω under
certain conditions imposed on the measure space, in their terminology normal. A measure space
is normal if it is point isomorphic to the unit interval. The formal definitions are given in [11] as
Definitions 1 and 2 on page 336. On normal measure spaces, for example bounded subspaces of
Rd, the operator T as above can in fact be given as a ’true’ composition multiplication operator,
i.e. there exists a measurable map π : Ω→ Ω such that

(Tf)(s) = η(ω)f(π(ω))

holds for all f ∈ X and µ-almost every ω ∈ Ω.
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Discussion

We have investigated composition multiplication operators on pre-Riesz subspaces of C(Ω). We
witnessed a close relation between these operators and the Riesz∗ homomorphims. On a wide
class of pre-Riesz subspaces, namely the pointwise order dense ones, these two type of operators
coincide. This result, in a way, is a generalization of the theorem discussed in the introduction.
On one hand it uses the theorem in its proof and on the other hand it extends the statement to
not necessarily Riesz subspaces. Where naturally the Riesz∗ homomorphisms take on the role
of the Riesz homomorphisms, as they are exactly the operators that extend to one.
All of this takes place on pointwise order dense subspaces of C(Ω). One could naturally ask
whether the same result holds on a wider class of subspaces. Given a Riesz∗ homomorphism on
a pre-Riesz subspace of C(Ω), it seems inevitable to have to extend it to a Riesz homomorphism
on C(Ω) in order to show it is of composition multiplication type. Therefore, one needs to re-
quire that subspace to be at least order-dense in C(Ω). If we want all Riesz∗ homomorphisms to
satisfy a pointwise structure, namely being of composition multiplication type, on this subspace
it seems natural to impose pointwise order denseness on it. Whether this is indeed necessary is
still an open problem.
When considering the space of measurable functions Lp(Ω,Σ, µ) on some finite measure space,
it turns out that requiring a subspace to be order-dense is in fact sufficient to guarantee that all
Riesz∗ homomorphisms on it are composition multiplication operators. In this case the concepts
of order dense and pointwise order dense coincide.
A clear link between Riesz∗ homomorphisms and composition multiplication operators on (point-
wise) order dense subspaces of (Ω) and Lp(Ω, µ) has been exhibited. Reflecting on oberservations
made in the introduction, one could naturally ask, whether the two above mentioned types of
operators coincide with the positive disjointness preserving operators on the same subspaces. It
is clear that this will not hold generally, as the space of polynomials on for example [0, 1] does
not have a pair of non trivial disjoint elements, hence all its operators are disjointness preserving.
More research in the lines of [8] needs to be done to give a full answer to this question.
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