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1 Inleiding

De nulpuntsverzameling in C3 van een homogeen polynoom van graad d > 0
kan, door de homogeniteit, beschouwd worden in de 2-dimensionale complexe
projectieve ruimte. Als we nu eisen dat deze verzameling glad is op C3 − {0},
blijkt dat de fundamentaalgroep van het complement in P2(C) verrassend simpel
is, namelijk een cyclische groep van orde d. Oscar Zariski vermoedde dit al,
maar kon het niet bewijzen. De Nederlandse wiskundige Egbert van Kampen
heeft uiteindelijk het bewijs voltooid en publiceerde in 1933 een artikel met zijn
bevindingen.

In deze scriptie wordt een nieuw bewijs van deze zogenaamde stelling van
Zariski-van Kampen uiteengezet. Het nieuwe bewijs verschilt van het oorspron-
kelijke bewijs1 op twee manieren. Ten eerste laat het met een vezelingsargument
zien dat de fundamentaalgroep maar voor één kromme berekend hoeft te wor-
den. Ten tweede maakt het gebruik van modernere terminologie. De eerste
twee hoofdstukken zullen een topologische en categorietheoretische kijk leveren
op twee belangrijke resultaten, namelijk de stelling van Van Kampen en een
korte exacte rij van fundamentaalgroepen, geconstrueerd uit een vezelbundel.
Deze resultaten vinden een nuttige toepassing in het bewijs van de hoofdstel-
ling, waar hoofdstuk vier aan gewijd is. Daar wordt het probleem gereduceerd
en zal er slechts een voorbeeld uitgewerkt worden, waarna dit gegeneraliseerd
kan worden naar andere krommen.

Hoewel het bewijs van algebräısch topologische aard is, komen er ook as-
pecten van categorietheorie, projectieve meetkunde en manifolds aan bod. De
lezer wordt dan ook verondersteld enige voorkennis in algebra, topologie en
projectieve meetkunde te hebben. Begrippen die buiten deze voorkennis vallen
(pushouts, vezelbundels) zullen echter gedefinieerd en aan de hand van voor-
beelden toegelicht worden.
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2 De stelling van Van Kampen

Het bewijzen van de vermoedens van Zariski was voor Van Kampen een directe
aanleiding tot het bewijzen van wat nu de stelling van Van Kampen heet. Deze
stelling geeft onder bepaalde voorwaarden meer inzicht in de structuur van
fundamentaalgroepen en zal in het bewijs van de hoofdstelling een belangrijke rol
spelen. Voor we hier echter aan toe zijn zullen we eerst enkele andere begrippen
moeten definiëren.

2.1 Producten en coproducten

In de categorietheorie zijn het product en het coproduct belangrijke basisbe-
grippen. We beginnen met de definitie van het product:

Definitie 2.1.1. Zij C een categorie met objecten A en B. Het product van
A en B is een tripel (A × B, p1, p2) bestaande uit een object A × B ∈ C en
morfismen p1 : A × B → A en p2 : A × B → B zodat het volgende geldt: voor
elke C ∈ C met morfismen f : C → A en g : C → B bestaat er een unieke
h : C → A×B zodat het volgende diagram commuteert:

C

A A×B B

f g
h

p1 p2

Voordat we enkele voorbeelden bekijken, geven we eerst de definitie van de
duale van het product: het coproduct.

Definitie 2.1.2. Zij C een categorie met objecten A en B. Het coproduct (ook
wel de som genoemd) van A en B is een tripel (A tB, i1, i2) bestaande uit een
object A t B ∈ C en morfismen i1 : A → A t B en i2 : B → A t B zodat het
volgende geldt: voor elke C ∈ C met morfismen f : A→ C en g : B → C bestaat
er een unieke h : A tB → C zodat het volgende diagram commuteert:

C

A A tB B

f

i1

h
g

i2

Een van de basiseigenschappen van het product en het coproduct is dat ze
uniek zijn op een uniek isomorfisme na.

Men zal de notatie van het product en coproduct wellicht herkennen van het
cartesisch product en de disjuncte vereniging. In de voorbeelden die volgen zal
duidelijk worden dat dit niet geheel toevallig is.
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Voorbeeld 2.1.3. Bekijk de categorie Ab van abelse groepen. Het product
(A×B, p1, p2) bestaat hier uit het cartesisch product A×B met pi de projectie op
de i-de coördinaat. Zij namelijk een object C ∈ C gegeven met groepsmorfismen
h1 : C → A en h2 : C → B. Dan wordt de afbeelding h : C → A × B op
de eerste coördinaat vastgelegd door p1(h(c)) = h1(c). Analoog hebben we
p2(h(c)) = h2(c). Dit legt afbeelding h eenduidig vast. De lezer kan eenvoudig
nagaan dat h een homomorfisme is (dat is, een morfisme in de categorie van
abelse groepen).

Ook het coproduct bestaat uit het cartesisch product A × B, maar met
afbeeldingen i1 : A → A × B, a 7→ (a, 0) en i2 : B → A × B, b 7→ (0, b). Een
morfisme h : A × B → C wordt nu uniek vastgelegd door h(a, 0) = h(i1(a)) =
f(a) en h(0, b) = h(i2(b)) = g(b).

Voorbeeld 2.1.4. Bekijk de categorie Grp van (niet noodzakelijk abelse) groe-
pen. Het coproduct in deze categorie bestaat uit het vrije product A ∗ B met
morfismen i1 : A → A × B, a 7→ a en i2 : B → A × B, b 7→ b. Een af-
beelding h : A ∗ B → C wordt vastgelegd door h(a) = h(i1(a)) = f(a) en
h(b) = h(i2(b)) = g(b). Net als in Ab is het product in Grp de productgroep.

Voorbeeld 2.1.5. Bekijk de categorie Set van verzamelingen. Het coproduct
wordt hier gegeven door de disjuncte vereniging AtB = (A×{1})∪(B×{2}) van
A en B met morfismen i1 : A→ AtB, a 7→ (a, 1) en i2 : B → AtB, b 7→ (b, 2).
Een afbeelding h : A t B → C wordt nu vastgelegd door h(x, 1) = h(i1(x)) =
f(x) en h(x, 2) = h(i2(x)) = g(x).

2.2 Pushouts

Een kernbegrip in de stelling van Van Kampen is de pushout. We geven meteen
de definitie.

Definitie 2.2.1. Zij C een categorie met objecten A, B en C en morfismen
f : A → B en h : A → C. Een pushout van f en h is een tripel (D, g, j)
bestaande uit een object D ∈ C en morfismen f : B → D en j : C → D zodat
het diagram

B

A D

C

f

h

g

j

commuteert, met de volgende eigenschap: voor elke E ∈ C met morfismen g′ :
B → E en j′ : C → E zodanig dat g′◦f = j′◦h, bestaat er een unieke k : D → E
zodat het volgende diagram commuteert:

B

A D E

C

f

h

g′

g

k

j

j′
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Net als bij het product en het coproduct is een pushout uniek op een uniek
isomorfisme na. Hierdoor kunnen pushouts vaak gebruikt worden om aan te
tonen dat twee objecten isomorf zijn.

Voorbeeld 2.2.2. Bekijk de categorie Ab van abelse groepen. Om een pushout
van afbeeldingen f : A→ B en h : A→ C te vinden hebben we een object nodig
waar we zowel B als C naartoe kunnen afbeelden. Men denkt dan al snel aan
het coproduct. We krijgen zo het volgende diagram:

B

A B × C

C

f

h

i0

j0

Hierbij zijn i0 en j0 de voor de hand liggende inclusieafbeeldingen. In het
algemeen commuteert dit diagram echter niet. Wanneer een a ∈ A geen element
van de kern van f of h is, geldt namelijk i0(f(a)) = (f(a), 0) 6= (0, h(a)) =
j0(h(a)).

We concluderen dat het tripel (B × C, i0, j0) geen pushout is van f en g.
Wel kunnen we de groep B × C uitdelen naar een handig gekozen ondergroep
zodat het bovenstaande diagram commuteert. Hiervoor willen we dat geldt
(f(a), 0) = (0, h(a)), oftewel (f(a),−h(a)) = 0. Als we B × C nu uitdelen naar
de verzameling K := {(f(a),−h(a)) ∈ B × C|a ∈ A} (van deze verzameling is
eenvoudig te verifiëren dat het een ondergroep is van B×C), krijgen we precies
wat we willen.

Definieer de quotiëntafbeelding q : B × C → (B × C)/K, (b, c) 7→ (b, c) +K
en de morfismen i := q ◦ i0 en j := q ◦ j0. We hebben nu het diagram

B

A B × C (B × C)/K

C

f

h

i

i0

j0

j

q

waarbij geldt i ◦ f = j ◦ h. In de volgende propositie zal bewezen worden dat
((B × C)/K, i, j) een pushout is van f en h.

Propositie 2.2.3. Beschouw objecten A, B en C in de categorie Ab van abelse
groepen, met morfismen f : A→ B en h : A→ C. Definieer morfismen

i : B −→ (B × C)/K, b 7→ (b, 0) +K

j : C −→ (B × C)/K, b 7→ (0, c) +K

waarbij K := {(f(a),−h(a)) ∈ B × C|a ∈ A}. Het tripel ((B × C)/K, i, j) is
een pushout van f en h.
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Bewijs. Beschouw de situatie van voorbeeld 2.2.2. Zij D een object met mor-
fismen k : B → D en l : C → D zodanig dat k ◦ f = l ◦ h. We hebben hier de
volgende situatie:

D

B B × C C

k

i0

l

j0

Omdat ((B × C), i0, j0) het coproduct is van B en C, bestaat er een unieke
g : B × C → D zodanig dat k = g ◦ i0 en l = g ◦ j0. Merk op dat K ⊂ ker(g).
Er geldt namelijk

g(f(a),−h(a)) = g(f(a), 0)− g(0, h(a)) = k(f(a))− l(h(a)) = 0

voor alle a ∈ A. De homomorfiestelling voor groepen zegt nu dat er een unieke
m : (B × C)/K → D bestaat zodanig dat het volgende diagram commuteert:

B × C D

(B × C)/K

g

q
m

Dit geeft ons het volgende diagram:

B

A B × C (B × C)/K D

C

f

h

k
i

i0

j0

j
l

q

g

m

Nu rest ons nog aan te tonen dat geldt k = m ◦ i en l = m ◦ j en dat m uniek is.
Voor alle b ∈ B geldt (m ◦ i)(b) = (m ◦ q ◦ i0)(b) = (g ◦ i0)(b) = k(b). Analoog
is aan te tonen dat geldt l = m ◦ j. Stel nu dat er een m′ bestaat zodanig dat
k = m′ ◦ i en l = m′ ◦ j. Dan geldt k = m′ ◦ q ◦ i0 en l = m′ ◦ q ◦ j0. We
concluderen dat het diagram

D

B B × C C

k

i0

m′ ◦ q l

j0
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commuteert. Hieruit volgt m′ ◦ q = g, want g was uniek. We wisten echter al
m ◦ q = g. Uit de surjectiviteit van q volgt nu m = m′.

Voorbeeld 2.2.4. Bekijk de categorie Grp van groepen. De pushout van
f : A→ B en h : A→ C wordt gegeven door

B

A (B ∗ C)/K

C

f

h

i

j

waarbij K de kleinste normale ondergroep van het vrije product B ∗ C is die
{f(a)h(a)−1|a ∈ A} bevat, met i en j de natuurlijke morfismen.

Voorbeeld 2.2.5. Bekijk de categorie Top van topologische ruimtes. Zij X
een topologische ruimte en U, V ⊂ X open zodanig dat U ∪ V = X. Dan geeft
het volgende diagram een pushout:

U

U ∩ V X

V

i1

j1

i2

j2

Om dit aan te tonen nemen we een topologische ruimte Y met morfismen f :
U → Y en g : V → Y zodanig dat f ◦ i1 = g ◦j1. We moeten nu aantonen dat er
een unieke h : X → Y bestaat zodanig dat het volgende diagram commuteert:

U

U ∩ V X Y

V

i1

j1

i2

f

j2
g

h

Stel voor de uniciteit dat h1, h2 : X → Y voldoen. Voor x ∈ U geldt h1(x) =
h1(i2(x)) = f(x) = h2(i2(x)) = h2(x) en voor x ∈ V kan analoog h1 = h2
aangetoond worden.

Definieer h als volgt:

h : X −→ Y, x 7−→

{
f(x), x ∈ U
g(x), x ∈ V

Voor x ∈ U ∩ V geldt f(x) = f(i1(x)) = g(j1(x)) = g(x), dus h is welgedefi-
nieerd. Ook is het duidelijk dat h het bovenstaande diagram laat commuteren.
We hoeven dus alleen nog aan te tonen dat h continu is.

Zij W ⊂ Y open. Er geldt h−1(W ) = (h−1(W ) ∩ U) ∪ (h−1(W ) ∩ V ) met
h−1(W )∩U = i−12 (h−1(W )) = f−1(W ) open in U , dus open in X, want U ⊂ X
is open en heeft de gëınduceerde topologie. Analoog is h−1(W )∩ V open in X,
dus h−1(W ) is open in X. We concluderen dat h continu is.
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2.3 De stelling van Van Kampen

We kunnen nu de stelling van Van Kampen formuleren. Zoals in de voorbeelden
later duidelijk zal worden, is dit een zeer nuttige stelling. Met het oog op
voorbeeld 2.2.5 is het echter ook een leuke demonstratie van het functoriale
karakter van de fundamentaalgroep. Het bewijs van de stelling is een niet al te
spannende exercitie in het opknippen van paden en zal hier niet gegeven worden.
Enthousiaste lezers kunnen het bewijs van deze stelling vinden in het boek van
Hatcher2 als stelling 1.20.

Stelling 2.3.1 (Van Kampen). Zij X een topologische ruimte, U, V ⊂ X open
en U, V, U ∩ V padsamenhangend met x0 ∈ U ∩ V . Dan geeft het volgende
diagram een pushout in de categorie van groepen:

π1(U, x0)

π1(U ∩ V, x0) π1(X,x0)

π1(V, x0)

(i1)∗

(j1)∗

(i2)∗

(j2)∗

In het bijzonder kunnen we door te kijken naar voorbeeld 2.2.4 zien dat geldt

π1(X,x0) = (π1(U, x0) ∗ π1(V, x0))/K,

met K = 〈{i1([γ])j1([γ])−1|[γ] ∈ π1(U ∩ V, x0)}〉. In de volgende voorbeelden
zullen wat toepassingen van de stelling gegeven worden.

Voorbeeld 2.3.2. De stelling van Van Kampen geeft een manier om aan te
tonen dat S2 een triviale fundamentaalgroep heeft. Hiervoor halen we twee
punten, de noordpool n en de zuidpool z, uit de 2-sfeer. De verzamelingen
S2 \{n}, S2 \{z} ⊂ S2 zijn open en S2 \{n}, S2 \{z}, S2 \{n, z} zijn padsamen-
hangend. Omdat S2 zonder één punt homeomorf is met R2 middels stereogra-
fische projectie, weten we π1(S2 \ {n}, x0) = {0} = π1(S2 \ {z}, x0). De stelling
van Van Kampen zegt nu dat de fundamentaalgroep van S2 er als volgt uitziet:

π1(S2, x0) = (π1(S2 \ {n}, x0) ∗ π1(S2 \ {z}, x0))/{0} = {0}

Voorbeeld 2.3.3. Twee cirkels die op een punt aan elkaar zijn geplakt hebben
een fundamentaalgroep die isomorf is met Z ∗ Z. Wiskundig definiëren we deze
topologische ruimte door in de disjuncte vereniging S1 t S1 de basispunten
(1, 1) en (1, 2) met elkaar te identificeren. Het resultaat noemen we X. We
kunnen intüıtief zien dat we voor U een open omgeving van S1 × {0} kunnen
nemen zodanig dat U 6= X, bijvoorbeeld U = X − {(−1, 1)}. Voor V kiezen we
V = X −{(−1, 0)}. Dan heeft U ∩ V een triviale fundamentaalgroep. Wetende
dat geldt π1(S1, x0) = Z, vinden we nu door middel van de stelling van Van
Kampen

π1(X,x0) = (π1(U, x0) ∗ π1(V, x0))/{0} = π1(S1, x0) ∗ π1(S1, x0) = Z ∗ Z.
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3 Vezelbundels

Voor het bewijs van de hoofdstelling zullen we zien dat vezelbundels verschil-
lende toepassingen hebben. In dit hoofdstuk werken we toe naar een resultaat
dat vezelbundels koppelt aan fundamentaalgroepen en exacte rijen. Later zul-
len we vezelbundels echter ook gebruiken om het bewijs van de hoofdstelling te
reduceren tot een specifieker geval.

3.1 Vezelbundels

Informeel is een vezelbundel een topologische ruimte die lokaal lijkt op een
productruimte. De abstracte definitie is als volgt:

Definitie 3.1.1. Een vezelbundel bestaat uit drie topologische ruimtes E,B, F
en een continue afbeelding p : E → B zodat elke x ∈ B een open omgeving
U ⊂ B heeft zodanig dat er een homeomorfisme h : p−1(U) → U × F bestaat
waarvoor

p−1(U) U × F

U

h

p α

commuteert. Hier is α : U × F → U de projectie op de eerste coördinaat. De
ruimte F wordt ook wel de vezel genoemd.

Merk op dat {x} × F homeomorf is met F voor alle x ∈ B. Zij x ∈ U ⊂ B
met U open en h : p−1(U)→ U×F een homeomorfisme zodanig dat het diagram
commuteert. Voor alle y ∈ p−1({x}) geldt α(h(y)) = x, dus p−1({x}) wordt
door h homeomorf afgebeeld op {x}×F . Elke vezel p−1({x}) boven een element
x ∈ B is dus homeomorf met F . Ieder homeomorfisme van F naar p−1({x})
geeft een inclusie van F in E. Een vezelbundel wordt dan ook vaak genoteerd

met F −→ E
p−→ B. Merk op dat deze notatie fout is als B = ∅.

Voorbeeld 3.1.2. Laten B en F topologische ruimtes zijn en p : F × B → B
de projectie op de tweede coördinaat. Dan is eenvoudig te zien dat F −→
F × B p−→ B een vezelbundel is. Kies namelijk U = B en de commutativiteit
van het diagram zal je vragen een homeomorfisme tussen B × F en B × F te
vinden. Een vezelbundel van deze vorm wordt een triviale bundel genoemd.

Voorbeeld 3.1.3. Neem p : C2 \ {(0, 0)} → P1(C), (a, b) 7→ (a : b) met vezel
F = C∗. Neem voor een (a, b) ∈ C2\{(0, 0)} zonder verlies van algemeenheid aan
dat geldt b 6= 0. Definieer nu U := {(a : b) ∈ P1(C)|b 6= 0}. Een homeomorfisme
van p−1(U) = {(a, b) ∈ C2 \ {(0, 0)}|b 6= 0} naar U × C∗ wordt gegeven door
(a, b) 7→ ((a : b), b). Het is eenvoudig na te gaan dat

{(a, b)|b 6= 0} U × C∗

{(a : b)|b 6= 0}

h

p α

10



commuteert en dat h ook echt een homeomorfisme is. De vezelbundel
C∗ −→ C2 \ {(0, 0)} p−→ P1(C) wordt ook wel de Hopf-bundel genoemd.

Definitie 3.1.4. Laten E en B topologische ruimtes zijn met afbeelding p : E →
B. Dan heeft p de homotopielifteigenschap ten opzichte van een paar ruimtes
(X,Y ), waarbij Y ⊂ X, als het volgende geldt: voor alle f : X × I → B en voor
alle f̃0 : X → E en g : Y × I → E zodanig dat het diagram

Y X E

Y × I X × I B

i1

x

(x, 0)

f̃0

x

(x, 0)
i2

g

f

p

commuteert, bestaat er een f̃ : X × I → E zodanig dat

Y X E

Y × I X × I B

i1

x

(x, 0)

f̃0

x

(x, 0)
i2

g

f

f̃

p

commuteert.

Informeel gezegd betekent bovenstaande definitie dat een lift op het domein
Y × I uitgebreid kan worden naar een lift op X × I.

De volgende propositie kan, inclusief bewijs, gevonden worden als propositie
4.48 in het boek van Hatcher2.

Propositie 3.1.5. Zij F −→ E
p−→ B een vezelbundel. Dan heeft p de homoto-

pielifteigenschap ten opzichte van alle CW -complexen (X,Y ). In het bijzonder
geldt dit voor Y = ∂X met X = I of X = I2.

Deze propositie geeft het verband weer tussen vezelbundels en de homoto-
pielifteigenschap en zal in de volgende paragraaf veelvuldig gebruikt worden.

3.2 Een exacte rij van homotopiegroepen

Een mooie eigenschap van vezelbundels is dat er exacte rijen mee gevormd
kunnen worden.

Stelling 3.2.1. Laat F −→ E
p−→ B een vezelbundel zijn. Zij b ∈ B en zij

i : F → p−1({b}) ⊂ E een homeomorfisme. Zij f ∈ F en laat e := i(f). Neem
aan dat F padsamenhangend is. Dan bestaat er een exacte rij

π2(B, b)
∂−→ π1(F, f)

i∗−→ π1(E, e)
p∗−→ π1(B, b) −→ π0(F, f).
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Bewijs. In dit bewijs wordt een constant pad I → X, t 7→ c genoteerd met c.
Voor een homotopie h : X × I → Y noteren we met h0 de functie gegeven door
x 7→ h(x, 0) en met h1 de functie gegeven door x 7→ (x, 1).

We gaan eerst aantonen dat de kern van π1(B, b) → π0(F, f) gelijk is aan
het beeld van p∗. Merk op dat π0(F, f) = {0}, omdat F padsamenhangend is.
Zij γ : I → B met γ(0) = γ(1) = b en zij γ̃0 : {0} → E, x 7→ e. Definieer
X = {0}, Y = ∅. We hebben:

∅ {0} E

∅ I B

γ̃0

x

0 γ̃

γ

p

Er bestaat dus een pad γ̃ : I → E met γ̃(0) = e en γ̃(1) ∈ F (want p(γ̃(1)) =
γ(1) = b). Neem α : I → F met α(0) = γ̃(1) en α(1) = e. Dan geldt
p∗([γ̃ � α]) = [p ◦ (γ̃ � α)] = [γ]. Afbeelding p∗ is dus surjectief.

We gaan nu aantonen dat geldt im(i∗) = ker(p∗). Zij γ : I → E met γ(0) =
γ(1) = e en α : I → F met i∗([α]) = [γ]. Dan geldt p∗([γ]) = p∗(i∗([α])) =
[p ◦ i ◦ α] = [b]. Hieruit volgt im(i∗) ⊂ ker(p∗).

Zij γ : I → E met γ(0) = γ(1) = e en p∗([γ]) = [p◦γ] = [b]. Zij h : I×I → B
een weghomotopie tussen p ◦ γ en b, met h0 = p ◦ γ en h1 = b, en definieer
(∂I)× I → E, x 7→ e. Neem X = I en Y = ∂X. We hebben:

∂I I E

(∂I)× I I × I B

i1

x

(x, 0)

γ

x

(x, 0)
i2

x 7−→
e

h̃

h

p

Er bestaat dus een h̃ : I × I → E met h̃0 = γ die dit diagram laat commuteren.
Voor h̃1 geldt p ◦ h̃1 = h1, dus h̃1 is een pad in F . We concluderen dat h̃ een
weghomotopie is tussen γ en h̃1, waaruit volgt i∗([h̃1]) = [h̃1] = [γ]. We vinden
zo ker(p∗) ⊂ im(i∗).

We gaan nu de afbeelding ∂ construeren. Laat α : I × I → B met α(∂(I ×
I)) = {b}. Neem X = I en Y = ∂I. We hebben:

∂I I E

(∂I)× I I × I B

i1

x

(x, 0)

x 7−→ e

x

(x, 0)
i2

x 7−→
e

α̃

α

p
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Er bestaat dus een α̃ : I × I → E met α̃0 = e die dit diagram laat commuteren.
Voor α̃1 geldt p ◦ α̃1 = α1 = b, dus α̃1 : I → F . We definiëren nu afbeelding ∂
als volgt:

∂ : π2(B, b) −→ π1(F, f), [α] 7−→ [α̃1]

Om aan te tonen dat deze afbeelding ook welgedefinieerd is, moeten er twee
claims bewezen worden.
Claim: ∂([α]) is onafhankelijk van de keuze van α̃.
Bewijs. Laat α̃′ ook een lift zijn. Neem X = I × I en Y = ∂X. Definieer
h : I × I × I → B, (x, t, s) 7→ α(x, s) en

f : ∂(I × I)× I −→ E, (x, t, s) 7−→


α̃(x, s), t = 0

α̃′(x, s), t = 1

e, x ∈ {0, 1}
.

We hebben:

∂(I × I) I × I E

∂(I × I)× I I × I × I B

i1

(x, t)

(x, t, 0)

(x, t) 7−→ e

(x, t)

(x, t, 0)
i2

f

h̃

h

p

Er is dus een h̃ : I × I × I → E met h̃1(x, 0) = α̃1(x) en h̃1(x, 1) = α̃′1(x),
waarbij h̃1(0, t) = h̃1(1, t) = e. Dan is h̃1 een weghomotopie tussen α̃1 en α̃′1,
met h̃1 : I → F , want p ◦ h̃1 = h1 = b. We concluderen [α̃1] = [α̃′1]. �

De tweede claim is van eenzelfde aard.
Claim: ∂([α]) is onafhankelijk van de keuze van α ∈ [α].
Bewijs. Zij α, α′ ∈ [α] met h : I × I × I → B een homotopie russen α en α′,
waarbij h(x, 0, s) = α(x, s) en h(x, 1, s) = α′(x, s). Laat α̃ een lift zijn van α en
α̃′ een lift van α′ en neem X = I × I en Y = ∂X. Definieer f zoals in de vorige
claim. De rest van het bewijs is identiek aan het bewijs van de vorige claim. �

Nu we weten dat ∂ welgedefinieerd is, kunnen we de gelijkheid Im(∂) =
ker(i∗) aantonen. Zij daarvoor [γ] ∈ π1(F, f) met [α] ∈ π2(B, b) zodanig dat
∂([α]) = [α̃1] = [γ]. Dan is α̃ een homotopie tussen α̃1 en e. Hieruit volgt
i∗([γ]) = [γ] = [α̃1] = [e], dus [γ] ∈ ker(i∗).

Zij nu γ : I → F met γ(0) = γ(1) = e en i∗([γ]) = [e]. Dan is er een
homotopie α̃ : I × I → E tussen γ en e met α̃0 = e en α̃1 = γ. Dan is α̃ een lift
van α := p ◦ α̃ : I × I → B, waarbij geldt

α(0, t) = p(α̃(0, t)) = p(e) = b

α(1, t) = p(α̃(1, t)) = p(e) = b

α(x, 0) = p(α̃(x, 0)) = p(e) = b

α(x, 1) = p(α̃(x, 1)) = p(γ(x)) = b (want γ(x) ∈ F ).

We vinden [α] ∈ π2(B, b) en ∂([α]) = [α̃1] = [γ], dus [γ] ∈ Im(∂). We conclude-
ren Im(∂) = ker(i∗), wat het bewijs afsluit.
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Deze stelling is zelfs uit te breiden tot hogere homotopiegroepen. Zie hiervoor
stelling 4.41 van Hatcher2. In het bewijs van de stelling van Zariski-van Kampen
is dit echter niet van belang.
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4 De fundamentaalgroep van het complement
van een vlakke kromme

Nu de benodigde theorie over vezelbundels is behandeld, is het tijd om te kijken
naar de stelling die bewezen moet worden.

Stelling 4.0.1 (Zariski-van Kampen). Zij C ⊂ P2(C) een gladde kromme van
graad d > 0 in de 2-dimensionale complexe projectieve ruimte en laat x0 ∈
P2(C)− C een basispunt zijn. Dan geldt

π1(P2(C)− C, x0) ∼= Z/dZ.

Om deze stelling te bewijzen moet er veelvuldig gebruik worden gemaakt van
vezelbundels. Allereerst zullen we aantonen dat π1(P2(C)−C, x0) niet afhangt
van de keuze van C.

Lemma 4.0.2. Laten C,D ⊂ P2(C) gladde krommen zijn, beide van graad
d > 0, met basispunten x0 ∈ P2(C)−C en x1 ∈ P2(C)−D. Dan geldt π1(P2(C)−
C, x0) ∼= π1(P2(C)−D,x1).

Bewijs. Beschouw de C-vectorruimte C[x, y, z]d van homogene polynomen van
graad d. Iedere f in C[x, y, z]d−{0} definieert een kromme C(f) in P2(C). Er is
een polynomiale functie discr op C[x, y, z]d waarvan de nulpunten in C[x, y, z]d−
{0} precies de niet gladde krommen zijn, zie hoofdstuk 13, sectie 1.D van het
boek van Gelfand, Kapranov en Zelevinsky3. Voor d = 1 is discr constant en
ongelijk aan nul, en voor d > 1 is discr irreducibel. De genoemde eigenschappen
maken discr uniek op vermenigvuldiging met constanten ongelijk aan nul na.

Laat nu Gd = C[x, y, z]d − {f ∈ C[x, y, z]d : discr(f) = 0} en definieer
Cd = {(P, f) ∈ P2(C)×Gd : f(P ) = 0} en Ud = (P2(C)×Gd)− Cd samen met
de projectie pr2 : P2(C)×Gd → Gd. Beschouw nu het volgende diagram:

Ud P2(C)×Gd Cd

Gd

pr2|Ud

pr2
pr2|Cd

We willen uiteindelijk bewijzen dat pr2|Ud
: Ud → Gd een vezelbundel is. Dan

zijn alle vezels homeomorf. Deze vezels zijn precies de complementen van gladde
krommen in P2(C). Een probleem hierbij is dat de vezels van pr2|Ud

niet com-
pact zijn. We zullen daarom de compactheid van de vezels van pr2 en pr2|Cd

gebruiken om te bewijzen dat pr2|Ud
een vezelbundel is.

De continüıteit van discr impliceert dat Gd open is in C[x, y, z]d, en zo ook
is Cd gesloten en is Ud open in P2(C)×Gd. Dan zijn Gd en Ud reële manifolds.
Omdat Cd gegeven wordt door één vergelijking, waarvan de partiële afgeleiden
naar x, y en z geen gemeenschappelijke nulpunten hebben op Cd, is ook Cd een
manifold, en is de afbeelding pr2|Cd

een submersie (voorkennis uit het college
Introduction to Manifolds komt hier van pas).
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We gaan aantonen dat Gd samenhangend is. De Fermatkromme van graad
d (gegeven door xd + yd = zd) is glad, dus is Gd niet leeg. Neem nu aan dat f
en g in Gd zijn, en verschillend zijn. Laat L de complexe lijn door f en g zijn.
Dan is L∩Gd het complement in L van een eindige verzameling (de eindig vele
nulpunten van discr op L), dus is L ∩Gd boogsamenhangend. We concluderen
dat Gd samenhangend is.

Nu passen we stelling 2.62 en definitie 2.50 van het artikel van Epping4 toe.
Die stelling heeft als aanname dat Cd reële codimensie één heeft in P2(C)×Gd,
echter deze aanname wordt in het bewijs nooit gebruikt en correspondentie
met de heer Epping bevestigde dit. De stelling zegt dan dat pr2 en pr2|Cd

vezelbundels zijn omdat ze submersies zijn met compacte vezels (de stelling van
Ehresmann), en dat ook pr2|Ud

een vezelbundel is.

Aangezien alle vezels van pr2|Ud
homeomorf zijn, vinden we voor alle f, g ∈

Gd inderdaad π1(P2(C)− C(f), x0) ∼= π1(P2(C)− C(g), x1).

In het volgende lemma zal de blowup van P2(C) in een punt P0 centraal
staan. Zij P0 ∈ P2(C) een punt en L0 een lijn met P0 /∈ L0. We definiëren de

blowup P̃2 als volgt:

P̃2 = {(P,Q) : P ∈ P2, Q ∈ L0, P ∈ P0Q} ⊂ P2 × L0

Hier is P0Q de lijn die P0 met Q verbindt. Definieer ook de volgende projecties:

p̃r1 : P̃2 −→ P2(C), (P,Q) 7−→ P

p̃r2 : P̃2 −→ L0, (P,Q) 7−→ Q

Omdat het volgende lemma en het bewijs ervan slechts gebruik maken van
padsamenhangende ruimtes, zal voor de leesbaarheid het basispunt van de fun-
damentaalgroep achterwege gelaten worden.

Lemma 4.0.3. Zij C ⊂ P2(C) een homogene kromme van graad d > 0 en

P0 ∈ P2(C) − C een punt. Zij L0 ⊂ P2(C) − {P0} een lijn en zij P̃2 de blowup

in P0. Definieer C̃ = p̃r−11 (C). Dan geldt

π1(P̃2 − C̃) ∼= π1(P2(C)− C).

Bewijs. Om aan te tonen dat de fundamentaalgroepen isomorf zijn, gaan we
tweemaal de stelling van Van Kampen toepassen. Eerst gaan we aantonen dat
geldt π1(P2−C) ∼= π1(P2−C−{P0}). Beschouw hiertoe de open verzamelingen
U = P2 − C − {P0} en V = Bε(P0), waarbij Bε(P0) de open bal rond P0 met
straal ε is. Kies hierbij ε > 0 klein genoeg, zodat V ∩ C = ∅. De doorsnijding
U ∩ V = Bε(P0)− {P0} is padsamenhangend, met triviale fundamentaalgroep.
Volgens de stelling van Van Kampen geldt nu

π1(P2 − C) ∼= π1(U) ∗ π1(V ) ∼= π1(U) ∼= π1(P2 − C − {P0}).

Omdat de projectie P̃2−C̃−p̃r−11 ({P0})→ P2−C−{P0} op de eerste coördinaat
een homeomorfisme is, krijgen we

π1(P̃2 − C̃ − p̃r−11 ({P0})) ∼= π1(P2 − C − {P0}).
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Definieer nu de open verzamelingen U ′ = P̃2−C̃− p̃r−11 ({P0}) en V ′ = p̃r−11 (V ).
Ook hier geldt dat U ′ ∩V ′ = V ′− p̃r−11 ({P0}) padsamenhangend is met triviale
fundamentaalgroep. Merk ook op dat π1(V ′) = 0. Volgens de stelling van Van
Kampen geldt nu

π1(P̃2 − C̃) ∼= π1(U ′) ∗ π1(V ′) ∼= π1(U ′) ∼= π1(P̃2 − C̃ − p̃r−11 ({P0})).

We concluderen nu

π1(P̃2 − C̃) ∼= π1(P̃2 − C̃ − p̃r−11 ({P0})) ∼= π1(P2 − C − {P0}) ∼= π1(P2 − C).

We hebben nu de hulpmiddelen om stelling 4.0.1 te bewijzen.

Bewijs van stelling 4.0.1. Ook in dit bewijs zal ter bevordering van de leesbaar-
heid het basispunt van de fundamentaalgroep weggelaten worden. Beschouw de
Fermatkromme C in P2(C) van graad d, gegeven door xd + yd = zd. Merk op
dat voor alle d de Fermatkromme glad is. We gaan π1(P2(C) − C) uitwerken
voor deze kromme en vervolgens bovenstaande lemma’s gebruiken om te gene-
raliseren naar een willekeurig gegeven kromme. Kies P0 = (0 : 1 : 0) /∈ C en L0

gegeven door y − z = 0. Definieer de projectie pr : C → L0 vanuit P0 op L0.
We bekijken de inverse beelden van deze projectie.

Voor pr−1({(0 : 1 : 1)}) bekijken we de lijn {(0 : a+ b : a) ∈ P2(C)} door (0 :
1 : 1) en (0 : 1 : 0). We hebben pr−1({(0 : 1 : 1)}) = {(0 : a+b : a) ∈ P2(C)}∩C.
Dit zijn alle punten (0 : a + b : a) met (a + b)d = ad. Als we nu opmerken dat
a 6= 0, vinden we pr−1({(0 : 1 : 1)}) = {(0 : 1 + b : 1) ∈ P2(C) : (1 + b)d = 1}.
Dit zijn d punten.

Voor pr−1({(1 : 0 : 0)}) bekijken we de lijn {(a : b : 0) ∈ P2(C)} door
(1 : 0 : 0) en (0 : 1 : 0). We hebben pr−1({(1 : 0 : 0)}) = {(a : b : 0) ∈ P2(C) :
ad + bd = 0}. Er geldt a 6= 0, dus we kunnen a schalen naar 1. We krijgen als
pr−1({(1 : 0 : 0)}) alle punten (1 : b : 0) met 1 + bd = 0. Dit zijn d punten.

Voor pr−1({(x : 1 : 1)}) bekijken we de lijn {(ax : a+ b : a) ∈ P2(C)} tussen
(x : 1 : 1) en (0 : 1 : 0). We vinden pr−1({(x : 1 : 1)}) = {(ax : a + b : a) ∈
P2(C) : axd + (a+ b)d = ad}. Als voor een punt (a : b : c) ∈ pr−1({(x : 1 : 1)})
geldt c = 0, dan volgt daaruit a = b = 0, dus c 6= 0. Als we nu c schalen naar 1,
krijgen we pr−1({(x : 1 : 1)}) = {(x : 1+b : 1) ∈ P2(C) : xd+(1+b)d = 1}. Voor
xd 6= 1 krijgen we (1 + b)d = 1− xd 6= 0, dus dan bestaat pr−1({(x : 1 : 1)}) uit
d punten. Voor xd = 1 krijgen we (1+b)d = 0, dus b = −1 en pr−1({(x : 0 : 1)})
bestaat uit 1 punt.

Definieer nu Σ = {(ζ : 1 : 1) ∈ P2(C) : ζd = 1}. Dan geeft de projectie

p1 : C − pr−1(Σ) → L0 − Σ een vezelbundel met vezel d punten. Laat P̃2

de blowup van P2(C) in het punt P0 zijn en definieer C̃ = p̃r−11 (C). Omdat

C − pr−1(Σ) homeomorf is met C̃ − p̃r−12 (Σ) middels (a : b : c) 7→ ((a : b :

c), (a : b : c)P0∩L0), geeft de projectie p̃1 : C̃− p̃r−12 (Σ)→ L0−Σ op de tweede
coördinaat een vezelbundel met vezel d punten. Het is eenvoudig in te zien dat

p̃0 : P̃2 − p̃r−12 (Σ) → L0 − Σ een vezelbundel is met vezel isomorf met P1(C).
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We hebben nu het volgende diagram:

P̃2 − C̃ − p̃r−12 (Σ) P̃2 − p̃r−12 (Σ) C̃ − p̃r−12 (Σ)

L0 − Σ

p̃2
p̃0

p̃1

Uit het bovengenoemde resultaat van Epping4 volgt dat p̃2 ook een vezelbundel
is, met vezel p̃−12 ({x}) ∼= P1(C) − {d punten}, waarbij x ∈ L0 − Σ. Volgens
stelling 3.2.1 bestaat er nu een exacte rij

π2(L0 − Σ)→ π1(p̃−12 ({x}))→ π1(P̃2 − C̃ − p̃r−12 (Σ))

→ π1(L0 − Σ)→ π0(p̃−12 ({x})).

Merk op dat L0 − Σ homeomorf is met R2 − {d − 1 punten}. De fundamen-
taalgroep hiervan wordt voortgebracht door lussen om de d− 1 punten, vanuit
een basispunt. Deze lussen kunnen zo gekozen worden dat ze disjunct zijn op
het basispunt na. Dan volgt dat R2 − {d − 1 punten} homotopie-equivalent is

met
∨d−1

i=1 S
1, het boeket van d− 1 cirkels. Dit is de vereniging van d− 1 cirkels

waarbij alle basispunten met elkaar worden gëıdentificeerd. Dit boeket heeft
een samentrekbare overdekking X̃. Dit is namelijk de boom waarbij elke knoop
2(d − 1) takken heeft. Elke knoop wordt afgebeeld op het basispunt van het
boeket. Van elk knooppunt worden d − 1 takken afgebeeld op de d − 1 cirkels
en worden de resterende d− 1 takken in omgekeerde oriëntatie afgebeeld op de
d− 1 cirkels. Met behulp van propositie 4.1 van Hatcher2 vinden we

π2(L0 − Σ) ∼= π2(R2 − {d− 1 punten}) ∼= π2

(
d−1∨
i=1

S1

)
∼= π2(X̃) = 0.

Omdat L0−Σ padsamenhangend is krijgen we π0(L0−Σ) = 0 en zo vinden
we de korte exacte rij

0→ π1(p̃−12 ({x}))→ π1(P̃2 − C̃ − p̃r−12 (Σ))→ π1(L0 − Σ)→ 0.

Deze rij is gesplitst. Er bestaat namelijk een sectie L0 − Σ → P̃2 − C̃ −
p̃r−12 (Σ), x 7→ (P0, x). Deze wordt door de π1-functor behouden. Volgens stelling
10.2 uit de syllabus van Stevenhagen5 geldt nu

π1(P̃2 − C̃ − p̃r−12 (Σ)) ∼= π1(p̃−12 ({x})) o π1(L0 − Σ). (∗)

Beschouw nu de afbeelding s∗ : π1(P̃2− C̃− p̃r−12 (Σ))→ π1(P̃2− C̃) gëınduceerd

door de inclusieafbeelding s. Voor elke lus γ in P̃2− C̃ met γ(I)∩ p̃r−12 (Σ) 6= ∅,
kan de lus zó verschoven worden zodat γ(I) ∩ p̃r−12 (Σ) = ∅. Dit is mogelijk
omdat p̃r−12 ({x}) voor x ∈ Σ isomorf is met P1(C), dus codimensie 2 heeft in

P̃2 − C̃. Noem deze verschoven lus γ′. Dan geldt [γ] = [γ′], dus s∗([γ
′]) = [γ].

Hieruit volgt dat s surjectief is.

Volgens (∗) is elke [γ] ∈ π1(P̃2 − C̃ − p̃r−12 (Σ)) te schrijven als product van
lussen in π1(p̃−12 ({x})) en π1(L0−Σ), waarbij x ∈ L0−Σ. Dan wordt elke lus γ
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in L0 −Σ door s afgebeeld op een lus in L0 − {(0 : 1 : 1)} ∼= R2, want (0 : 1 : 1)
is het enige punt in L0 ∩ C. Dit wil zeggen dat voor [γ] ∈ π1(L0 − Σ) geldt
s∗([γ]) = 1.

We gaan nu aantonen dat elk element van p̃−12 ({x}) door s∗ op hetzelfde
element wordt afgebeeld. Beschouw de kromme C ′ in C2 gegeven door ad+bd =
1. Noem D(0, 1) de open eenheidsschijf rond 0 ∈ C en definieer de functies

F : C×D(0, 1) −→ C×D(0, 1), (a, b) 7−→ (a− e
1
d log(1−bd), b)

G : C×D(0, 1) −→ C×D(0, 1), (a, b) 7−→ (a+ e
1
d log(1−bd), b).

De cruciale eigenschap van afbeelding F is dat deze de Fermatkromme lokaal
‘rechttrekt’, waardoor we de fundamentaalgroep van een open omgeving van
(1 : 0 : 1) kunnen berekenen. Merk op dat F en G continue inversen zijn van
elkaar en dus homeomorfismen. Kies nu r > 0 klein genoeg, zodat D(1, r) →
C, a 7→ ad een injectie is. Merk ook op dat het snijpunt van p̃r−12 ({(1 : 1 : 1)})
met C̃ het punt (1 : 0 : 1) is. Kies nu x dicht genoeg bij (1 : 1 : 1) zodat de d

snijpunten van p̃r−12 ({x}) met C̃ in i(D(1, r)×D(0, 1)) liggen, waarbij

i : C2 −→ P̃2, (a, b) 7−→ ((a : b : 1), (0 : 1 : 0)(a : b : 1) ∩ L0)

de inclusieafbeelding is. We kunnen D(1, r) × D(0, 1) ∩ C ′ identificeren met

i(D(1, r)×D(0, 1)) ∩ C̃. Laten γ1, γ2 ∈ p̃−12 ({x}) twee lussen zijn waarvan [γ1]
en [γ2] in de verzameling voortbrengers van π1(p̃−12 ({x})) zitten. Deze lussen

worden door s∗ gestuurd naar zichzelf in i(D(1, r) ×D(0, 1)) − C̃. We kunnen
s∗([γ1]), s∗([γ2]) dus identificeren met voortbrengers [γ′1], [γ′2] ∈ π1(D(1, r) ×
D(0, 1) − C ′). We hebben F ((D(1, r) ×D(0, 1)) ∩ C ′) = {(0, b) : b ∈ D(0, 1)},
dus

π1((D(1, r)×D(0, 1))− C ′) ∼= π1((C− {0})×D(0, 1))
∼= π1(C− {0})× π1(D(0, 1)) ∼= Z.

Hieruit volgt dat γ′1 en γ′2 homotoop zijn. Dan weten we dat γ1 en γ2 homotoop

zijn in P̃2 − C̃, dus s∗([γ1]) = s∗([γ2]). We concluderen dat alle voortbrengers
van p̃−12 ({x}) op hetzelfde element worden afgebeeld door s∗.

Omdat alle voortbrengers van p̃−12 ({x}) op hetzelfde element worden afge-
beeld, alle beelden van voortbrengers van π1(L0 −Σ) triviaal zijn en de afbeel-

ding s∗ surjectief is, moet π1(P̃2 − C̃) cyclisch zijn en π1(P2(C) − C) dus ook.
De voortbrengersrelatie [γ1] · . . . · [γd] = 1 van p̃−12 ({x}) geldt nog steeds in

π1(P̃2 − C̃). Zij [γ] de voortbrenger van π1(P̃2 − C̃). We krijgen het volgende:

[γ]d = s∗(γ1) · · · s∗(γd) = s∗([γ1] · . . . · [γd]) = s∗(1) = 1

Hieruit volgt dat de orde van π1(P̃2−C̃), en dus ook de orde van π1(P2(C)−C),
een deler van d is.

Beschouw nu S ⊂ P3 gedefinieerd door S = {(a : b : c : e) ∈ P3 : ed =
ad + bd− cd, e 6= 0} met de afbeelding f : S → P2−C, (a : b : c : e) 7→ (a : b : c).
Merk op dat S padsamenhangend is en f een overdekkingsafbeelding van graad
d (dus voor x ∈ P2−C bestaat f−1({x}) uit d elementen). Volgens stelling 5.2.6
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uit het boek van Runde6 is er een surjectie π1(P2 − C) → f−1({x}). Hieruit
volgt dat π1(P2 − C) minimaal d elementen heeft.

We concluderen nu dat π1(P2(C)− C) cyclisch is en d elementen heeft, dus
π1(P2(C) − C) ∼= Z/dZ. Door toepassing van lemma 4.0.2 vinden we dat voor
elke gladde, homogene kromme D van graad d ≥ 1 geldt

π1(P2(C)−D) ∼= Z/dZ.
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