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YAJNASENI DUTTA

One of the goals of these talks is to cover the background needed for the upcoming workshop on
Hodge ideals at UIC. A few of the sources I used to put these talks together are

(1) C. Schnell: �An overview of Morihiko Saito's theory of mixed Hodge modules.� Excellent
overview with exercises but almost no proofs.

(2) Saito's Modules de Hodge Polarisable '88 and Mixed Hodge Modules'90 papers.
(3) C. Elliott: D-modules. Excellent supplement for [HTT95].
(4) Hotta, Takeuchi, Tanisaki: [HTT95]. Extremely detailed and thorough. It does not contain

any information on V -�ltration or the Hodge �ltration. But talks about good �ltration which
is a great starting point.

(5) M. Popa: �Kodaira�Saito vanishing and applications.� Lots of examples, excellent source for
motivations and applications.

(6) Notes from Mihnea's talks on Hodge modules and V -�ltrations (not posted anywhere).
(7) N. Budur: Numerous surveys and lecture notes; e.g. �On the V -�ltrations of D-modules.�

Excellent survey, includes the proof of the uniqueness of the V -�ltrations. For existence, see
[Kas83].

(8) C. Schnell and C. Sabbah: �The MHM Project�: This deals with the Hodge �ltration by
developing a theory over the Rees object assciated to the �ltration.

1. Preliminaries

In this section we set basic notations, de�ne the main protagonists and some of the operations
we can do with them. The purpose of this section is to look at a lot of examples of D-modules and
create new ones using the D-module operations.

Notation 1.1. Let X be a smooth algebraic variety over C. We denote by ΘX or TX the shea��-
cation of

DerC(OX(U)) := {θ ∈ EndC(OX)(U)|θ(fg) = θ(f)g + fθ(g)}.
This is the tangent sheaf of X. We identify the cotangent sheaf with Ω1

X := HomOX (ΘX ,OX).

De�nition 1.2 (DX). The sheaf of di�erential operators DX -modules on X, is the C algebra
generated by OX and ΘX . Locally, with local system of parameteres t1, · · · , tn,

DX
loc' C[t1, · · · , tn, ∂1, · · · , ∂n]/ ∼

where {∂i}i are the local sections of the sheaf ΘX and ∼ denotes the relations

[ti, tj ] = 0 = [∂i, ∂j ] [ti, ∂j ] = δij .

Properties 1.3. (1) The sheaf of di�erential operators is Noetherian.
(2) It is simple, i.e. there are no two-sided non-trivial two sided ideal of DX .

Lemma/De�nition 1.4 (Dmodules). An OX -modules M has a left (or, right) DX action if and
only if there exists a C-linear morphism ∇ : ΘX → EndC(M) locally satisfying

• ∇fθ = f∇θ
• ∇θ(fm) = θ(f)m+ f∇(m)
• ∇[θ1,θ2] = [∇θ1 ,∇θ2 ]

where θi ∈ ΘX ,m ∈M,f ∈ OX . Furthermore, the above is equivalent to having a C-linear morphism
∇′ : M → Ω1

X ⊗OX M locally satisfying

∇′(fm) =
∑
i

dti ⊗ ∂ifm+ f∇′(m) ∇′(Pm) =
∑
i

dti ⊗ ∂iP (m) + P∇′(m).
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http://www.ihes.fr/~celliott/D_modules.pdf
http://www.cmls.polytechnique.fr/perso/sabbah/MHMProject/mhm
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Proof. The equivalence of the �rst two is rather straightforward, by denoting the action θ · m :=
∇θ(m) (or, m · θ := −∇θ(m) for the right action of DopX .) For the last equivalence note that given a
C-linear morphism ∇ : ΘX → EndC(M) de�ne

∇′(m) =
∑
i

dti ⊗∇∂i(m).

Conversely, given ∇′ : M → Ω1
X ⊗OX M so that m 7→

∑
i dti ⊗mi de�ne

∇∂i(m) = mi.

�

De�nition 1.5 (Good/Coherent �ltration). De�ne F•DX to be the coherent sheaves determined
by shea�fying

FiDX(U) =

{
⊕I∈Zn≥0

OU∂I if i ≥ 0

OX otherwise.

Note that FiDX ·FjDX ' Fi+jDX for all i, j. A �ltration on a quasi-coherent left (or right) D-module
M is an increasing exhaustive �ltration F•M by quasi-coherent sheaves, satisfying F1DX · FiM ⊂
Fi+1M and FiM = 0 for i� 0. It is called a good or coherent �ltration if FiM are coherent sheaves
and there exists a i0 � 0 such that for all i > i0 and for all k,

FkDX · FiM = Fi+kM.

It is a small exercise that M admits a coherent �ltration if and only if M is a coherent DX -module.

Note that grFDX ' C[t1, · · · , tn, ∂1, · · · , ∂n] the polynomial ring in 2n generator. Indeed,

[ti, ∂i] = 0 ∈ F1DX
F0DX

and therefore the associated graded ring must be commutative. Further-

more, let π : T ∗X → X denote the bundle map, then, grFDX ' π∗OT ∗X . It requires a bit of e�ort
to show that, F•M is a good �ltration if and only grFM is a coherent OT ∗X -module.

De�nition 1.6 (Characteristic Varieties). Let M be a D-module admitting a good �ltration F ,
then de�ne the characteristic variety associated to M as

Ch(M) := SuppT ∗X(OT ∗X ⊗π−1π∗OT∗X π
−1grFM) ⊆ T ∗X.

Note that π∗(OT ∗X ⊗π−1π∗OT∗X π
−1grFM) ' grFM .

Example 1.7.

(1) DX is both a left and a right module over itself. Moreover, Ch(DX) ' T ∗X.
(2) OX is naturally a left D-module which has a trivial coherent �ltration

FiOX =

{
0 if i < 0

OX otherwise.

and Ch(OX) ' T ∗XX, the zero section of X in T ∗X.
(3) ωX is a right D-module, under the action ω · θ = −Lieθ(ω), where

Lieθ(ω)(θ1 ∧ · · · θn) := θ(ω(θ1 ∧ · · · ∧ θn)−
n∑
i=1

ω(θ1 ∧ · · · [θ, θi] ∧ · · · θn).

This can also be equipped with a good �ltration

FiωX =

{
0 if i < −n
OX otherwise.

and again Ch(ωX) ' T ∗XX.
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(4) Let M be a D-module then for any divisor D
loc
= (f = 0), M(∗D)

loc' M [ 1f ] is also a

DX -module with the usual action satisfying Leibnitz rule. This is not a coherent OX -
module. If M = OX (or any coherent OX -module), the pole-order �ltration Pk(OX(∗D)) :=

OX((k+1)D) is a F -�ltration. It is good, if D is smooth. Indeed, when D
loc' (t1 = 0), then,

∂1(
1

tk1
) ' − k

tk+1
1

generates OX((k + 1)D).

(5) Let X = pt, and L a Q vector space with an underlying Hodge structure of weight k, i.e.
there exists a decomposition

L⊗ C '
⊕
p+q=k

Lp,q

such that Lp,q ' Lq,p. Equivalently, there is a decreasing �ltration F •L satisfying

F pLC ∩ F k−p+1LC ' 0 and F pLC ⊕ Fn−p+1LC ' LC.

Such �ltrations are called the Hodge �ltration on L. This is D-module with trivial action
and the �ltration taken as FpLC ' F−pLC we obtain that the �ltration is trivially a �ltration
of D-modules.

(6) A glimpse to the Riemann-Hilbert Correspondence A variation of Hodge structure
on X of weight k is a tuple (V, F •,L) where L is a local system with �bres L, QX -vector
space on X, V ' L⊗Q OX equipped with a decreasing Hodge �ltration F pV of subbundles
satisfying the following conditions:
1. At each point y ∈ Y , the �ltered vector space (L⊗QC, F •) is a Hodge structure of weight
k on the stalk Ly ' L.
2. (Gri�ths Transversality) The local system L induces an OX -vector bundle with integrable
connection (V,∇) on X. This connection should satisfy the condition

∇(F pV) ⊂ Ω1
X ⊗OX F

p−1V

This is a good �ltration.
Therefore V is a D-module admitting a �ltration given by FpV := F−pV. Note that Gri�ths
transversality can be interpreted as F1DX · FpV ⊆ Fp+1V.

Another good �ltration on V is the trivial �ltration o�-set at 0. Then grFV ' V supported
along the copy of X in T ∗X namely, T ∗XX. Therefore, Ch(V) ' T ∗XX. We will see later in
1.9 that this is su�cient to ensure that the D-module is a variation of Hodge structure.

1.0.1. Left-right correspondence. There is an equivalence of categories

Mod(DX)→ Mod(DopX )

via M 7→ ωX ⊗OX M where (ω ⊗ m) · θ = −Lieθ ω ⊗ m − ω ⊗ θ · m and the inverse is given by

M ′ 7→M ′ ⊗OX ω
−1
X ' HomOX (ωX ,M

′) via the action θ(φ)(ω) = −φ(ω) · θ + φ(−Lieθω).

Remark 1.8. This operation is the same as taking formal adjoints of the di�erntital since in terms
of local coordinates (fdt1 ∧ · · · ∧ dtn) · θ = θ(f)dt1 ∧ · · · ∧ dtn we obtain

DopX ' ωX ⊗OX DX ⊗OX ω
−1
X .

Using the tensor product �ltration we obtain

Fp(M ⊗ ω−1X ) ' Fp−nM ⊗OX ω
−1
X .

For example, F0OX ' F−nωX ⊗ ω−1X ' OX .

Proposition 1.9. A coherent DX-module M is (1) a coherent OX-module if and only if it is (2) a
vector bundle with integrable connection if and only if (3) Ch(M) ' T ∗XX.
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Proof. (1)⇒ (2): For x ∈ X, let Mx ' OX,x < m1, · · · ,mk > is minimally generated via lifting the
basis

M ⊗ κ(x) '
k⊕
i=1

Cmi

Then, suppose there exists a relation ∑
i

fimi = 0

for some fi ∈ OX,x. Since M is a DX -module,

∂j(
∑
i

fimi) =
∑
i

(∂jfmi + fi∂j ·mi) =
∑
i

(∂jfi +
∑
`

f`g
`
i )mi

where ∂jmi =
∑

` g
i
`m`. Now, ord(∂jfi +

∑
` f`g

`
i ) = min(ord(∂jfi), ord(

∑
` f`g

`
i )) For some j,

ord ∂jfi < ord fi. Hence we can induct on the order to conclude that, the relation reduces to∑
i

cimi = 0 for ci ∈ C.

But this is a contradiction.
(2)⇒ (3): Discussed above.
(3)⇒ (1): Since M is coherent, it has a good �ltration, i.e. for there exists i0 � 0 so that

FkDX ·FiM = Fk+iM for all k and for all i ≥ i0. Now since Ch(M) = T ∗XX, we have that, we have
an inclusion of ideal sheaves, locally (Ann(grF• ))m0 ⊆ (∂1, · · · , ∂n)grF• DX for some m0 � 0. This
means that, for all i, ∂m0 · FiM = 0 ∈ grFi+m0

M , i.e. Fm0DX · FiM ⊆ Fi+m0−1. When i ≥ i0, this
implies

Fm0DX · FiM = Fm+iM ⊆ Fi+m0−1.

Hence, Fi0+m0−1M = Fi0+m0M = Fi0+m0+1M = · · · . Then, M is generated over OX by the
coherent OX -modules F1M, · · · , Fi0+m0−1M and hence is coherent.

�

1.1. Regular Holonomic D-modules.

Theorem 1.10 (Sato�Kashiwara�Kawai, Beilinson�Bernstein, Gabber, Kashiwara�Schapira). Let
M be a D-module on a smooth algebraic variety X of dimension n, then the characteristic variety is
involutive with respect to the symplectic structure on T ∗X and therefore dim Λ ≥ n for any irreducible
component Λ ⊆ Ch(M).

De�nition 1.11. A coherent D-module M is said to be holonomic if dim Ch(M) = n

It follows from geometry that Ch(M) is a conic Lagrangian submanifolds of T ∗X. It was shown
by Kashiwara that for any holonomic D-module there exists a Whitney strati�cation X = tXα such
that Ch(M) ⊆ tαT ∗XαX.

Corollary 1.12. Let M be a holonomic DX-module. Then there exists an open dense subset U ⊆ X
such that M |U is coherent over OU . In other words, M |U is a locally free OX-module with an
integrable connection (or, simply integrable connections).

Proof. If Ch(M) = T ∗XX, then by Proposition 1.9 M is an integrable connection. Otherwise, let
S ⊆ X denote the subvariety of X on which the image of Ch(M) \ T ∗XX is supported. Since M is
holonomic dim(S) ≤ n− 1. Then Ch(M |X\S) = T ∗UU . Letting U = X \ S, we get M |U is coherent
over OU by Proposition 1.9. �

Remark 1.13. In the setting whenM is a polarised (mixed) �Hodge module�, Saito proved that there
exists an open set such that M |U is a polarised variation of (mixed) Hodge structure.
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De�nition 1.14 (regular). The de�nition of regularity comes from moderate growth of solutions
to PDE. A holomorphic function f : Cn → C is said to have moderate growth at 0, if for all
z ∈ {z = (r, θ)|0 < r < ε and δ1 < θ < δ2},

|f(z)| < c

|z|j

for some c > 0 and j ∈ Z≥0. I will not de�ne it explicitly here, but I will give an example. Let
X = P1 with local coordinate t around 0, then DX/(t2∂t+1)DX is not regular. Indeed, ∂tf/f = − 1

t2

results in the solution f = e
1
t which has exponential growth at 0.

Notation 1.15. We denote by Modrh(DX) ⊂ Modc(DX) the category of regular holonomic D-
modules as a subcategory of coherent DX -modules and by Db

rh(DX) its corresponding bounded
derived categories.

An algebraic theory of regular-holonomic D-modules were developed by Beilinson and Bernstein.
In their language regular holonomic D-modules are �made-up� of middle extension of local systems
under pushforward from a locally closed subvariety Y ofX, so that the embedding morphism Y ↪→ X
is a�ne. Indeed, a-posteriori Riemann-Hilbert correspondence these correspond to intermediate
extensions of local systems. See [HTT95, �3] for a detailed enough exposition.

1.2. De Rham complexes and RH-correspondence for Modrh(DX) and Db
rh(DX). Consider

the following resolution of ωX by locally free DX -modules

C• : [0→ DX → Ω1
X ⊗OX DX → · · ·ωX ⊗OX DX → ωX → 0]

with maps given by d(ω ⊗ P )
loc
= dw ⊗ P +

∑
i dti ∧ ω ⊗ ∂iP

Claim 1.16. The above resolution is �ltered exact, i.e.

Fk(C
•) : [0→ FkDX → Ω1

X ⊗OX Fk+1DX → · · ·ωX ⊗OX Fk+nDX → Fk+nωX → 0]

where FkωX is as it was de�ned in 1.7.

Indeed if P ∈ FkDX , ∂iP ∈ Fk+1DX and therefore F−nC
• = [ωX

'→ ωX ], then the claim follows
from the fact that grFk DX ' SkTX and the Koszul resolution

L• : [0→ OT ∗X ⊗ ∧nπ∗ΘX → · · · → OT ∗X ⊗ ∧0π∗ΘX → OT ∗XX ]

where X ' T ∗XX is the zero section of Γ(T ∗X,π∗Ω1
X). Since π : T ∗X → X is a�ne, we obtain an

acyclic complex which we tensor by ωX ,

[0→ grFDX → Ω1
X ⊗ grFDX · · · → ωX ⊗ grFDX → ωX ]

Therefore, by induction, FkC
• are exact for all k. This proves the claim.

De�nition 1.17 (deRham functor). The de Rham functor

DR : Db(DX)→ Db(CX)

is de�ned by sending M• 7→ ωX ⊗LDX M
•. Using the left resolution of ωX , one can then write

DR(M) = [0→M → Ω1
X ⊗OX M → · · ·ωX ⊗OX M → 0]

considered in degree −n to 0 with the morphisms given by

d(ω ⊗m) = dω ⊗m+
∑
i

dti ⊗ ∂im.

In terms of �ltration

Fk DR(M) = [0→ FkM → Ω1
X ⊗OX Fk+1M → · · ·ωX ⊗OX Fk+nM → 0]
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Theorem 1.18 (The Riemann-Hilbert Correspondence <Kashiwara (an), Mebkhout (an), Beilin-
son�Bernstein (alg), Brylinski (an ⇒ alg)>). Let X be a smooth algebraic variety. Then there is an
equivalence of categories

rat : Db
rh(DX)→ Db

c(CX)

given by the de Rham functor. Furthermore, if f : X → Y is a morphism of smooth varieties, the
de Rham functor is compatible with the functors f∗, f

∗, f!, f
!,Hom, ⊗ and hence in particular with

ψf and ϕf . Moreover, rat is an equivalence on Modrh(DX) identi�ed as a subcategory of Db
rh(DX)

and maps to the category of perverse sheaves, Perv(X) under this functor.

Example 1.19. (1) On a smooth variety X, OX corresponds to CX [n], whereas OX(∗D) cor-
responds to j∗CX\D.

(2) Any local system L[n] corresponds to L⊗C OX . When D is simple normal crossing j∗LU [n]
can be described using Deligne extensions and for more general D, in terms of the V -
�ltrations. j!∗ is very hard to describe in general and corresponds to simple regular holonomic
D-modules under the RH-correspondence.

(3) Let D be a reduced e�ective divisor on X and µ : X ′ → X be a log resolution of D ⊂ X and
E = µ−1(D)red is simple normal crossing, so that µ : X ′\E → X \D is an isomorphism, then
by proper base change of Abelian sheaves, µ∗j

′
∗CU [n] ' j∗CU [n] and hence µ+OX′(∗E) '

OX(∗D). I will describe the pushforward functor µ+ in the next section.

1.3. Direct images. Let f : X → Y be a morphism of smooth varieties. We will not talk about
the inverse image functor in great detail. However, the following object is of central importance:

f∗DX ' OX ⊗f−1OX f
−1DX .

This object has a right-f−1DX structure via the right multiplicand. A Left DX structure on the
transfer module is given by the tensor product operation, namely

θ · (ϕ⊗ P )
loc
=

∑
i

θ(yi ◦ ϕ)⊗ ∂iP + θ(ϕ)⊗ P

where (yi, ∂i) are local coordinates and derivations of Y . Let ι : X ↪→ Y be a closed immersion,
then choosing local coordinates (x1, · · · , xr, yr+1, · · · , yn) of Y and partials (∂1, · · · , ∂n), we obtain
locally

ι∗(DY ) ' C[x1, · · · , xr]⊗C[x1,··· ,yn] DY ' DX [∂r+1, · · · , ∂n].

Using this the naïve pushforward of a left D-module M is de�ned to be

f∗M ' f∗(ωX ⊗DX M ⊗DX f
∗DY )⊗OY ω

−1
Y

Note that ifM already was a right D-module, tensoring by the canonical sheaf would be unnecessary.
In that case we describe the DY action on f∗M locally as follows, Let (yi, ∂yi) denote the local
coordinates on Y . Then, for P ∈ DY , and m ∈M

(m⊗ P ) · ∂yi =
∑
j

∂xj (yi ◦ f)∂xjm⊗ P +m⊗ P∂yi .

To simplify notation denote,

DY←X := ωY ⊗OX f
∗DY ⊗f−1OY f

−1ω−1Y

and call this the transfer module. The right exact nature of tensor product and the left exact nature
of f∗ prohibits this operation to behave nicely. As an example of this bad behaviour note that (fg)∗
is not necessarily f∗g∗. This is an added reason to work in the derived category and consider the
derived push forward. De�ne f+ : Db(DX)→ Db(DY ) by

f+M
• := Rf∗(DY←X ⊗LDX M

•)

When f is proper, Saito [Sai88, �2.3] has de�ned a �ltered version of direct image between the
categories of �ltered coherent D-modules equipped with good �ltration, i.e. f+ : Db

c(FDX) →
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Db
c(FDY ) For the ease of writing down the �ltration on the pushforward we resort to right D-

modules for a moment. We additionally assume that f : X → Y is so that f+(M,F ) is strict as an
object in Db(FDY ), i.e. the di�erentials of the complex f+M satis�es, d(FpM

i) ' d(M i)∩ FpM i+1

This means that

Hi(Fkf+(M ;F ))→ Hif+(M ;F )

is injective for all integers i, p . Then the cohomologies of f+ are also �ltered D-modules. Saito's
de�nition of the �ltration on the direct image gives us a way to compute the Hodge �ltration on the
pushforward

FpHif+M ' Rif∗(Fk(M ⊗LDX f
∗DY ).

Caveat: This phenomenon is not true with any random choice of good �ltration on f+M . For
instance, for a birational morphism f : X ′ ↪→ X that are isomorphism outside a singular divisor
D ⊆ X and call E = f−1(D). Then if we endow OX′(∗E) with the Hodge �ltration, one can deduce
after the workshop that even though f+OX′(∗E) ' OX(∗D), endowing OX(∗D) with the good
�ltration FiOX(∗D) := FiDX · OX(D) is not the �ltration we obtain from via the pushforward.

If (M ;F ) underlies a (mixed) Hodge module and f is proper, it is known that Hif+ are (mixed)
Hodge modules and the induced �ltration serves as the Hodge �ltration. This is more involved and
constitutes a large part of [Sai88].

We now apply this knowledge of direct image functor to create moreD-modules out of the examples
we already discussed.

Example 1.20. (1) Let ι : D
loc
= (t = 0) → X be a smooth hypersurface in X. Let M be a

right D-module. Since

Fkι+M ' Riι∗(Fk(M ⊗LDX ι
∗DX)) ' ι∗Fk(M ⊗DD DD[∂t]) '

⊕
i+j=k

ι∗FiM ⊗ ∂jt .

And therefore Hiι+M = 0 for all i 6= 0.
(2) Let j : U ↪→ X be an open immersion so that X \ U = D, a divisor. Then Hij+OU = 0 for

all i 6= 0, moreover, j+OU ' OX(∗D). It is a good exercise to check that j∗CU is a perverse
sheaf and therefore it corresponds to a regular holonomic D-module.

(3) Let M = ωX with trivial �ltration. Using the left resolution of ωX we determine that

FkHif+ωX ' Rif∗(Fk DR(ωX))

Therefore, for k = −n, we obtain

F−nHif+ωX ' Rif∗ωX

2. Kashiwara-Malgrange V -filtrations

Having seen the statement of Riemann-Hilbert correspondence in the previous talk, I would like to
show the D-module side of the story of nearby and vanishing cycles using V -�ltration. This was the
primary motivation behind the de�nition. The de�nition is pretty technical, but once we walk past
the de�nitions and some crucial properties I would try to motivate its important by describing some
of its consequence in birational geometry. Besides, this will also come up in Mustaµ 's talk where
he will talk about V -�ltration interpretation of Hodge ideals. V -�ltration is de�ned with respect to
some closed subvariety Z ⊂ X of a smooth variety X. When we assume that Z is a divisor, we will
denote it by D.
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2.1. Z is smooth.

De�nition 2.1. The V -�ltration of DX along Z
loc
= (tr+1 = · · · = tn = 0) is a decreasing �ltration

indexed by rational numbers α and is locally de�ned by

V αDX =
⊕

|I|−|J |≥bαc

DZtI∂J

globally
=

{
P ∈ DX |P · IbαcZ ⊆ Ibαc+1

Z

}
.

(1)

In particular, V 0
ZDX ' C[t1, · · · , tn, ∂1, · · · , ∂r, tr+1∂r+1, · · · , tn∂n]/ ∼.

Note that V is essentially indexed by the integers. De�ning it for rational numbers will be
useful for the V -�ltration of a D-module may or may not be integrally indexed. Note also that
V 0
DDX/V 1

DDX ' DD[t∂t]. This has a DZ-module structure.

De�nition 2.2. The �ltration V along D, on a coherent D-moduleM ∈Modc(DX) is an exhaustive
decreasing Q-indexed �ltration of coherent V 0DX -submodules satisfying

• {V α}α is indexed discretely and V α−ε ' V α for 0 < ε� 1.
• V iDX · V αM ⊆ V α+iM . In particular, t · V αM ⊂ V α+1M with equality when α > 0. and
∂t · V αM ⊆ V α−1M .

• De�ning grαVM :=
V αM

V >αM
with V >αM := ∪β>αV βM , we have ∂tt− α : grαVM → grαVM is

nilpotent.

Remark 2.3. (1) The last condition is what makes V -�ltration unique [Kas83, Theorem 1] if it
exists.

(2) The second condition ensures that V iDX · V αM = V α+iM if i, α ≥ 0 and i, α ≤ 0. Indeed,
when i ≥ 0 t · V αM = V α+1M . For the other side, pick 0 < β � 1, then V iDX · V αM ⊆
V α+iM for i < 0. If equality does not hold, this results in an increasing chain of DD[t, t∂t]-
modules (Noetherian) which must stabilise and therefore V βM -generatesM over DX . De�ne
V ′α = V α if α ≥ β and V iDX · V α+iM for i such that β + 1 > α + i ≥ β otherwise. Then
by the uniqueness of V -�ltration we obtain the other equality.

(3) When α 6= 1, ∂t : grαV
'→ grα−1V and when α 6= 0, ∂t : grαV

'→ grα−1V are isomorphisms.

Example 2.4 (Non-characteristic embeddings). . Let D be a smooth hypersurface in X so that D
intersects the support of the characteristic variety of M transversely. Then:

(1) (M ;F ) is regular and quasi-unipotent along D.
(2) The V -�ltration on M is given by

V jM = OX(−jH) ·M
for j > 0 and M otherwise.

Corollary 2.5. Let u : M → N be a morphism of regular holonomic D-modules quasi-unipotent
along D. Then u is strict with respect to the respective V -�ltrations i.e. u(V α

DM) = u(M) ∩ V α
DN .

Corollary 2.6. If M is a coherent DX-module supported on D, M ' ι+gr
0
VM ' ι+ Ker(t : M →

M).

Proof. As OX -module, M ' i∗M0, therefore, M ' i∗M0 ⊗C C[∂t]. One can check by checking the

properties of the V -�ltration that V −jM '
⊕j

i=1M0 ⊗ ∂jt . In particular V jM = 0 if j > 0.
From the action of t on the pushforward described below in De�nition 2.9 we have, t(m0⊗1) = 0,

and hence M0 ' Ker(t : M →M) ' gr0VM . �

Corollary 2.7. Let u : M → N be a morphism of DX-modules such that u|U is an isomorphism,

where U = X \D. Then u : V αM
'→ V αN for all α > 0. In particular V >0M depends only on the

restriction of M to U .
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Proof. Since Keru and Coker(u), DX -modules, are supported along D, we know how its V -�ltration
looks like from the previous lemma. Hence the corollary. �

2.2. Nearby and Vanishing cycles. Since ∂tt− α acts nilpotently on grαVM , we have

∂t : grαVM
'→: grαVM

when α 6= 1 and

t : grαVM
'→: grαVM

when α 6= 0

Theorem 2.8 (Kashiwara-Malgrange, Saito). If M is regular holonomic and DR(M) has quasi-
unipotent monodromy along D, then V α

DM exists. Further we have the Jordan decomposition T =
TsTu of the monodromy T of ψfK and ϕfK. Denote

ψλK := Ker(Ts − λ : ψfK → ψfK)

We have isomorphisms

DRD(grαVM) =

{
ϕλK for all 0 ≤ α < 1

ψλK for all 0 < α ≤ 1

where λ = e2πiα and such that ∂tt− α identi�ed with log T .
Furthermore, the morphism between the unipotent nearby and the unipotent vanishing cycle func-

tors translates as

t = var : gr0VM → gr1VM

and

∂t = can : gr1VM → gr0VM

If M underlies a Hodge module so do the unipotent nearby and vanishing cycles.

2.3. D is not smooth. This can of course be done for Z, however our interest is only when Z is a
hypersurface.

De�nition 2.9. Let D = (f = 0) be a hypersurface on X (not necessarily smooth), let if : X ↪→
X ×C be the graph embedding. Then, for any D-module M the V -�ltration on Mf := if+M along
t = 0, determines the V -�ltration along M . In other words,

V αM := V α
t Mf ∩ (M ⊗ 1)

Here (if+M,F ) '
⊗k

i=0 FiM⊗∂
k−1
t and the actions of DX×C can remembers the graph embedding

as follows:

∂xi(m⊗ ∂it) = ∂xim⊗ ∂it − (∂xif)m⊗ ∂i+1
t ,

t · (m⊗ ∂it) = fm⊗ ∂it − im⊗ ∂i−1t ,

∂t · (m⊗ ∂it) = m⊗ ∂i+1
t .

Note that D = i−1f (X × 0) = (t ◦ if )−1(0) and M ' i∗fMf via the D-module pull back. Everything
we discussed above also work for these V -�ltration. It is a few more steps to check that the de�nition
does not depend on f .

The work of Budur�Mustaµ �Saito relates these to the so called multiplier ideals, another invariant
of singularities.
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2.3.1. Multiplier Ideals. Everything in this section can be done in general for subvarieties of any
dimension. Let D be an e�ective hypersurface of a smooth variety X. Let µ : Y → X be a log
resolution of D. Write KY = µ∗KX + E1 and µ∗D = D̃ + E2. Then

KY − µ∗KX − µ∗(cD) = E1 − cD̃ − cE2 =: F.

Then
J(cD) := µ∗OY (KY/X − bµ∗(cD))c) = µ∗OY (dF e).

Example: Cusp and its lct.

Theorem 2.10 ([BMS06]). For α > 0, V αOX = J((α − ε)D), where 0 < ε � 1 and the �ltration
V • of OX is taken along D.

Remark 2.11. As a consequence of this or directly from the de�nition multiplier ideals change
discretely i.e. there exists η1 < η2 < · · · ηk < 1 such that for all ηi ≤ c < ηi+1,

J(ηi+1D) ( J(cD) = J(ηiD).

Furthermore,
J((c+ 1)D) = J(cD)(−D).

Theorem 2.12 ([ELSV05]). Let D = (f = 0) be hypersurface of a smooth variety Cn. Let bf (s)

denote the minimal polynomial of the action of ∂tt on
V 0DX×C · (t− f)

V 1DX · (t− f)
considering f as function

on OX×0 (Existence of bf (s) follows from the work of Kashiwara). Let η be a jumping coe�cient of
f on Cn which is lying in the interval (0, 1], then η is a root of bf (s).

This polynomial can be de�ned more generally and are known as the Bernstein-Sato polynomials
or simply b-functions.
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