DECOMPOSITION THEOREM FOR CURVES

YAJNASENI DUTTA

The main goal of this talk is to complete Step 1 from the proof of Statement 1 of Lecture 8. In other words, establish the P(1,0) case of the decomposition theorem. We first recall the statement:

Theorem 1.1 [Sab05, Moc07]. Let X be a smooth projective curve and let $a: X \to \text{Spec } \mathbb{C}$ denote the structure map for the curve. Let $(\mathcal{T}, \mathcal{S})$ be a polarized regular pure twistor D-module on X of weight 0. Then, the push-forward $(\bigoplus_{i=-1}^{1} a_{+}\mathcal{T}, \mathcal{L}, a_{+}\mathcal{S})$ is a polarized graded Lefschetz twistor structure.

We refer to the previous lectures for the precise definitions of polarized regular pure twistor D-modules and their pushforwards. However we do briefly recall the following correspondence (see e.g. [Moc07, Theorem 20.1]). For simplicity, we restrict to the weight 0 case.

Theorem 1.2. There is a one-to-one correspondence between the variation of polarized pure twistor structures of weight 0 which are generically defined over X and the regular pure twistor D-modules of weight 0 whose strict support is X.

The correspondence goes via harmonic bundles since a variation of polarized pure twistor structures of weight 0 underlies a harmonic bundle $(E, \overline{\partial}_E, \theta, h)$ on $X := \mathbb{X} \setminus D$ for D a finite set of points (assume, only one point for simplicity). We let $\mathcal{X} := X \times \mathbb{C}_{\lambda}$ and $\mathscr{X} := \mathbb{X} \times \mathbb{C}_{\lambda}$ and p the respective projections to X (or \mathbb{X}). From this data, we obtain an $\mathcal{R}_{\mathcal{X}}$ -triple $(\mathcal{E}, \mathcal{E}, C_0)$. On its naïve algebraic extension bundle $\Box \mathcal{E}$ (i.e. roughly speaking the twistor incarnation of the algebraic extension of E over \mathbb{X}) we have a V-filtration $U_{\bullet}^{(\lambda_0)\Box}\mathcal{E}$ defined on $\Box \mathcal{E}|_{\mathscr{X}(\lambda_0,\epsilon_0)}$, where $\mathscr{X}(\lambda_0,\epsilon_0) := \mathbb{X} \times \Delta(\lambda_0,\epsilon_0)$ namely a slice of the product space over the disc $\Delta(\lambda_0,\epsilon_0)$ around $\lambda_0 \in \mathbb{C}_{\lambda}$. Define $\mathfrak{E}(\mathscr{X}(\lambda_0,\epsilon_0)) :=$ the $\mathcal{R}_{\mathscr{X}}$ -submodule of $\Box \mathcal{E}$ generated by $U_{<0}^{(\lambda_0)\Box}\mathcal{E}$. Then the glued $\mathcal{R}_{\mathscr{X}}$ -module gives rise to a polarized $\mathcal{R}_{\mathscr{X}}$ -triple ($(\mathfrak{E}, \mathfrak{E}, \mathfrak{C}), (\mathrm{Id}, \mathrm{Id})$) underlying a pure regular twistor D-module.

Conversely, given such a triple, generically on \mathbb{X} , namely for a Zariski open subset X the $\mathcal{R}_{\mathcal{X}}$ -triple $\mathcal{T}|_{\mathcal{X}}$ is a λ -deformed bundle of the harmonic bundle $(E, \overline{\partial}_E, \theta_E, h)$. The regularity implies tameness of this harmonic bundle.

Proof Sketch. For the proof of Theorem 1.1 we follow $[Moc07, \S20.2.2]$ and it relies on the Dolbeault lemma for a singular Hermitian line bundle due to Zucker. A different proof can be found in $[Sab05, \S6.2.b-6.2.f]$.

The proof goes via a series of quasi-isomorphisms leading up-to

$$\mathcal{H}^{i+\dim X}(\mathbb{R}a_*(\mathfrak{E}\otimes\Omega^{\bullet}_{\mathscr{X}})\simeq\mathrm{Harm}^i\otimes\mathcal{O}_{\mathbb{C}_{\lambda}},$$

where Harm^{i} is a finite dimensional vector space. Thus by definition the pushforward is a twistor structure of weight *i*. The Lefschetz map in this case concerns only i = 0 and looks like

$$\mathcal{L} \coloneqq a^0_+ \mathfrak{E} \to a^0_+ \mathfrak{E} \otimes \mathbb{T}(0)$$

where $\mathbb{T}(0)$ is the Tate twistor structure of weight 0.

Roughly speaking, the reason why such vector spaces Harm^{i} are independent of λ is they are generated by the kernel of the Laplace operator

$$D^{\lambda^*}D^{\lambda} + D^{\lambda}D^{\lambda^*} = (1+|\lambda|^2)\left((\overline{\partial}_E + \theta)^*(\overline{\partial}_E + \theta) + (\overline{\partial}_E + \theta)(\overline{\partial}_E + \theta)^*\right)$$

acting on certain finite dimensional space of global L^2 -sections. Here D^{λ} is the connection associated to E^{λ} .

²⁰²⁰ Mathematics Subject Classification. primary.

YAJNASENI DUTTA

The crux of the proof lies in constructing this series of quasi-isomorphisms. It relies on the classical Dolbeault lemma for \mathcal{C}^{∞} rank 1 flat bundle (V, ∇) on the disc. This is due to Zucker [Zuc79] who established a quasi-isomorphism between the naïve algebraic extension $\Box V$ of V on \mathbb{X} and the complex $\mathcal{L}^{\bullet}(V)_{(2)}$ of L^2 -sections of $V \otimes A_X^p$ with L^2 -derivatives [Zuc79, Theorem 6.2]. For all $\lambda \in \mathbb{C}_{\lambda}$, one can apply this construction to the bundles \mathscr{E}^{λ} associated to $\mathfrak{E}|_{\mathcal{X}}$ and extend these ideas to construct a complex $S(\mathscr{E} \otimes \Omega_{\mathscr{X}}^{\bullet,0})$ on \mathscr{X} whose fibres are certain λ -holomorphic sections of a sub-complex $\widetilde{\mathcal{L}}^{\bullet}(\mathcal{E}^{\lambda})_{(2)} \subseteq \mathcal{L}^{\bullet}(\mathcal{E}^{\lambda})_{(2)}$. This subcomplex is defined so that it is soft with respect to the global section functor and the *i*-th cohomology of the global section complex is a finite dimensional vector space Harm^{*i*} [Moc07, Lemma 20.23-24] and hence is independent of λ .

On the other hand, the relation between the complexes $a_*S(\mathcal{E} \otimes \Omega_{\mathscr{X}}^{\bullet,0})$ to $Ra_*(\mathfrak{E} \otimes \Omega_{\mathscr{X}}^{\bullet})$ is not so straightforward. To this end, one uses the V-filtration associated to $\Box_{\mathscr{E}}$ defined over a neighbourhood $\Delta(\lambda_0, \epsilon_0)$ and the pieces of the weight filtrations whose sections are L^2 in order to construct $\mathcal{Q}^{(\lambda_0),\bullet}$ on $\mathscr{X}(\lambda_0, \epsilon_0)$ for each $\lambda_0 \in \mathbb{C}_{\lambda}$. Using Zucker's norm estimates one shows that that $\mathcal{Q}^{(\lambda),\bullet}|_{\mathbb{X}\times\{\lambda_0\}}$ is quasi-isomorphic to $S(\mathcal{E} \otimes \Omega_{\mathscr{X}}^{\bullet,0})|_{\mathbb{X}\times\{\lambda_0\}}$. For a discussion on how L^2 -norm estimates on a harmonic bundle behaves with respect to the sections of parabolic filtrations, V-filtrations and the monodromy weight filtrations see Lecture 14. Since the cohomologies of the pushforwards of both complexes form coherent sheaves on the disc $\Delta(\lambda_0, \epsilon_0)$ and their fibres are already isomorphic, one can argue using the Nakayama lemma for graded rings to conclude

$$\mathcal{H}^{i}(Ra_{*}\mathcal{Q}^{(\lambda),\bullet}) \simeq \mathcal{H}^{i}(a_{*}S(\mathcal{E} \otimes \Omega_{\mathscr{X}}^{\bullet,0}))\big|_{\Delta(\lambda_{0},\epsilon_{0})} \simeq \operatorname{Harm}^{i} \otimes_{\mathbb{C}} \mathcal{O}_{\Delta(\lambda_{0},\epsilon_{0})}$$

This is [Moc07, Lemma 20.38]. The quasi-isomorphism between the complexes $\mathcal{Q}^{(\lambda),\bullet}$ and $\mathfrak{E} \otimes \Omega^{\bullet}_{\mathscr{X}}$ follows from the properties of the V-filtration [Moc07, Lemma 20.35] completing the proof.

References

- [Sab05] C. Sabbah, Polarizable twistor D-modules, Astérisque, vol. 300, Société Mathématique de France, Paris, 2005.
- [Moc07] T. Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor Dmodules, vol. 185, Mem. Amer. Math. Soc., no. 869-870, American Mathematical Society, Providence, R.I., 2007.
- [Zuc79] S. Zucker, Hodge theory with degenerating coefficients: L^2 ohomology in the Poincaré metric, Ann. of Math. 109 (1979), p. 415–476.