Some thoughts on Bell’s theorem & on Bell-denialism,
Zoom.us talk at QM foundations – nature of time seminar, J U Krakow, 5:00 p.m. Warsaw time, April 6, 2020.
Krakow talk, continued,
Zoom.us talk at QM foundations – nature of time seminar, J U Krakow, 5:00 p.m. Warsaw time, April 13, 2020.
Blog instalment "Warsaw"
Yet Another Statistical Analysis of the data of the (2015) "Loophole-Free" Bell-CHSH Experiments,
Vaxjo "QIRIF" conference, June 2019.
Lecture course "The Role of Statistical Science
in Quantum Information", given at Fudan University, Shanghai,
and Peking University, Beijing, September/October 2019.
Illustrations: the satellite Micius was used in Jianwei Pan's
Earth (Shanghai) - Space (Micius) - Earth (Beijing) quantum key-distribution
experiment in 2017. Here are a links to directories containing materials for the courses at
Fudan University and at Peking University.
I will continue to organise this material and perhaps write a small monograph in
"lecture notes" style.
Foraging for wild mushrooms.
The intersection axiom of conditional independence.
Dutch New Herring, correlation vs causation, good scientific research practices.
It is getting hard to find the two Tilburg University press releases
and economist Ben Vollaard's two "AD Haringtest" papers on internet, so here are links:
AD Haringtest paper July 2017,
AD Haringtest update November 2017,
Press Release July 2017,
Press Release November 2017.
I will put the links into the slides, as well as update with my latest research findings
on time-dependence through self-selection of participants and panel: the "samples" are
not random samples.
I had a conflict of interest - I was asked in 2018 for my scientific opinion on the
original papers by one of the parties in the ensuing legal (scientific integrity) case.
The original documents are all in Dutch. For three years, Dr. Vollaard declined to
share the data-sets which he analysed. The Dutch national institution for dealing with
alleged failures of scientific integrity (LOWI) has in October 2019 (advice no. 23)
concluded its work on the case. The conclusion can be found (anonymised) on their website.
LOWI writes "The LOWI would applaud it if a scientific debate could take place
between all parties involved, and experts". They also write "It is clear that mistakes
were made in the press release which presented the results of this research
to the public". The data-sets can at last be downloaded from Dr. Vollaard's personal
webpage. Unfortunately they are in the proprietary format of the commercial "Stata"
package, which I do not wish to pay for. Fortunately, Stata data files can now be fairly
easily read into R and converted to non-proprietary formats.
I can email a csv file to anyone interested.
26 August, 2015. They did it at last! A first reaction.
What did they do, exactly, and what was my (modest) scientific
contribution.
Illustrations: Figure 7 from "Bertlmann's socks and the nature of
reality", Bell (1981); and the set-up in Delft, 2015.
See "Bell games" for a comparison of the standard Bell
experiment and the Delft "event-ready detectors" version built on top of
entanglement swapping.
Interview with John Bell (OMNI, 1988)
Quantum Love (Delft YouTube video
I must admit to getting a lot of fun, and scientific stimulation, from
interacting with Bell-deniers. I apologise for the names I use. It can be argued that
such derogatory terms do not belong in civilised public scientific conversation,
but unfortunately they are common in private conversation,
which of course is also part of science. I feel that those who suspect that such labels
are being applied to them should proudly wear them
as badges of honour. As Gandhi said: first they ignore you, then they fight you,
then you win. When they call you names, it means you are somehow a threat to them.
It might mean that they are losing the argument.
In fact, I consider this an important part of science-outreach:
how can we explain Bell's theorem to the general public?
Well, a good start is to try to understand the mentality of very smart and
well-educated people who believe that Bell made some fundamental but simple
mistake, that they have exposed that mistake, and that there is an establishment
conspiracy to suppress their findings. I believe that Bell's argument is very simple
and absolutely correct, but apparently it is hard to get across.
Part of the problem is, I believe, the fact that it is impossible to
"understand" quantum mechanics, in the sense that we usually use the word
"understand". In fact, that is exactly the content of Bell's theorem. A "local realistic"
interpretation of quantum mechanics is precisely:
an interpretation that we can understand. We can get used to the mathematics, we can
even gain intuition about the the *mathematical world* which the conventional rules of
quantum mechanics describes. But those rules will never make sense as a picture of how
the world actually operates.
The images below come from a new version of a paper I wrote a few years ago entitled
"The triangle wave versus the cosine".
The paper studies the "spinning coloured disk model" of the so-called EPR-B correlations.
It is about the class of all correlation functions
which classical physics can generate, in a situation when we expect certain
symmetries and "certainty relations". The paper describes many open problems in classical
probability theory, some inspired by looking at computer simulations.
Here's my latest work in this field - a response to a
recent paper by Joy Christian
published in the journal Royal Society Open Science. I have submitted my comment
to the same journal. And here is a draft of a new paper
on Steve Gull's sketch of a proof
of Bell's theorem using Fourier analysis. Here are
slides of a talk on same subject. Here's
something on Joy Christian's recent work in IEEE Access.
I was asked by defense lawyers
working on behalf of Ben Geen, to analyse statistical data of
occurrence of respiratory arrest in accident and emergency at numerous
UK hospitals
(draft R html notebook,
draft report).
After I had done my statistical work, I dug more deeply into
other aspects of the case. The more I discovered, the more I was shocked that
this case was a carbon copy of our own (Netherlands) case of Lucia de Berk.
However there are three important differences. (1) The UK media did an even more
perfect hatchet job on him than the Dutch media did on Lucia. (2) The Criminal Cases
Review Commission is understaffed and underfunded, and takes a formalistic (legalist)
view: give us a "new legal fact" or we will do nothing. (3) There is no Metta de Noo:
no medical whistleblower. In the Lucia case, Metta de Noo fought for 7 years to get
Lucia the fair (re-) trial which Lucia deserved. Metta is a senior medical expert,
well connected in society, and she had inside information about the case.
In the Lucia case, what was needed (and finally happened at the re-trial in Arnhem,
2009--2010) was an independent and thorough re-appraisal of
existing (medical) evidence.
Ben has by now sat out about 12 years of his 30 year sentence.
Because he claims to be innocent
he is denied any "good prisoner" benefits and
will also never get parole or early release.
A small supporters' group set up a website
Justice for Ben Geen.
Some UK journalists, at "The Times" no less,
briefly showed some interest:
Nurse 'was victim of Shipman hysteria'
For a long time nothing has happened but right now, things are moving again.
Some years ago
I offered a prize for the person who remasters the logo of the
VVS: the Dutch statistical society
(top image) in the most beautiful postscript. An exercise in
curve fitting with splines, perhaps?
Better still would be a mathematical/statistical story of the curves
themselves, providing an elegant parametric family which reproduces the
whole logo. Finally I decided to do it myself, and I think I am getting
close with this perspective image of some very simple 3-dimensional
curves, with indeed a statistical story behind them
(bottom).
The R script which draws this logo can be found here.
It should generate a rotatable 3-d image...
See the slides of my Amst-R-dam R users group meetup 2011 (updated 2012) talk R-fun: part 1, the VVS logo in R; part 2, R on an iDevice. For some old news on "R on an iDevice" see the 2014 talk R on an iDevice, given at a Data Science NL meetup.
For more R fun: I am nowadays an enthusiastic user of RStudio and RPubs. You can find all kinds of R work by me at my RPubs site.
VVS stands for "Vereniging voor Statistiek". SMS stands for "Section Mathematical Statistics". The VVS also has an OR section, hence the common alternative name VVS-OR. And nowadays the society has a nice new logo, though it doesn't look to me so much like anything to do with statistics
Spring 2016
The master specialization Statistical
Science for the Life and Behavioural Sciences is a collaboration of our group with
others in biomedical statistics, biostatistics, and psychometrics.
Here you can find links to various courses I have given in the past, in particular quantum statistics, statistics for astronomers, HOVO courses (adult education courses, in Dutch) on use and abuse of statistics, forensic science (Hovo-criminalistiek-statistiek-1, Hovo-criminalistiek-statistiek-2, Hovo-criminalistiek-statistiek-3).
WARNING: Richard P. Feynmann said that attempting to understand quantum mechanics causes you to fall into a black hole, never to be heard from again
The past is particles, the future is a wave
First Leiden inaugural lecture
Just for fun: things you wish your computer had (including the classic clippy's suicide note)
A few years ago I discovered the enormous disussion on the Monty Hall (three doors) problem on wikipedia. My published writings on the subject are, in order of writing (and in order of insightfulness)
an invited contribution to Springer's International Encyclopaedia of Statistical Science, 2010, a paper in Statistica Neerlandica, 2011, and contributions to the peer reviewed internet encyclopedias citizendium.org and StatProb.com. In this manuscript you will find an expanded version the most recent published work, the StatProb.com article.
Suppose the car is hidden behind one of the three
doors by a fair randomization. The contestant chooses Door 1. Monty
Hall, for reasons best known to himself, opens Door 3 revealing a goat.
We know that whatever probability mechanism is used by Monty for this
purpose, the conditional probability that switching will give the car
is at least 1/2. We know that the unconditional probability (ie not
conditioning on the door chosen by the contestant, nor the door opened
by Monty) is 2/3.
Always switching gives the car with unconditional probability 2/3,
always staying gives it with probability 1/3. Nobody in their right
mind could imagine that there could exist some mixed strategy
(sometimes staying, sometimes switching, perhaps with the help of some
randomization device, and all depending on which doors were chosen and
opened) which would give you a better overall (ie unconditional) chance
than 2/3 of getting the car.
This is true, of course. In fact, from the law of total
probability, proving the optimality of (unconditional) 2/3 by always
switching is equivalent to proving that all the six conditional
probabilities of winning by switching, given door chosen and door
opened, are at least 1/2. We can prove the latter using Bayes' theorem,
or, better I think, using Bayes' rule in a smart way. However both
these proofs require some sophistication.
Is there an elementary proof? A short proof using words and ideas, no computations.
Yes there is, and I learnt it from Sasha Gnedin.
However you play there's always a door such that if the car is
there, you'll miss it. Consider first deterministic strategies. We only
need consider two cases: for "always switching" it's the door you
initially chose, and for "sometimes switching" it's a door you won't
switch to if you get the option. (If you never switch there are two
such doors: just choose one). Ordinary readers won't be interested in
randomized strategies but anyone who wants to include these will
understand how to do it (now the door where you'ld certainly miss a car
has to be a random door, determined by the same coin tosses used to
implement the random choices in your own strategy).
Note that the door which has been indicated in this way does not
depend on where
the car is actually hidden or how the host plays: it just depends on
how the player plays. Therefore if the car is initially equally likely
to be behind any of the three doors, we run a 1/3 chance that the car
will be missed because it's behind this door. Therefore the 2/3
success-chance of always switching can't be beaten.
I would call this a proof by coupling.
The mathematical heart of all exchange paradoxes is encapsulated in a little theorem which I call my "unified solution". It seems to be new.
Statistical ethics of the probiotica trial.
This randomized triple-blind clinical trial of probiotics treatment
for patients with predicted severe acute pancreatitis ended in controversy,
when it transpired at the conclusion of the trial in
December 2007, that rather more patients had died on the treatment
arm of the trial than on the control arm.
It seemed strange that the trial had not been terminated at the
interim analysis. The researchers were using a a stopping rule
of S.M. Snapinn, by which the trial would
to be terminated early either if it were almost certain that the
final result would be a significant positive effect of probiotica,
or if it were almost certain that the final result would be insignificant.
Here is a paper by myself, to appear
in Statistica Neerlandica,
and, in Dutch, a short article by
probabilist Ronald Meester and microbiologist Pieter ter Steeg which
appeared in the newspaper Trouw and an
open letter
to Meester and ter Steeg
by biostatisticians Hans van Houwelingen and Theo Stijnen.
Also in Dutch there are a series of interviews (early 2008)
on the current affairs chat show
'Pauw and Witteman':
chairman of the hospital board Geert Blijham, 23 January;
patient Jochim Vromans, 24 Jaunary;
probiotics expert Eric Claassen, 25 January;
leader of the research team Hein Gooszen, 14 February.
Later we obtained the data at the time of the interim analysis.
It was given to journalists at a press conference on Feb. 13 2008,
but never released to interested scientists.
It turned out that the probiotica trial was
not terminated for futility (following the Snapinn stopping
rule) at the half way interim analysis,
through a mis-reading of output of the SPSS package,
which, without consulting the user,
always reports the smaller p-value of the
two one-sided Fisher's exact tests for
equality of two binomial probabilities. Proper application of their
own stopping rule would have led to early termination of the trial,
since according to the criteria set in advance,
there was no chance any more that it would result in a positive
result for the probiotica treatment. The trial
was de facto continued because there was a good chance that it
would finally result in a negative result for probiotica.
Here are slides
of my talk careless statistics costs lives
on the subject.
Mathematical Centre (Amsterdam) publications are now available on internet.
Here are two early works which had quite some impact, including
the reprint of my 1979 PhD thesis:
R.D. Gill (1980),
Censoring
and Stochastic Integrals, MC Tract 124.
R.D. Gill (1983),
The
sieve method as an alternative to dollar-unit
sampling: the mathematical background, Report SN 12
Another useful link is to my
Saint Flour lectures on survival analysis.
Product-integrals are to
products, as integrals are to sums. Though they have been around for
more than a hundred years, they never became part of the standard
toolbox, possibly because no-one invented the right mathematical symbol
for them. I made a try quite some years ago, though they still have not
caught on yet. With the crucial help of JC Loredo, my efforts resulted
in
prodint.zip, files for getting beautiful
\prodi and \Prodi and \PRODI symbols in your LaTeX, and Loredo.ttf,
a TrueType font for ordinary word processing. It is not that difficult
these days to get new fonts into your latex, see for instance TUG's
font installation instructions.