Teleportation into quantum information

Or: elements of quantum information Richard Gill

Lecture hour 1 my short course

on Quantum Information and Statistical Science.
Lecture/hour 0 was the "warm up" on the Delft Bell experiment
Now we do a crash course on the Hilbert space stuff...
In **Lecture hour 2** we'll do examples.

Don't worry, we stick to finite dimensions and finite number of outcomes. The Hilbert space is \mathbb{C}^d . Often, d = 2. Or $d = 2^N$ (N qubits)

Baby quantum information

(more precisely: Kindergarten)

- Pure states, state vectors
- Projective (simple/projector-valued) measurements
- Entanglement
- Unitary evolution

Toy quantum information

(more precisely: primary school)

- Mixed states and density matrices
- POVM's (generalised measurements)
- Quantum instruments
- Kraus representation and the Kraus theorems

[After kindergarten and primary school, comes high school I will call it: "QI for young adults, or if you prefer "grown-ups". After that there are higher levels still...]

Special case: the qubit

 Two-dimensional Hilbert space, and tensor products of many copies! All (nearly all) of quantum computing, quantum cryptography, quantum information ...

Pure state

- A d-dimensional quantum state is represented by a unit length complex vector, thought of as a column vector (i.e., a d ×1 matrix)
- We may write ψ , or $|\psi>$
- Denote complex conjugate and transpose with a star (physicists use a dagger)
- We may write ψ^* or $<\psi$
- $<\psi|\psi>=1$
- $|\psi\rangle\langle\psi|$ is a $d\times d$ matrix, and it's the orthogonal projector onto the one-dimensional space spanned by $|\psi\rangle$
- As we'll see, part of the representation of the state is redundant. It's enough to know $|\psi\rangle\langle\psi|$

Observables

- Suppose A is a self-adjoint matrix, i.e., $A^* = A$
- A has real eigenvalues and one can find an orthonormal basis of eigenvectors.
- One can write $A = \Sigma_i a_i |\phi_i\rangle \langle \phi_i|$ where the a_i are the eigenvalues, real, (the labelling is not unique), and the ϕ_i are the eigenvectors (may not be unique)
- I like to write $A = \Sigma_a a \operatorname{Proj}[A = a]$ where the a are the distinct eigenvalues, [A = a] is the eigenspace belonging to eigenvalue a, and $\operatorname{Proj}[A = a]$ projects onto that eigenspace.

Measurement: Born's law

- When the system is in state ψ and we measure the observable A, we observe one of the eigenvalues a. The state "collapses" to the projection of ψ onto the eigenspace corresponding to that eigenvalue, $\text{Proj}[A = a] \psi$ (divided by its length). The probability of seeing value a is the squared length: $||\text{Proj}[A = a] \psi||^2$
- By Pythagoras, $sum_a \|Proj[A = a] \psi\|^2 = 1$
- This generalisation of the Born law is called the von Neumann-Lüders projection postulate
- One can call the measurement itself a "simple measurement" or a "projector-valued measurement"

Unitary evolution

- Undisturbed, the state evolves according to Schrödinger's equation
- i $\hbar \, d/dt \, \psi = H \, \psi$ for some "Hamiltonian" H

Take units s.t. "reduced Planck's constant" $\hbar = h/2\pi = 1$

- The Hamiltonian is a self-adjoint operator
- The solution of Schrödinger's equation is $\psi(t) = \exp(-i H t) \psi(0)$
- $U = \exp(-i H t)$ is a unitary operator, i.e. $U U^* = U^*U = Id$

Interaction between several systems

- If two systems of dimension d and d are interacting then they form a joint system of dimension $d \times d'$
- The Hilbert space of the joint system is the tensor product of the Hilbert spaces of the component systems
- This means that if ϕ_i and ψ_i are state vectors of the two subsystems, and c_i are complex numbers, not all zero, then Σ_i c_i ϕ_i \otimes ψ_i , normalised to have length one, is a (possible) state vector of the joint system

Entanglement

 Initially completely separate component systems can evolve into entangled systems of the joint state through time evolution with a Hamiltonian (or equivalently, a unitary) which is not itself of tensor product form.

Randomisation

- We already saw that quantum measurement generates randomness
- We can think of *classical* randomness as a pure ingredient of quantum mechanics in itself – toss a coin, toss dice, shuffle cards... and then do something dependent on the outcome of the chance experiment

Building blocks for a general picture

 Measurement according to projection postulate, bringing the system of interest into interaction with an "ancillary" (auxiliary) system in fixed state, unitary evolution, and classical randomisation, generate a vast range of ways in which a quantum system can be transformed while in the process generating classical information ("measurement results") which aren't necessarily "observed" at all.

Mixed states, density matrices

- A density matrix is a non-negative self-adjoint matrix ρ of trace 1
- Such a matrix can be written (not necessarily uniquely) as $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$
- The p_i are nonnegative and add to 1

- Suppose we **prepare** a quantum system by creating it in pure state $|\psi_i\rangle$ with **probability** p_i
- We call this a "system in a mixed state"

Theorem: density matrix $\rho = \Sigma_i p_i |\psi_i\rangle \langle \psi_i|$ is "the state" of the mixture

- The "state" of a physical system is the catalogue of all joint probability distributions of measurement results, given all collections of "generalised" measurements which can be performed on it
- In our case, a generalised measurement is the operation of combining any number of times: entanglement with ancillas, unitary evolution, randomization, projective measurements ...

Partial trace, subsystems

 Theorem: the state of a component of a larger system in a general entangled, mixed, state, is the partial trace of the density matrix of the joint system

Generalised measurements

- A generalised measurement is determined by a collection of self-adjoint non-negative matrices M_i which add to the identity; and an associated distinct outcome value x_i for each component
- The probability of getting outcome x_i is trace(ρM_i)

Kraus matrices; instrument

- Suppose we are given matrices A_{ij} and distinct outcome values x_i , satisfying $\Sigma_{ij} A_{ij}^* A_{ij} = \text{Id}$.
- Consider a *transformation with observation* of a quantum system initially in state ρ : the system is transformed into the state $\Sigma_j A_{ij} \rho A_{ij}^*$ / trace($\Sigma_j A_{ij} \rho A_{ij}^*$) (depending on i) and one observes outcome x_i , with probability Σ_j trace($A_{ij} \rho A_{ij}^*$)
- The associated <u>instrument</u> is the mapping from density matrices ρ to the combined quantum-classical state
 (Σ_j A_{ij} ρ A_{ij}*: i ∈ 𝔇), with classical outcome space (x_i: i ∈ 𝔇)

Theorem: Kraus representation

- Every <u>totally</u> positive, normalised, linear transformation $(\rho \mapsto (\tau_i : i \in \mathcal{J}))$ along with an outcome space $(x_i : i \in \mathcal{J})$ defines an instrument with a Kraus representation
- Every combination of entanglement with ancillary systems, unitary evolution, measurement by simple measurements on component sub-systems, classical randomisation using random measurement outcomes of earlier measurement ... results in a <u>totally</u> positive, normalised, linear transformation of the density matrix

Church of the larger Hilbert space

 Every instrument, every measurement, every state transformation can be represented by entanglement with a system in a fixed state in an ancillary Hilbert space, a unitary evolution of the joint system, measurement of the ancilla, and then discarding the ancilla.

Some mysteries

- If you create a mixed state and "lose" the information of how you did it, it can never be determined again, *how* you created the state.
- For instance, the completely mixed state Identity/ dimension, can be created by picking *any* orthonormal basis and then picking one of the elements of the basis as state vector completely at random. Yet there is no way to detect, how it was created