leleportation into
guantum information

Or: elements of qguantum information
Richard Gill

Lecture hour 1 my short course

on Quantum Information and Statistical Science.
Lecture/hour O was the “warm up” on the Deltt Bell experiment
Now we do a crash course on the Hilbert space stutft...
In Lecture hour 2 we’'ll do examples.

Don’t worry, we stick to finite dimensions and finite number of outcomes.
The Hilbert space is €C4. Often, d = 2.
Or d = 2N (N qubits)



Baby guantum information

(more precisely: Kindergarten)

* Pure states, state vectors
* Projective (simple/projector-valued) measurements
* Entanglement

* Unitary evolution



Toy quantum information

(more precisely: primary school)

* Mixed states and density matrices
* POVM’s (generalised measurements)
* Quantum instruments

* Kraus representation and the Kraus theorems

[After kindergarten and primary school, comes high school
| will call it: “QI for young adults, or if you prefer “grown-ups”.
After that there are higher levels still...]




Special case: the gubit

* [wo-dimensional Hilbert space, and tensor
products of many copies! All (nearly all) of
guantum computing, quantum cryptography,
guantum information ...




Pure state

A d-dimensional quantum state is represented by a unit length complex vector,
thought of as a column vector (i.e., a d x1 matrix)

We may write y, or |y>

Denote complex conjugate and transpose with a star (physicists use a dagger)
We may write y" or <y

<yly> =1

lw><wl is a d x d matrix, and it’s the orthogonal projector onto the one-
dimensional space spanned by |y>

As we'll see, part of the representation of the state is redundant. It's enough to
know |y><y



Observables

Suppose A is a self-adjoint matrix, i.e., A" = A

A has real eigenvalues and one can find an orthonormal
basis of eigenvectors.

One can write A = % ai |¢pi><¢| where the a;are the

eigenvalues, real, (the labelling is not unique), and the ¢;are
the eigenvectors (may not be unigue)

| like to write A = X5 a Proj[A = a] where the a are the

distinct eigenvalues, [A = a] is the eigenspace belonging to
eigenvalue a, and Proj| A = a] projects onto that eigenspace.



Vlieasurement: Born's law

When the system is Iin state yw and we measure the observable A,

we observe one of the eigenvalues a. The state “collapses” to the
projection of yw onto the eigenspace corresponding to that

eigenvalue, Proj[A = a] yw (divided by its length). The probability of
seeing value a is the squared length: ||Proj[A = a] y/||?

By Pythagoras, suma ||Proj[A = a] yl|2 = 1

This generalisation of the Born law is called the
von Neumann-LUders projection postulate

One can call the measurement itself a “simple
measurement” or a “projector-valued measurement”




Unitary evolution

Undisturbed, the state evolves according to Schrddinger’s
equation

| hd/dty = Hy for some “Hamiltonian” H
Take units s.t. “reduced Planck’s constant” h= h/2r = 1

The Hamiltonian is a selt-adjoint operator

The solution of Schrodinger’s equation is w(t) = exp(- 1 H ) y(0)

U= exp(-1 H1) is aunitary operator, i.e. UU = UU=Id



INnteraction between several
systems

* |t two systems of dimension d and d are interacting
then they form a joint system of dimension d x d”’

* The Hilbert space of the joint system is the tensor
product of the Hilbert spaces of the component
systems

e [his means that if ¢; and y; are state vectors of the

two subsystems, and ¢;are complex numbers, not
all zero, then % ci¢pi ® yi, normalised to have length

one, Is a (possible) state vector of the joint system



Entanglement

* |nitially completely separate component systems
can evolve into entangled systems of the joint state
through time evolution with a Hamiltonian (or
equivalently, a unitary) which is not itself of tensor

oroduct form.



Randomisation

* We already saw that

guantum measurement

generates randomness

* We can think of *classical® randomness as a pure

ingredient of quantu

coin, toss dice, shuff

something depende
chance experiment

M mechanics In itself — toss a
le cards... and then do

Nt on the outcome of the



Building blocks for a general
picture

* Measurement according to projection postulate,
bringing the system of interest into interaction with
an “ancillary” (auxiliary) system in fixed state,
unitary evolution, and classical randomisation,
generate a vast range of ways in which a guantum
system can be transformed while in the process
generating classical information (“measurement
results”) which aren’t necessarily “observed” at all.




Mixed states, density
matrices

A density matrix is a non-negative self-adjoint matrix p of trace 1

Such a matrix can be written (not necessarily uniquely) as
p=2ipilyi><yi

The pjare nonnegative and add to 1

SUppoOse we prepare a guantum system by creating it in pure
state |yi> with probability p;

We call this a “system In a mixed state”



Theorem: density matrix p = 2 pi |wi><yj
IS “the state” of the mixture

* [he “state” of a physical system is the catalogue of
all joint probability distributions of measurement
results, given all collections of “generalised”
measurements which can be performed on it

* |n our case, a generalised measurement Is the
operation of combining any number of times:
entanglement with ancillas, unitary evolution,
randomization, projective measurements ...



Partial trace, subsystems

* Theorem: the state of a component of a larger
system in a general entangled, mixed, state, is the
partial trace of the density matrix of the joint system



(Generalised measurements

* A generalised measurement is determined by a
collection of self-adjoint non-negative matrices M,
which add to the identity; and an associated
distinct outcome value x; for each component

« The probability of getting outcome x; is trace(p M)



Kraus matrices: instrument

e Suppose we are given matrices A;and distinct outcome
Va|ueS Xi, SatISfyIﬂg Z/j A/'j* A/j — |d

e Consider a transformation with observation of a quantum
system initially in state p: the system is transformed into the

state X Aj p Aj [ trace(2; Aij p Aj") (depending on /) and
one observes outcome x;, with probability 2 trace(Aij p Ai)

e The associated instrument is the mapping from density
matrices p to the combined gquantum-classical state

(2 Aijp Aif 1€ 4), with classical outcome space (x;: i € %)



Theorem: Kraus
representation

o Every fotally positive, normalised, linear
transformation (p — (zi: 1 € 4)) along with an

outcome space (x;: [ € 4) defines an instrument with
a Kraus representation

* Every combination of entanglement with ancillary
systems, unitary evolution, measurement by simple
measurements on component sub-systems, classical
randomisation using random measurement outcomes
of earlier measurement ... results in a totally positive,
normalised, linear transformation of the density matrix



Church of the larger Hilbert
space

* Every instrument, every measurement, every state
transformation can be represented by
entanglement with a system in a fixed state in an
ancillary Hilbert space, a unitary evolution of the
joint system, measurement of the ancilla, and then

discarding the ancilla.

Mathematically: this is called “dilation”, and the proof follows from the Naimark theorem



Some mysteries

* |f you create a mixed state and “lose” the
information of how you did i, it can never be
determined again, *how™ you created the state.

* Forinstance, the completely mixed state |dentity/
dimension, can be created by picking *any®
orthonormal basis and then picking one of the
elements of the basis as state vector completely at
random. Yet there i1s no way to detect, how it was
created




