leleportation Into
guantum information

Or: elements of quantum information
Richard Gill

Lecture hour 2 of my short course

on Quantum Information and Statistical Science.
Lecture/hour 1 was the theory part of a crash course on the Hilbert space stuff...

Don’t worry, we stick to finite dimensions and finite number of outcomes.
The Hilbert space is Cd. Often, d = 2.
Or d = 2N (N cubits)



The qubit and the Bloch sphere
(actually: the Block ball)

* |f the Hilbert space has dimension 2 we speak of a qubit. The
“natural” basis of €2, consists of the transposes of the row
vectors (1 0), and (0 1). These usually are identified in bra-ket
notation using descriptive names or labels:

* |0>, [1> (“computational basis”)
o |+Vo>, |-Vo> (“spin 2 system”)
* |"ground state”>, |"first excited state”>

* |"horizontal”>, |"vertical”> (polarization)

* |"up”>, ["down”> (“spin of one electron”)



Spin (Bloch sphere)
Polarisation (Poincaré sphere)

* Spin might be in any direction in real 3d space
e “Up” and “down” are opposite

* Polarisation might be in any “orientation” in space,
perpendicular to the direction of flight of the photon
(An orientation is an undirected direction)

* “horizontal” and “vertical” are opposite

 There is also “circular” (clockwise or anti-clockwise)
versus “linear” polarization



Unit vector in €C2

* Every unit vector in €2 can be written as
a |[O> + f|1> where |a|"2 + |72 = 1

e Since we can multiply by any complex number of
absolute value 1 and still be describing the same

state, we may as well take a to be real



Given an orthonormal basis, any pure state |1)) of a two-level quantum system can be written as a superposition of the basis vectors |0)
and |1> where the coefficient or amount of each basis vector is a complex number. Since only the relative phase between the coefficients
of the two basis vectors has any physical meaning, we can take the coefficient of |0) to be real and non-negative.

We also know from quantum mechanics that the total probability of the system has to be one: (1)|)) = 1, or equivalently || |¢) || = 1.
Given this constraint, we can write |1,b> using the following representation:

) = cos(0/2)|0) + € sin(8/2)|1) = cos(0/2)|0) + (cos ¢ + isin¢) sin(6/2)|1), where 0 < @ < Tand0 < ¢ < 2.

Except in the case where |1) is one of the ket vectors (see Bra-ket notation) |0) or |1), the representation is unique. The parameters 6
and ¢, re-interpreted in spherical coordinates as respectively the colatitude with respect to the z-axis and the longitude with respect to the
x-axis, specify a point

a = (sin @ cos ¢, sinfsin ¢, cosh) = (u, v, w)
on the unit sphere in R3.

For mixed states, one considers the density operator. Any two-dimensional density operator p can be expanded using the identity / and the
Hermitian, traceless Pauli matrices 7

_1(I+a3)_110+a_x01+a_y0—z‘ La (10
P=73 “2\0 1 2 \1 0 2 \i 0 2 \o -1/

where @ € R? is called the Bloch vector.

It is this vector that indicates the point within the sphere that corresponds to a given mixed state. Specifically, as a basic feature of the Pauli
1 S S

vector, the eigenvalues of p are 5 (1 & |al). Density operators must be positive-semidefinite, so we conclude that |a| < 1. For pure

states, we must then have

1
(o) = 5 (1+0a) =1 & fdl=1,

in accordance with the above.

As a consequence, the surface of the Bloch sphere represents all the pure states of a two-dimensional quantum system, whereas the
interior corresponds to all the mixed states.






Bloch sphere
[should be called “Bloch ball”]

The density matrix is a point *in* the ball

Pure states are points on the surface of the ball

Unitary evolutions are rotations of the ball or a reflection of the ball about a plane
through the origin

Two opposite points on the sphere correspond to orthogonal state vectors, hence
to a basis of €2

Every observable corresponds to a direction through the sphere

Projective measurement involves projection onto a direction through the centre of
the sphere

The probabilities of the outcomes are proportional to the lengths of the two line
segments (order switched!) into which the diameter is broken by the projection of
the state onto the diameter.



Polincare sphere

(Polarization: Stokes parameters, ...)

right-hand circular

right-handed

lincar }

left-handed

left-hand circular



lTeleportation

Suppose we have a state « O + g 1 and an entangled state 00 + 11

Altogether, we have « 000 + « 011 + 100 + g 111

The first component is the target.

Rewrite (ignoring normalisation constants) as 00 O + 01 a1 + 10 O + 11 g1
= (00 + 11) a0 + (01 + 10) a1 + (10 + 01) SO + (11 + 00) p1
+(00-11) a0 + (01 -10) @1 + (10-01) O + (11 - 00) p1

=00+ 11) (a0 + p1) + (OO0 - 11) (a0 - p1) +(01 +10) (a1 + pO) + (01 - 10) (a1 - pO)



Now measure first two qubits in the "Bell basis”
00 +/- 11,01 +/- 10
(four orthogonal vectors, same length, in €2 ® €2

* [he third qubit, completely at random, becomes
one of the four statesa 0 +/~ pl1anda 1 +/- 0O

e Alice transmits *which* of her four she found, to Bob
(two classical bits of communication)

e He now knows which of his four states he has, and
knows which unitary brings it back to what he wants

 Nobody learns anything about a or g.



Computation of negative
cosine for Bell state

Quantum mechanical predictions violate CHSH inequalities [ edit]

The measurements performed by Alice and Bob are spin measurements on electrons. Alice can choose between two detector settings
labeled a and a’; these settings correspond to measurement of spin along the z or the x axis. Bob can choose between two detector
settings labeled b and b'; these correspond to measurement of spin along the 2 or x' axis, where the 2 — 2’ coordinate system is rotated
135° relative to the * — 2 coordinate system. The spin observables are represented by the 2 x 2 self-adjoint matrices:

Sm:[O 1], Szzll O]
1 0 0 -1

These are the Pauli spin matrices, which are known to have eigenvalues equal to 1. As is customary, we will use bra—ket notation to
denote the eigenvectors of S, as |0), |1), where

Consider now the single state |®~ ) defined as

1
7 (10,1) = [1,0)),

where we used the shortened notation [0,1) = |0) ® [1),]1,0) = |1) ® |0).

[®7)



According to quantum mechanics, the choice of measurements is encoded into the choice of Hermitian operators applied to this state. In
particular, consider the following operators:
Ala) =5,Q1
Ald)=8, 1
—1
B(b) = — IR (S, +5,)

V2

N _
B(b') = ﬂf@(sz Se),

where A(a), A(a') represent two measurement choices of Alice, and B(b), B(b') two measurement choices of Bob.

EXERCISE:
Find the measurements corresponding to a, a’, b, b” in the Bloch sphere

EXERCISE:
Suppose that we perform the simple measurement corresponding to the

observable A on a system in the pure state |y>.
Prove that the expectation value of the random outcome value is <y|Aly> =

trace(p A), p = ly><y|.



Computation of negative
cosine for Bell state

For example, the expectation value (A(a)B(b)) corresponding to Alice choosing the measurement setting a and Bob choosing the
measurement setting b is computed as

g (L B . _ 1
A@B0) = (@] (25 @ (5. +5)) 187) = ~5@71[10) @ (0~ 1) + 1) (1) +[0)] = .
Similar computations are used to obtain

(A(a)B(b)) = (A () B(b)) = (A (@) BY)) = —=

It follows that the value of .S given by this particular experimental arrangement is
4
(A(a)B(b)) + (A(a) B(V)) + (A(a') B(b)) — (A(a)B(')) = 5 2v2> 2.

Bell's Theorem: If the quantum mechanical formalism is correct, then the system consisting of a pair of entangled electrons cannot satisfy
the principle of local realism. Note that 2\/5 is indeed the upper bound for quantum mechanics called Tsirelson's bound. The operators
giving this maximal value are always isomorphic to the Pauli matrices.?°!



Optimal state and measurement
for CHSH inequality

Tsirelson bound for the CHSH inequality | edit]

The first Tsirelson bound was derived as an upper bound on the correlations measured in the CHSH inequality. It states that if we have four
(Hermitian) dichotomic observables Ag, A1, By, B; (i.e., two observables for Alice and two for Bob) with outcomes +1, —1 such that
|A;, B;| = 0 for all ¢, 7, then

(AgByg) + (Ao B1) + (A1 By) — (A1 By) < 2+/2

For comparison, in the classical (or local realistic case) the upper bound is 2, whereas if any arbitrary assignment of +1, —1 is allowed it is
4. The Tsirelson bound is attained already if Alice and Bob each makes measurements on a qubit, the simplest non-trivial quantum system.

Lots of proofs have been developed for this bound, but perhaps the most enlightening one is based on the Khalfin-Tsirelson-Landau
identity. If we define an observable

B=AyBy + AgB; + A1 By — A1 B,
and A? = B‘J?. = I, i.e., if the outcomes of the observables are associated to projective measurements, then
B*> = 41 — [Ag, A;|[By, B:]

If [Ag, A1] = 0 or [By, B1] = 0, which can be regarded as the classical case, it already follows that (B) < 2. In the quantum case, we
need only notice that ||[Ag, A;]|| < 2||Ag||||A1]| < 2 and the Tsirelson bound (B) < 24/2 follows.



And what do grown-ups
use”’

« Some mathematicians swear by C" algebras

e This allows us to work smoothly with “guantum ® classical” spaces, and more
» Physicists use heuristics and intuition and heavy-duty functional analysis

« Obviously, Hilbert spaces have to become infinite dimensional and
measurements may take values in arbitrary measure spaces

« Quantum field theory is what we use when there are continuously many
‘observables” everywhere in space

e There is no theory of *measurement® in guantum field theory ... so it does not
predict anything!

e The problem of quantising gravity (or even of deciding if that is a wise thing to
do) is wide, wide open ...

https://backreaction.blogspot.com/2019/09/the-five-most-promising-ways-to.html
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