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I present novel statistical analyses of the data of the famous Bell-
inequality experiments of 2015 and 2016: Delft, NIST, Vienna and 

Munich. Every statistical analysis relies on statistical assumptions. 
I’ll make the traditional, but questionable, i.i.d. assumptions.       

They justify a novel (?) analysis which is both simple and (close to) 
optimal. 

It enables us to fairly compare the results of the two main types of 
experiments: NIST and Vienna CH-Eberhard “one-channel” 

experiment with settings and state chosen to optimise the handling 
of the detection loophole (detector efficiency > 66.7%); Delft and 

Munich CHSH “two channel” experiments based on entanglement 
swapping, with the state and settings which achieve the Tsirelson 

bound (detector efficiency ≈ 100%). 

One cannot say which type of experiment is better without agreeing 
on how to compromise between the desires to obtain high 

statistical significance and high physical significance. Moreover, 
robustness to deviations from traditional assumptions is also an 

issue



The local polytope

The diagram should be imagined as drawn on a plane in a higher dimensional space  
The experimental data is a point close to, but not on, the plane

• The local polytope of a 2x2x2 experiment has exactly 8 
facets, A. Fine (1982).


• They are the 8 one-sided CHSH inequalities


• They are necessary and sufficient for LR.                               
There are no other 2x2x2 inequalities!


• CH, Eberhard, J are therefore *just* different ways                    
to write CHSH !


• Yet with experimental data they give different results !?



“d” = detection, “n” = no detection

Raw counts

Normalised counts

“One channel” experiment

Vienna



*Clocked* experiment: outcomes on each side are “+”,”–“, or “0”

“Two channel” experiment (CHSH - Aspect, Weihs, …, Delft, Munich)



“One channel” experiment (Clauser-Horne, Eberhard, Vienna, NIST)

Outcomes on each side are “d” corresponding to “+” and “n” 
corresponding to “–” or “0”



S = 2 + 4 J 
J = (S – 2)/4

• The experiments in Vienna and at NIST (Boulder, Colorado) do *not* use 
the singlet state


• They exploit the fact that QM *can* violate CHSH from 66% detector 
efficiency upwards


• Clauser-Horne (1974) 


• Philippe H. Eberhard (1993)


• Jan-Åke Larsson and Jason Semitecolos (2001)


• Peter Bierhorst (2016), “Geometric decompositions of Bell 
polytopes with practical applications”, Journal of Physics A: 
Mathematical and Theoretical

Peter Bierhorst Philippe Eberhard

Proof of 67% bound

Experimental mathematics

Proof of 67% bound

Jan-Åke Larsson

Jason Semitecolos
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TABLE II. Extreme conditions for a loophole-free exper-
iment.
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A computer program was written to compute the de-
terminant of 8 of Eq. (27), for any given value of the
efficiency rl. The program varied ni —n2, Pi —P2, and (
to find the maximum value of the background ( that kept
the determinant negative. For rl ( s, there is none. For
7f ) 3 there are negative values of the determinant for
small values of (, increasing from 0 to as rl increases

2from s to 1. The maximum value of ( as a function of rl
is gi.. en in Table II. It is plotted in Fig. 1, as well as the
maximum affordable value of ( if the conditions are not
the optimum ones, but those of Eqs. (1)—(5) instead.
The program also recorded the values of aq —o,2 and

Pi —Pq and computed the relevant eigenvector g, i.e. , the
conditions that make Jg of Eq. (26) equal to zero for the
maximum g. There were degeneracies in the solutions.
The two angles ni —n2 and Pi —P2 could always be
taken to be the same, or the opposite of one another, as
can be understood from an analytic study of Eqs. (10)
and (27). The vector @ turned out to be of the form

0.02—
I I i I I I

65 70 75 80 85 90 95 100
Efficiency q (%)

FIG. 1. Maximum a8'ordable background vs efBciency: ~,
optimized conditions; o, conditions of Eqs. (1)—(5).

pi = M/2
respectively, and using the values of r, u, and o.q —o.2
(—:Pi —P2) given in Table II. Note that, for rl = 1, the
vector Qo reduces to the value given by Eq. (1), and the
angles ni, n2, Pi, and Pq reduce to the values given by
Eqs. (2)—(5).
In conclusion, it is possible to perform a loophole-free

experiment if the eKciency g of the photon counters is
higher than 66.7' and the background is less than the
value indicated on Fig. 1 for that value of g. For small
background levels, it is possible to perform a loophole-
free EPR experiment with a less than 82.8% counter ef-
B.ciency.

which can be reached in the two-photon experiment con-
sidered in this paper by first superposing states

I
~I &

and
I I ~& in unequal amounts,

(32)

ni = (~/2) —90', (33)

then rotating the planes of polarization of a and of b in
setup (ni, Pi) by the angles
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4 J = (1 + a1 + b1 + z11)  
          – (1 – a2 + b1 – z21)  
          – (1 + a1 – b2 – z12)  
          – (1 + a2 + b2 + z22) 
       = – 2 + (z11 + z21 + z12 – z22)

4 𝜌11 
     = (2 + 2 z11) – (2 – 2 z11)  
     = 4 z11 

4 S = 4 CHSH  
        = 4 (𝜌11 + 𝜌12 + 𝜌21 – 𝜌22) 

S = z11 + z12 + z21 – z22  
    = 2 + 4 J 

J = (S - 2) / 4

Vienna



4 𝜌11 = (2 + 2 z11) – (2 – 2 z11) = 4 z11 

4 S = 4 CHSH = 4 (z11 + z12 + z21 – z22) 

4 J = (1 + a1 + b1 + z11)  
     – (1 – a2 + b1 – z21)  
     – (1 + a1 – b2 – z12)  
     – (1 + a2 + b2 + z22) 
= – 2 + (z11 + z21 + z12 – z22) 

S = z11 + z12 + z21 – z22 = 2 + 4 J 
J = (S – 2) / 4

Estimation, standard errors, p-values 

Routine M.L.E. (Sir R.A. Fisher 1921…) 

Log Lik = N(“dd”|11)log(1 + a1 +b1 +z11) +  
                                             [15 more terms] 

Parameters: a1 a2 b1 b2 z11 z12 z21 z22 

Get m.l.e. of z11 + z21 + z12 – z22 

Get estimated standard error of estimated                            
z11 + z21 + z12 – z22 

from inverse negative Fisher information 
matrix 

Asymptotically optimal 

[Linear constraints?]

Modern approach: 
algebraic geometry, computer algebra

Poor man’s solution: 
two stage, generalised, least squares 
Asymptotically just as good as MLE!

Also possible: amusing hybrid solutions 
*Also* asymptotically optimal



Theory, next 6 slides: 
Statistical theory

A standard Bell-type experiment with
I two parties,
I two measurement settings per party,
I two possible outcomes per measurement setting per party,

generates a vector of 16 = 4 ⇥ 4 numbers of outcome combinations
per setting combination.

This can be applied to the two-channel experiments with no
“no-shows”, and to the one-channel experiments, and to the
two-channel experiments with “–” and “no-show” combined

The four sets of four counts can be thought of as four observations
each of a multinomially distributed vector over four categories.



Write Xij for the number of times outcome combination j was
observed, when setting combination i was in force.

Let ni be the total number of trials with the ith setting
combination.

The four random vectors ~Xi = (Xi1,Xi2,Xi3,Xi4), i = 1, 2, 3, 4,
are independent each with a Multinomial(ni ; ~pi ) distribution,
where ~pi = (pi1, pi2, pi3, pi4).



The 16 probabilities pij can be estimated by relative frequencies
bpij = Xij/ni which have the following variances and covariances:

var(bpij) = pij(1 � pij)/ni ,

cov(bpij , bpij 0) = �pijpij 0/ni for j 6= j 0,

cov(bpij , bpi 0j 0) = 0 for i 6= i 0.

The variances and covariances can be arranged in a
16 ⇥ 16 block diagonal matrix ⌃ of four 4 ⇥ 4 diagonal blocks of
non-zero elements.

Arrange the 16 estimated probabilities and their true values
correspondingly in (column) vectors of length 16.

I will denote these simply by bp and p respectively.

We have E(bp) = p 2 R16 and cov(bp) = ⌃ 2 R16⇥16.



We are interested in the value of one particular linear combination
of the pij , let us denote it by ✓ = a>p.

We know that four other particular linear combinations are
identically equal to zero: the so-called no-signalling conditions.

This can be expressed as B>p = 0 where the 16 ⇥ 4 matrix B
contains, as its four columns, the coefficients of the four linear
combinations.

We can sensibly estimate ✓ by b✓ = a>bp � c>B>bp where c is any
vector of dimension 4. For whatever choice we make, Eb✓ = ✓.

We propose to choose c so as to minimise the variance of the
estimator. This minimization problem is a well-known problem from
statistics and linear algebra (“least squares”).



Define
var(a>bp) = a>⌃a = ⌃aa,

cov(a>bp,B>bp) = a>⌃B = ⌃aB ,

var(B>bp) = B>⌃B = ⌃BB ;

then the optimal choice for c is

copt = ⌃aB⌃
�1
BB

leading to the optimal variance

⌃aa � ⌃aB⌃
�1
BB⌃Ba.



In the experimental situation we do not know p in advance, hence
also do not know ⌃ in advance. However we can estimate it in the
obvious way (“plug-in”) and for ni ! 1 we will have, just as in the
previous section, an asymptotic normal distribution for our
“approximately best” Bell inequality estimate, with an asymptotic
variance which can be estimated by natural “plug-in” procedure,
leading again to asymptotic confidence intervals, estimated
standard errors, and so on.

The asymptotic width of this confidence interval is the smallest
possible and correspondingly the number of standard errors
deviation from “local realism” the largest possible.

The fact that c is not known in advance does not harm these
results.

The methodology is called "generalized least squares". It would be
nice to use these estimates as the first step of a one-step
Newton-Raphson iteration, and subsequently compute the Wilk’s
generalised log likelihood test, evaluated through its asymptotic
chi-square distribution. This typically gives better approximation
but is of course asymptotically equivalent



https://rpubs.com/gill1109/OptimizedVienna 

https://rpubs.com/gill1109/OptimizedNIST 

https://rpubs.com/gill1109/OptimizedMunich 

https://rpubs.com/gill1109/OptimizedDelft

Results

https://rpubs.com/gill1109/OptimizedVienna
https://rpubs.com/gill1109/OptimizedNIST
https://rpubs.com/gill1109/OptimizedMunich
https://rpubs.com/gill1109/OptimizedDelft


OptimizedVienna.R 
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2019-10-16 
## Comparison of CHSH and J for recent Bell experiments, 
## together with optimally noise-reduced versions of both.
## Theory: https://pub.math.leidenuniv.nl/~gillrd/Peking/
Peking_4.pdf

## In short: assume four multinomial samples, 
## estimate covariance matrix of estimated relative 
frequencies, 
## use sample deviations from no-signalling to optimally reduce 
## the noise in the estimate of Bell's S or Eberhard's J

## AKA: generalized least squares

############# VIENNA #############

## The basic data, four 2x2 tables

table11 <- matrix(c(141439,   73391,   76224,   875392736), 
    2, 2, byrow = TRUE,
    dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))
table12 <- matrix(c(146831,   67941,   326768,   874976534), 
    2, 2, byrow = TRUE,
    dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))
table21 <- matrix(c(158338,   425067,   58742,   875239860), 
    2, 2, byrow = TRUE,
    dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))    
table22 <- matrix(c(8392,   576445,   463985,   874651457), 
    2, 2, byrow = TRUE,
    dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))

table11
##      Bob
## Alice      d         n
##     d 141439     73391
##     n  76224 875392736
table12
##      Bob
## Alice      d         n
##     d 146831     67941
##     n 326768 874976534
table21
##      Bob
## Alice      d         n
##     d 158338    425067
##     n  58742 875239860
table22
##      Bob
## Alice      d         n
##     d   8392    576445
##     n 463985 874651457
## Check of the total number of trials

# "The number of valid trials is N = 3 502 784 150"
sum(table11) + sum(table12) + sum(table21) + sum(table22)
## [1] 3502784150



## The same data now in one 4x4 table

tables <- cbind(as.vector(t(table11)), as.vector(t(table12)), 
as.vector(t(table21)), as.vector(t(table22)))
dimnames(tables) = list(outcomes = c("++", "+-", "-+", "--"), 
                      settings = c(11, 12, 21, 22))
tables
##         settings
## outcomes        11        12        21        22
##       ++    141439    146831    158338      8392
##       +-     73391     67941    425067    576445
##       -+     76224    326768     58742    463985
##       -- 875392736 874976534 875239860 874651457
## The total number of trials for each setting pair

Ns <- apply(tables, 2, sum)
Ns
##        11        12        21        22 
## 875683790 875518074 875882007 875700279
## observed relative frequencies, one 4x4 matrix

rawProbsMat <- tables / outer(rep(1,4), Ns)
rawProbsMat
##         settings
## outcomes           11           12           21           22
##       ++ 1.615183e-04 1.677076e-04 1.807755e-04 9.583188e-06
##       +- 8.380993e-05 7.760091e-05 4.853017e-04 6.582675e-04
##       -+ 8.704512e-05 3.732282e-04 6.706611e-05 5.298445e-04
##       -- 9.996676e-01 9.993815e-01 9.992669e-01 9.988023e-01

## Convert the relative frequencies to one vector of length 16

VecNames <- as.vector(t(outer(colnames(rawProbsMat), 
rownames(rawProbsMat), paste, sep = "")))
rawProbsVec <- as.vector(rawProbsMat)
names(rawProbsVec) <- VecNames

VecNames
##  [1] "11++" "11+-" "11-+" "11--" "12++" "12+-" "12-+" 
"12--" "21++" "21+-"
## [11] "21-+" "21--" "22++" "22+-" "22-+" "22--"
rawProbsVec
##         11++         11+-         11-+         11--         
12++ 
## 1.615183e-04 8.380993e-05 8.704512e-05 9.996676e-01 
1.677076e-04 
##         12+-         12-+         12--         21++         
21+- 
## 7.760091e-05 3.732282e-04 9.993815e-01 1.807755e-04 
4.853017e-04 
##         21-+         21--         22++         22+-         
22-+ 
## 6.706611e-05 9.992669e-01 9.583188e-06 6.582675e-04 
5.298445e-04 
##         22-- 
## 9.988023e-01



## Building up the 4 no-signalling constraints, combined in 
one 16 x 4 matrix "NS"

Aplus <- c(1, 1, 0, 0)
Aminus <- - Aplus
Bplus <- c(1, 0, 1, 0)
Bminus <- - Bplus
zero <- c(0, 0, 0, 0)
NSa1 <- c(Aplus, Aminus, zero, zero)
NSa2 <- c(zero, zero, Aplus, Aminus)
NSb1 <- c(Bplus, zero, Bminus, zero)
NSb2 <- c(zero, Bplus, zero, Bminus)
NS <- cbind(NSa1 = NSa1, NSa2 = NSa2, NSb1 = NSb1, NSb2 = 
NSb2)
rownames(NS) <- VecNames
NS
##      NSa1 NSa2 NSb1 NSb2
## 11++    1    0    1    0
## 11+-    1    0    0    0
## 11-+    0    0    1    0
## 11--    0    0    0    0
## 12++   -1    0    0    1
## 12+-   -1    0    0    0
## 12-+    0    0    0    1
## 12--    0    0    0    0
## 21++    0    1   -1    0
## 21+-    0    1    0    0
## 21-+    0    0   -1    0
## 21--    0    0    0    0
## 22++    0   -1    0   -1
## 22+-    0   -1    0    0
## 22-+    0    0    0   -1
## 22--    0    0    0    0

## Build the 16x16 estimated covariance matrix of the 16 observed 
relative frequencies

cov11 <- diag(rawProbsMat[ , "11"]) - outer(rawProbsMat[ , "11"], 
rawProbsMat[ , "11"])
cov12 <- diag(rawProbsMat[ , "12"]) - outer(rawProbsMat[ , "12"], 
rawProbsMat[ , "12"])
cov21 <- diag(rawProbsMat[ , "21"]) - outer(rawProbsMat[ , "21"], 
rawProbsMat[ , "21"])
cov22 <- diag(rawProbsMat[ , "22"]) - outer(rawProbsMat[ , "22"], 
rawProbsMat[ , "22"])

Cov <- matrix(0, 16, 16)
rownames(Cov) <- VecNames
colnames(Cov) <- VecNames
Cov[1:4, 1:4] <- cov11/Ns["11"]
Cov[5:8, 5:8] <- cov12/Ns["12"]
Cov[9:12, 9:12] <- cov21/Ns["21"]
Cov[13:16, 13:16] <- cov22/Ns["22"]

## The vector "S" is used to compute the CHSH statistic "CHSH"
## The sum of the first three sample correlations minus the fourth

## Note: the experiment is designed to favour use of Eberhard's J !

S <- c(c(1, -1, -1 ,1), c(1, -1, -1 , 1), c(1, -1, -1, 1), - c(1, 
-1, -1, 1))
names(S) <- VecNames
CHSH <- sum(S * rawProbsVec)
CHSH
## [1] 2.000028



## Compute the estimated variance of the CHSH statistic, 
## its estimated covariances with the observed deviations 
from no-signalling,
## and the 4x4 estimated covariance matrix of those 
deviations.
## We'll later also need the inverse of the latter.

varS <- t(S) %*% Cov %*% S
covNN <- t(NS) %*% Cov %*% NS
covSN <- t(S) %*% Cov %*% NS
covNS <- t(covSN)

InvCovNN <- solve(covNN)

## Estimated variance of the CHSH statistic, 
## and estimated variance of the optimally "noise reduced" 
CHSH statistic.

varCHSH <- varS
varCHSHopt <- varS - covSN %*% InvCovNN %*% covNS

## The variance, and the improvement as ratio of standard 
deviations

varS
##              [,1]
## [1,] 1.078084e-11
sqrt(varCHSH / varCHSHopt)
##          [,1]
## [1,] 2.055586

## The coefficients of the noise reduced CHSH statistic and the 
resulting improved estimate

Sopt <- S - covSN %*% InvCovNN %*% t(NS)
Sopt
##          11++       11+-      11-+ 11--     12++      12+-     
12-+ 12--
## [1,] 2.011642 -0.5819319 -0.406426    1 2.302625 -1.418068 
0.720693    1
##          21++      21+-      21-+ 21--      22++       22+-      
22-+ 22--
## [1,] 2.188951 0.7825251 -1.593574    1 -4.503218 -0.7825251 
-0.720693   -1
CHSHopt <- sum(Sopt * rawProbsVec)
CHSHopt
## [1] 2.000028
## p-values assuming approximate normality for testing CHSH 
inequality

pnorm((CHSH - 2)/ sqrt(varCHSH), lower.tail = FALSE)
##             [,1]
## [1,] 5.43703e-18
pnorm((CHSHopt - 2)/ sqrt(varCHSHopt), lower.tail = FALSE)
##              [,1]
## [1,] 4.745794e-69



## Now we repeat for the Eberhard J statistic
## First, the coefficients in the vector "J"
## and the observed value of the statistic

J <- c(c(1, 0, 0 ,0), c(0, -1, 0 ,0), c(0, 0, -1, 0), c(-1, 
0, 0, 0))
names(J) <- VecNames
sum(J * rawProbsVec)
## [1] 7.26814e-06
## Next, its estimated variance and resulting p-value

varJ <- t(J) %*% Cov %*% J
sum(J * rawProbsVec) / sqrt(varJ)
##          [,1]
## [1,] 12.10426
pnorm(sum(J * rawProbsVec) / sqrt(varJ), lower.tail = FALSE)
##              [,1]
## [1,] 5.013606e-34
## The covariances between J and the observed deviations 
from no-signaling
## The variance of the usual estimate of J and of the 
improved estimate of J
## The improvement as a ration of standard deviations

covJN <- t(J) %*% Cov %*% NS
covNJ <- t(covJN)
varJopt <- varJ - covJN %*% InvCovNN %*% covNJ

varJ
##              [,1]
## [1,] 3.605539e-13
sqrt(varJ / varJopt)
##          [,1]
## [1,] 1.503676

## The coefficients of an improved estimataor of Eberhard's J

Jopt <- J - covJN %*% InvCovNN %*% t(NS)
Jopt
##           11++      11+-       11-+ 11--      12++      12+-        
12-+
## [1,] 0.2529105 -0.395483 -0.3516065    0 0.3256562 -0.604517 
-0.06982674
##      12--      21++        21+-       21-+ 21--       22++       
22+-
## [1,]    0 0.2972378 -0.05436871 -0.6483935    0 -0.8758045 
0.05436871
##            22-+ 22--
## [1,] 0.06982674    0
## Observed estimate of J, and improved estimate of J

sum(J * rawProbsVec)
## [1] 7.26814e-06
sum(Jopt * rawProbsVec)
## [1] 6.997615e-06
## p-values based on J and on improved J
## Note that the p-value based on improved J is the same as that 
of improved CHSH

pnorm(sum(J * rawProbsVec) / sqrt(varJ), lower.tail = FALSE)
##              [,1]
## [1,] 5.013606e-34
pnorm(sum(Jopt * rawProbsVec) / sqrt(varJopt), lower.tail = 
FALSE)
##              [,1]
## [1,] 4.745794e-69
## The p-value of the optimized J got a lot better, even though 
the estimate got a bit smaller
## The optimization procedure for CHSH made an enormous 
difference
## The deviation from no-signalling is small; it is responsible 
for these small changes
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The data of four recent experiments—conducted in Delft, Vienna, Boulder, and Munich with the aim of
refuting nonquantum hidden-variables alternatives to the quantum-mechanical description—are evaluated from
a Bayesian perspective of what constitutes evidence in statistical data. We find that each of the experiments
provides strong, or very strong, evidence in favor of quantum mechanics and against the nonquantum alternatives.
This Bayesian analysis supplements the previous non-Bayesian ones, which refuted the alternatives on the basis
of small p values but could not support quantum mechanics.
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I. INTRODUCTION

Four recent experiments in Delft [1], Vienna [2], Boulder
[3], and Munich [4] tested the variants of Bell’s inequality [5]
introduced by Clauser et al. [6] and Eberhard [7]. The shared
aim of these experiments was the refutation of descriptions
in terms of local hidden variables (LHV) that Bell and others
had proposed as an alternative to the description offered by
quantum mechanics (QM). Upon extracting small p values
from the respective data, with values between 3.74 × 10−31

(Vienna) and 0.039 (Delft), each of the four groups of sci-
entists concluded that their data refute the LHV hypothesis.
Putting aside all other caveats about, objections against, and
other issues with the use of p values [8–10], let us merely note
that the use of p values can only make a case against LHV but
not in support of QM. Yet, a clear-cut demonstration that the
data give evidence in favor of QM is surely desirable.

We present here an evaluation of the data of the four
experiments that shows that there is very strong evidence in
favor of QM and also against LHV. Our analysis does not
rely on p values or any other concepts of frequentist statistics.
We use Bayesian logic and measure evidence—in favor of
alternatives or against them—by comparing the posterior with
the prior probabilities of the alternatives to be distinguished.

The basic notion is both simple and natural [11]: If an
alternative is more probable in view of the data than before
acquiring them, then the data provide evidence in favor of this
alternative; and, conversely, if an alternative is less probable
after taking note of the data than before, then the data give
evidence against this alternative.
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In our analysis, we employ only this principle of evidence
and no particular measure for quantifying the strength of
the evidence [12]. As it happens, all alternatives save one
are extremely improbable in view of the data so that the evi-
dence in favor of the privileged alternative is overwhelming,
and a quantification of the strength of the evidence is not
needed here.

While Bell’s inequality and its variants are central to the
design of the experiments, they play no role in our evaluation
of the data. What matters are the probabilities of occurrence
of the various measurement outcomes in the experiments. As
discussed in Sec. III, the permissible probabilities make up
an eight-dimensional set. It is composed of three subsets: one
accessible only by QM, another only by LHV, and the third
by both; see Fig. 1. We then ask whether the data provide
evidence in favor of or against each of the three subsets and,
from the data of each of the four experiments, we find strong
evidence for the QM-only subset and against the other two.

An essential part of the Bayesian analysis is the choice
of prior—the assignment of prior probabilities to the three
regions in Fig. 1, thereby accounting for our prior knowledge
about the experiment and the assumptions behind its design.
If we were to strictly follow the rules of Bayesian reasoning,
we would endow the set of QM-permitted probabilities with a
prior close to 100% and allocate a very tiny prior to the subset
of LHV-only probabilities because generations of physicists
have accumulated a very large body of solid experimental
and theoretical knowledge that makes us extremely confident
that QM is correct. Not one observed effect contradicts the
predictions of QM, while there is not a single documented
phenomenon in support of all those speculations about LHV.
In fact, this was already the situation in the mid-1960s when
Bell published Ref. [5] and gave a physical interpretation to
an inequality known to Boole a century before [13].

Moreover, for the evaluation of the data from the four
experiments, a by-the-rules prior, namely a properly elicited
prior, would have to reflect our strong conviction that the
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FIG. 1. Symbolic sketch of the eight-dimensional set of permis-
sible probabilities. The points inside the ellipse symbolize probabil-
ities accessible by quantum mechanics (QM); the triangle encloses
the probabilities permitted by local hidden variables (LHV). There
are no QM probabilities in the blue portion of the LHV set and no
LHV probabilities in the red part of the QM set. The green overlap
region contains the probabilities that are possible both for QM and
LHV.

experimenters managed to implement the experiment as
planned in a highly reliable fashion, with the desired probabil-
ities from the QM-only subset. Accordingly, we really should
assign a very large prior probability to the “QM only” region
symbolized in Fig. 1, a much smaller one to the “both” region,
and an even smaller one to the “LHV only” region.

Such a prior, however, could bias the data evaluation in
favor of QM and against LHV. Therefore, we deliberately
violate the rules and use a prior that treats QM and LHV
on equal footing; see Sec. V. To demonstrate that our choice
of prior is not biased toward QM, we check for such a bias
and confirm that there is none; more about this is found in
Sec. V C. Yet, all this tilting of the procedure does not help the
LHV case: The data speak clearly and loudly that QM rules
and LHV are out.

This contributes also to the development of Bayesian
methodology, inasmuch as we demonstrate that the subjective
biases inherent in a Bayesian statistical analysis through, for
example, the choice of the prior, can be assessed a priori. To
the best of our knowledge, this is one of the first applications
of this type of computation to ensure that such choices are not
producing foregone conclusions.

We recall the experimental scheme common to all four
experiments (Sec. II) and the ways in which the probabilities
of detecting the various events are parameterized in the QM
formalism or by LHV (Sec. III). This is followed by a discus-
sion of how the difference between the prior and the posterior
content of a region gives evidence in favor of this region or
against it (Sec. IV). Then we explain our choice of prior on the
eight-dimensional set of permissible probabilities—permitted
either by QM or by LHV (Sec. V); more specifically, we
define the prior by the algorithm that yields the large sam-
ple of permissible probabilities needed for the Monte Carlo
integrations over the three regions symbolized in Fig. 1.

Then, having thus set the stage, we present, as a full
illustration of the reasoning and methodology, the detailed
account of the various aspects of our evaluation of the data
recorded in one run of the Boulder experiment (Sec. VI A).
This includes the estimation, from the data, of an experimental

parameter for which the value given in Ref. [3] is not accurate.
While an accurate value is not needed for calculating the p
value reported in Ref. [3], it is crucial for the QM account
of the experiment. The results of processing the data from
three other runs of the Boulder experiment are reported in
Sec. VI B. The evaluation of the data from three runs of
the Vienna experiment also requires the estimation of the
analogous parameter (Sec. VII A), whereas there is no need
for that in the context of the experiments conducted in Delft
and Munich (Sec. VII B).

All four experiments separately provide strong evidence in
favor of QM and against LHV. Jointly, they convey the very
clear message that this verdict is final.

II. EXPERIMENTAL SCHEME

The four experiments realize variations of one theme; see
Fig. 2. Upon receiving a trigger signal, the source of qubit
pairs equips Alice and Bob with one qubit each; the success
probability for this is denoted by γ . Alice chooses one of two
settings, denoted by a and a′, for her selector in front of her
qubit detector, which fires with efficiency ηA. Likewise, Bob
chooses between settings b and b′ for his selector and then
detects the selected qubits with efficiency ηB. For each trigger
signal, the outcome is recorded and counts as an event of one
of four kinds: a “++ event” if Alice’s and Bob’s detectors
both fire; a “+0 event” if Alice’s detector fires and Bob’s does
not; a “0+ event” if Alice’s detector does not fire and Bob’s
does; or a “00 event” if both detectors do not fire. The data
D consist of the number of events observed of the four kinds,

FIG. 2. Upon receiving a trigger signal, the source of qubit pairs
equips Alice and Bob with one qubit each; the success probability
for this initial step is γ . The qubits are detected with the respective
efficiencies ηA and ηB if they pass a selection process, specified by
a or a′ for Alice’s qubit and by b or b′ for Bob’s qubit. For each
trigger signal, we record whether there was a coincidence event, or
only Alice or only Bob observed a detector click, or both did not.
Data are collected for all four settings: a or a′ together with b or b′.
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Postscript
• What should we believe now?


• Should we trust the data?


• According to Bednorz, Adenier and Khrennikov, Graft, 
Santos, Hnilo, Fodje, … no. 


• I think that the observed anomalies are not important and 
are anyway irrelevant if we use martingale tests, possibly 
adding room for imperfect random number generation


• Let’s trust the experiments … what then?



Erwin Schrödinger

• I don't like it, and I'm sorry I ever had anything to do with it.  

[About the probability interpretation of quantum mechanics.] Epigraph, without citation, in John 
Gribbin, In Search of Schrödinger’s Cat: Quantum Physics and Reality (1984), v, frontispiece. 


• If all this damned quantum jumping were really here to stay, I should be sorry, I 
should be sorry I ever got involved with quantum theory.  

As reported by Heisenberg describing Schrödinger’s time spent debating with Bohr in Copenhagen 
(Sep 1926). In Werner Heisenberg, Physics and Beyond: Encounters and Conversations (1971), 75. 
As cited in John Gribbin, Erwin Schrodinger and the Quantum Revolution. 


• God knows I am no friend of probability theory, I have hated it from the first 
moment when our dear friend Max Born gave it birth. For it could be seen how 
easy and simple it made everything, in principle, everything ironed and the true 
problems concealed. Everybody must jump on the bandwagon [Ausweg]. And 
actually not a year passed before it became an official credo, and it still is. 

Letter to Albert Einstein (13 June 1946), as quoted by Walter Moore in Schrödinger: Life and 
Thought (1989) ISBN 0521437679



The experiments of 2015 convinced me …  
rebrand  “spooky action at a distance” …

• Entanglement is an asset, not a horror


• We call it “spooky” because our mammal brains, trained by evolution, can’t                  
“understand” it any way except as the work of a *potentially* malevolent *agent*


• “Spooky” is an inadequate translation of “spukhaft”. We have to say it in German.


• “Passion at a distance” is better


• More precise: “(Martingale like) disciplined passion at a distance”? No, it won’t 
catch on …


• Auserlesene / engelhafte ‘spukhafte Fernwirkung’  (exquisite / angelic “action 
at a distance”)



… and … 
Belavkin’s “eventum mechanics” is the 

way to go.
• It’s a “collapse theory”


• It is therefore “non-local”


• It can be made Lorentz invariant!


• Some famous recent works confirm me in my opinions:


• Daniela Frauchiger & Renato Renner


[My title] Schrödinger’s cat, the Wigners, and the Wigners’ friend


• Gilles Brassard & Paul Raymond-Robichaud 


“The equivalence of local-realistic and no-signalling theories”. Abstract: We 
provide a framework to describe all local-realistic theories and all no-signalling 
operational theories. We show that when the dynamics is reversible, these two 
concepts are equivalent. In particular, this implies that unitary quantum theory can 
be given a local-realistic model.



Eugene Paul Wigner

Amelia Zippora Wigner-Frank Leo Szilard

>

>

> >

The Wigners’ friend

Quantum system / cat in a box / …



My prejudice: 
The clicks are “real”, the rest … a 

construction of our minds
• It is allowed to imagine that more stuff is real


• Such a “dilation” need not be unique


• “QM without collapse”, or Unitary QM - several theories, best known 
being MW and Quantum Qubism


• MW is many words


• QB is subjective Bayes … but I’m a frequentist … usually Bayes and 
frequentist inference agree … it’s really interesting when they disagree !!!


• Quantum Buddhism gives yet further insights



F&R: The Wigners’ friend

• QM *without collapse* + MW  implies only the wave 
function is real


• QM *without collapse* + Qbism  implies nothing is real


• My conclusion: QM without collapse is non-sense!



B&RR

• They insist on irreversibility!


• Change definitions of everything


• It’s brilliant but … it’s very technical and very long


• My conclusion: we must trash ‘irreversibility’!



• “Spukhafte fernwerkung” is for real and … Exquisite? Angelic?


• Collapse is real


• Recommendation: take a look again at Belavkin’s “Eventum Mechanics”


• We must keep questioning the very words which we use (Eastern thought 
/ Western post-modernism) … and remember what we are … *nothing* is 
real - QBism!


• I think that *both* QBism and Eventum Mechanics are self-consistent; 
their empirical predictions are (so far) identical. So it’s a matter of taste. 
Non-local collapse masked by irreducible randomness … or quantum 
Buddhism (we only have our sensory impressions and our inter-
subjective confidence in predictions of future sensory impressions)



Everything is a construction of our minds - 
there is nothing else 

Beware: every word is a “model” 

All models are wrong, some are useful

Combray



I cannot say that action at a distance is required in physics. But I cannot say 
that you can get away with no action at a distance. You cannot separate off 
what happens in one place with what happens at another – John Bell 

Nature produces chance events (irreducibly chance-like!) which can occur 
at widely removed spatial locations without anything propagating from point 
to point along any path joining those locations. … The chance-like character 
of these effects prevents any possibility of using this form of non locality to 
communicate, thereby saving from contradiction one of the fundamental 
principles of relativity theory according to which no communication can 
travel faster than the speed of light – Nicolas Gisin

Postscript

Quantum Chance: Nonlocality, Teleportation and Other Quantum Marvels. Springer, 2014

https://www.youtube.com/watch?v=V8CCfOD1iu8

https://www.youtube.com/watch?v=V8CCfOD1iu8

