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| present novel statistical analyses of the data of the famous Bell-
inequality experiments of 2015 and 2016: Delft, NIST, Vienna and
Munich. Every statistical analysis relies on statistical assumptions.
I’'ll make the traditional, but questionable, i.I.d. assumptions.
They justify a novel (?) analysis which is both simple and (close to)
optimal.

It enables us to fairly compare the results of the two main types of
experiments: NIST and Vienna CH-Eberhard “one-channel”
experiment with settings and state chosen to optimise the handling
of the detection loophole (detector efficiency > 66.7%); Delft and
Munich CHSH “two channel” experiments based on entanglement
swapping, with the state and settings which achieve the Tsirelson
bound (detector efficiency = 100%).

One cannot say which type of experiment is better without agreeing
on how to compromise between the desires to obtain high
statistical significance and high physical significance. Moreover,
robustness to deviations from traditional assumptions is also an
Issue



The local polytope

The local polytope of a 2x2x2 experiment has exactly 8
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They are the 8 one-sided CHSH inequalities

'hey are necessary and sufficient for LR.
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'here are no other 2x2x2 inequalities! i
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CH, Eberhard, J are therefore *just™ different ways
to write CHSH !

Yet with experimental data they give different results !?

The diagram should be imagined as drawn on a plane in a higher dimensional space

The experimental data is a point close to, but not on,

the plane



Raw counts

“One channel” experiment

Settings
11 12 21 22
dd 141.439 146.831 158.338 8.392
dn 73.391 67.941 425.067 576.445
Outcomes
nd 76.224 326.768 58.742 463.985
nn 875.392.736 874.976.534 875.239.860 874.651.457
Totals | 875.683.790 875.518.074 875.882.007 875.700.279
Vienna
Normalised counts 2eltngs
11 12 21 22
dd 162 168 181 10
dn 84 78 485 658
Outcomes
nd 87 373 67 530
nn 999.668 999.381 999.267 998.802
Totals 1.000.000 1.000.000 1.000.000 1.000.000
Normaliser Normalised
1.000.000 1.000.000 1.000.000 1.000.000 1 .OO0.000’

“d” = detection, “n” = no detection



“Two channel” experiment (CHSH - Aspect, Weihs, ..., Delft, Munich)
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*Clocked* experiment: outcomes on each side are “+”,”-“, or “0”



“One channel” experiment (Clauser-Horne, Eberhard, Vienna, NIST)
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[or

Outcomes on each side are “d” corresponding to “+” and “n”
corresponding to “-” or “0”
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& * The experiments in Vienna and at NIST (Boulder, Colorado) do *not” use
8 the singlet state

e They exploit the fact that QM *can* violate CHSH from 66% detector
efficiency upwards

e Clauser-Horne (1974)

e Philippe H. Eberhard (1993) Experimental mathematics

Jason Semitecolos | | .| arsson and Jason Semitecolos (2001)

Proof of 67% bound

| * Peter Bierhorst (2016), “Geometric decompositions of Bell
A \ polytopes with practical applications”, Journal of Physics A:
o s s Mathematical and Theoretical Proof of 67% bound

Jan-Ake Larsson



P.H. Eberhard (1993)

The vector 1 turned out to be of the form

(1+7r)e~™
1 —(1-7r)
'(p — 3 (31)
ov1+72| —(1— 720 TABLE II. Extreme conditions for a loophole-free exper-
(1 + T)e iment.
which can be reached in the two—photop experiment con- n (%) ¢ (%) , w (deg) a1 — a2 (deg)
sidered in this paper by first superposing states | <] > 66.7 0.00 0.001 0.0 2.0
and | ] <> in unequal amounts, 70 0.02 0.136 3.4 21 .4
75 0.31 0.311 9.7 32.0
Yo = (1/V1+12) (| ol >+ ] <—>>) , (32) 80 1.10 0.465 14.9 37.9
85 2.48 0.608 18.6 41.5
then rotating the planes of polarization of a and of b in 90 4.50 0.741 20.9 43.6
setup (a1, 1) by the angles 95 rgib. 0.871 2241 44.7
100 10.36 1.000 22.5 45.0
a1 = (w/2) —90° | (33)
/81 — w/2 ’ (34)

respectively, and using the values of r, w, and a; — as
(= B1 — PB2) given in Table II. Note that, for n = 1, the
vector 1o reduces to the value given by Eq. (1), and the
angles a1, a2, (1, and (B2 reduce to the values given by

Egs. (2)-(5).



Settings

11 12 21 22
dd 141.439 146.831 158.338 8.392
oh . | on 73.391 67.941 425.067 576.445 | Normaliser
nd 76.224 326.768 58.742 463.985
nn | 875.392.736 874.976.534 875.239.860 874.651.457
Totals | 875.683.790 875.518.074 875.882.007 875.700.279 1000000
Bob Setting 1 Bob Setting 2
outcomes {3 d » [13 n ”» 13 d ”» 13 n »
_ _ “g” 162 84 _ _ 168 78
Alice Setting 1 Alice Setting 1
Settings “p” 87 999668 373 999381
11 12 21 22 rho11 = 0,999658 rho12 = 0,999098
dd 162 168 181 10
dn 84 78 485 658 “o” 181 485 10 658
Outcomes ; ; ; ;
nd 87 373 67 530/ Alice Setting 2 “p o7 999267 Alice Setting 2 530 998802
nn 999.668 999.381 999.267 998.802 0?1 = 0.098695 022 = 0.097624
Totals 1.000.000 1.000.000  1.000.000  1.000.000
R Normalised J=| 0,000007 S=CHSH=| 2,000028
1.000.000 1.000.000 1.000.000  1.000.000  1.000.000
4J=01+a1+b1+ z11)
| |
Vienna ~ (1 a2+ b1 -2)
4 p1q
p — (1 +a1—bz2—z12)
—_— —_ —_ S — TT——
=@2+22z11)-(2-22zn) — (1 + a2 + b2 + z22)
=4 711
=—2 + (211 + Z21 + Z12 — Z22)
4 S =4 CHSH AXBrobs
=4 (p11 + p12 + p21 — p22) Bob Setting 1 Bob Setting 2
outcomes [13 d » 13 n ”» [13 d » 113 n ”»
“g? 1+a;1w;b1+ 1+az11;b1— 249 a1 1+a;1;b2+ 1+az11;b2— 549 ai
S =211 + Z12 + Zo1 — Z22 e ST
. 1-al+bl- 1-al-bl+ > at 1-al+b2- 1-al-b2+ >
=2+4J n 211 211 -2a 212 212 -2a
2 +2 b 2-2 b1 4 2+2b2 2-2b2 4
‘J:(S'Z)/Af o 1+a2+bl+ 1+a2-b1- 1+a2+b2+ 1+a2-b2-
, , d 221 221 2+2a2 202 200 2+2a2
T —— Alice Setting 2
. 1-a2+bl- 1-a2-bl+ > 2w 1-a2+b2- 1-a2-b2+ > a
n 221 221 -<a 222 222 -<a
2 +2 b 2-2 b1 4 2+2b2 2-2b2 4




Estimation, standard errors, p-values

Routine M.L.E. (Sir R.A. Fisher 1921...)
4 p11=2+2211)—(2-2211) = 4 Z11
4S5 =4 CHSH =4 (z11 + z12 + 221 — Z20) Log Lik = N("dd"[11)log(1 + a1 +b1 +z11) +
[15 more terms]
4Jd=(1+a1+Dbi+2z11)

— (1 —az2 + b1 - 221) Parameters: a1 as b1 b2 z11 Z12 Zo1 Zoo
— (1 +a1—-b2—2z19)

— (1 +az + b2 + z22)

= — 2 + (ZH + 721 + Z12 —222) Get mle Of Z11 + 221 + Z12 _222
5 = (ij* +2)Z*/24+ Zo1—Z=2+4J Get estimated standard error of estimated

— S Z11 + 221 + Z12 — 222
from inverse negative Fisher information
matrix

Modern approach:

algebraic geometry, computer algebra Asympitotically optimal

[Linear constraints?]

Poor man'’s solution:
two stage, generalised, least squares
Asymptotically just as good as MLE!

Also possible: amusing hybrid solutions
*Also* asymptotically optimal




Theory, next 6 slides:

A standard Bell-type experiment with

» two parties,

» two measurement settings per party,

» two possible outcomes per measurement setting per party,
generates a vector of 16 = 4 x 4 numbers of outcome combinations

per setting combination.

This can be applied to the two-channel experiments with no
“no-shows’, and to the one-channel experiments, and to the
two-channel experiments with =" and "no-show” combined

The four sets of four counts can be thought of as four observations
each of a multinomially distributed vector over four categories.



Write Xj; for the number of times outcome combination j was
observed, when setting combination / was in force.

Let n; be the total number of trials with the ith setting
combination.

The four random vectors )?,- = (X1, Xi2, Xi3, Xia), 1 = 1,2,3, 4,
are independent each with a Multinomial(n;; p;) distribution,
where p; = (pi1, pi2, Pi3, Pi4)-



The 16 probabilities p;; can be estimated by relative frequencies
pij = Xjj/ni which have the following variances and covariances:

var(p;;) = pij(1 — pij)/ni,

cov(Bi Biy) = —pipy /mi for j # 1
CO\/'([/)\,.'/'7 b\i’j’) — 0 for I # i/.

The variances and covariances can be arranged in a
16 x 16 block diagonal matrix > of four 4 x 4 diagonal blocks of
non-zero elements.

Arrange the 16 estimated probabilities and their true values
correspondingly in (column) vectors of length 16.

| will denote these simply by p and p respectively.

We have E(p) = p € R!® and cov(p) = ¥ € R16%16



We are interested in the value of one particular linear combination
of the pj;, let us denote it by # = a' p.

We know that four other particular linear combinations are
identically equal to zero: the so-called no-signalling conditions.

This can be expressed as B' p = 0 where the 16 x 4 matrix B
contains, as its four columns, the coefficients of the four linear
combinations.

We can sensibly estimate 6 by = a'p—c'B'p where ¢ is any

vector of dimension 4. For whatever choice we make, E6 = 6.

We propose to choose ¢ so as to minimise the variance of the
estimator. This minimization problem is a well-known problem from
statistics and linear algebra (“least squares™).



Define
var(a' p) =a' Ya= Y.,

cov(a p,B'p)=a'EB =35,
var(B'p) = B'¥B = Y gg;
then the optimal choice for ¢ is
Copt — ZaBZEé

leading to the optimal variance

2 2 — ZaBZEéZBa-



In the experimental situation we do not know p in advance, hence
also do not know X in advance. However we can estimate it in the
obvious way (“plug-in”) and for nj — oo we will have, just as in the
previous section, an asymptotic normal distribution for our
“approximately best” Bell inequality estimate, with an asymptotic
variance which can be estimated by natural “plug-in" procedure,
leading again to asymptotic confidence intervals, estimated
standard errors, and so on.

The asymptotic width of this confidence interval is the smallest
possible and correspondingly the number of standard errors
deviation from “local realism” the largest possible.

The fact that ¢ is not known in advance does not harm these
results.

The methodology is called "generalized least squares". It would be
nice to use these estimates as the first step of a one-step
Newton-Raphson iteration, and subsequently compute the Wilk's
generalised log likelihood test, evaluated through its asymptotic
chi-square distribution. This typically gives better approximation
but is of course asymptotically equivalent



Results

https://rpubs.com/qgill1109/0ptimizedVienna

https://rpubs.com/qill1109/0ptimizedNIST

https://rpubs.com/qill1109/0ptimizedMunich

https://rpubs.com/qill1109/0ptimizedDelft



https://rpubs.com/gill1109/OptimizedVienna
https://rpubs.com/gill1109/OptimizedNIST
https://rpubs.com/gill1109/OptimizedMunich
https://rpubs.com/gill1109/OptimizedDelft

OptimizedVienna.R

richard
2019-10-16 —
1 ; ## Bob
## Comparison of CHSH and J for recent Bell experiments, _
## together with optimally noise-reduced versions of both. ## Alice d n
## Theory: https://pub.math.leidenuniv.nl/~gillrd/Peking/ ## d 141439 73391
. ## n 76224 875392736
Peking 4.pdf
tablel2
## In short: assume four multinomial samples, ## . Bob
## estimate covariance matrix of estimated relative ## Alice d n
] ## d 146831 67941
frequencies,
## use sample deviations from no-signalling to optimally reduce ## n 326768 874976534
## the noise in the estimate of Bell's S or Eberhard's J tablezl
## Bob
## AKA: generalized least squares ## Alice d n
## d 158338 425067
HHAAHFFHHFAAAA VIENNA #HHHHAAAAAAAS ## n 58742 875239860
table22
## The basic data, four 2x2 tables ## Bob
## Alice d n
tablell <- matrix(c(141439, 73391, 76224, 875392736), ## d 8392 576445
## n 463985 874651457

2, 2, byrow = TRUE,

dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))
tablel2 <- matrix(c(146831, 67941, 326768, 874976534),

2, 2, byrow = TRUE,

dimnames = list(Alice = c("d", "n"), Bob = c("d", "n")))
table2l <- matrix(c(158338, 425067, 58742, 875239860),

2, 2, byrow = TRUE,

dimnames = list(Alice c("d", "n"), Bob c("d", "n")))
table22 <- matrix(c(8392, 576445, 463985, 874651457),

2, 2, byrow = TRUE,

dimnames = list(Alice

## Check of the total number of trials

# "The number of valid trials is N = 3 502 784 150"
sum(tablell) + sum(tablel2) + sum(table2l) + sum(table22)
## [1] 3502784150

c("d", "n"), Bob = c("d", "n")))



## The same data now in one 4x4 table

tables <- cbind(as.vector(t(tablell)), as.vector(t(tablel2)),

as.vector(t(table2l)), as.vector(t(table22)))

dimnames(tables) = list(outcomes = c("++", "+=-", "—-+", "-="),
settings = c(11, 12, 21, 22))

tables

## settings

## outcomes 11 12 21 22
A ++ 141439 146831 158338 8392
A +- 73391 67941 425067 576445
A -+ 76224 326768 58742 463985
A —— 875392736 874976534 875239860 874651457

## The total number of trials for each setting pair

Ns <- apply(tables, 2, sum)

Ns

## 11 12 21 22

## 875683790 875518074 875882007 875700279

## observed relative frequencies, one 4x4 matrix

rawProbsMat <- tables / outer(rep(l,4), Ns)

rawProbsMat

## settings

## outcomes 11 12 21

A ++ 1.615183e-04 1.677076e-04 1.807755e-04 9.583188e-
A +- 8.380993e-05 7.760091e-05 4.853017e-04 6.582675e-
A -+ 8.704512e-05 3.732282e-04 6.706611e-05 5.298445e-
A ——- 9.996676e-01 9.993815e-01 9.992669e-01 9.988023e-

22
06
04
04
01

## Convert the relative frequencies to one vector of length

VecNames <- as.vector(t(outer(colnames(rawProbsMat),
rownames (rawProbsMat), paste, sep = "")))
rawProbsVec <- as.vector (rawProbsMat)

names (rawProbsVec) <- VecNames

VecNames

#A 0 [1] "114++" "114=" "11-4" "11-=" "I24+" "124-=" "12-+"
"12-=" "2144" "21+-"

## [11] "21-+" "21-="" "22+4+" "22+=" "22-4" "22-=-"
rawProbsVec

## 11++ 11+- 11-+ 11--
12++

## 1.615183e-04 8.380993e-05 8.704512e-05 9.996676e-01
1.677076e-04

it 12+- 12-+ 12-- 21++
21+-

## 7.760091e-05 3.732282e-04 9.993815e-01 1.807755e-04
4.853017e-04

it 21-+ 21-- 22++ 22+-
22—+

## 6.706611e-05 9.992669e-01 9.583188e-06 6.582675e-04
5.298445e-04

## 22--

## 9.988023e-01

16



## Building up the 4 no-signalling constraints, combined in
one 16 x 4 matrix "NS"

Aplus <- c¢(1, 1, 0, 0)

Aminus <- - Aplus
Bplus <- c¢(1, 0, 1, 0)
Bminus <- - Bplus

zero <- ¢(0, 0, 0, 0)

) ## Build the 16x16 estimated covariance matrix of the 16 observed
NSal <- c(Aplus, Aminus, zero, zero)

i relative frequencies
NSa2 <- c(zero, zero, Aplus, Aminus)

NSbl <- c¢(Bplus, zero, Bminus, zero
(BP ! ! ' ) covll <- diag(rawProbsMat[ , "11"]) - outer(rawProbsMat[ , "11"],

rawProbsMat[ , "11"])
covl2 <- diag(rawProbsMat[ , "12"]) - outer(rawProbsMat[ , "12"],

NSb2 <- c(zero, Bplus, zero, Bminus)
NS <- cbind(NSal = NSal, NSa2 = NSa2, NSbl = NSbl, NSb2 =

NSb2)
rawProbsMat[ , "12"])
rownames (NS) <- VecNames . o o
e cov2l <- diag(rawProbsMat[ , "21"]) - outer(rawProbsMat|[ , "21"],
rawProbsMat[ , "21"])
## NSal NSa2 NSbl NSb2 ) - -
cov22 <- diag(rawProbsMat[ , "22"]) - outer(rawProbsMat|[ , "22"],
## 11++ 1 0 1 0 N W oo
rawProbsMa
## 11+- 1 0 0 0 L 10
## 11-+ 0 0 1 0 = - T S P
ov <- matrix
## 11-- 0 0 0 0 W £9g 0
rownames (Cov) <- VecNames
## 12++ -1 0 0 1
colnames(Cov) <- VecNames
#hlzes ol 0 0 0 Cov[l:4, 1:4] < 11/Ns["11"
ov[1l: : - cov S
L2 0 0 0 ! C [5 8, 5 8] < 12/N ["12"]
ov[5: : - cov S
i 12=- 0 0 0 0 C [9 1; 9 12 < 21/& "21"
ov[9: : - cov S
w2l 0 Lot 0 C [13 1é 13 16 < 22/& "2;"
ov : : - cov S
## 21+- 0 1 0 0 [ ! : [ :
## 21-+ 0 0 -1 0 . L
44 91 0 0 0 0 ## The vector "S" is used to compute the CHSH statistic "CHSH"
## The sum of the first three sample correlations minus the fourth
## 22++ 0 -1 0 -1
## 22+- 0 -1 0 0 . . .
## Note: the experiment is designed to favour use of Eberhard's J !
## 22-+ 0 0 0 -1
## 22-- 0 0 0 0

S <- ¢(c¢(1, -1, -1 ,1), ¢(1, -1, -1 , 1), c(1, -1, -1, 1), - c(1,
-1, -1, 1))

names (S) <- VecNames

CHSH <- sum(S * rawProbsVec)

CHSH

## [1] 2.000028



## Compute the estimated variance of the CHSH statistic,
## 1ts estimated covariances with the observed deviations
from no-signalling,

## and the 4x4 estimated covariance matrix of those
deviations.

## We'll later also need the inverse of the latter.

COVNN <- t (NS s*% NS
CcovSN <- t(S) %*% Cov %*% NS
covNS <- t(covSN)

InvCovNN <- solve(covNN)

## Estimated variance of the CHSH statistic,
## and estimated variance of the optimally "noise reduced”
CHSH statistic.

varCHSH <- varS
varCHSHopt <- varS - covSN %*3% InvCovNN 3¥*% covNS

## The variance, and the improvement as ratio of standard
deviations

varsS

## [,1]

## [1,] 1.078084e-11
sgrt(varCHSH / varCHSHopt)
## [,1]

## [1,] 2.055586

## The coefficients of the noise reduced CHSH statistic and the
resulting improved estimate

Sopt <- S - covSN %*3% InvCovNN %*3% t(NS)
Sopt

## 11++
12—+ 12--

## [1,] 2.011642 -0.5819319 -0.406426
0.720693 1

## 21++
22-+ 22--

## [1,] 2.188951 0.7825251 -1.593574
-0.720693 -1

CHSHopt <- sum(Sopt * rawProbsVec)
CHSHopt

## [1]1 2.000028

## p-values assuming approximate normality for testing CHSH

11+- 11-+ 11-- 12++ 12+-

1 2.302625 -1.418068

21+- 21-+ 21-- 22++ 22+-

1 -4.503218 -0.7825251

inequality

pnorm( (CHSH - 2)/ sqrt(varCHSH), lower.tail = FALSE)
## [,1]

## [1,] 5.43703e-18

pnorm( (CHSHopt - 2)/ sqgrt(varCHSHopt),
## [,1]

## [1,] 4.745794e-69

lower.tail = FALSE)



## Now we repeat for the Eberhard J statistic
## First, the coefficients in the vector "J"
## and the observed value of the statistic

J <- ¢(c¢(1, 0, O0 ,0), ¢c(0O, -1, O ,0), c(O, O, -1, 0), c(-1,
0, 0, 0))

names (J) <- VecNames

sum(J * rawProbsVec)

## [1] 7.26814e-06

## Next, its estimated variance and resulting p-value

vard <- t(J) %*% Cov %*% J

sum(J * rawProbsVec) / sqrt(vard)
## [,1]

## [1,] 12.10426

pnorm(sum(J * rawProbsVec) / sqrt(varJ), lower.tail = FALSE)

it [,1]

## [1,] 5.013606e-34

## The covariances between J and the observed deviations
from no-signaling

## The variance of the usual estimate of J and of the
improved estimate of J

## The improvement as a ration of standard deviations

covdN <- t(J) %*% Cov %*% NS
covNJ <- t(covJdN)
varJopt <- vard - covJN %*% InvCovNN %*3 covNJ

vard

#it [,1]
## [1,] 3.605539e-13
sgrt(varJ / varJopt)
#it [,1]

## [1,] 1.503676

## The coefficients of an improved estimataor of Eberhard's J

Jopt <= J - covdN %*% InvCovNN %*% t(NS)
Jopt

## 11++ 11+-
12—+

## [1,]1 0.2529105 -0.395483 -0.3516065
-0.06982674

## 12-- 214+ 21+-
22+-

## [1,]
0.05436871
## 22—+ 22--

## [1,] 0.06982674 0

## Observed estimate of J, and improved estimate of J

11-+ 11-- 12++ 12+-
0 0.3256562 -0.604517
21-+ 21-- 22++

0 0.2972378 -0.05436871 -0.6483935 0 -0.8758045

sum(J * rawProbsVec)

## [1] 7.26814e-06

sum(Jopt * rawProbsVec)

## [1] 6.997615e-06

## p-values based on J and on improved J

## Note that the p-value based on improved J is the same as that
of improved CHSH

pnorm(sum(J * rawProbsVec) / sqrt(varJ), lower.tail = FALSE)

## [,1]

## [1,] 5.013606e-34

pnorm(sum(Jopt * rawProbsVec) / sqrt(varJopt), lower.tail =
FALSE)

## [,1]

## [1,] 4.745794e-69

## The p-value of the optimized J got a lot better, even though
the estimate got a bit smaller

## The optimization procedure for CHSH made an enormous
difference

## The deviation from no-signalling is small; it is responsible
for these small changes
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Maybe you prefer a
Bayesian approach...

PHYSICAL REVIEW A 99, 022112 (2019)

Very strong evidence in favor of quantum mechanics and against local hidden variables
from a Bayesian analysis

Yanwu Gu,"?" Weijun Li,>>" Michael Evans,** and Berthold-Georg Englert>!-+$
' Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
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3Department of Statistical Sciences, University of Toronto, Toronto, Ontario M5S 3G3, Canada
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The data of four recent experiments—conducted in Delft, Vienna, Boulder, and Munich with the aim of
refuting nonquantum hidden-variables alternatives to the quantum-mechanical description—are evaluated from
a Bayesian perspective of what constitutes evidence in statistical data. We find that each of the experiments
provides strong, or very strong, evidence in favor of quantum mechanics and against the nonquantum alternatives.
This Bayesian analysis supplements the previous non-Bayesian ones, which refuted the alternatives on the basis

of small p values but could not support quantum mechanics.

DOI: 10.1103/PhysRevA.99.022112

Gu et al. assumption:

[22] We trust that runs tests have confirmed this statistical indepen-

dence. We cannot perform run tests ourselves on all data sets as
we do not know the sequence of detection events for some of
them. For all experiments evaluated, we only explore the total
counts of recorded detection events (Tables II, VII, X, and XIV),
not the order in which they were recorded. The list of counts is
a sufficient statistic if the events are statistically independent,
and only then.

FIG. 1. Symbolic sketch of the eight-dimensional set of permis-
sible probabilities. The points inside the ellipse symbolize probabil-
ities accessible by quantum mechanics (QM); the triangle encloses
the probabilities permitted by local hidden variables (LHV). There
are no QM probabilities in the blue portion of the LHV set and no
LHV probabilities in the red part of the QM set. The green overlap
region contains the probabilities that are possible both for QM and
LHV.

[43] A remark similar to that in Ref. [22] applies: We cannot test
this assumption on the basis of the data in Table X as one would
need to compare the data recorded at different intervals of the
data-collection period. We trust that the data have been tested
for drifts in the experimental parameters and none were found
within each of the three datasets.

“QM” = “QM of two qubits”, arbitrary density matrix,
perfect pre-specified spin measurements



Postscript

What should we believe now?
Should we trust the data?

According to Bednorz, Adenier and Khrennikov, Graft,
Santos, Hnilo, Fodje, ... no.

| think that the observed anomalies are not important and
are anyway irrelevant if we use martingale tests, possibly
adding room for imperfect random number generation

Let’s trust the experiments ... what then?



Erwin Schrodinger

e | don't like it, and I'm sorry | ever had anything to do with it.

[About the probability interpretation of quantum mechanics.] Epigraph, without citation, in John
Gribbin, In Search of Schrédinger’s Cat: Quantum Physics and Reality (1984), v, frontispiece.

e If all this damned quantum jumping were really here to stay, | should be sorry, |
should be sorry | ever got involved with quantum theory.

As reported by Heisenberg describing Schrodinger’s time spent debating with Bohr in Copenhagen
(Sep 1926). In Werner Heisenberg, Physics and Beyond: Encounters and Conversations (1971), 75.
As cited in John Gribbin, Erwin Schrodinger and the Quantum Revolution.

» God knows | am no friend of probability theory, | have hated it from the first
moment when our dear friend Max Born gave it birth. For it could be seen how
easy and simple it made everything, in principle, everything ironed and the true
problems concealed. Everybody must jump on the bandwagon [Ausweg]. And
actually not a year passed before it became an official credo, and it still is.

Letter to Albert Einstein (13 June 1946), as quoted by Walter Moore in Schrddinger: Life and
Thought (1989) ISBN 0521437679



The experiments of 2015 convinced me ...
rebrand “spooky action at a distance” ...

 Entanglement is an asset, not a horror

* We call it “spooky” because our mammal brains, trained by evolution, can’t
“understand” it any way except as the work of a *potentially* malevolent *agent”

e “Spooky” is an inadequate translation of “spukhaft”. We have to say it in German.
e “Passion at a distance” is better

e More precise: “(Martingale like) disciplined passion at a distance”? No, it won’t
catch on ...

e Auserlesene / engelhafte ‘spukhafte Fernwirkung’ (exquisite / angelic “action
at a distance”)




...and ...
Belavkin’s “eventum mechanics” is the
way 10 go.

* It's a “collapse theory”
e |t is therefore “non-local”
e |t can be made Lorentz invariant!

e Some famous recent works confirm me in my opinions:

* Daniela Frauchiger & Renato Renner

[My title] Schrédinger’s cat, the Wigners, and the Wigners’ friend

* Gilles Brassard & Paul Raymond-Robichaud

“The equivalence of local-realistic and no-signalling theories”. Abstract: We
provide a framework to describe all local-realistic theories and all no-signalling
operational theories. We show that when the dynamics is reversible, these two
concepts are equivalent. In particular, this implies that unitary quantum theory can
be given a local-realistic model.



The Wigners’ friend

Quantum system / cat in a box / ... Eugene Paul Wigner

'/ V7

9 .

Amelia Zippora Wigner-Frank Leo Szilard



My prejudice:
The clicks are “real”, the rest ... a
construction of our minds

It is allowed to imagine that more stuff is real

Such a “dilation” need not be unigue

“QM without collapse”, or Unitary QM - several theories, best known
being MW and Quantum Qubism

MW is many words

QB is subjective Bayes ... but I’'m a frequentist ... usually Bayes and
frequentist inference agree ... it’s really interesting when they disagree !!!

Quantum Buddhism gives yet further insights



F<R: The Wigners’ friend

e QM *without collapse* + MW implies only the wave
function is real

e QM *without collapse® + Qbism implies nothing is real

e My conclusion: QM without collapse is non-sense!




BoRR

* They insist on irreversibility!
e Change definitions of everything

e |t’s brilliant but ... it’s very technical and very long

e My conclusion: we must trash ‘irreversibility’!



“Spukhafte fernwerkung” is for real and ... Exquisite? Angelic?

Collapse is real

Recommendation: take a look again at Belavkin’s “Eventum Mechanics”

We must keep questioning the very words which we use (Eastern thought
/ Western post-modernism) ... and remember what we are ... *nothing” is
real - QBism!

| think that *both* QBism and Eventum Mechanics are self-consistent;
their empirical predictions are (so far) identical. So it’s a matter of taste.
Non-local collapse masked by irreducible randomness ... or quantum
Buddhism (we only have our sensory impressions and our inter-
subjective confidence in predictions of future sensory impressions)



Everything is a construction of our minds -
there Is nothing else

Beware: every word is a “model”

All models are wrong, some are useful

Universiteit Leiden

— —




Postscnpt

| cannot say that action at a distance is required in physics. But | cannot say
that you can get away with no action at a distance. You cannot separate off
what happens in one place with what happens at another — John Bell

https://www.youtube.com/watch?v=V8CCfOD1iu8

Nature produces chance events (irreducibly chance-like!) which can occur
at widely removed spatial locations without anything propagating from point
to point along any path joining those locations. ... The chance-like character
of these eftects prevents any possibility of using this form of non locality to
communicate, thereby saving from contradiction one of the fundamental
principles of relativity theory according to which no communication can
travel faster than the speed of light — Nicolas Gisin

Quantum Chance: Nonlocality, Teleportation and Other Quantum Marvels. Springer, 2014


https://www.youtube.com/watch?v=V8CCfOD1iu8

