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The Method of Maximum Likelihood

R. A. Fisher (1912), “On an absolute crite-

rion for fitting frequency curves,” Messenger

of Math. 41, 155–160

Fisher’s first mathematical paper, written while

a final-year undergraduate in mathematics and

mathematical physics at Cambridge University

It’s not clear what motivated Fisher to study

this subject; perhaps it was the influence of his

tutor, the astronomer F. J. M. Stratton.

Fisher’s paper started with a criticism of two

methods of curve fitting, least-squares and the

method of moments.
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X: a random variable

θ is a parameter

f(x; θ): A statistical model for X

X1, . . . , Xn: A random sample from X

We want to construct good estimators for θ
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Protheroe, et al. “Interpretation of cosmic ray

composition - The path length distribution,”

ApJ., 247 1981

X: Length of paths

Parameter: θ > 0

Model: The exponential distribution,

f(x; θ) = θ−1 exp(−x/θ), x > 0

Under this model,

E(X) =
∫ ∞

0
x f(x; θ) dx = θ

Intuition suggests using X̄ to estimate θ

X̄ is unbiased and consistent
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LF for globular clusters in the Milky Way; van

den Bergh’s normal model,

f(x) =
1√
2πσ

exp

[
−

(x− µ)2

2σ2

]

µ: Mean visual absolute magnitude

σ: Std. deviation of visual absolute magnitude

X̄ is a good estimator for µ

S2 is a good estimator for σ2

We seek a method which produces good esti-

mators automatically

Fisher’s brilliant idea: The method of maxi-

mum likelihood
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Choose a globular cluster at random; what is

the chance that the LF will be exactly -7.1

mag? Exactly -7.2 mag?

For any continuous random variable X,

P (X = c) = 0

Suppose X ∼ N(µ = −6.9, σ2 = 1.21)

X has probability density function

f(x) =
1√
2πσ

exp

[
−

(x− µ)2

2σ2

]

P (X = −7.1) = 0, but

f(−7.1) =
1

1.1
√

2π
exp

[
−

(−7.1 + 6.9)2

2(1.1)2

]
= 0.37
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Interpretation: In one simulation of the ran-

dom variable X, the “likelihood” of observing

the number -7.1 is 0.37

f(−7.2) = 0.28

In one simulation of X, the value x = −7.1 is

32% more likely to be observed than the value

x = −7.2

x = −6.9 is the value which has the greatest

(or maximum) likelihood, for it is where the

probability density function is at its maximum
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Return to a general model f(x; θ)

Random sample: X1, . . . , Xn

Recall that the Xi are independent random

variables

The joint probability density function of the

sample is

f(x1; θ)f(x2; θ) · · · f(xn; θ)

Here the variables are the X’s, while θ is fixed

Fisher’s brilliant idea: Reverse the roles of the

x’s and θ

Regard the X’s as fixed and θ as the variable
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The likelihood function is

L(θ;X1, . . . , Xn) = f(X1; θ)f(X2; θ) · · · f(Xn; θ)

Simpler notation: L(θ)

θ̂, the maximum likelihood estimator of θ, is

the value of θ where L is maximized

θ̂ is a function of the X’s

Caution: The MLE is not always unique.
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Example: “... cosmic ray composition - The

path length distribution ...”

X: Length of paths

Parameter: θ > 0

Model: The exponential distribution,

f(x; θ) = θ−1 exp(−x/θ), x > 0

Random sample: X1, . . . , Xn

Likelihood function:

L(θ) = f(X1; θ)f(X2; θ) · · · f(Xn; θ)

= θ−n exp(−(X1 + · · ·+Xn)/θ)

= θ−n exp(−nX̄/θ)
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To maximize L, we use calculus

It is also equivalent to maximize lnL:

lnL(θ) = − n ln(θ)− nX̄θ−1

d

dθ
lnL(θ) = − nθ−1 + nX̄θ−2

d2

dθ2
lnL(θ) = nθ−2 − 2nX̄θ−3

Solve the equation d lnL(θ)/dθ = 0:

θ = X̄

Check that d2 lnL(θ)/dθ2 < 0 at θ = X̄

lnL(θ) is maximized at θ = X̄

Conclusion: The MLE of θ is θ̂ = X̄
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LF for globular clusters; X ∼ N(µ, σ2)

f(x;µ, σ2) =
1√
2πσ

exp

[
−

(x− µ)2

2σ2

]

Assume that σ is known (1.1 mag, say)

Random sample: X1, . . . , Xn

Likelihood function:

L(µ) = f(X1;µ)f(X2;µ) · · · f(Xn;µ)

= (2π)−n/2σ−n exp

− 1

2σ2

n∑
i=1

(Xi − µ)2



Maximize lnL using calculus: µ̂ = X̄
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LF for globular clusters; X ∼ N(µ, σ2)

f(x;µ, σ2) =
1√

2πσ2
exp

[
−

(x− µ)2

2σ2

]

Both µ and σ are unknown

A likelihood function of two variables,

L(µ, σ2) = f(X1;µ, σ2) · · · f(Xn;µ, σ2)

=
1

(2πσ2)n/2
exp

− 1

2σ2

n∑
i=1

(Xi − µ)2



lnL = −
n

2
ln(2π)−

n

2
ln(σ2)−

1

2σ2

n∑
i=1

(Xi − µ)2

∂

∂µ
lnL =

1

σ2

n∑
i=1

(Xi − µ)

∂

∂(σ2)
lnL = −

n

2σ2
+

1

2(σ2)2

n∑
i=1

(Xi − µ)2
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Solve for µ and σ2 the simultaneous equations:

∂

∂µ
lnL = 0,

∂

∂(σ2)
lnL = 0

We also verify that L is concave at the solu-

tions of these equations (Hessian matrix)

Conclusion: The MLEs are

µ̂ = X̄, σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2

µ̂ is unbiased: E(µ̂) = µ

σ̂2 is not unbiased: E(σ̂2) = n−1
n σ2 6= σ2

For this reason, we use n
n−1σ̂

2 ≡ S2
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Calculus cannot always be used to find MLEs

Example: “... cosmic ray composition ...”

Parameter: θ > 0

Model: f(x; θ) =

exp(−(x− θ)), x ≥ θ
0, x < θ

Random sample: X1, . . . , Xn

L(θ) = f(X1; θ) · · · f(Xn; θ)

=

exp(−
∑n
i=1(Xi − θ)), all Xi ≥ θ

0, otherwise

X(1): The smallest observation in the sample

“all Xi ≥ θ” is equivalent to “X(1) ≥ θ”

L(θ) =

exp(−n(X̄ − θ)), θ ≤ X(1)

0, otherwise

Conclusion: θ̂ = X(1)
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General Properties of the MLE θ̂

(a) θ̂ may not be unbiased. We often can re-

move this bias by multiplying θ̂ by a constant.

(b) For many models, θ̂ is consistent.

(c) The Invariance Property: For many nice

functions g, if θ̂ is the MLE of θ then g(θ̂) is

the MLE of g(θ).

(d) The Asymptotic Property: For large n, θ̂

has an approximate normal distribution with

mean θ and variance 1/B where

B = nE

[
∂

∂θ
ln f(X; θ)

]2

The asymptotic property can be used to de-

velop confidence intervals for θ
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The method of maximum likelihood works well

when intuition fails and no obvious estimator

can be found.

When an obvious estimator exists the method

of ML often will find it.

The method can be applied to many statistical

problems: regression analysis, analysis of vari-

ance, discriminant analysis, hypothesis testing,

principal components, etc.
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The ML Method for Linear Regression Analysis

Scatterplot data: (x1, y1), . . . , (xn, yn)

Basic assumption: The xi’s are non-random

measurements; the yi are observations on Y , a

random variable

Statistical model:

Yi = α+ βxi + εi, i = 1, . . . , n

Errors ε1, . . . , εn: a random sample from N(0, σ2)

Parameters: α, β, σ2

Yi ∼ N(α+ βxi, σ
2): The Yi’s are independent

The Yi are not identically distributed, because

they have differing means
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The likelihood function is the joint density func-

tion of the observed data, Y1, . . . , Yn

L(α, β, σ2) =
n∏
i=1

1√
2πσ2

exp

[
−

(Yi − α− βxi)2

2σ2

]

= (2πσ2)−n/2 exp

−
n∑
i=1

(Yi − α− βxi)2

2σ2



Use partial derivatives to maximize L over all

α, β and σ2 > 0 (Wise advice: Maximize lnL)

The ML estimators are:

β̂ =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
, α̂ = Ȳ − β̂x̄

and

σ̂2 =
1

n

n∑
i=1

(Yi − α̂− β̂xi)2
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The ML Method for Testing Hypotheses

X ∼ N(µ, σ2); parameters µ and σ2

Model: f(x;µ, σ2) = 1√
2πσ2

exp
[
−(x−µ)2

2σ2

]

Random sample: X1, . . . , Xn

We wish to test H0 : µ = 3 vs. Ha : µ 6= 3

Parameter space: The space of all permissible

values of the parameters

Ω = {(µ, σ) : −∞ < µ <∞, σ > 0}

H0 and Ha represent restrictions on the param-

eters, so we are led to parameter subspaces

ω0 = {(µ, σ) : µ = 3, σ > 0}
ωa = {(µ, σ) : µ 6= 3, σ > 0}
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L(µ, σ2) = f(X1;µ, σ2) · · · f(Xn;µ, σ2)

=
1

(2πσ2)n/2
exp

− 1

2σ2

n∑
i=1

(Xi − µ)2



Maximize L(µ, σ2) over ω0 and ωa

The likelihood ratio test statistic is

λ =
max
ω0

L(µ, σ2)

max
ωa∪ω0

L(µ, σ2)
=

max
σ>0

L(3, σ2)

max
σ>0,µ

L(µ, σ2)

Fact: 0 ≤ λ ≤ 1

L(3, σ2) is maximized over ω0 at

σ2 =
1

n

n∑
i=1

(Xi − 3)2
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max
ω0

L(3, σ2) =L

(
3, 1
n

n∑
i=1

(Xi − 3)2
)

=

[
n

2πe
∑n
i=1(Xi − 3)2

]n/2

L(µ, σ2) is maximized over ωa at

µ = X̄, σ2 =
1

n

n∑
i=1

(Xi − X̄)2

max
ωa∪ω0

L(µ, σ2) =L

(
X̄, 1

n

n∑
i=1

(Xi − X̄)2
)

=

[
n

2πe
∑n
i=1(Xi − X̄)2

]n/2
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The likelihood ratio test statistic:

λ =

 n

2πe
n∑
i=1

(Xi − 3)2

n/2

÷

 n

2πe
n∑
i=1

(Xi − X̄)2

n/2

=

 n∑
i=1

(Xi − X̄)2 ÷
n∑
i=1

(Xi − 3)2

n/2

λ is close to 1 iff X̄ is close to 3

λ is close to 0 iff X̄ is far from 3

This particular LRT statistic λ is equivalent to

the t-statistic seen earlier

In this case, the ML method discovers the ob-

vious test statistic
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Given two unbiased estimators, we prefer the
one with smaller variance

In our quest for unbiased estimators with min-
imum possible variance, we need to know how
small their variances can be

Parameter: θ

X: Random variable with model f(x; θ)

The “support” of f is the region where f > 0

We assume that the “support” of f does not
depend on θ

Random sample: X1, . . . , Xn

Y : An unbiased estimator of θ

The Cramér-Rao Inequality: The smallest pos-
sible value that Var(Y ) can attain is 1/B where

B = nE

[
∂

∂θ
ln f(X; θ)

]2
= −nE

[
∂2

∂θ2
ln f(X; θ)

]
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Example: “... cosmic ray composition - The
path length distribution ...”

X: Length of paths

Parameter: θ > 0

Model: f(x; θ) = θ−1 exp(−x/θ), x > 0

ln f(X; θ) = − ln θ − θ−1X

∂2

∂θ2
ln f(X; θ) = θ−2 − 2θ−3X

E

[
∂2

∂θ2
ln f(X; θ)

]
= E(θ−2 − 2θ−3X)

= θ−2 − 2θ−3E(X)

= θ−2 − 2θ−3θ

= − θ−2

The smallest possible value of Var(Y ) is θ2/n

This is attained by X̄. For this problem, X̄ is
the best unbiased estimator of θ
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Y : An unbiased estimator of a parameter θ

We compare Var(Y ) with 1/B, the lower bound

in the Cramér-Rao inequality:

1

B
÷Var(Y )

This number is called the efficiency of Y

Obviously, 0 ≤ efficiency ≤ 1

If Y has 50% efficiency then about 1/0.5 = 2

times as many sample observations are needed

for Y to perform as well as the MVUE.

The use of Y result in confidence intervals

which generally are longer than those arising

from the MVUE.

If the MLE is unbiased then as n becomes

large, its efficiency increases to 1.
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The Cramér-Rao inequality states that if Y is
any unbiased estimator of θ then

Var(Y ) ≥
1

nE
[
∂
∂θ ln f(X; θ)

]2
The Heisenberg uncertainty principle is known
to be a consequence of the Cramér-Rao in-
equality.

Dembo, Cover, and Thomas (1991) provide a
unified treatment of the Cramér-Rao inequal-
ity, the Heisenberg uncertainty principle, en-
tropy inequalities, Fisher information, and many
other inequalities in statistics, mathematics,
information theory, and physics. This remark-
able paper demonstrates that there is a basic
oneness among these various fields.

Reference

Dembo, Cover, and Thomas (1991), “Information-theoretic in-

equalities,” IEEE Trans. Information Theory 37, 1501–1518.
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The Bayesian Information Criterion

Suppose that we have two competing statisti-

cal models

We can fit these models using residual sums of

squares, the method of moments, the method

of maximum likelihood, ...

The choice of model cannot be assessed en-

tirely by these methods

By increasing the number of parameters, we

can always reduce the residual sums of squares

Polynomial regression: By increasing the num-

ber of terms, we can reduce the residual sum

of squares
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More complicated models generally will have
lower residual errors

A standard approach to hypothesis testing for
large data sets is to use the Bayesian informa-
tion criterion (BIC).

The BIC penalizes models with greater num-
bers of free parameters

Two competing models:
f1(x; θ1, . . . , θm1) and f2(x;φ1, . . . , φm2)

Random sample: X1, . . . , Xn

Likelihood functions:
L1(θ1, . . . , θm1) and L2(φ1, . . . , φm2)

Bayesian Information Criterion:

BIC = 2 ln
L1(θ1, . . . , θm1)

L2(φ1, . . . , φm2)
− (m1 −m2) lnn

The BIC balances any improvement in the like-
lihood with the number of model parameters
used to achieve that improvement
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Calculate all MLEs θ̂i and φ̂i

Compute the estimated BIC:

B̂IC = 2 ln
L1(θ̂1, . . . , θ̂m1)

L2(φ̂1, . . . , φ̂m2)
− (m1 −m2) lnn

General rules:

B̂IC < 2: Weak evidence that Model 1 is su-

perior to Model 2

2 ≤ B̂IC ≤ 6: Moderate evidence that Model 1

is superior to Model 2

6 < B̂IC ≤ 10: Strong evidence that Model 1

is superior to Model 2

B̂IC > 10: Very strong evidence that Model 1

is superior to Model 2
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Exercise: Two competing models for globular
cluster LF in the Galaxy

1. A Gaussian model (van den Bergh, 1985)

f(x;µ, σ) =
1√
2πσ

exp

[
−

(x− µ)2

2σ2

]

2. A t-distn. model (Secker 1992, AJ 104)

g(x;µ, σ, δ) =
Γ(δ+1

2 )
√
πδ σ Γ(δ2)

[
1 +

(x− µ)2

δσ2

]−δ+1
2

−∞ < µ <∞, σ > 0, δ > 0

In each model, µ is the mean and σ2 is the
variance. In Model 2, δ is a shape parameter.

Maximum likelihood calculations suggest that
Model 1 is inferior to Model 2.

Question: Is the increase in likelihood due to
larger number of parameters?

This question can be studied using the BIC.
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We use the data of Secker (1992), Table 1
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We assume that the data constitute a random sample



Model 1: Write down the likelihood function,

L1(µ, σ) = f(X1;µ, σ) · · · f(Xn;µ, σ)

=
1

(2πσ2)n/2
exp

− 1

2σ2

n∑
i=1

(Xi − µ)2



Estimate µ with X̄, the ML estimator. Also,

estimate σ2 with S2, a constant multiple of the

ML estimator of σ2.

Note that

L1(X̄, S) =
1

(2πS2)n/2
exp

− 1

2S2

n∑
i=1

(Xi − X̄)2


=(2πS2)−n/2 exp(−(n− 1)/2)

Calculate x̄ and s2, the sample mean and vari-

ance of the Milky Way data. Use these values

to calculate L1(x̄, s)

Secker (1992, p. 1476): lnL1(x̄, s) = −176.4
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Model 2: Write down the likelihood function,

L2(µ, σ, δ) =g(X1;µ, σ) · · · g(Xn;µ, σ)

=
n∏
i=1

Γ(δ+1
2 )

√
πδ σ Γ(δ2)

[
1 +

(Xi − µ)2

δσ2

]−δ+1
2

Are the MLEs of µ, σ2, δ unique?

No explicit formulas for the MLEs are known;

we must evaluate them numerically

Substitute the Milky Way data for the Xi’s in

the formula for L, and maximize L numerically.

Secker (1992): µ̂ = −7.31, σ̂ = 1.03, δ̂ = 3.55

Calculate L2(−7.31,1.03,3.55)

Secker (1992, p. 1476):

lnL2(−7.31,1.03,3.55) = −173.0
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Finally, calculate the estimated BIC:

B̂IC = 2 ln
L1(x̄, s)

L2(−7.31,1.03,3.55)
−(m1−m2) lnn

where m1 = 2, m2 = 3, n = 100

B̂IC = 2[lnL1(x̄, s)− lnL2(−7.31,1.03,3.55)]

+ ln 100

= 2[−176.4− (−173.0)] + ln 100

= − 2.2

Apply the General Rules on p. 30 to assess the
strength of the evidence that Model 1 may be
superior to Model 2.

Since B̂IC < 2, we have very strong evidence
that the t-distribution model is superior to the
Gaussian distribution Model.

We reject the null hypothesis that the t-distribution
model for GCLF is superior to the Gaussian
model.
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Concluding general remarks on the BIC

The BIC procedure is consistent: If Model 1 is
the true model then, as n → ∞, the BIC will
determine that it is.

Not all information criteria are consistent.

The BIC is not a panacea; some authors rec-
ommend that it be used in conjunction with
other information criteria.

There are also difficulties with the BIC

Findley (1991, Ann. Inst. Statist. Math.)
studied the performance of the BIC for com-
paring two models with different numbers of
parameters: “Suppose that the log-likelihood-
ratio sequence of two models with different
numbers of estimated parameters is bounded
in probability. Then the BIC will, with asymp-
totic probability 1, select the model having
fewer parameters.”
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