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Preface

The short title of this book, Quantum Statistics, could be amplified into: “statistical

inference for quantum statistical models”, the latter being stochastic models for

data obtained from observation or measurement of quantum systems.

This explanation is necessary, since the title alone may well be confusing for

some readers. In physics, the notion of “quantum statistics” is well established,

and means “probability distributions derived from quantum mechanics which differ

from their classical counterparts”. For instance, the physicist will think of certain

non-Poissonian models for counts. However, we are going to pay attention both to

statistical modelling and to statistical inference, so the double meaning of the title

is not that misleading.

Niels Bohr said that anyone who claims to understand quantum theory, clearly

doesn’t. And according to John von Neumann, you don’t understand a new mathe-

matical theory, you just get accustomed to it. So the best way to get into our subject

is to get into a concrete problem as soon as possible. We need to get accustomed to

strange notations, possibly unfamiliar mathematics, and remarkable phenomena.

But before this, here are some clues to the overall scheme of things.

We are going to study statistical problems, for instance parameter estimation,

for statistical models coming from quantum physics. This is meaningful since,

according to our point of view, quantum physics is a stochastic theory: it tells us the

probability distribution of data coming from an experiment involving a quantum

system. It never predicts the actual outcome (except in some special situations

where probabilities are zero or one). Moreover, the probability model for a given

quantum experiment will typically depend on unknown parameters, in particular

describing some aspects of the state of the quantum system being measured, or of

the measurement apparatus.

Here the word “experiment” may be taken in a very broad sense, just as we are

used to when we say that probability theory provides a mathematical model for

“chance experiments”. We will also talk, equally loosely for the time being, about

a measurement on the quantum system.

So, what is a quantum system? The following definition might be unsatisfactory,

but it is the best we can do: it is a physical system which behaves according to

the laws of quantum physics. And according to Bohr, von Neumann, and many

others, one cannot understand those laws, one can only hope to get used to them.
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iv Preface

That quantum system might be an atom, an electron, a photon. It might be an

assemblage of such objects. (In cosmology, it is the whole universe, though much

of what we are about to say will then become problematic). For the time being, let’s

not worry about what we are talking about, but describe the language we will be

using. In this language, there will be reference to a quantum system “inside” and a

classical real world “outside” (we are not going to discuss cosmology). On its own,

the quantum system will evolve, in time, according to certain laws. Without any

interaction between the system and the outside world there is nothing interesting to

talk about. We only have any experience of the quantum system through its effects

on the outside world. At the same time, the interaction between quantum system

and outside world will change the quantum system in some way.

Measuring a quantum system can therefore generate, according to some prob-

ability distribution, real data in the outside world. The distribution of the data

depends on two aspects of the situation: the state of the quantum system, and how

it is measured. In principle, there could be unknown parameters in both of these

components. But from this point on, everything is classical, even though some of

the most natural and beautiful statistical models are not familiar to statisticians,

and often not well understood by physicists either.

So if we are just going to look at classical statistical models, why make some-

thing special out of quantum statistics?

Three things need to be said in answer. Firstly, the laws of quantum physics

delineate rather sharply all possible experiments which can be done. Problems in

the design of experiments can therefore be formulated very precisely, and often

(because of the nice geometry of the class of all possible experiments) they have

rather beautiful, surprising, and useful solutions.

Secondly, this same fact, that the collection of possible experiments can be de-

scribed so sharply, means that the different probability models for all potential ex-

periments are interrelated in a very tight and beautiful way. They are constrained

by a rich mathematical structure which in a pure mathematical sense involves a

generalization of familiar structures from classical probability theory. It pays to

recognise this structure and to exploit it. Going further, from probability to statis-

tics, the structure implies the existence of special interrelations between statistical

concepts connected to the various possible experiments, and this interrelation can

be formulated in terms of mathematical generalizations of various fundamental no-

tions from statistics: for instance, score function, Fisher information, and so on.

Thirdly, quantum physics exhibits many strange features (superposition, com-

plementarity, entanglement) and these features turn out also to have statistical

repercussions. The real motivation for this book is to explore these wonderful

phenomena.
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1

Introduction

Quantum mechanics is the foundation of much of modern physics. The theory is

intrinsically stochastic: it does not predict what will happen in any given physical

situation, but in principle only allows one to compute a probability distribution

over a number of possibilities.

However, the interpretation of this distribution truly as a probability distribution

only becomes inescapable when the theory is applied to a single quantum system,

or to a small number of identical copies, and not to a huge number of identical

copies (an ensemble, as physicists say). It is only very recently that this situa-

tion has become achievable in the laboratory, and also of burning interest, both to

theoreticians and to experimentalists.

The reason for this new interest is because of the recent birth of a new field in

physics called quantum information. The field is developing at a breathtaking pace,

and this development is at least partly motivated by a glimpse of extraordinary

potential technology.

Section 1.1 of this chapter provides a snapshot of “what is going on” right now,

though we are fully aware that this picture will already be quite out of date in a

year from now. We use the snapshot to describe in a nontechnical way the kind

of problems we are going to study. As we will see, within the general field of

quantum information one can in particular identify statistical problems, problems

concerning quantum statistical information. Section 1.2 contains a specific exam-

ple of such a problem, which we will study in depth, later (to be precise, in Section

5.2) . In Section 1.3 we will give preliminary mathematical definitions of the key

notions of state, measurement, operation, and instrument (to be studied in depth in

Chapter 2). Finally, Section 1.4 of this chapter provides an outline of the rest of the

book.

1.1 The ultimate laptop

Gordon Moore, co-founder of Intel, noted in 1965 that the density of transistors on

integrated circuits had doubled every year since the integrated circuit was invented.

He saw no reason for this trend to slow down. Nowadays one is a little more

conservative: Moore’s law states that data density doubles approximately every 18

months. It has been doing this for 50 years and the trend is expected to continue

1
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Fig. 1.1. Moore’s Law—starting to slow down? Number of transistors on an Intel CPU (in
thousands), versus time.

for another two decades. According to Figure 1.1 the doubling time is closer to

two years, and the rate is beginning to markedly slow down.

Within twenty years however, computers operating according to Moore’s law

will have atomic level components. At this level the laws of physics are the laws

of quantum physics and these involve uncertainty in an intrinsic way. There are

no longer definite particles always at definite places as time evolves. Quantum

physics only allows one to write down the probability to find a particle at some

place at some time. A computer in which 1+ 1 mod 2 is sometimes 0, sometimes

1, does not seem like a good idea.

However, there are also features of quantum physics which might be useful for

computation. According to quantum physics one has to describe a particle with a

wave function. The squared amplitude of the wave is the probability density to find

the particle at that position. The wave function evolves in time in a deterministic

way. The evolution is linear so that a superposition of waves evolves as the super-

position of its components. This promises a kind of parallelism: simultaneously

doing the same computation on a whole collection of different inputs.

There is another striking feature called entanglement, according to which sev-

eral particles together have different behaviour from anything which is attainable

by simply adding together behaviours of separate particles. The total is more than

the sum of its parts. Entanglement is connected to non-locality. It is as though one

particle feels what is simultaneously happening to another, distant particle, with

which it has interacted in the past. Unfortunately (or fortunately, since quantum

mechanics should not contradict relativity theory), the particle finds it hard to ex-

press what it feels, and it is only later, when one compares notes, that one sees that
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Fig. 1.2. Erwin Schrödinger (from MacTutor Archive, St. Andrews.)

Fig. 1.3. Richard Feynmann (from MacTutor Archive, St. Andrews).

it was talking sense. The situation is reminiscent of the oracles of antiquity who

always correctly predicted the future, but did it in such a way that only in retrospect

could their predictions be understood.

Entanglement remains a tantalizing and a controversial subject. It was discov-

ered and named by Erwin Schrödinger (see Figure 1.2), one of the founding fathers

of quantum physics. Schrödinger thought it was “schrecklich” (terrible). About

quantum physics as a whole he said “I don’t like it, and I’m sorry I ever had any-

thing to do with it”. Richard Feynmann (Figure 1.3, who already in the fifties

started thinking about quantum computers, said “Don’t try to understand quantum

mechanics or you will fall into a black hole and never be heard from again”.

Fortunately you don’t have to understand quantum physics in order to under-

stand quantum statistics (more precisely, quantum statistical inference). There is

an elegant and simple mathematical model, which one can accept just as one might

accept the rules of some new game of chess: just start to play the game, follow

one’s instinct, and see where it brings one. In view of Feynmann’s advice it is

probably best to postpone consideration of “what it all means” till after one is fa-

miliar with what comes out of it.

In the nineties theoretical physicists started thinking seriously about quantum
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Fig. 1.4. Peter Shor (from his webpage).

computers. A few problems were invented (for instance, by David Deutsch) in

which quantum computation offered a mild advantage over classical computation,

by exploiting the parallelism of quantum physics (163). Moreover, computer sci-

entists and mathematicians got involved. And things started moving really fast

when the computer scientist Peter Shor (Figure 1.4), in 1994, showed how a com-

puter architecture in which the basic elements of the memory were not “bits” but

“qubits”, could be used to factor large integers in polynomial time (344). Here,

entanglement is used in a big way.

As everyone realises, it is easy, in principle, to multiply two large numbers to-

gether. One follows an algorithm due to Euclid, which used to be taught at primary

school, and it just takes some time and a large piece of paper. If one thinks about it

for a moment one will realise that the time it takes to do the calculation is not more

than quadratic in the total length (number of decimals) of the numbers involved.

On the other hand, and also well known, the inverse problem is rather more

difficult. Given a thousand digit number which is the product of two five hundred

digit primes, it takes a much, much longer time to discover what those two factors

are, than it takes to multiply them and get their product. Though it is not known for

sure, mathematicians and computer scientists believe that this fact is intrinsic to the

problem of factoring; it is not that we just weren’t smart enough to come up with

a good algorithm yet. The time it takes the best algorithm increases exponentially

in the length of the number to be factored. And on this fact depends the security of

the internet and of internet banking, of modern telecommunication systems, and of

a huge amount more of modern technology.

These facts are intrinsic to the problem of factoring together with the basic lim-

itations of classical computation. Analogue computation with classical physics

does not help either. Computation is a physical process and according to classi-

cal physics, factoring is hard. Shor’s algorithm uses clever tricks from algebra and

group theory to convert the problem of factoring integers into a problem of comput-

ing a discrete Fourier transform. This problem turns out to be something which an
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Fig. 1.5. Delft Qubits (from the Delft group’s webpages)

array of quantum bits, on which a small number of basic quantum operations can

be applied, can solve quite easily. The mathematics is beautiful and it’s a brilliant

discovery.

Shor’s discovery led to an explosion of activity and of hype. Take a look for

instance at this quotation from the respectable British popular science journal New

Scientist, June 2002:

The prize is a machine powerful enough to take on life, the Universe and every-

thing. Justin Mullins commentates on the race to build a quantum computer.

Is it just hype? No, and there really is a race on. Albert Mooij’s group in Delft is

one of the world leaders. Figure 1.5 shows pictures of one, and of a pair, of Delft

qubits. Each is about 5 µm (micrometers) across. A micrometer is one thousandth

of a millimeter. The atomic scale, nanometers, is one thousand times smaller still.

Such an apparatus is called a SQUID: a Semi-conducting Quantum Interference

Device. It is actually an aluminium circuit, brought to very low temperature. It

is broken in three places by Josephson junctions—these are a kind of dirty con-

nections, across which electric current only flows with great difficulty. About a

billion electrons in the circuit behave together as a single fundamental particle and

can either be in a state of clockwise or counter-clockwise motion around the ring.

Moreover, since they behave according to quantum mechanics, it is possible to get

them into a superposition of those two states:

|ψ〉 = (|&〉 + |'〉)/√2

The next aim is to create entanglement, such as the following state of two qubits:

both loops clockwise, superimposed with both loops counterclockwise:

|ψ〉 = (|&〉 ⊗ |&〉 + |'〉 ⊗ |'〉)/√2

There truly is a race on: note the dates in the following two citations: Chiorescu,

Nakamura, Harmans, and Mooij, Coherent Quantum Dynamics of a Supercon-

ducting Flux Qubit, Science 299 1869-1871, March 21 (2003); and the American

competition, Berkley et al., Entangled Macroscopic Quantum States in Two Super-

conducting Qubits, Science Online 10845281-0, May 15 (2003).

We emphasize that although a billion electrons are involved here, the quantum

system being built is a two-level system, the quantum analogue of a bit (in the
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second picture, two two-level systems; two bits). For a probabilist, a good analogy

is a coin-toss, for which an appropriate mathematical model is the Bernoulli trial,

depending on one parameter p.

From the wave-like nature of quantum mechanics it turns out that for a quantum

coin toss (a measurement on a two level system), not one but three real numbers are

needed to fully describe the state of the system. Moreover there are a continuum

of different ways to toss the quantum coin, not just one, leading to a continuum of

Bernoulli models, each one with a p depending on the state of the system, and the

measurement which was done on it.

Despite this continuum of possible states and possible measurements, one can

only extract one bit of classical information from such a system. The future quan-

tum computer starts with an array of N qubits, altogether in one of 2N basic states

(each qubit ' for 0, or & for 1). Their joint state evolves deterministically and

after some fixed time one looks at each qubit and reads off a 0 or a 1. Just like a

classical computer, in fact.

Now a two-bit computer cannot do very much. It is going to take quite a long

time before we are able to build even 1000 bit quantum calculating machines, let

alone the million bit memory of a modern PC. However a beautiful thing about

quantum physics is that the basic mathematical rules are the same, whatever the

physical system involved. Quantum computation, communication, and crypto-

graphic protocols have already been implemented on ions in ion traps, photons

from a laser travelling 15 Km through glass fibre cables, and in nuclear spins in

molecules in solution in water. For instance, the number 15 has been factored

using an enormously noisy quantum computation being done simultaneously on

about 1022 7 qubit quantum computers (7 nuclear spins in a chloroform molecule;

the answer was . . . ). In the meantime there are a great deal of practical and theo-

retical problems to be solved, the main one being decoherence: interaction of the

qubits of the quantum computer with its environment causes the fragile entangled

state to decohere into boring, separate, classical states of the separate bits. On

the other hand, reading data in and out of the computer, without which it is no use

whatsover, requires . . . interaction with the environment. Some physicists—among

them, the recent Nobel-prizewinner Gerard ’t Hooft—think the problems here may

be intrinsic. Resolving this issue, which means finding out whether quantum me-

chanics really does apply to larger and larger systems, is the real scientific drive

behind the efforts of many of the experimentalists and theorists in this field. The

dream of a quantum computer has been a useful hype to secure publicity and re-

search funding, but the emperor’s new clothes are wearing thin these days.

If we ever do get a quantum computer, what will it actually be able to do? Most

people felt ten years ago that Shor’s breakthrough had simply exposed the tip of an

iceberg. Today Factoring, tomorrow The Travelling Salesman . . . ! Despite huge

efforts however, only a handful of new problems have been found to be amenable

to “exponential speed up” on a quantum computer. All of those problems are very

close in mathematical nature, despite appearances, to factoring, and the new algo-

rithms are close relatives of Shor’s. Quantum mechanics is good at doing Fourier

transforms. A realistic outlook at the moment, is that within 10 years we will
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have 30 qubit quantum computers, which are able to do . . . theoretical quantum

mechanical calculations exponentially faster than any classical computer can. The

hardware will actually be a lattice of ions riding in the standing waves of interfer-

ing laser beams. The theory is being pioneered by Ignatio Cirac of the Max Planck

Institute for Quantum Optics at Garching, near Munich. The scope of applica-

tion might seem limited, but it would have enormous practical impact in molecular

biology and nanotechnology in general.

The title of this section comes from some papers of the last couple of years by

Seth Lloyd (MIT) which the reader might like to find by searching for the author

at http://arxiv.org/find/quant-ph. He asks the question what is the

maximum computing capacity allowed by the laws of physics, which can be done

on one liter of matter, of mass one kilo? The ultimate laptop . . . . The answer is . . .

that under Moore’s law, it will take another 200 years to hit the ultimate boundary.

By that time the CPU will be a little black hole and the user interface is going to

be a bit tricky . . . .

1.2 An example: entanglement assisted estimation of a quantum

transformation

Here is a brief preview of the kind of problem we are going to study—problems

where statistics and probability are deeply involved. We consider here a concrete

problem studied by (author?) (16). The problem comes from experimental quan-

tum optics and the theoretical results described here are having impact on planned

future experiments.

Suppose you have a “quantum blackbox” which does something to the state of

polarization of a single photon. You could feed in various different input states,

do various different kinds of measurements on the output, and so reconstruct what

the blackbox is doing. Quantum mechanics in fact puts rather precise limitations

to the “what can be done to one qubit”. It also limits rather precisely how much

information can be extracted about its state, a statistical version of the famous

uncertainty relations.

Now it turns out that if one feeds into the blackbox one of a pair of maximally

entangled photons, then the joint state of the two output photons (one of which has

been through the blackbox, the other which may have been nowhere near) contains

within it the complete specification of what the blackbox does. So one does not

need to feed in all different states, one only needs to feed in photons in a single

state. One can see this as an instance of quantum parallelism—because of the

entanglement one is actually feeding in all different input states simultaneously.

But now one has to measure the two output photons, not just one, and the ques-

tion is now, what kind of measurement is best. In particular, can one gain by bring-

ing the output photon and its partner into quantum interaction before measurement,

or is it enough to measure each one separately in sufficiently many different ways

(obviously, looking at the correlations between the results)?

(author?) (16) has discovered, for the important subclass of unitary blackboxes,

that the best “joint” measurement of the two outputs is exactly three times as effi-
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Fig. 1.6. Using an entangled probe state on an unknown quantum operation

cient as the best one can do, when one only measures the outputs separately. We

know precisely what is the best measurement to do. It turns up in a number of

extremely important quantum algorithms, including teleportation. Unfortunately,

the best the quantum opticians can do at the moment is a kind of surrogate mea-

surement which only succeeds once in four times! But they are working on it . . .

1.3 States, Measurements, Operations, Instruments

In this section we get down to business by describing the elements of the mathe-

matical model of quantum information. We will give working mathematical def-

initions of states, measurements, operations, and instruments. In the next chapter

we will go into further depth and give alternative, more fundamental definitions.

The provisional definitions here, which are concrete but unintuitive, allow a kind

of quick-start, and we will already be able to study some simple examples in this

section.

The model allows us to convert the boxes and arrows of Figure 1.6 into a formal

mathematical model. On the one hand one has quantum systems, which are de-

scribed or represented by their states. On the other hand, quantum systems can be

operated on in various ways, transforming them or getting information out of them.

The technical term for the most general kind of transformation which is allowed

by quantum physics is an instrument. An instrument will in general both extract

information from the state, and transform the state to a new one. By “information”

we mean here: data, which could be observed by a physicist; it will be random,

and the mathematical model just tells us what its probability distribution is. One

often speaks of classical information, to further underline the character of this part

of the output of the instrument.

As special cases we have instruments which deliver only one of the two kinds of

outputs: quantum and classical. At the one extreme we have an instrument which

does not yield any classical information but only transforms the quantum state;

this kind of instrument is called an operation. At the other end of the spectrum, an

instrument which produces data but no output state is called a measurement.

We think of operations, measurements and more generally instruments, as boxes

which can be plugged into one another, with one-way connecting cables of the two
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different kinds: quantum, and classical. A simple example is provided by Figure

1.6. Note the wavy lines for quantum states and straight lines for classical data.

The output quantum systems can in principle be fed into new instruments. Not

only this; also, the output data could in principle be manipulated and used to fix

a setting on another instrument. When we say that an instrument has a setting,

we mean that the internal configuration of the instrument can be altered by pushing

some buttons or turning knobs on the outside. Strictly speaking, an instrument with

settings is a family of instruments, each one corresponding to a different value of

the settings. In diagrams, an “instrument with settings” will be a box with both

classical and quantum, input and output, channels, see Figure 1.7.

In this way we can build up complex arrangements with many boxes and con-

nections, forming a directed, acyclic graph. “Applying the same operation several

times” is represented by repeating the same box several times in the figure. Exam-

ples are given in Section 2.7 of Chapter 2. The end result can be extremely complex

but it remains some kind of a caricature of what quantum physics is all about. Con-

tinuous time has been replaced by the discrete steps through our figure. However,

the “true” continuous time picture which we might eventually want to study, can

always be thought of as the limiting result of such discrete time diagrams, with

more and more instruments each one having a smaller and smaller effect.

First we mathematically define the objects on which measurements, operations

and instruments all act: states.

1.3.1 States

The state of a quantum system is fixed by specifying its dimension d together with

a d × d matrix ρ of complex numbers, which must be nonnegative (this notion

to be explained shortly) and have trace (sum of the diagonal elements) equal to

1. The matrix ρ is often simply called the state. A matrix with these properties

is called a density matrix. We restrict attention here to the finite dimensional case,

where already the most simple nontrivial case, d = 2, leads to interesting statistical

models. That two-dimensional case, d = 2, goes under a variety of names, such

as: the qubit; the two-level system; the spin-half system. This model applies to the

polarization of a single photon, the spin of a single electron, and to an atom which
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can either be in its ground state or its first excited state. It can also be used to model

the presence or absence of a particle. Our purpose in subsequent subsections is to

explain how the probabilities of measurement results (for instance, a measurement

to determine whether the atom is in its ground state or its excited state) can be read

off the state.

At the same time as explaining what it means for a matrix to be nonnegative,

we introduce some further notation: Dirac’s bra and ket notation for vectors, much

used by physicists.

Let |ψ〉 stand for a column vector in Cd . It is called a ket. We write 〈ψ | for

its Hermitian conjugate, in other words the row vector of complex conjugates of

the same numbers; it is called a bra. The expression 〈ψ |ρ|ψ〉 therefore stands

for a complex number. When we say that ρ is nonnegative, we mean that for all

|ψ〉 ∈ Cd , the number 〈ψ |ρ|ψ〉 is real and nonnegative.

It is a simple exercise to prove that ρ nonnegative implies that ρ is self-adjoint,

i.e., ρ = ρ∗, where ρ∗ is the Hermitian conjugate of ρ (transpose and elementwise

complex conjugate). For future reference, we note the following fact about self-

adjoint matrices: a d-dimensional self-adjoint matrix has d real eigenvalues, and

one can find d corresponding eigenvectors forming an orthornormal basis of Cd .

We shall refer to Cd as the state-space of the quantum system, often denoting it by

H (for Hilbert-space).

Returning to the bra-ket notation: at this stage, one might prefer to just write ψ

and ψ∗ instead of |ψ〉 and 〈ψ |; the number 〈ψ |ρ|ψ〉 being just ψ∗ρψ . The brack-

ets can be completely removed; a smattering of stars inserted judiciously instead.

However as we will see, the bra-ket notation enables a powerful short-hand, which

can be very useful in more complex situations.

Letting 0 denote the d×d zero matrix, we can summarize the defining properties

of density matrix as ρ ≥ 0, trace(ρ) = 1. For free we also get ρ = ρ∗. It is not

difficult to check the following fact: ρ is a d × d density matrix if and only if the d

diagonal elements of ρ, expressed with respect to an arbitrary orthonormal basis

of Cd , form a probability distribution over {1, . . . , d}. This fact will be connected

in Section 1.3.2 to measurements on the quantum system. In fact: choosing an

orthornormal basis corresponds to choosing a measurement within a certain basic

class of measurements.

Exploiting the bra-ket notation, let us denote by |1〉, |2〉, . . . , |d〉 some or-

thonormal basis of Cd . Thus, these are d column vectors satisfying the property

〈i | j〉 = δi j (Kronecker’s delta) for all i and j from 1 to d . Arrange the row vectors

〈i | as rows of a matrix U . The orthornomality of the basis is expressed by say-

ing UU ∗ = 1, the identity matrix. It follows (when d is finite) that we also have

U ∗U = 1; the matrix U is called unitary. Note that U | j〉 is the column vector

containing a 1 at the j th position and 0’s elsewhere. So U acting (on U ’s right) on

an arbitrary ket, expresses that vector in the new basis. As we will see later, the

matrix ρ may also be thought of as an operator, also acting on a ket on ρ’s right.

Since U (ρ|ψ〉) = (UρU ∗)(U |ψ〉) we see that UρU ∗ is the matrix representation

of the operator ρ with respect to the basis defined by the |i〉’s.

To summarize: ρ is a density matrix if and only if the diagonal elements of
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Fig. 1.8. The Bloch sphere: an unknown mixed qubit ρ(Eθ).

UρU ∗ form a probability distribution for any unitary matrix U , i.e., with respect

to any orthonormal basis of Cd . As we will see in the next subsection (on measure-

ments), each unitary U also corresponds to a certain measurement with possible

outcomes {1, . . . , d}. The diagonal of UρU ∗ is the probability distribution of the

outcome of that measurement.

First we conclude this subsection on states by presenting our most basic exam-

ple: the case d = 2. We will return to this example in each of the subsequent

subsections, as well as providing further details in the next chapter.

Example 1.1 (The Qubit: states). Suppose ρ is a 2× 2 density matrix. The prop-

erties ρ ≥ 0 and trace(ρ) = 1 imply that ρ11 and ρ22 are probabilities adding to

one, while ρ12 = ρ21 (overline denoting complex conjugate) is a complex number.

The matrix being nonnegative also implies that its determinant is nonnegative, thus

ρ11ρ22 − |ρ12|2 ≥ 0 where the absolute value of a complex number c is defined by

|c| = √(<c)2 + (=c)2 = √cc. We may write ρ21 = 1
2
(θ1+iθ2), ρ12 = 1

2
(θ1−iθ2),

ρ11 = 1
2
(1+ θ3), ρ22 = 1

2
(1− θ3), where θ1, θ2, θ3 are real numbers. The nonneg-

ativity of the determinant turns out to be equivalent to θ2
1 + θ2

2 + θ2
3 ≤ 1. It is easy

to check that these conditions are not only necessary but also sufficient for ρ to be

a 2× 2 density matrix.

Let Eθ ∈ R3 be a real vector with components θi , and such that |Eθ | ≤ 1; thus Eθ
is a point in the unit ball in real three-dimensional space. Let ρ(Eθ) be the corre-
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Measurement
M∼∼∼∼∼∼∼ State ρ in

-∼∼∼∼∼∼∼ Data X ∼ p(x |ρ,M) out

Fig. 1.9. A measurement

sponding density matrix. We have hereby defined the quantum statistical model for

“a completely unknown state of one qubit” and shown how it can be parametrised

by a point Eθ in the unit ball, which in this context is called the Bloch sphere, see

Figure 1.8. The three axes are conventionally labelled the x-, y-, and z-axes, and

the three components of Eθ often relabelled as θx , θy , and θz .

It turns out that the effect of a change of basis in C2 is equivalent to a rotation

of the unit ball in R3. This fact allows us to read off the probability distribution of

outcomes of a basic class of measurements from this picture.

Note that the projection of the point Eθ onto the vertical axis splits the verti-

cal diameter of the ball (of total length 2), into two parts, of lengths 1 + θz and

1 − θz respectively. We already noted that the diagonal elements of ρ are exactly
1
2

times these quantities. In general therefore, a basic measurement on the qubit

corresponds to the choice of a direction in R3, or if you prefer, to the choice of a

diameter of the unit ball. This measurement has a binary outcome. The probabili-

ties of the two outcomes are given by the ratio in which the projection of the state

(seen as a point in the ball) onto the measurement (seen as an axis of the ball, or a

direction through it) divides the corresponding diameter in two parts.

1.3.2 Measurements

A measurement M on a quantum system, see Figure 1.9, is defined by specifying a

collection of nonnegative matrices m(x), indexed by potential outcomes x in some

sample space X , such that
∑

x m(x) = 1. The rule for obtaining the probabilities

of the different outcomes is known as the trace rule:

p(x |ρ,M) = trace(ρm(x)). (1.1)

It is an exercise to the reader, to check that this prescription indeed defines a prob-

ability distribution: nonnegative real numbers adding to 1.

If the state is parametrized by θ ∈ 2 then, given the measurement, we obtain

a parametric statistical model, p(x |θ,M) = trace(ρ(θ)m(x)). A central aim of

quantum statistics is to design the measurement M , taking account of constraints

on experimental resources, to optimize the amount of statistical information which

the experiment will provide about θ .
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We describe a special kind of measurements, called simple measurements, in

detail. Let |1〉, |2〉, . . . , |d〉 denote as before some orthonormal basis of Cd . The

matrices |i〉〈i |, i = 1, . . . , d , are the projection operators onto the d orthogonal

one-dimensional subspaces generated by each of the d basis vectors. They add

to the identity:
∑

i |i〉〈i | = 1. In fact this formula is simply a rewriting of the

equation U ∗U = 1, where U is the matrix with 〈i | as its i th row.

We have hereby defined a measurement M with sample space X = {1, . . . , d},
and with m(x) = |x〉〈x | for each x ∈ X . Applying the trace rule to compute the

probabilities of the measurement outcomes, we find p(x |ρ,M) = trace(ρm(x)) =
〈x |ρ|x〉. This is nothing else than the (x, x) element of the matrix UρU ∗. As we

announced before, the diagonal of ρ expressed with respect to any particular or-

thonormal basis contains the probability distribution of the outcomes of a particular

measurement on that state.

Example 1.2 (The Qubit: measurements). In Example 1.1 we analysed the density

matrix of a 2-dimensional quantum system. Defining

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
(1.2)

the result there could be expressed ρ(Eθ) = 1
2
(1 + Eθ · Eσ) with Eσ = (σx , σy, σz),

Eθ = (θx , θy, θz) and ‘·’ denoting the inner product of two 3-vectors. The same

analysis shows that an arbitrary 2 × 2 self-adjoint matrix must be of the form

a1+ Eb · Eσ with a a real number and Eb a real 3-vector.

The three self-adjoint matrices σx , σy and σz are called the Pauli matrices. They

satisfy the famous commutation relations

σxσy = iσz = − σyσx ,

σyσz = iσx = − σzσy,

σzσx = iσy = − σxσz,

(1.3)

and moreover

σ 2
x = σ 2

y = σ 2
z = 1. (1.4)

They each have trace zero. Since their square is the identity, they must have eigen-

values±1. It follows from the properties of the Pauli matrices, that for any 3-vector

of unit length Eu, Eu · Eσ has trace zero and its square is the identity. It therefore also

also has eigenvalues ±1. The eigenvalues of a generic 2-dimensional self-adjoint

matrix a1+ Eb · Eσ are therefore a ± |Eb| and the matrix is nonnegative if and only if

a ≥ |Eb|.
These preliminaries enable us to add simple measurements to the Bloch sphere

picture of the qubit, Figure 1.8. For ϑ ∈ [0, π] and ϕ ∈ [0, 2π) let

Eu = Eu(ϑ, ϕ) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) (1.5)

denote the unit 3-vector whose polar coordinates are (ϑ, ϕ), see Figure 1.10. Define
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Fig. 1.10. The Bloch Sphere: polar coordinates of pure states.

the ket

|Eu〉 = |ϑ, ϕ〉 =
(

e−ϕ/2 cos(ϑ/2)

e+ϕ/2 sin(ϑ/2)

)
. (1.6)

By simple trigonometry one finds the important relation

|ϑ, ϕ〉〈ϑ, ϕ| = 1

2
(1+ Eu(ϑ, ϕ) · Eσ). (1.7)

We recognise here a special case of the formula for a 2-dimensional density matrix.

For a given unit 3-vector Eu, the two states ρ(±Eu) are located at opposite ends of a

diameter of the Bloch ball in the direction Eu. Such states are called pure states.The

eigenvalues of both of these density matrices are 1 and 0, the eigenvectors of both

are |Eu〉 and | − Eu〉. The density matrices are simultaneously the projector operators

onto the orthogonal one-dimensional subspaces spanned by the kets |Eu〉 = |ϑ, ϕ〉
and | − Eu〉 = |π − ϑ, π + ϕ〉.

It follows that a simple measurement M with outcomes, say, +1 and −1, has

two measurement components or elements of the form m(±1) = 1
2
(1 ± Eu · Eσ).

These matrices are of course nonnegative and add to the identity; moreover, being

projection matrices, they are idempotent (equal to their squares). The measurement
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Fig. 1.11. Geometric picture of measurement probabilities. Simple measurement in the

direction Eu of a qubit in state Eθ . Probabilities of outcomes ±1 are half the lengths of the
two segments of the diameter.

M is completely determined by choosing a direction Eu in the Bloch sphere. By a

simple calculation using (1.3) and (1.4) together with the fact that a Pauli matrix is

traceless, we find from the trace rule, for the state ρ(Eθ) = 1
2
(1+Eθ · Eσ), the probabil-

ities p(±1|Eθ,M) = 1
2
(1± Eu · Eθ). These probabilities can be found geometrically as

follows: in the Bloch sphere, project the state Eθ onto the diameter in the direction

Eu. This splits the diameter into two parts. The odds on the outcomes ±1 stand in

the ratio of the lengths (1± Eu · Eθ) of the two parts; see Figure 1.11.

1.3.3 Operations

An operation R on a quantum system, see Figure 1.12, is defined by specifying

matrices ri , satisfying
∑

i r∗i ri = 1. The result of applying R to the input state ρ is

the output state R(ρ) =∑i riρr∗i . The reader should verify that this does define a

quantum state: nonnegative, trace 1.

A very special case results when the index i takes on a single value only. Dis-

carding the now superfluous index, and renaming r to U , we have that the input

state ρ is transformed into the output state UρU ∗ where U ∗U = 1. In the finite

dimensional case it follows that we also have UU ∗ = 1; the matrix U is unitary,

and the transformation R is called unitary too.

Example 1.3 (The Qubit: operations). It can be shown that the generic quantum

operation on a single qubit can be represented in the Bloch sphere picture as an

affine map of the unit ball, into the unit ball; but with reflection excluded. It can
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Operation
R ∼∼∼∼∼∼∼ ∼∼∼∼∼∼∼ State R(ρ) outState ρ in

Fig. 1.12. An operation

Instrument
N

@
@
@
@R

∼∼∼∼∼∼∼ ∼∼∼∼∼∼∼ 

Data X ∼ p(x |ρ, N ) out

State N (ρ|x) outState ρ in

Fig. 1.13. An instrument

therefore be composed of a rotation, shrinking in three orthogonal directions, and

finally a shift, in such a way that the resulting ellipsoid remains inside the unit ball.

Of special interest are the rotations (and reflections). These turn out to corre-

spond to the unitary transformations. We postpone further discussion to the next

chapter, in which we will introduce the functional calculus of operators, which will

enable us to investigate the relations between self-adjoint operators and unitary op-

erators in more depth.

1.3.4 Instruments

An instrument N on a quantum system, see Figure 1.13, is defined by specifying a

collection of matrices ni (x) where x ∈X is a possible outcome (data) of applying

the instrument to the quantum system. The matrix elements of the instrument have

to satisfy
∑

i

∑
x n∗i (x)ni (x) = 1.

For a given instrument N define a measurement M with the same outcome

space by m(x) = ∑
i n∗i (x)ni (x). The instrument acts on a quantum system

in state ρ as follows: with probability p(x |ρ, N ) = trace(ρm(x)) the instru-

ment yields data x ; in other words, the instrument applies the measurement M

to the quantum system. However, that is not all: the instrument also transforms

the input state into an output state. Given the output data x , the output state is

N (ρ|x) =∑i ni (x)ρn∗i (x)/p(x |ρ, N ).

An important special case of an instrument is obtained when the index i only
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takes on a single value and when the matrices ni (x) are the projectors |x〉〈x | onto

the one-dimensional spaces spanned by elements of an orthonormal basis |x〉, x ∈
X = {1, . . . , d}. Applying the rules, we discover that the instrument yields the

outcome x with probability 〈x |ρ|x〉, while given this outcome, the output state is

|x〉〈x |. We call such an instrument a simple instrument.

Example 1.4 (The Qubit: instruments). By the discussion above, a simple instru-

ment on a qubit is defined by choosing a direction Eu in the unit sphere. We may

take the outcome space to be X = {+1,−1}. When the instrument is applied

to a system in state ρ(Eθ), the outcome state is ρ(±Eu), depending on whether the

outcome ±1 is observed. The probabilities of these two outcomes are 1
2
(1± Eθ · Eu).

They are proportional to the lengths of the two line segments, formed by projecting
Eθ onto the diameter of the sphere in the direction Eu.

1.4 Outline of this book

In the previous section we have defined a quantum state and various operations

which can be applied to a quantum state, yielding sometimes data, sometimes an

output state, and sometimes both. We saw that the smallest non-trivial case, a 2-

dimensional quantum system, admits of a parametrization using the unit ball in

real, three-dimensional space. We see that if we are given many identical copies

of a qubit in the same, unknown, state, then one way in which the state can be

reconstructed, is by doing simple measurements on one third each of the copies, in

the x-, y- and z-directions respectively. Each subset of the measurements gives us

statistical information about θx , θy and θz respectively; the three components of the

parameter Eθ of the density matrix, its so-called Bloch vector.

Are there other, better, measurement schemes? And what if we have prior knowl-

edge about the state; for instance, what if we know that its Bloch vector lies on the

surface of the Bloch sphere?

The purpose of the book is to answer these and similar questions. To begin with,

we must describe important classes of measurement schemes. Instead of measur-

ing each of N copies of a quantum state in the same way, we can consider more

complex schemes whereby the outcome of measuring one state is used to control

which measurement to apply to the next. So far we only considered one quantum

system at a time. According to quantum physics, quantum systems can interact

together according to an extension of the rules we have discussed so far. We need

to introduce notions of product system and of entanglement between states. This

leads to a notion of joint or collective measurements, going beyond the possibilities

which are covered so far. We are going to need an operator calculus for dealing

more efficiently with the various different kinds of matrices (operators) which we

have met so far.

The definitions of measurement, operation and instrument which we gave above,

should be considered as provisional only. A main aim of the next chapter, Chapter

2, is to present alternative and more fundamental definitions. This also requires

consideration of product systems and entanglement.
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Chapter 3 will extend the modelling from finite dimensional quantum systems,

and discrete outcome spaces, to infinite dimensional spaces and to arbitrary out-

come spaces. Regarding outcomes of measurements, this corresponds to moving

from discrete probability theory to general (measure-theoretic based) probability.

The extension is largely a question of notation. On the quantum side, going to

infinite dimensional spaces involves many technical complications and subtelties.

At first reading, this chapter could be skipped, especially the material on infinite-

dimensional states.

In Chapter 4 we will study quantum statistical models in depth, mainly for finite-

dimensional states, but allowing arbitrary measurements. We will introduce quan-

tum exponential families and quantum transformation models. A central tool will

be the quantum Cramér-Rao inequality together with notions of quantum score and

quantum information. We will obtain “large N” answers to some of our main ques-

tions: what is the best class of measurements to use? What difference does it make

if we have prior knowledge about the state of the quantum system?

In Chapter 6 we will study some quantum estimation problems with an infi-

nite dimensional state space. A basic example here is called “quantum tomog-

raphy”. It results in inverse statistical problems related to classical tomography,

where the aim is to reconstruct an arbitrary function of two variables given in-

formation about all one-dimensional projections of the function. Methodology is

needed from curve- and density-estimation in classical statistics. A main question

concerns what rate of convergence is possible, and whether prior knowledge of the

parameter (smoothness) allows better convergence rates.

In Chapter 7 we will study continuous time observation of a quantum system,

leading to stochastic process models both of diffusion type and of counting type,

for the observed outcome process.

In Chapter 8 we study various paradoxical and sometimes problematic features

of quantum physics. Could there be a classical physical explanation “behind the

scenes” which explains the randomness of quantum measurement outcomes, sim-

ply through their dependence on “hidden variables” of a classical nature? If “mea-

surement” is a physical process, why do we have to make some kind of divide

between a classical and a quantum level of description? Surely a measurement

apparatus is also just a quantum system, and measurement is a quantum process.

But then, what is real? We will study experiments which have been made to probe

the most thought-provoking consequences of quantum physics, and consider ques-

tions of optimal statistical design, and how to take account of various imperfections

(“loopholes”) in the present-day implementation of these experiments.

The final Chapter 9 will collect together some material on various advanced, or

less statistical topics, from quantum physics and quantum information theory.

1.5 Problems, extensions, and bibliographic notes

PROBLEMS:

show that the trace rule does yield probabilities

show that nonnegative implies self-adjoint
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do the spin-half computations

every measurement is part of an instrument

coarsening of instruments

composition of instruments

REFERENCES to mathematical basics (appendix?):

eigenvalues and eigenvectors of self-adjoint matrices

circularity of trace

REFERENCES to literature for basic definitions.

History?

Connections to usual quantum physics:

von Neumann measurement and projection postulate

Schrödinger evolution

Born’s law

Stern-Gerlach



2

Discrete Quantum Probability

In this chapter we study our modelling framework of quantum states, and vari-

ous kinds of operations which can be applied to them, in depth. To begin with

we refine our notion of quantum state by distinguishing between pure and mixed

states. The fact that a mixed state truly may be thought of as the physical result

of a classical, probabilistic mixing, has far-reaching consequences for the prop-

erties of measurements, operations and instruments on quantum states. A second

and equally far-reaching contribution of this chapter, is the notion of joint or prod-

uct or composite quantum systems, leading to the notion of product states and to

entanglement. Again, this physical notion has consequences for the properties of

measurements, operations and instruments. We show how our preliminary defini-

tions of these notions, which were concrete but unintuitive, can now be replaced

by intuitive definitions based on the physical implications of probabilistic mixing

and of the possible formation (and dissolution) of product systems. The first defi-

nitions we gave, are transformed into the conclusions of representation theorems,

giving an explicit characterization of everything that is possible under quantum

physics, as characterized by the behaviour of physical systems under mixing and

entanglement.

We are now also able to describe a rich hierarchy of classes of measurements on

N copies of a quantum system. A main aim of quantum statistics, and in particular

of asymptotic theory, is to study this hierarchy. How much do we lose when we

restrict ourselves to more basic but more easy to implement measurements?

The reason for the title of this chaper, discrete quantum probability, is linked

to the final topic of the chapter. We will study pure states, simple measurements,

and unitary operations in more depth, connecting to the quantum physical notions

of wave function, observable, von Neumann collapse of the wave function, Born’s

law, and Schrödinger evolution. We will show how measurements, operations and

instruments in general can be thought of as being built of these basic ingredients,

acting on an enlarged state space, formed by taking the product of the system of

interest with an auxilliary or ancillary system, which might be thought of as rep-

resenting the measurement apparatus itself, or the macroscopic environment of the

quantum system of interest. We show how the trace rule and a functional calcu-

lus of observables (self-adjoint operators) leads to a probability-like calculus of

20
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observables and states, generalizing the classical probability calculus of random

variables and probabity measures.

Finally, we will give further examples concerning the qubit, as we go along.

2.1 Pure states and mixed states

Recall that the state of a quantum system is represented by a density matrix: a

d × d nonnegative matrix of trace 1. It follows that a convex combination of

density matrices is again a density matrix. This corresponds physically to classical

probabilistic mixing. Suppose with probability p1 we prepare a quantum system

in state ρ1, and with probability p2 in state ρ2, then the resulting system is in state

ρ = p1ρ1 + p2ρ2.

Of special interest are the states which are extreme with respect to mixing, i.e.,

which cannot themselves be represented (in a nontrivial way) as mixtures of other

states. Such states are called pure states.

A density matrix ρ has eigenvalues, which form a probability distribution over

{1, . . . , d}, and eigenvectors which form an orthornormal basis of Cd . Denote the

eigenvalues by p1, . . . , pd and the eigenvectors by |1〉, . . . , |d〉. It follows that we

can write ρ = ∑
i pi |i〉〈i |. Each of the matrices |i〉〈i | is itself a density matrix

(nonnegative, trace 1). It is also equal to the projection operator, which projects

onto the one-dimensional subspace spanned by |i〉.
We see from these considerations that a density matrix is the density matrix of

a pure state if and only if its spectrum (its eigenvalues) is equal to (1, 0, . . . , 0),

and if and only if it is idempotent, ρ2 = ρ. All other density matrices are proper

mixtures, and the eigenvalue-eigenvector decomposition represents just one way in

which they can be written as a mixture of different states.

A pure state has density matrix of the form |ψ〉〈ψ | for some unit vector |ψ〉,
which is then called the state vector. Actually, one can multiply the vector by a

complex number eiφ of modulus 1, without changing the density matrix, so the

state vector of a pure state is only unique up to an arbitrary phase factor. Still, we

shall often name a pure state by calling it “the state |ψ〉”. Pure states are often also

called vector states.

Example 2.1 (The Qubit: pure states, mixed states). Figures 1.8 and 1.10 gave

two pictures of the states of a two-dimensional quantum system. Recall that any

2×2 density matrix can be written as ρ = 1
2
(1+ Eθ · Eσ) where Eθ is a real 3-vector of

length less than or equal to 1, and Eσ is the vector of the three Pauli matrices defined

in (1.2). It follows that the pure states are those states whose Bloch vector Eθ has

length 1. Probabilistic mixing of states corresponds in this picture with forming

the centre of gravity of some mass distribution over the ball. Any mixed state can

be represented as a mixture of other states, and in particular as a mixture of pure

states, in a multitude of different ways. In particular, the state ρ = 1
2
(1 + Eθ · Eσ)

is a mixture of the two pure states 1
2
(1± Eθ · Eσ/‖Eθ‖) according to the probabilities

1
2
(1± ‖Eθ‖).
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The pure states can be conveniently parametrized by their polar coordinates, see

Figure 1.10.

2.2 Measurements as positive, normalized linear maps

If a state ρ = p1ρ1 + p2ρ2 can be thought of a probabilistic mixture of states ρ1

and ρ2, then it must be the case that when we measure the state with some mea-

surement device M , the results will also be a mixture of the results of measuring ρ1

with M , and of measuring ρ2 with M , according to the same probabilities p1 and

p2. Fortunately, this does follow from our provisional definition of measurements

in the Section 1.3.2: the trace rule p(x |ρ,M) = trace(ρm(x)) does guarantee

that the result of measuring a mixture of states is the same mixture of probability

distributions of measurement outcomes.

In fact this property can be used as a alternative definition of measurement. In

other words, the trace rule is the inevitable consequence of the physical (proba-

biliistic) interpretation of mixing. A measurement M is a mapping from states ρ

to probability distributions of outcomes (p(x |ρ,M) : x ∈ X ) in some outcome

space X . The mapping is linear with respect to convex combinations. We can

extend it, in a unique way, to a mapping from all self-adjoint matrices to signed

measures on the outcome space X , by insisting on linearity. As such, it is pos-

itive, in the sense that it maps a nonnegative self-adjoint matrix to a nonnegative

measure, and normalized, in the sense that it maps a matrix of trace 1 to a measure

assigning mass 1 to the whole outcome space X . It is not difficult to prove the

converse (and this is left as an exercise to the reader): every positive, normalized

linear map from states to discrete measures on X can be represented through a col-

lection of non-negative matrices m(x) adding to the identity; the mapping becomes

ρ 7→ (trace(ρm(x)) : x ∈X ).

2.3 Operations as positive, normalized linear maps?

Again, by the very interpretation of mixing, the result of applying an operation to a

mixture of states should be the same mixture of outcomes of applying the operation

to each input state separately. It is clear that our provisional definition of operations

from Section 1.3.3 does respect linearity, just as was the case for measurements. A

natural conjecture would be that we could define quantum operations abstractly, as

being those operations which (when extended, by linearity, to arbitrary self-adjoint

matrices) are linear, positive (map nonnegative matrices to nonnegative matrices)

and trace preserving (or normalized): map matrices of trace 1 to matrices of trace

1. However, this conjecture is false. A simple counterexample (see exercises) is

the “operation” of taking the transpose of a density matrix—which does obviously

possess all the properties we just listed.

In fact, “transpose” turns out to be an operation which is disallowed by the laws

of quantum physics. In order to explain why, we need to introduce product systems

and the notion of entanglement.
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2.4 Product systems and entanglement

Often we need to consider a quantum system which is composed of a number of

subsystems. This could correspond to different particles, different locations, or dif-

ferent properties of the same particle. The mathematical model for the composition

of a joint system from a number of subsystems is through the tensor product.

Let H = Cd and K = Cd ′ be the state spaces of the two composing parts of

one joint quantum system. The state space for the joint system is the tensor product

space H ⊗K . In particular, if we bring together two quantum systems in states

ρH and ρK together and form one combined system from them, then the joint

state of the two components is ρH ⊗ ρK : this is a (d.d ′) × (d.d ′) matrix, whose

rows and columns are each indexed by a pair of row indices or a pair of column

indices from the two components.

A measurement, operation, or instrument defined on just one component of this

composite system can be extended in the natural way to the joint system. For

instance, a measurement M with matrix elements m(x) on the system H can be

extended to H ⊗K by defining matrix elements m(x)⊗ 1 on the product space

(nonnegative, add to the identity 1 ⊗ 1). An extended measurement, operation of

instrument acts on a system in a product state, i.e., of the form ρH ⊗ ρK , just as

it should, namely, by ignoring the second component completely.

However the whole point of considering joint or composite systems is that many

more states are possible than just product states, and many more measurements,

operations and instruments are possible, than separate operations on the separate

components.

A joint state ρ in H ⊗K is called entangled if it cannot be written as a mixture

of product states. In particular, an entangled pure state in H ⊗K has state vector

which is not the tensor product of separate state vectors in H and K .

Example 2.2 (Entangled states of two qubits). Let us denote by |0〉 and |1〉 the

standard basis of C2: thus

|0〉 =
(

1

0

)
, |1〉 =

(
0

1

)
. (2.1)

They are located at North and South pole respectively of the Bloch sphere. The

notation comes from quantum computing; we think of the two states as represent-

ing the two possible binary states, 0 and 1, of a bit in an internal memory register

of a computer. To be more precise: we can input such states, by preparation of

a quantum system before computation starts, and we will read out such states, by

measurement, at the end of the computation, but between reading in the data, and

reading out the results, several such systems will have been brought, by joint quan-

tum operations, into states which are not products of the “classical” states |0〉 and

|1〉.
In particular we can consider joint states of two qubits, having state space C2 ⊗

C2 = C4. A natural orthonormal basis of the joint space is found by taking all

tensor products of elements of orthonormal bases of the two components. In this

case, it consists of the four vectors |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, and |1〉 ⊗ |1〉.



24 Discrete Quantum Probability

We denote these basis vectors by |00〉, |01〉, |10〉, and |11〉. This basis is called the

computational basis in quantum computing.

The vector 1√
2
(|01〉 + |10〉 has length 1, and cannot be written as a tensor prod-

uct of kets belonging to the two separate subsystems. The corresponding state is

called the singlet state and is probably the most famous entangled state in quantum

physics. In fact the four states 1√
2
(|01〉 + |10〉, 1√

2
(|01〉 − |10〉, 1√

2
(|00〉 + |11〉 and

1√
2
(|00〉−|11〉 form an orthonormal basis of maximally entangled states of C2⊗C2

(this terminology will be explained later), called the Bell basis.

An example is provided in Section 1.2: (author?) (16) has shown that the opti-

mal way to measure an unknown unitary operation on one qubit in the scheme of

Figure 1.6 is by using a maximally entangled pair of probe qubits, in the singlet

state, and by measuring the two output qubits in the Bell basis.

Suppose a composite quantum system is in a joint state ρ, but we are only inter-

ested in measurements, operations, instruments on one of the two components. It

turns out that the parts of the joint system behave on their own, as quantum systems

in their own right. In other words we can compute for each subsystem a “marginal

state”, and applying the measurement M ⊗ 1 on the joint system in a given joint

state, produces the same results as applying M to the first subsystem in its own

marginal state. The mathematical representation of “discarding a subsystem” is

through the operation of partial trace. If ρ is a density matrix of a composite sys-

tem, then we define the marginal state of the first component, ρH , to be the partial

trace, over the second component, of the joint state:

ρH = traceK (ρ) (2.2)

where

(ρH )i j = (traceK (ρ))i j =
∑

k

ρik, jk . (2.3)

Consider a composite system in a pure state |ψ〉 ∈ H ⊗ K . It is a theorem

that one can choose orthonormal bases of the two subsystems, let us denote them

by |i〉H and | j〉K respectively, such that

|ψ〉 =
∑

i

ai |i i〉 =
∑

i

ai |i〉H ⊗ | j〉K (2.4)

where the numbers ai are real and nonnegative and ordered from large to small,

and
∑

i a2
i = 1. This representation is called the Schmidt decomposition of a pure

state in the composite system. Note that the two bases depend on the given state

|ψ〉. The reduced state of the first subsystem then turns out to be the mixed state∑
i a2

i |i〉H 〈i |H . As an example, the “Schmidt coefficients” of the singlet state
1√
2
(|01〉+|10〉 are (1/

√
2, 1/
√

2), as are also those of any element of the Bell basis,

defined in Example 2.2. It follows that the reduced state, of either component, of

any of these four Bell states, is the “completely mixed state” 1
2
1 on C2, i.e., the

state with Bloch vector E0, at the centre of the Bloch sphere.

One says that a pure, entangled state, in a product space where each component

has the same dimension d , is maximally entangled, if its Bloch coefficients are
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all equal to 1/
√

d . Equivalently, a vector state in a product space is maximally

entangled if and only if its reduced state in each component is the completely mixed

state 1
d

1.

In fact, any mixed state can always be thought of as the reduced state of a com-

posite system in a pure state. If ρH = ∑
i pi |i〉H 〈i |H is a mixed state on H ,

expressed with respect to an orthonormal basis |i〉H , then this state is the partial

trace of a pure state ψ =∑i

√
pi |i〉H ⊗ |i〉K on some product system. This fact

is the starting point of a collection of results, whereby mixtures, measurements,

operations and instruments can all be thought of as being merely a reflection of

something much more simple going on at the level of a much larger state space. It

even leads to a philosophical point of view concerning quantum physics, which is

sometimes called the dogma of The Church of the Larger Hilbert Space!

2.5 Operations as completely positive, normalized linear maps

Though we apply a quantum operation to one quantum system, that quantum sys-

tem might be part of a larger system. Several particles may have interacted with

one another in the past, yet we only consider one of them.

Consider a quantum operation R as a mapping from quantum states to quantum

states. As we argued before, it has to be positive, normalized (trace-preserving) and

linear. Given a quantum operation R defined on quantum systems with state-space

H = Cd , we can naturally extend it to joint systems of which H is a component,

by defining R on a product system, to transform the first component as is given,

while leaving the second component unchanged, and in particular, leaving the joint

system in a product state. Let us denote the extended operation by R ⊗ 1.

Whatever the dimension of the auxiliary system, the extended operation R ⊗ 1

must be positive, trace-preserving and linear. Clearly these properties are satisfied

by operations of the form

R(ρ) =
∑

i

riρr∗i , with
∑

i

r∗i ri = 1. (2.5)

According the Kraus representation theorem, the converse is also true.

We say that a mapping R from self-adjoint operators to self-adjoint operators is

completely positive if R ⊗ 1 maps positive operators to positive operators, what-

ever the dimension of the auxiliary system. The point here is that there are many

more positive operators, than operators of the form X⊗Y , where X and Y are both

positive. An example is given by an entangled pure state density matrix |ψ〉〈ψ |,
which is a positive operator on the product system, but not a positive combina-

tion of products of positive operators. Thus being completely positive is a much

stronger property than being positive. Thanks to the Kraus theorem, we could de-

fine a quantum operation to be a completely positive, trace preserving, linear map.

The Kraus representation (2.5) is then a convenient corollary.
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2.6 Instruments as completely positive, normalized linear maps

Finally, we explain how also quantum instruments can be alternatively defined as

completely positive, normalized, linear maps. Consider an instrument N with out-

come space X . Given input state ρ it generates data x with probability p(x |ρ, N )

and the state is then transformed into N (ρ|x). Now from the collection of non-

normalized states σ(x |ρ, N ) = p(x |ρ, N )N (ρ|x) we can recover both the proba-

bilities and the output states by taking the trace, and renormalizing: p(x |ρ, N ) =
trace(σ (x |ρ, N )) and N (ρ|x) = σ(x |ρ, N )/p(x |ρ, N ).

We can therefore consider the instrument as a mapping from input states ρ to

nonnormalized output states indexed by output data: the state ρ is mapped to the

collection (σ (x |ρ, N ) : x ∈ X ). By the interpretation of mixed states as prob-

abilistic mixtures, it is not difficult to see, as an application of Bayes’ formula,

that the mapping from input state ρ to data-indexed nonnormalized output states

has to be linear. It can therefore be extended to a mapping from self-adjoint op-

erators to data-indexed vectors of self-adoint operators, and as such it has to be

positive, mapping positive operators to vectors of positive operators, and normal-

ized or trace preserving: the sum of the traces of the outputs is equal to the trace

of the input.

From consideration of the fact that the instrument might operate on one compo-

nent only of a product system, leaving the other component untouched, we see that

an instrument has to be completely positive.

Again, the Kraus representation theorem states that these properties exactly

characterise instruments of the form

σ(x |ρ, N ) =
∑

i

ni (x)ρn∗i (x), with
∑
i,x

n∗i (x)ni (x) = 1. (2.6)

In our definition of instrument and of operation, we silently assumed that the

output quantum state has the same dimension as the input state. However, ev-

erything we have said about operations and instruments remains true, also when

the two dimensions are taken to be arbitrary. This allows us to consider a mea-

surement as a special case of an instrument: take the output quantum state to

have dimension d = 1. Conversely, a little trick allows us to consider instru-

ments as a special case of operations. We store the outcome x of a measure-

ment in an auxiliary quantum system, having |x〉 : x ∈ X as an orthonormal

basis. The output of the instrument is taken to be a product system in the state∑
x σ(x |ρ, N ) ⊗ |x〉〈x | = ∑

x p(x |ρ, N )N (ρ|x) ⊗ |x〉〈x |. The second way of

writing the state expresses it as a mixture over the outcomes x , of each separate

output state together with “the measurement device” being in the pure state |x〉.
Because these state vectors are orthogonal they are perfectly distinguishable and

able to represent “classical” data.

The distinction between measurements, operations and instruments is just a mat-

ter of convenience. All we have are completely positive, trace-preserving, linear

maps between different quantum systems.
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2.7 The hierarchy of Joint Measurements

Suppose we are given N identical copies of a quantum system in state ρ(θ). The

word “copy” should be thought of in the following way: some apparatus is used to

create a quantum system; and the preparation is repeated N times. How should we

measure the N states so as to gain the maximum amount of information about θ?

Clearly there may be experimental limitations on the resources which we can use

for this task. As we restrict ourselves to smaller and less complex classes of mea-

surement designs, we can extract less and less information about θ . On the other

hand, the experiment presumably becomes easier to carry out in the laboratory.

In this section we describe a hierarchy of measurements on N quantum systems.

A major task of quantum statistics is to determine how much gain there is, if any, as

we move up the hierarchy to more complex experiments. Is it sufficient to restrict

ourselves to some very simple kinds of measurements?

For given, finite N the answer to this question will be difficult. There always

will be some gain in going to a larger class of experiments; how much the gain

can be, will depend in general on many details of the quantum statistical model,

the measurement-class, on which parameters are interest parameters, which are

nuisance, or more precisely, if it is available, what is the loss function; the answer

will also depend typically on what actually is the true value of the parameter θ .

However, just as in classical statistics, one may expect that for large N the picture

simplifies, at least, as long as we are only interested in approximate (or asymptotic)

answers. This indeed turns out to be the case. In Section 5.2 of Chapter 4 we will

see that asymptotically there is a dramatic collapse of the hierarchy.

Here we just introduce the hierarchy of measurements, starting with the largest

class possible, a completely general joint or collective measurement on N copies

of a quantum state, Figure 2.1.

The N quantum systems, each in state ρ(θ) with state space H = Cd , are

thought of as components of one large system in state ρ(θ)N with state space

H N = Cd N

. An arbitrary measurement M on this system is described by a collec-

tion of d N × d N nonnegative matrices m(x) : x ∈ X , summing to the identity. In

general such measurements can be called entangled since they require non-trivial

quantum interaction between the subsystems.

Note in Figure 2.1 that we have considered the data-processing as a separate

phase in the measurement process. From the mathematical point of view we could

just as well absorb the data-processing into the measurement procedure, and con-

sider here only those joint measurements, whose outcomes are guesses of the pa-

rameter θ of the quantum statistical model. However, we will see that it often

pays to keep the roles of the physicist (measurement) and the statistician (data-

processing) separate. In the experimental design phase, we (the statisticians) will

advise the physicist on measurement arrangements which will guarantee as much

statistical information as possible, typically (for large N ) measured in terms of the

expected Fisher information in the measurement outcomes. After the experiment is

done, the processing of the data can be done according to any reasonable statistical
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Fig. 2.1. A joint measurement on N copies of a quantum system.

approach (e.g.: maximum likelihood), which will automatically produce estimates

with the maximal possible amount of accuracy, given the information in the data.

Now we move to smaller classes of measurements. The first subclass we men-

tion, is a mathematically defined class of measurements called separable. A mea-

surement M on the joint system H N is separable, if each component m(x) is a

sum of products of positive matrices, m(x) = ∑
i

⊗N

j=1 mi j (x), mi j (x) ≥ 0 for

all i , j , and x . So far, no one has found an operational definition of this class of

measurements—it is not possible to give a figure, illustrating the meaning of this

class! However, as we will see, this class is extremely convenient when carrying

out a mathematical analysis of optimality.

A somewhat larger class than separable is the class of PPT, positive partial trans-

pose, measurements. This means that each m(x) remains positive, after transposing

the elements corresponding to indices belonging to any given subset of subsystems.

So far this class has not played a useful role in quantum statistics, though it has

turned up in quantum communication. [Reference: Werner?]

Strictly smaller than separable, is the class of LOCC measurements, illustrated

by Figure 2.2. “LOCC” stands for local (quantum) operations with classical com-

munication. The idea is that each subsystem is measured separately, but that the

results of the measurements can be used to fix settings on subsequent measure-

ments of the same or other subsystems. In fact we are not talking about separate
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Fig. 2.2. An LOCC, or “multipass adaptive” measurement on N copies of a quantum sys-
tem.

measurements here, but separate instruments, since the individual quantum systems

are not destroyed but transformed, and can be measured again. Each subsystem can

be measured many times. Without loss of generality, one could agree to measure

the subsystems cyclically in the order 1, 2, . . . , N , and then back to the beginning.

The words “local” and “communication” come from quantum computation theory,

where the separate quantum systems might be in physically distinct locations; the

only interaction between them comes from communication of classical informa-

tion, in particular, measurement results, from one location to another. One could

also call these measurements adaptive, multipass.

It is not difficult to see that all LOCC measurements are separable. The fact that

there exist separable measurements which are not LOCC was established by (au-

thor?) (83), who found the first example of such a measurement. Previously, the

two classes were conjectured to be identical. It is still an important open question,

to give a concise mathematical characterization of LOCC measurements, and a

physical characterization of separable measurements. The strict inclusion remains

true, if we would extend the definition of LOCC by taking the closure, in an ap-

propriate sense, of the measurements described so far (thus allowing in some sense

also an infinite number of repeat measurements).

We now move to a much smaller class of measurements. Each subsystem is

measured just once, the results being used to fix settings on the measurements of
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Fig. 2.3. An adaptive (single-pass) measurement on N copies of a quantum system.

the remaining systems, see Figure 2.3. These adaptive measurements have been

applied in the laboratory by (author?) (226), following theory developed by (au-

thor?) (175). Starting with a uniform prior distribution on an unknown pure state

of a qubit (the excitation of an ion in an ion trap), each successive qubit was mea-

sured “greedily” using the Bayes optimal measurement, as if the next measurement

would be the last one; optimality is defined relative to a certain figure of merit, or

loss function, called fidelity. For pure states, this is just the absolute value of the

inner-product between the true and the guessed state vectors.

Finally, we can consider measuring each quantum system separately (and non-

adaptively), but using possibly different measurements on each system, see Figure

2.4. More restrictively, we would use the same measurement on each subsystem,

Figure 2.5.

2.8 Pure states, Observables

Consider a self-adjoint operator X on a finite-dimensional Hilbert space H = Cd .

It has real eigenvalues, and the whole space can be decomposed into orthogonal

eigenspaces (an eigenspace of dimension larger than 1 corresponding to an eigen-

value of the same multiplicity). Let us denote the eigenvalues of the operator by

x ∈ R, and write [X = x] for the eigenspace corresponding to eigenvalue x . For

x ∈ R which are not eigenvalues, we let [X = x] denote the trivial subspace, of
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Fig. 2.4. N separate measurements on N copies of a quantum system.

dimension 0, consisting just of the zero vector {0}. Denote by 5[X=x] the operator

which projects onto the eigenspace [X = x]. We can write X =∑x x5[X=x], and

we also have
∑

x 5[X=x] = 1.

For Borel subsets B of the real line, define the subspace [X ∈ B] =⊕x∈B[X =
x]. In words, [X ∈ B] is the subspace of H generated by the eigenvectors of

X with eigenvalue in B. The projection operator onto this subspace is given by

5[X∈B] =∑x∈B 5[X=x].
The operator X corresponds to an instrument NX , by taking the outcome space

of the instrument to be the spectrum of X , and by taking the Kraus representation

of the instrument to have components ni (x) = 5[X=x], where the index i takes

on a single value only. Since a projection operator is self-adjoint and idempo-

tent, the instrument NX , acting on the state ρ, yields the value x with probability

trace(ρ5[X=x]), and the state is then converted into5[X=x]ρ5[X=x]/trace(ρ5[X=x]).
In particular, if the state ρ is the pure state |ψ〉〈ψ |, then the probability of the out-

come x is 〈ψ |5[X=x]|ψ〉 = ‖5[X=x]|ψ〉‖2, and the output (unnormalized) state is

then5[X=x]|ψ〉〈ψ |5[X=x], which is the pure state with (unnormalized) state vector

5[X=x]|ψ〉.
We call such an instrument a simple instrument, slightly enlarging our earlier use

of this terminology, where each projection operator projected to a one-dimensional

subspace. In this context, X is called an observable. “Measuring an observable

on a pure state” has a very simple description: the state gets projected into one of
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Fig. 2.5. N separate, identical, measurements on N copies of a quantum system.

the eigenspaces of the observable, and the probability of each event is equal to the

squared length of the projection. The probabilities are nonnegative and add to 1,

by Pythagoras.

Suppose now f is any real function defined on the spectrum of X . We define the

operator f (X) =∑x f (x)5[X=x]. In words: the eigenvalues of X are transformed

by the function f , the eigenvectors left unchanged. If the function f is many-

to-one, the corresponding eigenspaces are merged. For functions such as “inverse”

and “square” the new definitions of X−1 and X2 coincide with the usual definitions.

Observe that for the indicator function of a Borel subset of the line, denoted by 1B ,

we have 1B(X) = 5[X∈B].
The probability of the outcome x was trace(ρ5[X=x]). Let us denote by meas(X),

the random variable with this probability distribution. Multiplying each probability

by f (x) and summing over x , we obtain the following version of the trace rule for

the expected value of a function of the outcome of measuring X on the state ρ:

Eρ( f (meas(X))) = trace(ρ f (X)). (2.7)

In particular, notice that the mean value of a simple measurement of f (X) is the

same as the mean value of f of the outcome of measuring X , even though the

posterior state is not necessarily the same, if the function f is many-to-one.

An illustration of this result is the following expression for the variance of the
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Fig. 2.6. John von Neumann (from MacTutor Archive, St. Andrews).

outcome of measuring an observable X :

varρ(meas(X)) = trace(ρX2)− (trace(ρX))2. (2.8)

We can extend these results to several commuting operators. By a celebrated re-

sult of von Neumann (see Figure 2.6), a number of self-adjoint operators all com-

mute with one another if and only if they are all functions of a single self-adjoint

operator. In words, commuting operators can be simultaneously diagonalized.

Suppose X and Y commute. We can define a third operator Z such that X and

Y are both functions of Z , say X = f (Z), Y = g(Z), and we can choose Z with

the smallest possible number of eigenstates for this purpose. The eigenspaces of X

and of Y are either eigenspaces of Z , or sumspaces of several eigenspaces of Z .

Now we can consider three different sequential measurement scenarios: first

measure X , then measure Y ; first measure Y , then measure X ; measure Z obtain-

ing an outcome z and report f (z), g(z) as values for X and Y respectively. It is

not difficult to check that the joint probability distribution of the pair of outcomes

(x, y) is the same under each of these three scenarios, and the posterior state given

the outcome (x, y) also coincides in every case. We may talk about a “simultane-

ous” measurement of X and Y , and we can justly claim that measuring X does not

disturb the measurement of Y , and vice versa.

A generalization of the trace rule for expectation values is

Eρ( f (meas(X, Y ))) = trace(ρ f (X, Y )). (2.9)

where X and Y are commuting observable and f is an arbitrary function of two

variables, the operator f (X, Y ) defined as
∑

x,y f (x, y)5[X=x,Y=y] where [X =
x, Y = y] = [X = x] ∩ [Y = y]. An important corollary is that the probability

distribution of a measurement of one observable, or function thereof, is not altered

by measuring it jointly together with any number of compatible observables.

Commuting observables are called, in physics, compatible observables. All

functions f (X) of a given observable are compatible with X , and as we said before,

compatible observables can be thought of as both functions of a third observable.

An important example of compatible observables is supplied by observables on

different subsystems of a composite system. Consider observables on a product

space H ⊗K . If X is an observable for H and Y an observable for K , then we

can define the observables in a natural way on the product space, replacing X by
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X ⊗ 1, and Y by 1⊗ Y . The eigenvalues remain unchanged, while the eigenspaces

are replaced by the products of the original eigenspaces with the second space in

its entireity.

We see that X ⊗ 1 and 1⊗ Y commute with one another, and therefore we can

measure them jointly or in either order, getting the same (distributional) results in

each case.

As an example, consider the entangled pure state (|00〉+|11〉)/√2 of two qubits.

Suppose we measure the observable σz on the first qubit. With probability 1/2 we

observe the value ±1 and the joint state of the two qubits collapses to the state

|00〉 or to the state |11〉, according to the outcome. Now measure the second qubit

in the same way and with certainty we will observe the same value, ±1, without

any further change to the state. Doing the measurements in the reverse order would

result in the same final results. In particular, we notice that the marginal probability

distribution of any measurement on the second component, is not altered by doing

any measurement whatsoever (or none at all) on the first component. Another way

to express this is through the notion of reduced state: the reduced state of the second

component of a composite system is not altered by previously subjecting the first

component to any quantum instrument. Without this property, the formalism we

have developed would be useless as a physical theory. The different components of

a composite quantum system are often taken to correspond to physically spatially

separated physical systems. The formalism does not allow action at a distance:

we cannot tell at one location, which operation is being done to another part of the

system at another, distant, location.

The projection of the state to an eigenspace of the observable is called the von

Neumann-Lüders projection postulate. Though measurement results are not sensi-

tive to operations done at a distance, it does appear that the state of the system as a

whole does react globally to operations on subsystems. This raises the philosoph-

ical question, whether the state of a quantum system, and in particular the state

vector of a system in a pure state, has physical reality. We further discuss these

questions in Chapter 8.

A pure state vector is often called in physics a wave function; when the Hilbert

space becomes infinite dimensional it can indeed be identified with a function. In

the finite dimensional space we can consider the state vector as a function from the

index set {1, . . . , d} to the complex numbers. When we measure the observable

whose eigenvectors are the natural basis vectors of Cd , we obtain the outcomes

i = 1, . . . , d with probabilities |ψi |2, the squares of the absolute values of the

components of (in other words, the values of) the wave function. This version of

the trace rule goes back to the beginning of quantum mechanics, where it is known

as Born’s law (see Figure 2.7).

2.9 Unitary evolution

We briefly mentioned unitary operations as being a special kind of quantum oper-

ations in Section 1.3.3. Here we pay them the attention they deserve, connecting
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Fig. 2.7. Max Born (from Max Born Institute, Berlin).

them (just as we did for simple measurements) to the most fundamental (and old-

est) part of quantum mechanics.

It is a theorem that any unitary matrix U can be written in the form U = exp(i A)

for some self-adjoint matrix A; conversely, if A is self-adjoint, then exp(i A) is

unitary. We can embed a unitary matrix U into a time continuous family U (t) as

follows. Consider the differential equation

i h̄
d

dt
|ψ(t)〉 = H |ψ(t)〉, |ψ(0)〉 given. (2.10)

where H is a self-adjoint operator, called the Hamiltonian, whose elements have

the units of energy, and h̄, having units time time energy is Planck’s constant.

The ket |ψ(0)〉 is an initial, pure state, of a quantum system. The solution of this

equation is

|ψ(t)〉 = U (t) |ψ(0)〉, U (t) = exp
( 1

i h̄
Ht

)
. (2.11)

Equation (2.10) is called Schrödinger’s equation and it describes the way in which

a quantum system is supposed to evolve, in continuous time, when isolated from

any environment. The Hamiltonian H describes the energy of the system. If H has

eigenvalues En and eigenstates |En〉, then we can write

|ψ(t)〉 =
∑

n

an exp
( 1

i h̄
Ent

)
|En〉 (2.12)

where the coefficients an can be found by expanding the initial state vector in terms

of the energy basis, an = 〈En|ψ(0)〉. A system which is initially in an eigenstate

of H remains always in that state; in general, systems evolve as superpositions of

energy eigenstates, where just the phases of the components of the superposition

oscillate with rates corresponding to the energy eigenvalues.

In terms of density matrices, we can write Schrödinger’s equation as

i h̄
d

dt
ρ(t) = [H, ρ], ρ(0) given. (2.13)

where the commutator [X, Y ] of two operators X and Y is defined by

[X, Y ] = XY − Y X. (2.14)
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The solution is of course

ρ(t) = U (t)ρ(0)U ∗(t) (2.15)

where U (t) is defined in Equation (2.11).

Example 2.3 (The Qubit: unitary transformations). Since every 2× 2 self-adjoint

matrix is of the form a1 + Ec · Eσ , an arbitrary 2 × 2 unitary matrix is of the form

exp(i(a1 + Ec · Eσ)) = exp(ia) exp(iγ Ev · Eσ) where Ev = Ev(ϑ, ϕ) = Ec/‖Ec‖ is a unit

3-vector with polar coordinates (ϑ, ϕ), and γ = ‖Ec‖ is real. The phase exp(ia)

disappears when we compute the effect of the unitary U on a state ρ: the state is

transformed into UρU ∗. Taking ρ to be the pure state |Eu〉〈Eu| one may check that

the unitary transformation rotates the Bloch vector Eu of the state by an angle γ

about the direction Ev. It follows by linearity that the effect of U on any state is to

rotate its Bloch vector in the same way.

2.10 Welcome in The Church of the Larger Hilbert Space

Both simple measurement and unitary evolution have elegant descriptions in terms

of pure state vectors. This leads to a picture of quantum mechanics in which a state

vector, in isolation from the rest of the world, evolves in continuous time, according

to a unitary evolution of the Schrödinger type (2.10). The evolution is determinis-

tic. The system may get measured at discrete time points. At these time points, the

state vector makes a random jump into one of a collection of subspaces associated

with the measurement. Which subspace was chosen, is transmitted as classical

information to the outside world. The density matrix is used as a convenient pack-

aging of a probabilistic mixture of pure states: in order to make predictions about

future outcomes of future measurements, we only need to store the present density

matrix.

These two parts of quantum mechanics, Schrödinger evolution and von Neu-

mann collapse of the wave function (with Born’s law describing the probabilities

of the outcomes) have lived together in uneasy cohabitation since the beginning

of quantum mechanics. Physicists generally feel that Schrödinger’s equation de-

scribes the real physics, whereas Born’s law is some kind of add-on; however, with-

out Born’s law, there is no way to draw conclusions about the real world, from the

model of quantum mechanics. Moreover, the random jumps during measurement

are for real and can be observed in the laboratory too. Still, measuring a quantum

system is also a physical process. Measurement apparatus is built of quantum sys-

tems. Surely, the process of measurement should be describable just in terms of

a Schrödinger evolution applied to a composite system consisting of the quantum

system of interest together with measurement apparatus.

These considerations lead to paradoxical questions such as what happens to

Schrödinger’s cat, which we will survey in Chapter 8. Here we want to briefly de-

scribe some mathematical results which go some way to reconciling measurement

and evolution, and which also show that quantum instruments, as we have de-

scribed them in most generality, actually have an alternative description involving
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Fig. 2.8. Inside the blackbox: anatomy of an instrument.

only simple measurements, unitary evolution, and ancillary systems (the quantum

system of the measurement apparatus?).

Measurements and operations are special cases of instruments, so we only need

to deal with quantum instruments here. First of all, let us describe a particular type

of quantum instrument N . After that, we will argue that this type is generic: every

instrument whatsoever can be represented in this form.

Ingredients of our instrument are an auxiliary quantum system initially in the

fixed state ρ0 on the Hilbert space K . An observable X is defined on K . Further,

we need a unitary operation U on the product system H ⊗K . Our instrument

works as follows. The system to be measured, in state ρ on H , is brought into

interaction with the ancillary system ρ0 forming initially the product state ρ ⊗ ρ0.

The composite system undergoes the unitary transformation U , converting it

into U (ρ ⊗ ρ0)U
∗. The observable X is measured on the ancilla, resulting in the

outcome x and the final, joint, unnormalized state

(1⊗5[X=x])U (ρ ⊗ ρ0)U
∗(1⊗5[X=x]) (2.16)

of the joint system, with probability equal to the trace of that state,

p(x |ρ, N ) = trace (1⊗5[X=x])U (ρ ⊗ ρ0)U
∗. (2.17)

The ancilla is discarded, leaving the system of interest in the (unnormalized) state

σ(x |ρ, N ) = traceK (1⊗5[X=x])U (ρ ⊗ ρ0)U
∗(1⊗5[X=x]). (2.18)

What we have constructed here is a quantum instrument, of course. This can be

seen in many ways. We can argue that each of the composing steps is an instrument,

and hence the composition of the steps too. We may observe directly that our

instrument does define a completely positive, normalized and linear map. Or we
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may exhibit the Kraus matrices of our instrument, explicitly in terms of ρ0, U and

X .

According to theorems of Holevo (for measurements) and later Ozawa (for in-

struments), every instrument N can be represented in this way, for some choice

of ancilla space K , ancilla state ρ0, joint unitary U and observable on the ancilla

X . The proof relies on a deep result from functional analysis called the Naimark

extension theorem (for measurements) and the Stinespring theorem (for the more

general case of instruments).

These results make the circle round. One may start with density matrices; hy-

pothesize linearity and complete positivity, and arrive at a certain universe of quan-

tum probability theory, in which there is a special place for pure states, unitary evo-

lution and simple measurement. Alternatively one may start with pure states, uni-

tary evolution, simple measurement, and the possibility to form product systems.

One arrives eventually at density matrices and completely positive instruments.

The representation theorem we have just given goes some way to resolve the

possible conflict between measurement and evolution. At least, we see that these

notions are consistent with one another, and moreover that one can place the bound-

ary between quantum and classical at different levels, basically as a matter of con-

venience. The philosophical problems remain, and we postpone any discussion of

them till Chapter 8.

2.11 Duality: Heisenberg vs. Schrödinger

TO BE DONE:

Heisenberg picture vs. Schrödinger picture.

Dual instruments etc.

States as expectations of observables.

2.12 Problems, extensions, and bibliographic notes

PROBLEMS:

Show that a normalized positive linear map from states

to measurement outcome distributions is represented by

a POVM.

Show that ‘transpose’ is represented in the Bloch

sphere by reflection through the y = 0 plane; show that

it does not have a Kraus decomposition.

Prove Naimark, Stinespring.

Check unitary on qubit is rotation.

no-cloning theorem

Bayes’ rule to show why initial state → unnormalized

state indexed by measurement outcome is linear

coarsening of an instrument, revisited

Remember characterization of a quantum operation by

its effect on (one part of) an entangled state. This
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gives an explicit interpretation of the Kraus

matrices.
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