In Exercises 5-8, determine if the given set is a subspace of [P, for
an appropriate value of n. Justify your answers.

5. All polynomials of the form p(¢) = at?, where a is in R.
6. All polynomials of the form p(z) = a + t2, where a is in R.

7. All polynomials of degree at most 3, with integers as coeffi-
cients.

8. All polynomials in [P, such that p(0) = 0.
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9. Let H be the set of all vectors of the form 5¢t |. Find a
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vector v in R? such that H = Span {v}. Why does this show
that H is a subspace of R3?
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13. Letv, = O|l,vo=1|11|,va=]2 |[,andw= |1 |.
—1 3 6 2

a. Iswin{vy,v,, v3}? How many vectors are in {v;, v, v3}?
b. How many vectors are in Span {v;, v,, v3}?

c. Is win the subspace spanned by {v, v,, v3}? Why?

In Exercises 3-6, find an explicit description of Nul A, by listing
vectors that span the null space.
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In Exercises 7-14, either use an appropriate theorem to show that
the given set, W, is a vector space, or find a specific example to
the contrary.
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35. LetV and W be vector spaces,and let 7" : V' — W be alinear
transformation. Given a subspace U of V, let T(U) denote

the set of all images of the form 7'(x), where x is in U. Show
that 7(U ) is a subspace of W.



