In Exercises 5–8, determine if the given set is a subspace of \mathbb{P}_n for an appropriate value of n. Justify your answers.

- **5.** All polynomials of the form $\mathbf{p}(t) = at^2$, where a is in \mathbb{R} .
- **6.** All polynomials of the form $\mathbf{p}(t) = a + t^2$, where a is in \mathbb{R} .
- **7.** All polynomials of degree at most 3, with integers as coefficients.
- **8.** All polynomials in \mathbb{P}_n such that $\mathbf{p}(0) = 0$.
- **9.** Let H be the set of all vectors of the form $\begin{bmatrix} -2t \\ 5t \\ 3t \end{bmatrix}$. Find a vector \mathbf{v} in \mathbb{R}^3 such that $H = \operatorname{Span}\{\mathbf{v}\}$. Why does this show that H is a subspace of \mathbb{R}^3 ?

13. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.

- a. Is w in $\{v_1, v_2, v_3\}$? How many vectors are in $\{v_1, v_2, v_3\}$?
- b. How many vectors are in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- c. Is w in the subspace spanned by $\{v_1, v_2, v_3\}$? Why?

In Exercises 3–6, find an explicit description of Nul A, by listing vectors that span the null space.

$$3. A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 3 & -2 \end{bmatrix}$$

In Exercises 7–14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\}$$
 8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 3r-2=3s+t \right\}$$

35. Let V and W be vector spaces, and let $T: V \to W$ be a linear transformation. Given a subspace U of V, let T(U) denote the set of all images of the form $T(\mathbf{x})$, where \mathbf{x} is in U. Show that T(U) is a subspace of W.