Graphs, spanning trees & Leterminants
Agraph consists of a finite set of points (verteres), & edges before as some of the presteres.
- at most one edge betreen ? verteus - not a - medges mist go betreen different verteus into
Then make the Laplacian makis:
Saynvertees Then laplaceanisa Cymeth Junes motor
If it is then his = fl if telge from ito; We chosely his st. each rowsom to zero
eg ' 2 3 4 (1/2-1-10) (1/2-1-10)
2 7 m3 -1 -1 4 0 + -1 =2
A tree is a graph is a collection of edges which together contain no the cycles, and which together form a connected subgraph.
eg. / not significant which together form a connected subgraph.
Aspamana tree is a tree which with exercise to

(so every vertex is connected to every other vertex).

egs of spanning hees) eg. Graph in Are there any others? Ash here First! Ingeneral, how to compute # spanning hees?
Can try all subsets of edges Eg if graph has 1000 edges then must try 2'000 subsets - not practical! Thm: let be laplawan of graph 6. Then # spanning
thees = any cotactor of l.

H on Hed, ~ see Wilippelon eg: Utilitatic of t I again. $Cof_{11}L = (-1)^{\frac{1}{2}} \frac{1}{2} \frac$ $cot_{14} L = (-1)^{14} det (-1)^{2} = -(0(4nH) + -(-1)(-3-1) + (-1)(1+3))$ $\begin{pmatrix} -1 & -1 & 3 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & = 8 \end{pmatrix}$

