Eigenvalues and Eigenvectors

So far:

• Definitions:

M an $n \times n$ matrix over field $k = \mathbb{R}$

Eigenvector: **nonzero** $v \in k^n$ such that there exists $\lambda \in k$ with $Mv = \lambda v$

Eigenvalue: $\lambda \in k$ such that there exists **nonzero** $v \in k^n$ with $Mv = \lambda v$

Eigenspace: $W_{\lambda} \subseteq k^n$, the set of eigenvectors with a given eigenvalue λ (linear subspace of k^n)

• Computation:

Eigenvalues are roots in k of characteristic polynomial: det $(M - \lambda I_n)$

To find eigenvectors for eigenvalue λ , solve the matrix equation $Mv = \lambda v$ (Gaussian elimination/row reduction)

Why? Fish in a pond

- In year n we have a adult and b baby fish
- In year n + 1 we have 0.9a + 0.2b adults 0.5a + 0.3b babies

• Let
$$M = \begin{bmatrix} 0.9 & 0.2 \\ 0.5 & 0.3 \end{bmatrix}$$

• Population modelled by linear function $T: \mathbb{R}^2 \to \mathbb{R}^2$ $\begin{bmatrix} a \\ b \end{bmatrix} \mapsto M \begin{bmatrix} a \\ b \end{bmatrix}$ • Eigenvalues and vectors of *M* (approximate):

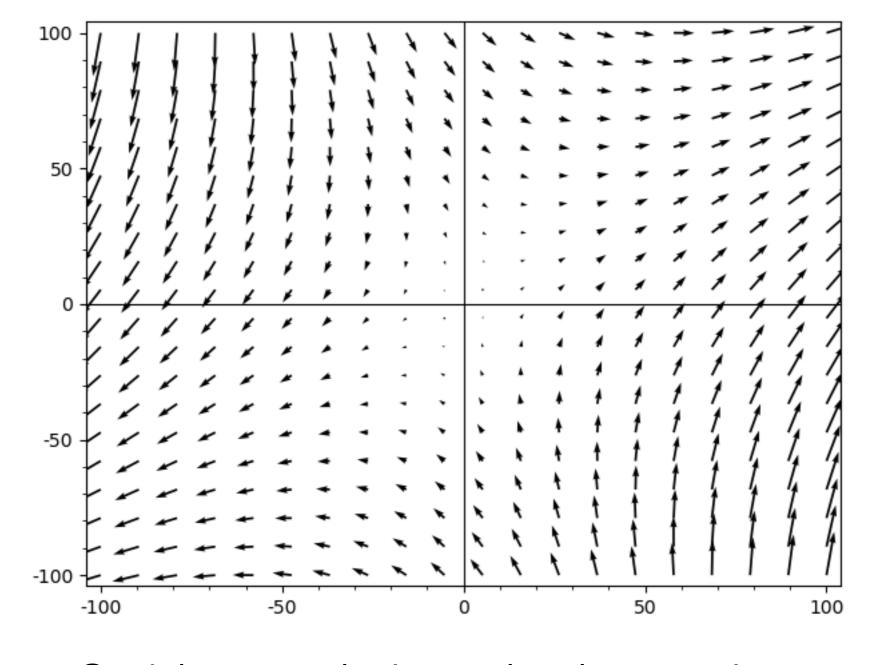
$$\lambda_1 = 1.04, \ v_1 = \begin{bmatrix} 83\\56 \end{bmatrix}$$

$$\lambda_2 = 0.16, \ v_2 = \begin{bmatrix} -26\\ 96 \end{bmatrix}$$

What happens in long term?

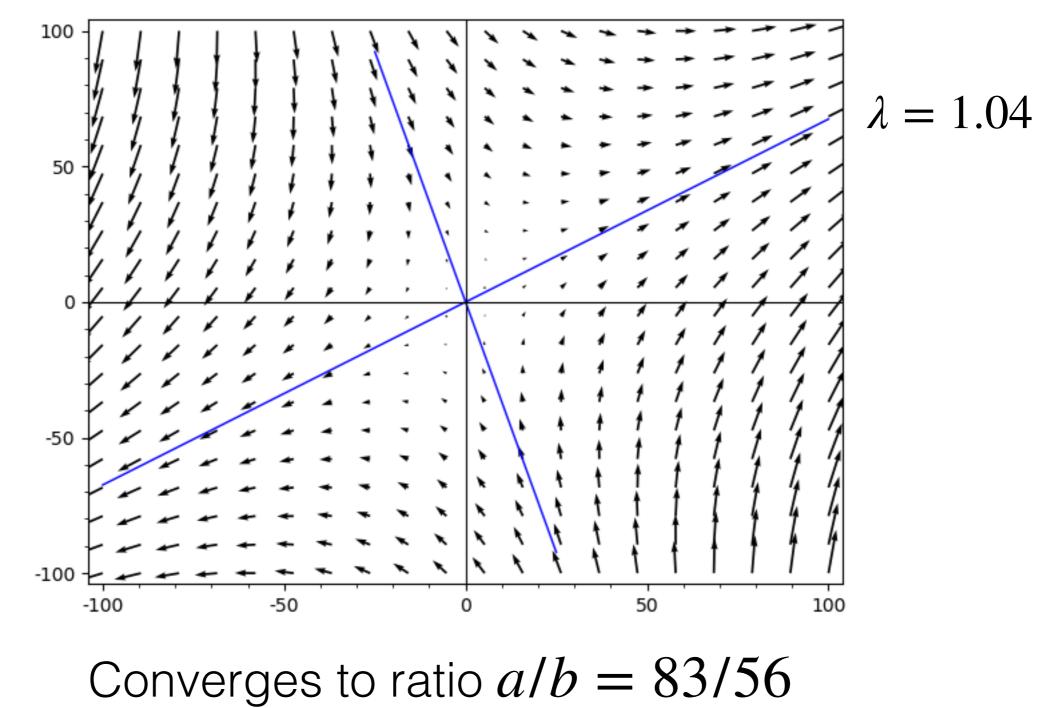
- Suppose the population is a = 83b = 56
- The population vector is (roughly) an eigenvector with eigenvalue $\lambda_1 = 1.04$
- So after *r* years, the population will be $M^{r} \begin{bmatrix} 83\\56 \end{bmatrix} = M^{r-1}\lambda_{1} \begin{bmatrix} 83\\56 \end{bmatrix} = \dots = \lambda_{1}^{r} \begin{bmatrix} 83\\56 \end{bmatrix} = 1.04^{r} \begin{bmatrix} 83\\56 \end{bmatrix}$
- Grows slowly over time.

Graphical representation:



Stable population, slowly growing

Graphical representation: $\lambda = 0.16$

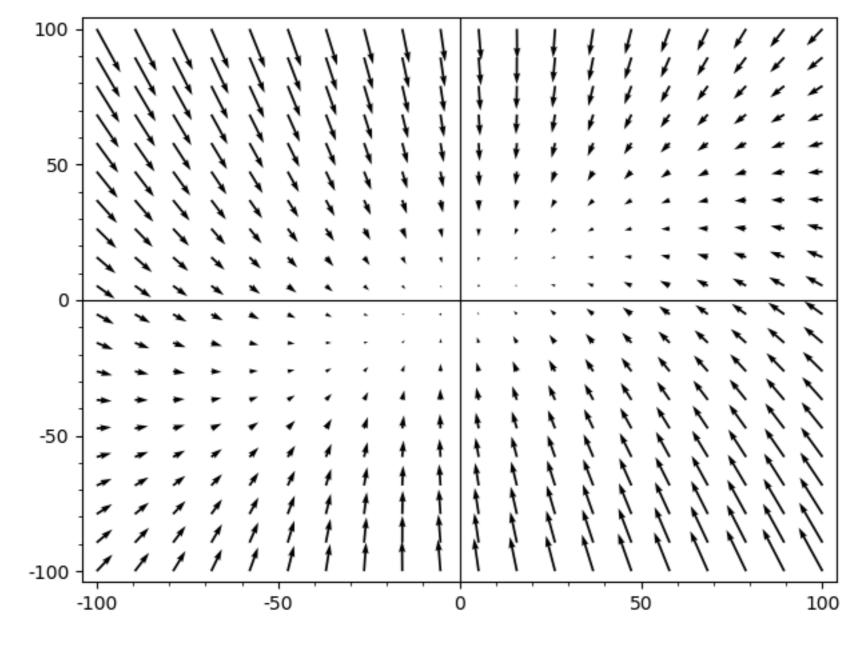


Effect of pollution

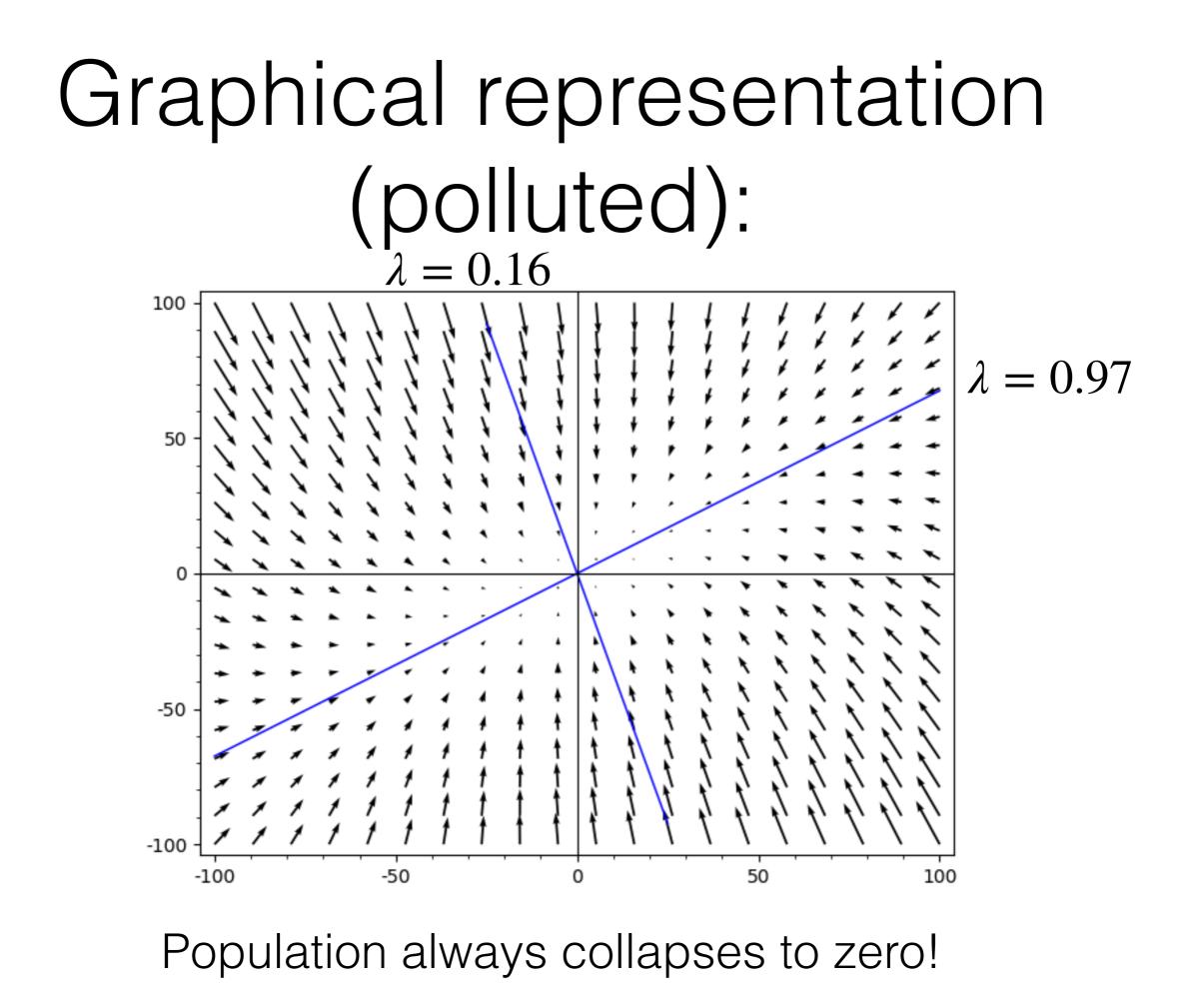
- Suppose some pollution is introduced to our pond, making fewer babies grow to adulthood
- New matrix $M' = \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.3 \end{bmatrix}$
- Eigenvectors roughly the same
- $\lambda_2 \approx 0.16$, *roughly* unchanged
- $\lambda_1 = 0.97$, slightly smaller (was 1.04)

•
$$(M')^r \begin{bmatrix} 83\\56 \end{bmatrix} = \dots = 0.97^r \begin{bmatrix} 83\\56 \end{bmatrix}$$
, slowly goes to zero

Graphical representation (polluted):



Population always collapses to zero!



Conclusion

Take-away:

- small changes in parameters can have a big effect on longterm behaviour of linear models
- eigenvalues and vectors are a powerful tool to detect this
- especially important if we have more variables (male and female fish?)

Next:

- diagonalisation using eigenvalues and vectors
- using diagonalisation to compute large powers of a matrix
- computing the population of our pond in 1000 years, fast