$\underline{c}A$ Thm 6.2 $\phi: S \rightarrow The completely paritive. I completely paritive externion$ $<math>\psi: A \rightarrow The$

Thue 6.3
$$\phi$$
: 52 -1 Yeu Annue 16 H, $\phi(i) = 1$.
Then TFRE i) ϕ completely contractive
2) ϕ n-contractive
3) $\frac{1}{n}$ Sy contractive
3) $\frac{1}{n}$ Sy contractive but also unital
 $\frac{p_{1200}f}{n} f = 12 = 13 V$
3 =) $4 \frac{1}{n}$ Sy is not only contractive but also unital
contractive + unital \Rightarrow perflue on $H(t)K = S \longrightarrow Th$
Define ψ the linear fect onociobed to $\overline{S\phi}$.
 ψ extends ϕ

NO: we have advally proven more -

The y: H - Hn IEH,
$$\phi(i) = 1$$
. If y is n-contracture -
3 completely periture externion ψ : A - K

(combining the previous results)

Consider
$$S^+ \in \Pi n^+ = 2 \mathbb{Z} \in A$$
. Let S^+ , Aic Kn⁺ 3
 $S^+ \in \Pi n^+ \subseteq Mn(S)^+$

<u>Lemma 6.5</u> ϕ : S -, Mn positive (=> Sp is positive on St@Hn⁺ <u>Phoof</u>: let e_S+, (\vec{x}, α_{j}) \in Hn^+ $x = d(e_1 + \dots + d_n) e_n \in \mathbb{C}^n$ $Q = 2(\vec{u}, \alpha_{j}) \in fin^+ 3$ $S\phi(Q,Q,Q) = \frac{7}{ij}\phi(\vec{u}, \alpha_{j},Q)ij$ $= \frac{7}{ij}a_i\alpha_i, \langle \phi(Q,Q), e_i \rangle = \langle \phi(Q,X,X) \rangle$

Leume let φ: S→ Mn poritive, (eij) ∈ Mn(S) Et φn(Qij) ≥ O, then 3 φ': S→ Mn poritive united st φm onormes

Thm 6.6 TFDE
1) every pontive of: S -1 11 is comp. pontive
2) every united, positive map
$$\phi: S \rightarrow The is completely pritie
3) Steptint is dense in In(S)+$$

Phoof we dready proved $\lambda \in 2 + 3 = 14$ Assume $S \neq \in \Pi n^{+}$ not douse Let $p \in \Pi n(S)^{+}$ not in the classone of $S \neq \in \Pi n^{+}$ By Krein-Milman $\exists s$ linear fat on Hn(S), pontive on $S + \otimes \Pi n^{+}$ but $s(p) \neq 0$. There the emocraded linear map $(p_{S}: S \rightarrow \Pi \otimes ponitive)$ but not completely $p = n\Pi v \cong$ (q h not ponitive) D

a) =) 3) powows from 6.6
1) holds =) 2)
to see 2) =1 1), essume
$$B = B(H)$$
. Given (Dij) in Th(1)+)
to check that $Qn((Dij))$ enough to chose $x_1 \dots x_n \in H$ &
check $T = Q(Dij)(x_1, x_1) = 0$

G be fidue, subspace spaned by Xim Xn

$$\psi: S \rightarrow B(\mathcal{R})$$
 the compremion
 $\mathcal{F} \ Mc$ $x = due(\mathcal{R}) = 1$ ψ completely pointive by \tilde{i}) \mathcal{R}
here
 $0 \in \mathbb{Z} < \psi(0ij)(X_j, X_j) = \mathbb{Z} < \psi(0ij)(X_j, X_j)$

we very that 6 has a portion of maty for H, provided every elements of 12 is portitionable with S.

EVALUATE: 6.9 Let Site an operator system ,
$$x \in S$$
 ($x \in I$).
TFOE
A) x positionable cut S:
2) EVALUATE map denote domain S solutions
Ref (x) H = hd(x) H
3) $\begin{bmatrix} 1 & x \\ x \times 1 \end{bmatrix}$ is in the closure of S+60 H2⁺
A) =1 2) someon organized of them 2.4. (using lemma 2.3)
to get hd(x) H = hd(x) H
2) => 3) Assume 3) does not hold, that a 3 st T2(S) \Rightarrow G
3+ $S(\begin{bmatrix} 1 & x \\ x \times 1 \end{bmatrix}) <0$ but $S(S^{10}(0) \times 0)$
Let φ be the linit map involuted to 3
 $\Rightarrow \varphi^{1}$ from $\overline{\Phi} = s + \varphi_{2}^{1}(\begin{bmatrix} 1 & x \\ x \times 1 \end{bmatrix})$ not positive
By lemma 3: I $\varphi^{1}(x) A > 1 = 1 (\varphi^{1}(A) H) \xrightarrow{2}$
 $3) => A)$
Let $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

The 69 K = 3 3 speceton system. Every portive map on 3 has nonser 1. $\phi(1)$ is used rootnicted to $K \iff 3$ has a pondition of usuity for K. Corollowy B C² dypelone, LEB, $A \subseteq B$ leA robodypelone, S=A+A^{*} =) S have pontition of usuary for A.

EXAMPLE (illustrate the advantages of working with PofU.

Od $A \subseteq C(x)$ is miniform if $A \in A$ and reported points. A hypo-Dinchlet elgebore is a uniform elgebore $A \subseteq C(x)$ at the closure of $A + \overline{A}$ has Anite coolinguation in A.

 $\overline{F_{oct}} \quad \text{lawrent polynomials are denote in <math>\Re(A)$ $\overline{F_{oct}} \quad \text{lawrent polynomials are denote in <math>\Re(A)$ $\overline{F_{oct}} \quad \frac{1}{2} \quad \frac{1}{$

claim Shas No ponention of unity for S should

let
$$f \in S$$

 -1 on Tn , multiply by i on T_2
 $S_i(f) = S_2(f)$

there f has no partition of unity in O.

Consequences : 3 positive uset of map \$ 3 > 1/2 sit

 4) φ not contractive;
 2) φ not contractive pointive (otherwore completely contractive)
 3) φ has no pointive exterision to C(OA) (pointive on comm. C* elso =) comp point)
 4) φ = φ|_{RCA}) is a unital contraction but its positive externion φ = φ is not.
 5) ψ has no contractive externion to S.
 6) ψ is not 2- contractive