ALGORITHMS FOR FINITE FIELDS

H. W. Lenstra, Jr.*

In this paper, we survey the complexity status of some fundamental algorithmic problems
concerning finite fields. In particular, we consider the following two questions: given a
prime number p and a positive integer n, construct explicitly a field that is of degree n
over the prime field of p elements; and given two such fields, construct an explicit field
isomorphism between them. For both problems there exist good probabilistic algorithms.
The situation is more complicated if deterministic algorithms are required.

1. Introduction.

Every finite field has cardinality p™ for some prime number p and some positive
integer n. Conversely, if p is a prime number and n a positive integer, then there exists
a field of cardinality p”, and any two fields of cardinality p™ are isomorphic. These
results are due to E.H. Moore (1893) [15]. In this paper, we discuss the complexity
aspects of two algorithmic problems that are suggested by this theorem, and of two
related problems.

Constructing finite fields. We say that a finite field is ezplicitly given if, for some
basis of the field over its prime field, we know the product of any two basis elements,
expressed in the same basis. Let, more precisely, p be a prime number and n a positive
integer. Then by ezplicit data for a finite field of cardinality p” we mean a system of n®
elements (aij)} ; g=1 of the prime field F,, = Z/pZ, such that F} becomes a field with
the ordinary addition and multiplication by elements of F,, and the multiplication

determined by )
n

€i€j; = E AijkCk,
k=1

where e, €2, ..., en denotes the standard basis of Fy over F,.

The problem of constructing finite fields is the following: given a prime number
p and a positive integer n, find explicit data for a finite field of cardinality p". The
elements of F, are to be represented in the conventional way as integers modulo p.
The current complexity status of this problem is discussed in Section 2.

Finding isomorphisms between finite fields. Given a prime number p, a positive
integer n, and two sets of explicit data (@ijk)}; k=1 (a};1)7 k=1 for finite fields of
cardinality p®, find an isomorphism between these fields. The isomorphism is to be
represented by means of its matrix on the given bases of the fields over the prime
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field; more precisely, we ask for an invertible n x n matrix (b;;)7 ;= over F, with the

property that
n n
Zaijkbkm = Z bikbj10%
k=1 k=1

for all 7, 7, m =1, 2, ..., n. This problem is discussed in Section 3.

Irreducibility testing. Given explicit data for a finite field E, and a non-zero
polynomial f € E[X], the problem is to decide whether f is irreducible in E[X]. This
problem is the analogue of the primality testing problem, with the ring of integers Z
replaced by the ring E[X]. We refer to Section 4 for a brief discussion of the results
that are known.

Factoring polynomials over finite fields. Given explicit data for a finite field E,
and a non-zero polynomial f € E[X], the problem is to determine the decomposition
of f into irreducible factors in E[X]. This is the analogue of the problem of factoring
integers, with Z replaced by E[X]. In Section 5, we survey the main results that have
been obtained on this problem.

Our main interest will be in the running times of the algorithms that have been
proposed for the above four problems. In particular, we are interested in whether these
algorithms run in polynomial time, i.e. in time (n+log p)°™ for the first two problems
and in time (deg f + log #E)°W for the last two. We will not be concerned with the
problem of obtaining good values for the O-constants, and they will be left unspecified.

To do justice to the results that have been obtained, it is appropriate to distinguish
three types of algorithms. The first are the deterministic algorithms for which the
running time bounds have been proved rigorously. From a mathematical point of
view, these are the most satisfactory algorithms.

Secondly, we will consider deterministic algorithms for which the running time
bounds have only been established on the assumption of the generalized Riemann
hypothesis, which asserts that all non-trivial zeros of the zeta function of any algebraic
number field (see [10], Chapter VIII) have real part % In other contexts, such as
primality testing, one also encounters algorithms of which the correctness depends
on the truth of the generalized Riemann hypothesis. We shall not encounter such
algorithms in this paper.

The third type of algorithms are the probabilistic ones. These algorithms employ
a random number generator and the random numbers that are drawn influence the
course of the algorithm. Both the outcome of the algorithm and its running time have
therefore, for each given input, a distribution. When we speak about the running time
of a probabilistic algorithm, we shall mean the time that is needed to let the algorithm
terminate successfully with probability at least %; to increase this success probability
one can perform the algorithm several times. The time that the random number
generator may need is not counted. We shall not be concerned with the problem of
minimizing the number of calls that are made to the random number generator (see
4.

Again, in primality testing one also encounters algorithms that are probabilistic
in a different sense; namely, not the running time of the algorithm but the correctness
of the answer is subject to uncertainty. We shall not have occasion to deal with such
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algorithms in this paper: each algorithm that gives an answer gives provably a correct
answer.

In practical circumstances, one is usually willing to use probabilistic algorithms
instead of deterministic ones. As we shall see, there exists for each of our four problems
a probabilistic algorithm that runs in polynomial time. This suggests that from a
practical point of view all four problems may be considered to be well-solved, and this
appears indeed to be the case. :

Turning to deterministic algorithms, we shall see that there exist fully proved poly-
nomial time algorithms for the second problem (finding isomorphisms) and the third
problem (irreducibility testing). For the first problem (consiructing finite fields) and
the fourth problem (factoring polynomials) fully proved polynomial time algorithms
are currently only known in special cases; e.g., the case that the characteristic p is
fixed, or more generally the case that p is bounded by a fixed power of n or deg f.
If we accept the truth of the generalized Riemann hypothesis, then also for the first
problem (constructing finite fields) there is a deterministic polynomial time algorithm.
This is not the case for the fourth problem (factoring polynomials), although many
special cases have been dealt with. '

2. Constructing finite fields.

Let p be a prime number and n a positive integer. If we know an irreducible
polynomial f € F,[X] of degree n, then explicit data for a field of cardinality p™
are readily calculated, since F,[X]/fF,[X] is such a field. Conversely, given explicit
data for a field of cardinality p™, one can, in deterministic polynomial time, exhibit
an element « in this field that has degree n over F,, and calculate its irreducible
polynomial f over F,, which has degree n (see [12], Section 2). Thus the problem of
constructing explicit data for a finite field of cardinality p™ is equivalent to the problem
of constructing an irreducible polynomial of degree n in F,[X].

For n = 2 and p odd, a clearly equivalent problem is to find, given p, an element a
of F,, that is not a square. This can easily be done in polynomial time if a probabilistic

algorithm is allowed: draw a at random, until one that satisfies al?=172 = —1 is found.
The same applies if the generalized Riemann hypothesis is assumed: try all a up to
2(logp)? (see [3]). However, even for this special case, there is apparently at present
no hope of finding a fully proved deterministic polynomial time algorithm.

The general case can be reduced to the case that n is prime in the following
sense: if for each prime divisor 7 of n an irreducible polynomial of degree r in F,[X] is
given, then an irreducible polynomial of degree n can be constructed in deterministic
polynomial time ([12], Theorem (1.1)).

The best fully proved deterministic algorithm for the problem of constructing
finite fields is due to V. Shoup [22]. He proved that the problem can be reduced to the
problem of factoring polynomials over finite fields. This is a “Turing reduction” in the
sense that the construction of a single finite field requires the factorization of several
polynomials, which are computed in the course of the algorithm. Shoup’s reduction
and the results of Section 5 lead to the running time bound O(\/p - (n + Iogp)o(l)).
In particular, there exists a fully proved deterministic polynomial time algorithm if p
is fixed, e. g. p = 2, or if p is bounded by a fixed power of n.
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If the generalized Riemann hypothesis is assumed, then the problem of construct-
ing finite fields can be solved in polynomial time (see [1] and (7] (independently)). We
briefly sketch the method of [1] in the case that n is prime, to which the general case
can be reduced, as we just saw. To find an irreducible polynomial of prime degree n
in F,[X], one picks a small prime ¢ with the properties

= 1 mod n, pla~/n # 1 mod ¢;

the generalized Riemann hypothesis guarantees that the least such ¢ is (n +log p)°).
Now let H C F}; be the subgroup of n-th powers and (, a primitive ¢g-th root of unity.

Then the polynomial
f= 1 (x-%4)

CEeF,/H ze€C

lies in Z[X], and it can be proved that (f mod p) is irreducible in F,[X].

If probabilistic algorithms are allowed, the construction of finite fields is also pos-
sible in polynomial time. This follows, of course, from Shoup’s result just mentioned,
but it is easier to proceed as follows: pick f € F,[X], deg f = n, at random, test f for
irreducibility (see Section 4), and repeat until an irreducible f is found. This is effi-
cient, because a random polynomial of degree n in F,[X] is irreducible with probability
(14 0(p~/2) /n.

The problem of constructing finite fields has an interesting companion problem:
given positive integers p and n with p > 2 and a system of n® elements (@ijk)?j k=1
of Z/pZ, decide whether these form explicit data for a field of cardinality p™. For
. n = 1 this problem is equivalent to the primality testing problem: given an integer

p > 2, decide whether p is prime. For this problem no fully proved deterministic
polynomial time algorithm is known. Using the techniques of [12, Section 2] one can
show that primality testing is the only obstacle: there is a deterministic polynomial
time algorithm that, given p, n, (aijx) as above, either proves that they do not form
explicit data for a field of cardinality p™, or proves that if p is prime they do.

3. Finding isomorphisms.

Although the problem of finding an isomorphism between two explicitly given finite
fields of the same cardinality is from a theoretical point of view just as fundamental
as the problem of constructing finite fields, I do not believe that the problem arises in
many practical circumstances. If it ever would, one would probably solve it by means
of the following probabilistic algorithm. Let E, E' be two explicitly given finite fields
of cardinality p®. As we mentioned in the previous section, one can find a € E with
E = Fy(a) and determine the irreducible polynomial f of a over F,. Finding a field
isomorphism E — E' is now equivalent to finding a zero of f in E'. Since finding a
zero is equivalent to finding a linear factor, this problem can be solved by means of
one of the algorithms discussed in Section 5.

The procedure just sketched, combined with the results of Section 5, shows that the
problem of finding isomorphisms can be solved by means of a probabilistic algorithm
in polynomial time. It was shown by S.A. Evdokimov [7] that it can be done by
means of a deterministic polynomial time algorithm if the truth of the generalized
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Riemann hypothesis is assumed. These two results were superseded recently, when it
was proved that there is a fully proved deterministic polynomial time algorithm fop .
finding isomorphisms between finite fields [12].

To illustrate the idea we consider the case n = 2, p > 2. First, let explicit data for
finite field E of cardinality p? be given. It is not difficult to construct an element o ¢ f
with B = Fy(a) and o® = a € F,. Then a is not a square in F,, so aP=1/2 = _;
Writling p—1 = 2% with v odd, and replacing a, a by a”, a¥, we may assume that
= -1,

Now let another finite field E' of cardinality p? bte faxplicitly given. In a similar way
we can write E' = F, (), where 2 = b € F, and > = —1. To find an isomorphism
E — FE' it suffices to find ¢ € F, with a = bc?, since then we can map « to fe.

The element ¢ can be found by an iterative procedure that is due to A. Tonellj
(1891) ([6], page 215). The iteration starts with ¢ = 1. In each iteration step, one
first determines the least non-negative integer i for which o2 = (bc?)?". If 4 = 0 then
a = bc?, and the algorithm terminates. If i > 1, then we replace ¢ by b ™" and
iterate.

'To prove that the algorithm is correct and runs in polynomial time, it suffices to
observe that at the beginning of the algorithm, when ¢ = 1, one has ¢ <t —1, and that
@ decreases by at least 1 in every iteration step. To prove the latter assertion, note
that

™ = (et = (e )

The main obstacle in extending this algorithm to the case of general n is the
impossibility of writing a general n-th degree extension of F, in the form F,(a'/"),
with a € F,. It turns out that it is sufficient to consider the case that n is prime,
n # p. Evdokimov [7] deals with this problem by passing to the n-th cyclotomic
extension of F), and using Kummer theory. It is for the construction of this cyclotomic
extension that the generalized Riemann hypothesis is needed. In [12], this problem is
circumvented by using cyclotomic ring extensions, which can be obtained without any
unproved hypotheses, and developing the required Kummer theory for ring extensions.

The problem of finding isomorphisms between finite fields can be generalized in
several ways. For example, one may ask for an embedding of one explicitly given finite
field into another; or for ¢l such embeddings; and one may add the restriction that the
embeddings are the identity on an explicitly given common subfield. All these variants
can be dealt with in a straightforward way by means of the techniques of [12] (see in
particular [12], Section 2).

4. Irreducibility testing.

Let E be an explicitly given finite field, and let ¢ = #E. The fact that irreducibil-
ity testing in E[X] can be done by means of a deterministic polynomial time algorithm
is an immediate consequence of the well known formula

qu—‘inga
g9
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where m is any positive integer and g ranges over the set of all monic irreducible poly-
nomials in E[X] of degree dividing m. It follows from this formula that a polynomial
f € E[X] is irreducible if and only if '

gcd(Xqi—X,f)=1 for 1<4 < [(degf)/2],

and if and only if we have
deg f

X1 =X mod f

and
(deg 1)/

ged(X* ™ _ X, ) =1

for each prime r dividing deg f. To see that each of these irreducibility criteria gives
rise to a deterministic polynomial time irreducibility test it suffices to show how to
calculate X mod f for ¢ < deg f; the necessary greatest common divisors can then
be calculated by means of the Euclidean algorithm. To calculate X¢ mod f, one
can use the well-known algorithm that depends on the binary expansion of ¢' (see
[9], Section 4.6.3). Alternatively, one does this only for ¢ = 1 in order to obtain the
deg f x deg f matrix that expresses the E-linear map

Q: E[X]/fE[X] — E[X]/fE[X], Q(z) =27 forall z,

on the basis 1, X, ..., X(deg =1 of F[X]/fE[X] over E. The coefficients of the
remainder of X4 modulo f can be read from the i-th power of this matrix.

Once the matrix that describes the map @ has been calculated, one can use it in
a different way to test f for irreducibility. Namely, f is irreducible if and only if

ged(f, f)=1 and rank(Q —id)=(degf) -1,

where id denotes the identity function from E[X]/fE[X] to itself. For a proof of this
fact, and a comparison of the different irreducibility tests that we discussed, see [11],
Sections 4 and 5.

The generalized Riemann hypothesis or random number generators do not enter
into any efficient algorithm for irreducibility testing in E[X] that I am aware of.

5. Factoring polynomials.

Let E be an explicitly given finite field, p its characteristic, and f € E[X] a non-
zero polynomial. In this section, we discuss algorithms for factoring f into irreducible
factors. Although our interest is mainly theoretical, some of the ideas that will be
discussed do have practical value. For a discussion of these aspects we refer to [11].

It is a fundamental consequence of Berlekamp’s factoring algorithm ([11], Section
4), that there is a deterministic polynomial time algorithm that reduces the problem of
factoring f in E[X] to the problem of factoring a polynomial g € F,[X] into irreducible
factors in F,[X], in the special case that it is known that all those factors are linear and
distinct; i.e., g divides X? — X. This reduction is of a simpler sort than the “Turing”
reduction of Shoup that we mentioned in Section 2: given E and f, the reduction
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produces in polynomial time a single polynomial ¢ as above, such that knowledge of
the linear factors of g in F,[X] enables one to find the full factorization of fin E[X]
in polynomial time. For a description of this reduction we refer to [11], Sections 3 and
4.

For the remainder of this section, we assume that g € F,[X] is a polynomial with
X? = X mod g, and we put n = degg. We are interested in algorithms to find all
linear factors of g. Equivalently, we may ask for all zeros of g in F,. The problem is
trivial if n = 1. We will often tacitly assume that n > 1, and in that case we may
also be satisfied with obtaining a splitting of g, i.e. a decomposition ¢ = g,g, into
polynomials of lower degrees; one can then proceed recursively with g1 and g,.

For small p, an obvious approach is to try all elements of F, as possible zeros of
g- This works in time O (p(n + logp)®™), and it shows that there is a deterministic
algorithm that factors f in E[X] in time O(p(deg f +log #E)O(l)).

In these results, one can replace the factor p by /P if one uses a faster method to
check all elements of F, as possible zeros of g. This can be done by means of a device
that was used by Strassen in the context of factoring integers (23], Section 6). Let s
be the least integer > \/p, and let h € F,[X] be the polynomial

h:H(X-i).

For each integer j we have

(J+1)s

WX —js)= [ x-i).

i=js+1

Therefore the zeros of ged(h(X — js), g) are precisely the zeros of g among js + 1,
Jjs+2, ..., js+s. Hence, if we could calculate all h(X —Jjs)modgfor0<j < s
in time /p - (n + logp)°®W, then we could calculate all greatest common divisors
ged(h(X —js), g) and, for those values of j for which the ged is non-trivial, check the
elements js+ 1, js +2, ..., js + s one by one. This would give us all zeros of ¢ in
time \/p - (n + log p)°M).

To calculate all A(X —js) mod g efficiently we make use of methods that depend on
the fast Fourier transform. The coefficients of A can be computed in time /P-(log p)°®
(see [2]). If = denotes the image of X in F, [X]/gF,[X], then

h(z —js) = (R(X — js) mod 9),
so it suffices to calculate the s values
h(z), h(z—s), h(z—2s), ..., h(z—(s—1)s)€ F,[X]/gF,[X]

of the s-th degree polynomial k. This can be done in time /P - (n + logp)°M) | as
required, by the results in [2].
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The storage requirement of the algorithm just sketched is at least of the order ,/p.
Below we shall mention a deterministic algorithm that achieves the same time bound
O(\/}_D (n+ ]ogp)o(l)), but with storage requirement only (n + log p)°®).

If p is large, and in particular odd, then the following probabilistic algorithm splits
g in polynomial time. Pick a € F,, at random. The polynomial g divides

XP - X = (X +a)f — (X +a)=(X+a)(X +a) P/ 1) (X +a)PD/2 1),
so we can hope to split g by
g=ged(X +a, g) ged((X + a)(}"_l)/2 —1,9) ged((X + a)(”_l)/2 +1, g).

The first ged is usually trivial, unless g(—a) = 0, which can be checked directly.
Before calculating the other ged’s, one should replace (X + a)P~1/2 by its remainder
upon division by g, which can be calculated by repeated squarings and multiplications
modulo g.

If n > 1 then the above splitting is non-trivial for at least half of all a € F, (see
[11], Lemma 3.3). This implies that the probabilistic algorithm just described runs in
polynomial time.

This probabilistic algorithm can be turned into a deterministic one that runs in
time O(,/p) - (n + logp)°® by trying a =0, 1, 2, ..., in succession, and showing that
the least successful a is at most ,/p - logp. This observation is due to Shoup [19, 20].

If we allow the generalized Riemann hypothesis in the running time analysis then
the results do not become much better. Shoup [21] proved that in this case the factor
O(4/p) can be replaced by 1/S(p — 1), where S(p—1) denotes the largest prime divisor
of p — 1. Similar results involving S(p — 1) have been proved by various authors [13,
14, 17, 24]. The number p — 1 occurs in these results because it is the order of the
multiplicative group F. Other groups can also be used [5, 18]. As a byproduct, Bach
and Von zur Gathen [5] obtain, without any unproved hypotheses, the amusing result
that g can be factored by a deterministic algorithm in time (n 4 logp)°® if p is a
Mersenne prime. .

Rényai [16] proved the following result, assuming the truth of the generalized
Riemann hypothesis: if r is a prime number dividing n, then a non-trivial factor of ¢
can be found in time (n" 4log p)®(). The same result can be proved without assuming
the generalized Riemann hypothesis if an irreducible polynomial of degree r over F, is
known; as we saw in Section 2, such a polynomial can be found in polynomial time if
the generalized Riemann hypothesis is true.

It follows from Rényai’s result, under assumption of the generalized Riemann
hypothesis, that polynomials f € E[X] with a bounded number of irreducible factors
can be factored by a deterministic algorithm in polynomial time.

Several authors obtained results about factoring (h mod p) in F,[X] for polynomi-
als h € Z[X] of which the Galois group of h over Q is subjected to various restrictions
[7, 8, 18]. |
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